(19)
(11)EP 3 034 392 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
29.04.2020 Bulletin 2020/18

(21)Application number: 15195881.6

(22)Date of filing:  23.11.2015
(51)International Patent Classification (IPC): 
B64C 9/16(2006.01)
B64C 9/04(2006.01)
B64C 9/02(2006.01)
B64C 9/10(2006.01)

(54)

COVE LIP DOOR SLAVED TO TRAILING EDGE CONTROL DEVICE

AUF EINE HINTERKANTENSTEUERUNGSVORRICHTUNG AUSGERICHTETE WÖLBUNGSKLAPPENTÜR

PORTE À LÈVRE POUR BAIE ASSERVIE À UN DISPOSITIF DE COMMANDE DE BORD DE FUITE


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 19.12.2014 US 201414577873

(43)Date of publication of application:
22.06.2016 Bulletin 2016/25

(73)Proprietor: The Boeing Company
Chicago, IL 60606-1596 (US)

(72)Inventors:
  • Fevergeon, Matthew D M
    Chicago, IL 60606-1596 (US)
  • Kordel, Jan A.
    Seattle, WA 98124 (US)
  • Liu, Victor
    Chicago, IL 60606-1596 (US)

(74)Representative: Witte, Weller & Partner Patentanwälte mbB 
Postfach 10 54 62
70047 Stuttgart
70047 Stuttgart (DE)


(56)References cited: : 
EP-A1- 2 669 189
US-A- 4 120 470
US-A1- 2005 011 994
US-A- 3 874 617
US-A- 4 705 236
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    Field



    [0001] The present disclosure relates generally to aircraft flight control structures and more specifically to apparatus configured for slaving motion of a cove lip door to that of a trailing edge control device.

    Background



    [0002] Various control devices are used to effectively and efficiently maneuver aircraft during various phases of flight. Some control devices are directly attached to wings of an aircraft, such as ailerons adapted for controlling "roll", i.e. the rotational movement of an aircraft about its longitudinal axis. Spoilers may also be directly attached to aircraft wings to rapidly reduce wing lift when and as desired, particularly during various descent phases of a flight. Flaps are typically also attached directly to the wings to change their aerodynamic shapes for assuring stable flight control during slower speeds, such as during takeoff and landing phases of flight.

    [0003] Figure 1 is a fragmentary schematic view of a wing 10, attached to a fuselage 12, the wing and fuselage together depicting a portion of an aircraft 14 configured in accordance with the described related art. The wing 10 has a forward or leading edge 15 which may include deployable slats 16, as yet another wing control device. The wing also has a trailing edge 17 that includes outboard ailerons 18 and outboard flaps 20. The trailing edge 17 may also include inboard ailerons 22 and inboard flaps 24. As noted earlier, the ailerons are used for roll control of the aircraft 14, while the flaps are utilized to enhance lift control at lower speeds, e.g. for takeoffs and landings.

    [0004] In some instances, the effective deployment of flaps may require translational movements in addition to their normal downward angular movements from stowed positions for creating spaces and/or gaps that need to be controlled for purposes of aerodynamic efficiency. Thus, arrows 26 and 28 indicate the directions, when deployed, of rearward translational movements of outboard flaps 20 and inboard flaps 24, respectively. Typically, ailerons, including the inboard aileron 22 require no translational movement, as do the dedicated flaps 20, 24.

    [0005] The translational movement or extensions of outboard and inboard flaps 20, 24 of the convergent wing design of the aircraft wing 10 of Figure 1 would pose an issue of angular interference, if the respective flaps were immediately adjacent each other. Such interference is avoided, however, by portion of the wing 10 that includes the inboard aileron 22, which is positioned between the flaps 20, 24 and involves no translational deployment.

    [0006] In large turbofan jet aircraft, the functions of a flap and at least an inboard aileron may often be combined into a single or unitary control device called a flaperon. Since both flaps and ailerons are usually attached to the trailing edges of the aircraft wings, flaperons are also likewise attached. Thus, referring now to Figure 2, the inboard aileron 22 of the aircraft 14 is shown attached to the trailing edge 32 of the wing 10, as shown at an interface 30 of the leading edge 34 of the inboard aileron 22. It should be noted that the inboard aileron 22 may be rotated about a hinge axis 38 into a rigid downward position 22" (shown in phantom); i.e. deployed from the stowed position shown to a fixed angle along the downward arc of angle B, to function solely as a flap, even though without a gap, since at relatively slower speeds, i.e. during takeoff and landing, the outboard ailerons may be solely relied upon to effectively control roll of the aircraft 14.

    [0007] Since the inboard aileron 22 also function as a flap, in aviation parlance such control device is also called a "flaperon", to the extent that it may be called upon to selectively perform both aileron or flap functions, depending on circumstances and/or phases of flight.

    [0008] When functioning as an aileron, the so-called flaperon 22 is rotated upwardly along arc A from its stowed position as shown, up to and including a limit position 22' (shown in phantom), to the extent that a functional aileron must be free to move both upwardly and downwardly. Conversely, the flaperon 22 may be rotated downwardly along arc B from its stowed position, down to and including a limit position 22" (also shown in phantom). Finally, the trailing edge 32 of the wing 10 incorporates an aft-facing cove lip 36, a volume or space in which the leading edge 34 of the flaperon may rotate in close proximity, as depicted in Figure 2 at the interface 30.

    [0009] Referring now to Figure 3, the flap 24 may also be capable of acting as an aileron, and thus as a flaperon. Therefore, the flap 24 may also be variously called a flaperon 24. However, because deployment of the flaperon 24 may involve a translational extension, the physical structure involved in its deployment must accommodate translational in addition to pivotal movement. In the related art structure shown, deployment of the flaperon 24 utilizes a cam track mechanism 42 secured within the trailing edge 32 of the wing 10 to provide a functional connection that supports both angular and translational movement of the flaperon 24 relative to the wing 10. A hinge panel 40, configured for management of aerodynamic air gaps created during the extension aspect of deployment of the flaperon 24 is also coupled to the structure of the cam track mechanism to assure desired angular positioning.

    [0010] Several challenges are presented by such structures adapted to satisfactorily accommodate both angular and translational motion, including the need to assure requisite fail-safe strength and robustness under occasional extreme loads, such as those associated with turbulence and other phenomena routinely encountered in flight. As such, the cam track mechanism 42 includes relatively heavy cam tracks 44 that define paths for cam track rollers 48 that are directly secured to roller links 46. Use of the cam track mechanism 42 has also necessitated the use of a technology called "fusing", for assuring safety in the event of "jamming" of any of the track rollers 38. Since jamming is an issue to be avoided at all costs, at least two roller links are typically riveted together in a cam track-style mechanism 42 (FIG. 3) for appropriate safety redundancy. Such links are designed to fail in a predictable manner, necessitating additional weight that would be preferably avoided.

    [0011] US 2005/011994 A1 discloses multifunction and/or mechanically similar trailing edge devices and associated methods of manufacture and use.

    [0012] US 4 705 236 A discloses an aileron system for an aircraft and also a method for utilizing such an aileron system.

    [0013] US 3 874 617 discloses a double four-bar linkage for flap actuation on a Short Take Off and Landing aircraft with interconnecting linkage to proportionally deflect the spoiler as the flaps are extended.

    [0014] Thus, it is desirable to provide a novel structure to accommodate both angular and translational movements of flaperons, but wherein such structure can retain robustness and yet be lighter in weight, in the face of increasingly stringent aircraft design requirements.

    Summary



    [0015] There is provided an aircraft wing configured to be fixed to and extend from an aircraft fuselage, the wing having a leading edge and a trailing edge; an aerodynamic control device attached to the trailing edge, an actuator in communication with the aerodynamic control device, and an aircraft input controller in communication with the actuator, wherein movement of the control device is subject to the actuator via the input controller; a bell crank mechanism coupled to the control device, and configured to link movement of a hinge panel directly to movement of the control device; a moveable aerodynamic cove lip door proximal to the aerodynamic control device, the cove lip door separately attached to the trailing edge; and wherein the actuator also controls movement of the cove lip door as an indirect function of movement of the control device, and wherein the aircraft wing further comprises an actuator pivot link having first and second ends, the actuator being coupled to the actuator pivot link at the first end, and the actuator pivot link pivotally connected to, but translationally fixed to, the trailing edge at the second end, and wherein the bell crank mechanism includes a center link also pivotally connected to, but translationally fixed to, the trailing edge, wherein the aircraft wing further comprises a cove lip door drive arm, a cove lip door drive link fixed to the drive arm, and a cove lip door hinge connected to the cove lip door, the cove lip door drive arm being secured to the actuator pivot link at a position intermediately of the first and second ends thereof, wherein the cove door drive link also has first and second ends, the first end thereof being rotatably secured to the cove lip door drive arm, and the second end rotatably secured to the cove lip door hinge, and wherein movement of the actuator moves the actuator pivot link, causing pivotal movement of the cove lip door relative to the trailing edge, wherein the actuator pivot link and the drive arm both rotate relative to the trailing edge about the second end of the actuator pivot link.

    [0016] A method of slaving motion of a cove lip door to that of a trailing edge device, the method comprising the steps of providing a cove lip door control mechanism for an aircraft wing, the wing configured to be fixed to and extend from an aircraft fuselage, the wing having a leading edge and a trailing edge; providing an aerodynamic control device and attaching the control device to the trailing edge; providing an actuator configured to operate the control device; providing an aircraft input controller configured to move the actuator, wherein movement of the control device is subject to the actuator via the input controller; providing a bell crank mechanism coupled to the control device, and configured to link movement of a hinge panel directly to movement of the control device; and providing a moveable aerodynamic cove lip door proximal to the aerodynamic control device, the cove lip door separately attached to the trailing edge; and configuring the actuator to also control movement of the cove lip door as an indirect function of movement of the control device; and wherein the method further includes the step of providing an actuator pivot link configured to be directly slaved to movement of the control device, wherein the actuator pivot link has first and second ends, the actuator being coupled to the actuator pivot link at the first end, and the actuator pivot link pivotally connected to, but translationally fixed to, the trailing edge at the second end, and wherein the bell crank mechanism includes a center link also pivotally connected to, but translationally fixed to, the trailing edge; wherein the method further includes the step of providing a cove lip door drive arm, a cove lip door drive link fixed to the drive arm, and a cove lip door hinge connected to the cove lip door, the cove lip door drive arm being secured to the actuator pivot link at a position intermediately of the first and second ends thereof, wherein the cove door drive link also has first and second ends, the first end thereof being rotatably secured to the cove lip door drive arm, and the second end rotatably secured to the cove lip door hinge, and wherein movement of the actuator moves the actuator pivot link, causing pivotal movement of the cove lip door relative to the trailing edge, wherein the actuator pivot link and the drive arm both rotate relative to the trailing edge about the second end of the actuator pivot link.

    [0017] The features, functions, and advantages disclosed herein can be achieved independently in various embodiments, the details of which may be better appreciated with reference to the following description and drawings.

    Brief Description of the Drawings



    [0018] 

    FIG. 1 is a fragmentary plan view of a wing of a commercial aircraft configured in accordance with the related art.

    FIG. 2 is a fragmentary schematic elevation view of an inboard aileron of the commercial aircraft of FIG. 1.

    FIG. 3 is a fragmentary elevational view of a cross-section of an inboard flap of the commercial aircraft of FIG. 1.

    FIG. 4 is a fragmentary elevational view of a cross-section of an inboard flap and hinge panel constructed in accordance with a described embodiment of the present disclosure.

    FIG. 5 is a fragmentary elevational view of a cross-section of the same inboard flap and hinge panel constructed in accordance with a described embodiment of the present disclosure, albeit with the flap shown in a different position.

    FIG. 6 is a perspective view of the same inboard flap of FIGS. 4 and 5, but including a view of an associated cove lip door.

    FIG. 7 is a perspective schematic view of the same inboard flap of FIGS. 4 and 5, but including a view of the flap actuator structure in relation to the flap and the cove lip door.

    FIG. 8 is a perspective schematic view of the same inboard flap and flap actuator structure of FIG. 7, albeit with the flap shown in a different position.

    FIG. 9 is a flowchart depicting relationships among aircraft components of the present disclosure.



    [0019] It should be understood that the drawings are not necessarily to scale, and that the disclosed embodiments are illustrated only schematically. It should be further understood that the following detailed description is merely exemplary and not intended to be limiting in application or uses.

    Detailed Description



    [0020] The following detailed description is intended to provide both apparatus and methods for carrying out the disclosure. Actual scope of the disclosure is as defined by the appended claims.

    [0021] FIG. 4 is an elevational cross-section view of an inboard flap 124 constructed in accordance with one described embodiment of the present disclosure. The inboard flap 124, shown in an upward position while functioning as a flaperon, is relatively movable with respect to the trailing edge 132 of the wing 110 by a bell crank mechanism 150. The bell crank mechanism 150 effectively comprises a pair or series of four-bar linkages to integrate control of the flap 124 and an otherwise separately movable hinge panel 140, thus eliminating the need for the related art cam track mechanism 42 described above.

    [0022] Continuing reference to FIG. 4, a support header (also generally and commonly called a rib) 160 is a vertically oriented structural member within an interior space 161 of the flap 124. Typically there are a number of such support headers fixed in a parallel, spaced array. In the described embodiment the wing 110, at least two of such support headers 160 of each wing 110 includes an integral flap extension flange 162. Each of the flap extension flanges 162 is coupled directly to a single bell crank mechanism 150. Both bell crank mechanisms 150, 152 (FIG. 6) of each wing 110 operate in concert, as will be appreciated by those skilled in the art. As such, only one of the two mechanisms, i.e. bell crank mechanism 150, will be described herein.

    [0023] The flap extension flange 162 is coupled via a coupling joint 164 to a bottom or flap link 166. At the forward end of the link 166 is a coupling joint 168 which pivotally secures the link 166 to a center link 170. At an intermediate portion thereof, the center link 170 is fixed to and rotates about a fixed coupling joint 172, which is secured to a support header 174, which is an integral part of the trailing edge 32 the wing 110.

    [0024] An upper coupling joint 176 of the center link 170 is configured to couple with an upper link 178. It will be appreciated that the latter provides a first, indirect connection to the hinge panel 140. The upper link 178 includes a forward coupling joint 180 adapted to connect directly to hinge panel link 182 (shown in phantom, since hidden behind support structures within the trailing edge 132). A forward coupling joint 184 of the hinge panel link 182 provides a direct connection to a hinge panel support header 186, a structural support member of the hinge panel 140, as depicted.

    [0025] The described elements, including all links and coupling joints (i.e., connections) are maintained in FIG. 5, wherein the inboard flap 124 is shown deployed downwardly, in either a flap or flaperon configuration, as already described. Be noted that the center link 170 pivotally connected to, but translationally fixed to the trailing edge 132, for supporting only pivotal movement of the center link relative to the trailing edge. For this purpose, the center link 170 has three connecting joints i.e. coupling joint 168 at one end thereof, shared with the flap link 166, the fixed coupling joint 172 at its center, about which it is pivotally secured to the support header 174, and the upper coupling joint 176, shared with the forward hinge panel link 182.

    [0026] Those skilled in the art will appreciate that in order to support movement of the bell crank mechanism 150 for its resultant movement of the flap 124 relative to the trailing edge 132, there must be an additional pivotally fixed connection between the flap 124 and the trailing edge 132. Although that connection is not shown herein, since not part of the direct bell crank linkage system, such a connection would be physically positioned generally below the pivot coupling joint 164 in the described embodiment.

    [0027] Referring now to FIG. 6, a perspective view of the flap or flaperon 124 depicts the use of dual bell crank mechanisms 150 along with spaced dual cooperating actuators 200 and 202. Those skilled in the art will appreciate that the actuator, at least in this described embodiment, is a device responsible for actual deployment, hence movement of the flap 124 relative to the trailing edge 132 between its limits, as shown in FIGS. 4 and 5.

    [0028] FIG. 6 also depicts a so-called cove lip door 270. In addition to the described hinge panel 140, the cove lip door is another aerodynamic feature that is associated with the flaperon 124. The cove lip door 270, essentially a miniature wing-like structure, can provide real-time aerodynamic gap control management, and is configured to be controllably displaced relative to the flaperon 124 via both rotation and translation motions to manage any air gaps created by the extension (i.e. translational) and rotational movement of the flaperon 124. For this purpose, a cove lip door mechanism 300 can be configured to control all movement of the cove lip door 270, and essentially to slave such movement to the movement of the flaperon 124.

    [0029] Referring now to FIG. 7, one end of the actuator 200 is shown coupled to an actuator pivot link 250 while the flaperon 124 is in a stowed position, such as during a cruise phase of flight. The actuator pivot link 250 has a first end 252 and a second end 254. The first end 252 thereof is secured to the actuator 200 via joint 256, the latter coupling the actuator 200 directly to the actuator pivot link 250 to support pivotal motion of the two members relative to the other.

    [0030] The second end 254 of the actuator pivot link 250 contains a joint 258 that is fixed to the trailing edge 132, and thus allows the actuator pivot link 250 to pivot about the trailing edge 132 at the joint 258. Movement of the cove lip door 270 is controlled by such pivotal action of the actuator pivot link 250. For this purpose, a cove lip door drive arm 260 is secured to a drive link 262, having first and second jointed ends 264, 266, respectively, as shown. At the first jointed end 264, the drive arm 260, secured to the actuator pivot link 250 at a position intermediate of respective first and second ends 252, 254, provides a relatively fixed location about which the actuator pivot link 250 rotates. On the other hand, a cove lip door hinge 268 at the jointed end 266, is configured to connect directly to the cove lip door 270, and thus pivots about the first jointed end 264.

    [0031] FIG. 8 depicts the flaperon and cove lip door structures in a flaperon "up position" such as during cruise when the flaperon is operating as an inboard aileron, described above. All of the aforementioned structures have connective relationships and associations as described, albeit the cove lip door 270 is shown in a different position relative to the flaperon 124.

    [0032] FIG. 9 provides a flowchart depicting the relationship of the aircraft input controller 190 to the actuators 200, 202 (two per wing in the disclosed embodiment). To the extent that the actuators are directly connected to and engaged with the cove lip door mechanisms 300, 302 (two per wing in the disclosed embodiment), and are thus configured to move respective cove lip door actuator pivot links in the described manner, it will be apparent to those skilled in the art that primary or direct control of the trailing edge device 124 is an intended response of the aircraft input controller 190, as described in detail herein. On the other hand, the input controller 190 is configured to provide a secondary, indirect, or slaved control of the cove lip door 270, thus causing a desired follower movement of the cove lip door relative to any direct actuation of a trailing edge device, such as the flaperon 124.

    [0033] Finally, a method of slaving motion of a cove lip door to that of a trailing edge device includes steps of providing a cove lip door control mechanism for an aircraft wing, the wing configured to be fixed to and extend from an aircraft fuselage, the wing having a leading edge and a trailing edge. The steps include providing an aerodynamic control device and attaching the control device to the trailing edge and providing an actuator configured to operate the control device. The steps further include providing an aircraft input controller configured to move the actuator, wherein movement of the control device is subject to the actuator via the input controller. Finally, the steps further include providing a bell crank mechanism coupled to the control device, and configured to link movement of the hinge panel directly to movement of the control device, and providing a moveable aerodynamic cove lip door proximal to the aerodynamic control device, the cove lip door separately attached to the trailing edge for the actuator to also control movement of the cove lip door as an indirect function of movement of the control device.

    [0034] Those skilled in the art will appreciate that the structures described, including the actuator pivot link 250, drive arm 260, and drive link 262, may offer numerous benefits over related art. Not only is a cam track weight penalty avoided, but above-described fusing requirements can be avoided as well. Among additional benefits are reduction in manufacturing complexity associated with cam track mechanisms, and avoidance of issues inherent to cam track mechanisms, including gouging or fracture damage, and/or imposition of increased loading on structures, from deleterious accumulations of wear particle debris within cam track surfaces, for example.

    [0035] In addition, the disclosure may also cover numerous additional embodiments. For example, the lengths of each link may be adjusted to support various aerodynamically distinct flight circumstances and/or surface geometries for minimizing interference drag coefficients, including those related to skin friction, parasitic and separation drag, as well as wave drag. As such, particular forms and shapes of the links, for example, may be adjusted to optimize desired gaps controlled by the cove lip door for optimizing flight performance characteristics.


    Claims

    1. An aircraft wing (110) configured to be fixed to and extend from an aircraft fuselage, the wing having a leading edge and a trailing edge;

    an aerodynamic control device (124) attached to the trailing edge, an actuator (200, 202) in communication with the control device (124), and an aircraft input controller (190) in communication with the actuator (200, 202), wherein movement of the control device is subject to the actuator (200, 202) via the input controller;

    a bell crank mechanism (150) coupled to the control device, and configured to link movement of a hinge panel (140) directly to movement of the control device;

    a moveable aerodynamic cove lip door (270) proximal to the aerodynamic control device, the cove lip door (270) separately attached to the trailing edge; and

    wherein the actuator (200, 202) also controls movement of the cove lip door (270) as an indirect function of movement of the control device, and wherein

    the aircraft wing further comprises an actuator pivot link (250) having first and second ends, the actuator (200, 202) being coupled to the actuator pivot link (250) at the first end, and the actuator pivot link (250) pivotally connected to, but translationally fixed to, the trailing edge at the second end, and wherein the bell crank mechanism (150) includes a center link also pivotally connected to, but translationally fixed to, the trailing edge,

    wherein the aircraft wing further comprises a cove lip door drive arm (260), a cove lip door drive link (262) fixed to the drive arm, and a cove lip door hinge (268) connected to the cove lip door, the cove lip door drive arm (260) being secured to the actuator pivot link (250) at a position intermediately of the first and second ends thereof, wherein the cove door drive link (262) also has first and second ends, the first end thereof being rotatably secured to the cove lip door drive arm (260), and the second end rotatably secured to the cove lip door hinge (268), and wherein movement of the actuator (200, 202) moves the actuator pivot link (250), causing pivotal movement of the cove lip door (270) relative to the trailing edge, wherein the actuator pivot link (250) and the drive arm (260) both rotate relative to the trailing edge about the second end of the actuator pivot link (250).


     
    2. The aircraft wing of claim 1, wherein the aerodynamic control device is a flaperon.
     
    3. The aircraft wing of claim 1 or 2, further comprising at least two bell crank mechanisms (150).
     
    4. A method of slaving motion of a cove lip door (270) to that of a trailing edge device, the method comprising the steps of:

    providing a cove lip door control mechanism for an aircraft wing (110), the wing configured to be fixed to and extend from an aircraft fuselage, the wing having a leading edge and a trailing edge;

    providing an aerodynamic control device and attaching the control device to the trailing edge;

    providing an actuator (200, 202) configured to operate the control device;

    providing an aircraft input controller (190) configured to move the actuator (200, 202), wherein movement of the control device is subject to the actuator (200, 202) via the input controller (190);

    providing a bell crank mechanism (150) coupled to the control device, and configured to link movement of a hinge panel (140) directly to movement of the control device; and

    providing a moveable aerodynamic cove lip door (270) proximal to the aerodynamic control device, the cove lip door (270) separately attached to the trailing edge; and

    configuring the actuator (200, 202) to also control movement of the cove lip door (270) as an indirect function of movement of the control device; and

    wherein the method further includes the step of providing an actuator pivot link (250) configured to be directly slaved to movement of the control device, wherein the actuator pivot link (250) has first and second ends, the actuator (200, 202) being coupled to the actuator pivot link (250) at the first end, and the actuator pivot link (250) pivotally connected to, but translationally fixed to, the trailing edge at the second end, and wherein the bell crank mechanism (150) includes a center link also pivotally connected to, but translationally fixed to, the trailing edge;

    wherein the method further includes the step of providing a cove lip door drive arm (260), a cove lip door drive link (262) fixed to the drive arm, and a cove lip door hinge (268) connected to the cove lip door, the cove lip door drive arm (260) being secured to the actuator pivot link (250) at a position intermediately of the first and second ends thereof, wherein the cove door drive link (262) also has first and second ends, the first end thereof being rotatably secured to the cove lip door drive arm (260), and the second end rotatably secured to the cove lip door hinge (268), and wherein movement of the actuator (200, 202) moves the actuator pivot link (250), causing pivotal movement of the cove lip door (270) relative to the trailing edge, wherein the actuator pivot link (250) and the drive arm (260) both rotate relative to the trailing edge about the second end of the actuator pivot link (250).


     


    Ansprüche

    1. Luftfahrzeugflügel (110), der dazu konfiguriert ist, an einem Luftfahrzeugrumpf angebracht zu sein sich von diesem zu erstrecken, wobei der Flügel eine Vorderkante und eine Hinterkante aufweist;

    eine aerodynamische Steuereinrichtung (124), die an der Hinterkante angebracht ist, einen Aktuator (200, 202), der mit der Steuereinrichtung (124) in Verbindung steht, und eine Luftfahrzeugeingangssteuerung (190), die in Kommunikation mit dem Aktuator (200, 202) ist, wobei eine Bewegung der Steuereinrichtung von dem Aktuator (200, 202) über die Eingangssteuerung bewirkt ist;

    ein Kipphebelmechanismus (150), der mit der Steuereinrichtung gekoppelt ist dazu konfiguriert ist, eine Bewegung eines Schwenkpanels (140) direkt mit einer Bewegung der Steuereinrichtung zu verknüpfen;

    eine bewegbare Wölbungslippentür (270) proximal zu der aerodynamischen Steuereinrichtung, wobei die Wölbungslippentür (270) separater an der Hinterkante angebracht ist; und

    wobei der Aktuator (200, 202) auch eine Bewegung der Wölbungslippentür (270) als eine indirekte Funktion eine Bewegung der Steuereinrichtung steuert, und wobei der Luftfahrzeugflügel des Weiteren eine Aktuatorschwenkverknüpfung (250) aufweist, die ein erstes und ein zweites Ende aufweist, wobei der Aktuator (200, 202) mit der Aktuatorschwenkverknüpfung (250) in dem ersten Ende gekoppelt ist, und wobei die Aktuatorschwenkverknüpfung (250) schwenkbar verbunden mit, aber translatorisch festgelegt an der Hinterkante in dem zweiten Ende ist, und wobei der Kipphebelmechanismus (150) eine Zentralverknüpfung aufweist, die auch schwenkbar verbunden mit, aber translatorisch befestigt an der Hinterkante ist,

    wobei der Luftfahrzeugflügel des Weiteren einen Wölbungslippentürantriebsarm (260) aufweist, eine Wölbungslippentürantriebsverknüpfung (262) aufweist, die mit dem Antriebsarm befestigt ist und ein Wölbungslippentürgelenk (268) aufweist, das mit der Wölbungslippentür verbunden ist, wobei der Wölbungslippentürantriebsarm (260) an der Aktuatorschwenkverknüpfung (250) an einer Position festgelegt ist, die zwischen den ersten und zweiten Enden davon ist, wobei die Wölbungslippentürantriebsverknüpfung (262) auch ein erstes und ein zweites Ende aufweist, wobei das erste Ende davon rotierbar an dem Wölbungslippentürantriebsarm (260) festgelegt ist und das zweite Ende rotierbar an dem Wölbungslippentürgelenk (268) festgelegt ist, und wobei eine Bewegung des Aktuators (200, 202) die Aktuatorschwenkverknüpfung (250) bewegt, was eine Schwenkbewegung der Wölbungslippe (270) relativ zu der Hinterkante bewirkt, wobei die Aktuatorschwenkverknüpfung (250) und der Antriebsarm (260) beide relativ zu der Hinterkante um das zweite Ende der Aktuatorschwenkverknüpfung (250) rotieren.


     
    2. Luftfahrzeugflügel nach Anspruch 1, wobei die aerodynamische Steuereinrichtung ein Flaperon ist.
     
    3. Luftfahrzeugflügel nach Anspruch 1 oder 2, des Weiteren mit mindestens zwei Kipphebelmechanismen (150).
     
    4. Verfahren zum Abhängigmachen einer Bewegung einer Wölbungslippentür (270) zu der einer Hinterkanteneinrichtung, wobei das Verfahren die folgenden Schritte aufweist:

    Bereitstellen eines Wölbungslippentürsteuerungsmechanismus für Luftfahrzeugflügel (110), wobei der Flügel dazu konfiguriert ist, angebracht zu sein an und sich zu erstrecken von einem Luftfahrzeugrumpf, wobei der Flügel eine Vorderkante und eine Hinterkante aufweist;

    Bereitstellen einer aerodynamischen Steuereinrichtung und Anbringen der Steuereinrichtung einer Hinterkante;

    Bereitstellen eines Aktuators (200, 202), der dazu konfiguriert ist, die Steuereinrichtung zu betreiben;

    Bereitstellen einer Luftfahrzeugeingangssteuerung (190), die dazu konfiguriert ist, den Aktuator (200, 202) zu bewegen, wobei die Bewegung der Steuereinrichtung von dem Aktuator (200, 202) über den die Eingabesteuerung (190) bewirkt ist;

    Bereitstellen eines Kipphebelmechanismus (150), der mit der Steuereinrichtung gekoppelt ist, und dazu konfiguriert ist, eine Bewegung eines Schwenkpanels (140) direkt mit einer Bewegung der Steuereinrichtung zu verknüpfen; und

    Bereitstellen einer bewegbaren aerodynamischen Wölbungslippentür (270) proximal zu der aerodynamischen Steuereinrichtung, wobei die Wölbungslippentür (270) separat an der Hinterkante angebracht ist; und

    Konfigurieren des Aktuators (200, 202) dazu auch eine Bewegung der Wölbungslippentür (270) als eine indirekte Funktion einer Bewegung der Steuereinrichtung zu steuern; und

    wobei das Verfahren des Weiteren den Schritt des Bereitstellens einer Aktuatorschwenkverknüpfung (250) aufweist, die dazu konfiguriert ist, direkt abhängig von der Bewegung der Steuereinrichtung zu sein, wobei die Aktuatorschwenkverknüpfung (250) ein erstes und ein zweites Ende aufweist, wobei der Aktuator (200, 202) mit der Aktuatorschwenkverknüpfung (250) an dem ersten Ende gekoppelt ist und die Aktuatorschwenkverknüpfung (250) schwenkbar verbunden mit, aber translatorisch festgelegt an der Hinterkante an dem zweiten Ende ist, und wobei der Kipphebelmechanismus (150) des Weiteren eine Zentralverknüpfung aufweist, die auch schwenkbar verbunden mit, aber translatorisch festgelegt an der Hinterkante ist;

    wobei das Verfahren des Weiteren den Schritt des Bereitstellens eines Wölbungslippentürantriebsarms (260), eines Wölbungslippentürantriebsverknüpfung (262), die an dem Antriebsarm festgelegt ist, und eines Wölbungslippentürgelenks (268) aufweist, das an der Wölbungslippentür verbunden ist, wobei der Wölbungslippentürantriebsarm (260) an der Aktuatorschwenkverknüpfung (250) in einer Position zwischen dem ersten und dem zweiten Enden davon festgelegt ist, wobei der Wölbungslippentürantriebsverknüpfung??? (262) auch ein erstes und ein zweites Ende aufweist, wobei das erste Ende davon rotierbar an dem Wölbungslippentürantriebsarm (260) festgelegt ist und das zweite Ende an dem Wölbungslippentürgelenk (268) festgelegt ist und für eine Bewegung des Aktuators (200, 202) die Aktuatorschwenkverknüpfung (250) bewegt, was eine Schwenkbewegung der Wölbungslippe (270) relativ zu der Hinterkante bewirkt, wobei die Aktuatorschwenkverknüpfung (250) und der Antriebsarm (260) weiter relativ zu der Hinterkante um das zweite Ende der Aktuatorschwenkverknüpfung (250) rotieren.


     


    Revendications

    1. Aile d'aéronef (110) configurée pour être fixée à un fuselage d'aéronef et s'étendre à partir de celui-ci, l'aile ayant un bord d'attaque et un bord de fuite ;

    un dispositif de commande aérodynamique (124) fixé au bord de fuite, un actionneur (200, 202) en communication avec le dispositif de commande (124), et un contrôleur d'entrée d'aéronef (190) en communication avec l'actionneur (200, 202), le mouvement du dispositif de commande étant commandé par l'actionneur (200, 202) via le contrôleur d'entrée ;

    un mécanisme à levier coudé (150) couplé au dispositif de commande, et configuré pour relier le mouvement d'un panneau d'articulation (140) directement au mouvement du dispositif de commande ;

    une porte à lèvre pour baie aérodynamique mobile (270) à proximité du dispositif de commande aérodynamique, la porte à lèvre pour baie (270) étant fixée séparément au bord de fuite ; et

    l'actionneur (200, 202) commandant également le mouvement de la porte à lèvre pour baie (270) comme une fonction indirecte du mouvement du dispositif de commande, et l'aile de l'aéronef comprenant en outre une liaison pivot d'actionneur (250) ayant des première et seconde extrémités, l'actionneur (200, 202) étant couplé à la liaison pivot d'actionneur (250) au niveau de la première extrémité, et la liaison pivot d'actionneur (250) étant reliée de manière pivotante, mais fixée en translation, au bord de fuite au niveau de la seconde extrémité, et le mécanisme à levier coudé (150) comprenant une liaison centrale également reliée de manière pivotante, mais fixée en translation, au bord de fuite,

    l'aile d'aéronef comprenant en outre un bras d'entraînement de porte à lèvre pour baie (260), une liaison d'entraînement de porte à lèvre pour baie (262) fixée au bras d'entraînement, et une charnière de porte à lèvre pour baie (268) reliée à la porte à lèvre pour baie, le bras d'entraînement de porte à lèvre pour baie (260) étant fixé à la liaison pivot d'actionneur (250) à une position intermédiaire entre les première et seconde extrémités de celle-ci, la liaison d'entraînement de porte à lèvre pour baie (262) ayant également des première et seconde extrémités, la première extrémité de celle-ci étant fixée de manière rotative au bras d'entraînement de porte à lèvres pour baie (260), et la seconde extrémité étant fixée de manière rotative à la charnière de porte à lèvre pour baie (268), et le mouvement de l'actionneur (200, 202) déplaçant la liaison pivot d'actionneur (250), provoquant un mouvement pivotant de la porte à lèvres pour baie (270) par rapport au bord de fuite, la liaison pivot d'actionneur (250) et le bras d'entraînement (260) tournant tous deux par rapport au bord de fuite autour de la seconde extrémité de la liaison pivot d'actionneur (250).


     
    2. Aile d'aéronef selon la revendication 1, dans laquelle le dispositif de commande aérodynamique est un flaperon.
     
    3. Aile d'aéronef selon la revendication 1 ou 2, comprenant en outre au moins deux mécanismes à levier coudé (150).
     
    4. Procédé d'asservissement du mouvement d'une porte à lèvre pour baie (270) à celui d'un dispositif de bord de fuite, le procédé comprenant les étapes consistant à :

    fournir un mécanisme de commande de porte à lèvre pour baie pour une aile d'aéronef (110), l'aile étant configurée pour être fixée à un fuselage d'aéronef et s'étendre à partir de celui-ci, l'aile ayant un bord d'attaque et un bord de fuite ;

    fournir un dispositif de commande aérodynamique et fixer le dispositif de commande au bord de fuite ;

    fournir un actionneur (200, 202) configuré pour faire fonctionner le dispositif de commande ;

    fournir un contrôleur d'entrée d'aéronef (190) configuré pour déplacer l'actionneur (200, 202), le mouvement du dispositif de commande étant commandé par l'actionneur (200, 202) via le contrôleur d'entrée (190) ;

    fournir un mécanisme à levier coudé (150) couplé au dispositif de commande, et configuré pour relier le mouvement d'un panneau d'articulation (140) directement au mouvement du dispositif de commande ; et

    fournir une porte à lèvre pour baie aérodynamique mobile (270) à proximité du dispositif de commande aérodynamique, la porte à lèvre pour baie (270) étant fixée séparément au bord de fuite ; et

    configurer l'actionneur (200, 202) pour commander également le mouvement de la porte à lèvre pour baie (270) comme une fonction indirecte du mouvement du dispositif de commande ; et

    le procédé comprenant en outre l'étape consistant à fournir une liaison pivot d'actionneur (250) configurée pour être directement asservie au mouvement du dispositif de commande, la liaison pivot d'actionneur (250) ayant des première et seconde extrémités, l'actionneur (200, 202) étant couplé à la liaison pivot d'actionneur (250) au niveau de la première extrémité, et la liaison pivot d'actionneur (250) étant connectée de manière pivotante, mais fixée en translation, au bord de fuite au niveau de la seconde extrémité, et le mécanisme à levier coudé (150) comprenant une liaison centrale également connectée de manière pivotante, mais fixée en translation, au bord de fuite ;

    le procédé comprenant en outre l'étape consistant à fournir un bras d'entraînement de porte à lèvres pour baie (260), une liaison d'entraînement de porte à lèvres pour baie (262) fixée au bras d'entraînement, et une charnière de porte à lèvres pour baie (268) reliée à la porte à lèvres pour baie, le bras d'entraînement de porte à lèvres pour baie (260) étant fixé à la liaison pivot d'actionneur (250) à une position intermédiaire entre les première et seconde extrémités de celle-ci, la liaison d'entraînement de porte à lèvres pour baie (262) ayant également des première et seconde extrémités, la première extrémité de celle-ci étant fixée de manière rotative au bras d'entraînement de porte à lèvres pour baie (260), et la seconde extrémité étant fixée de manière rotative à la charnière (268) de la porte à lèvres pour baie, et le mouvement de l'actionneur (200, 202) déplaçant la liaison pivot d'actionneur (250), provoquant un mouvement pivotant de la porte à lèvres pour baie (270) par rapport au bord de fuite, la liaison pivot d'actionneur (250) et le bras d'entraînement (260) tournant tous deux par rapport au bord de fuite autour de la seconde extrémité de la liaison pivot d'actionneur (250).


     




    Drawing





























    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description