(19)
(11)EP 3 035 406 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
28.09.2022 Bulletin 2022/39

(21)Application number: 15172490.3

(22)Date of filing:  17.06.2015
(51)International Patent Classification (IPC): 
H01L 51/00(2006.01)
(52)Cooperative Patent Classification (CPC):
H01L 51/0097; H01L 51/5243; H01L 2251/5338; H05B 33/14; H05B 33/06

(54)

ORGANIC LIGHT EMITTING DISPLAY DEVICE

ORGANISCHE LICHTEMITTIERENDE ANZEIGEVORRICHTUNG

DISPOSITIF ÉLECTROLUMINESCENT ORGANIQUE


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 16.12.2014 KR 20140181823

(43)Date of publication of application:
22.06.2016 Bulletin 2016/25

(60)Divisional application:
22189692.1

(73)Proprietor: LG Display Co., Ltd.
Yeongdeungpo-gu Seoul 150-721 (KR)

(72)Inventor:
  • Shin, Hongdae
    423-762 Gwangmyeong-si, Gyeonggi-do (KR)

(74)Representative: Viering, Jentschura & Partner mbB Patent- und Rechtsanwälte 
Am Brauhaus 8
01099 Dresden
01099 Dresden (DE)


(56)References cited: : 
EP-A1- 2 983 226
EP-A2- 2 323 191
US-A1- 2012 181 929
EP-A2- 1 533 852
US-A1- 2011 121 717
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    BACKGROUND OF THE INVENTION


    Field of the Invention



    [0001] The present disclosure relates to an organic light-emitting display device that may resolve the reliability issues that occur when an upper substrate is bent toward a lower substrate due to an external impact, or the like.

    Description of the Related Art



    [0002] An organic light-emitting display (OLED) device is an emerging technology for flat display devices and bears the advantage of being self-luminous. That is, unlike a liquid crystal display (LCD) device, an OLED device does not require a separate light source. An OLED device can therefore typically be lighter and thinner than an LCD device. In addition, an OLED device typically exhibits a better viewing angle and contrast ratio, lower power consumption, higher luminance, and shorter response time than an LCD device. Thus, an OLED device is seen as promising for a next generation display device.

    [0003] An OLED device may typically include an organic light-emitting element composed of an anode, a cathode, and an organic light-emitting layer therebetween. The organic light-emitting element generates light by using an energy released when excitons, formed by combining electrons and holes injected from two electrodes, relax from an excited state to the ground state. By using this mechanism, an OLED device may display images.

    [0004] OLED devices can generally be sorted into a top emission OLED device, a bottom emission OLED device, or a dual emission OLED device, depending on the direction in which light is emitted. Further, OLED devices can generally be sorted into an active matrix OLED device or a passive matrix OLED device, depending on the driving manner.

    SUMMARY OF THE INVENTION



    [0005] Typically, an OLED device may include a lower substrate on which an organic light-emitting element is formed and an upper substrate facing the lower substrate. In a bottom emission OLED device, a metal substrate may be used for an upper substrate. Because light is emitted via the lower substrate in a bottom emission OLED device, the upper substrate may be a non-transparent metal substrate.

    [0006] As described in particular with figure 3 in EP 2 983 226 A1 being relevant by virtue of Art.56 2nd sentence only as to novelty such an OLED device may be manufactured by attaching the lower substrate (on which the organic light-emitting element is formed) to the upper substrate having an adhesive layer. During such a manufacturing process, continuous strikes may be inflicted on a side surface of the upper substrate when aligning the upper substrate with other elements. For example, when an adhesive layer is attached to the upper substrate, a process of aligning the upper substrate with the equipment, or the upper substrate with the adhesive layer, is carried out to accurately locate the adhesiveness at a desired position. The alignment process may be carried out by adjusting the position of the upper substrate by continuously striking the side surface of the upper substrate.

    [0007] EP2323191 (A) and US2011/121717 (A) disclose OLED displays comprising lower substrate and upper substrate.

    [0008] The side surface of the upper substrate may be bent or twisted toward the lower substrate due to these continuous strikes, so that the upper substrate may be in contact with lines formed on the lower substrates, and a short circuit may be created, resulting in a burnt line. That is, a short circuit may be created because the upper substrate made of a metal material comes in contact with the lines finely patterned on the lower substrate, and in turn the lines are burnt out. Reliability issues such as these short circuit and/or burnt defects may seriously harm the reliability and productivity of OLED devices.

    [0009] In view of this, there is proposed a structure of the side surface of the upper substrate that is not easily bent toward the lower substrate due to an external impact during the manufacturing process. A novel structure of an OLED device that is capable of controlling the shape or direction of the bent upper substrate, or how much the upper substrate is bent, is set forth in the present disclosure.

    [0010] In view of the above, an object of the present disclosure is to provide an organic light-emitting display (OLED) device that resolves the reliability issues caused by the deformation of an upper substrate during the manufacturing process of the OLED device, in which a first side surface of the upper substrate is extended from an one end of the bottom surface of the upper substrate at an obtuse angle with respect to the bottom surface of the upper substrate.

    [0011] Another object of the present disclosure is to provide an OLED device with improved productivity and reliability by resolving reliability issues caused by the deformation of an upper substrate, in which the in-plane area of the upper substrate may continuously increase from its bottom surface to its top surface.

    [0012] Objects of the present invention are not limited to those described above and other objects will be clearly understood by those skilled in the art from the following descriptions. In accordance with various embodiments, an OLED device in accordance with claims 1 and 3 is provided. Further embodiments are described in the dependent claims.

    [0013] An OLED device according to various embodiments includes an organic light-emitting element according to the claims disposed between a lower substrate and an upper substrate. At least a part of a side surface of the upper substrate has a reverse-tapered shape configured to reduce damage to the lower substrate caused by deformation of the upper substrate due to an external impact. Accordingly, reliability issues resulting from a short circuit or burnt defects due to the deformation of the upper substrate may be resolved, thereby improving reliability and productivity.

    [0014] It should be noted that examples and effects of the present disclosure are not limited to those described above and other effects of the present disclosure will be apparent to those skilled in the art from the following descriptions.

    [0015] Additional features and advantages of the invention will be set forth in the description which follows, and in part will be apparent from the description, or may be learned by practice of the invention. The objectives and other advantages of the invention will be realized and attained by the structure particularly pointed out in the written description and claims hereof as well as the appended drawings.

    [0016] It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory and are intended to provide further explanation of the invention as claimed.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0017] The accompanying drawings, which are included to provide a further understanding of the invention and are incorporated in and constitute a part of this application, illustrate embodiments of the invention and together with the description serve to explain the principle of the invention. In the drawings:

    FIG. 1 is a cross-sectional view of an OLED device similar to an embodiment of the prior art;

    FIG. 2 shows a cross-sectional view and a perspective view of an OLED device similar to another example embodiment of the prior art;

    FIG. 3 is a cross-sectional view of an OLED device according to an example embodiment of the present disclosure;

    FIG. 4 shows a cross-sectional view and a perspective view of an OLED device according to another example embodiment of the present disclosure;

    FIG. 5 is a cross-sectional view of an OLED device according to yet another example embodiment of the present disclosure; and

    FIG. 6 is a cross-sectional view of an OLED device according to still another example embodiment of the present disclosure.


    DETAILED DESCRIPTION OF THE EMBODIMENTS



    [0018] Advantages and features of the present disclosure and methods to achieve them will become apparent from the descriptions of example embodiments herein below with reference to the accompanying drawings. However, the present disclosure is not limited to example embodiments disclosed herein but may be implemented in various different forms. The example embodiments are provided for making the disclosure of the present disclosure thorough and for fully conveying the scope of the present disclosure to those skilled in the art. It is to be noted that the scope of the present disclosure is defined only by the claims.

    [0019] The figures, dimensions, ratios, angles, numbers of elements given in the drawings are merely illustrative and are not limiting. Like reference numerals may denote like elements throughout the descriptions. Further, in describing the present disclosure, descriptions of well-known technologies may be omitted in order not to obscure the gist of the present disclosure.

    [0020] It is to be noticed that the terms "comprising," "having," "including" and so on, used in the description and claims, should not be interpreted as being restricted to the means listed thereafter unless specifically stated otherwise. Where an indefinite or definite article is used when referring to a singular noun, e.g. "a," "an," "the," this includes a plural of that noun unless specifically stated otherwise.

    [0021] In describing elements, they are interpreted as including error margins even without explicit statements.

    [0022] In describing positional relationship, such as "an element A on an element B," "an element A above an element B," "an element A below an element B," and "an element A next to an element B," another element C may be disposed between the elements A and B unless the term "directly" or "immediately" is explicitly used.

    [0023] In describing temporal relationship, terms such as "after," "subsequent to," "next to," and "before" are not limited to "directly after," "directly subsequent to," "immediately next to" "immediately before," and so on, unless otherwise specified.

    [0024] The terms "first," "second," "third," and the like in the descriptions and in the claims are used for distinguishing between similar elements and not necessarily for describing a sequential or chronological order. These terms are used to merely distinguish one element from another. Accordingly, as used herein, a first element may be a second element within the technical idea of the present disclosure.

    [0025] The drawings are not to scale and the relative dimensions of various elements in the drawings are depicted schematically and not necessarily to scale.

    [0026] Features of various example embodiments of the present disclosure may be combined partially or totally. As will be clearly appreciated by those skilled in the art, technically various interactions and operations are possible. Various example embodiments can be practiced individually or in combination.

    [0027] Hereinafter, organic light-emitting display (OLED) devices according to example embodiments of the present disclosure will be described with reference to the accompanying drawings.

    [0028] FIG. 1 is a cross-sectional view of an OLED device 100 similar to an embodiment of the prior art. The OLED device 100 shown in FIG. 1 may be of a bottom emission type and may include a lower substrate 110, an organic light-emitting element 120, a pad 130, an adhesive layer 140, an upper substrate 150, a driving film 160, and a cover 170.

    [0029] With reference to FIG. 1, the organic light-emitting element 120 and the pad 130 are disposed on a top surface 110a of the lower substrate 110. The upper substrate 150 that has a bottom surface BS facing the top surface 110a of the lower substrate 110 is disposed opposed to the lower substrate 110. The adhesive layer 140 is disposed between the top surface 110a of the lower substrate 110 and the bottom surface BS of the upper substrate 150. The adhesive layer 140 seals the organic light-emitting element 120.

    [0030] The lower substrate 110 may be made of transparent glass. For a flexible OLED device, the lower substrate 110 may be made of a flexible material such as plastic. Light generated from the organic light-emitting element 120 passes through the lower substrate 100 to be emitted.

    [0031] The organic light-emitting element 120 may include an anode, an organic light-emitting layer, and a cathode. Although not shown in the drawings, the organic light-emitting element 120 may be connected to a thin-film transistor, a capacitor, etc. The organic light-emitting layer may be a single light-emitting layer emitting light of a color or multiple light-emitting layers emitting light of a white color. However, the structure of the organic light-emitting layer is not limited thereto but may have different layered structures, depending on design choices.

    [0032] The adhesive layer 140 is disposed on the organic light-emitting element 120. The adhesive layer 140 protects the organic light-emitting element 120 from foreign matters, impact, moisture (e.g., H2O), oxygen (e.g., O2), etc. The lower substrate 110 and the upper substrate 150 are securely attached to each other by the adhesive layer 140. The adhesive layer 140 seals the organic light-emitting element 120 and thus may also be referred to as a sealing layer.

    [0033] The adhesive layer 140 may be made of a resin such as one selected from a group consisting of epoxy, phenol, amino, unsaturated polyester, polyimide, silicone, acryl, vinyl, and olefin. In addition, the adhesive layer 140 may be made of a curable resin or a pressure sensitive adhesive (PSA). In addition, the adhesive layer 140 may be composed of a plurality of layers.

    [0034] The adhesive layer 140 may further include a moisture absorbent. The moisture absorbent may chemically react with moisture, oxygen, etc., introduced into the adhesive layer 140, to absorb the moisture, oxygen, etc. The moisture absorbent may be made of, for example, metal powder such as alumina, metal oxide, metal salt, or phosphorus pentoxide (P2O5).

    [0035] Although not shown in the drawings, a passivation layer may be disposed between the adhesive layer 140 and the organic light-emitting element 120. The passivation layer can protect the organic light-emitting element 120 more effectively from external moisture, oxygen, etc. The passivation layer may be a single layer made of an inorganic film, or may be composed of a plurality of layers where organic and inorganic films are stacked on one another alternately.

    [0036] With reference to FIG. 1, the lower substrate 110 protrudes more than the upper substrate 150. In the protruding portion of the lower substrate 110, the pad 130, and the driving film 160 having a driving chip (driver-IC) 161 are disposed as a circuit part. Although not shown in the drawings, lines connecting the pad 130 with the organic light-emitting element 120 are disposed on the lower substrate 110. The organic light-emitting element 120 may receive various signals from the circuit part via the line.

    [0037] The driving film 160 attached on the pad 130 of the lower substrate 110 is bent toward the top surface of the upper substrate 150, as shown in FIG. 1. For example, the driver integrated circuit (IC) 161 and driving lines (not shown) are formed on a first surface 160a of the driving film 160. The driving lines are connected to the pad 130 of the lower substrate 110 to deliver signals from the driver-IC 161 to the pad 130. In this case, a single-side flexible printed circuit board may be employed as the driving film 160.

    [0038] As the driving film 160 is bent toward the upper substrate 150, a part of the driving film 160 protrudes more than the lower substrate. As shown in FIG. 1, the cover 170 may be disposed on the outer periphery of the OLED device 100 and may protect the protruding part of the driving film 160 and other internal components.

    [0039] The upper substrate 150 may be made of a metal material such as alumina (Al), copper (Cu), tungsten (W), or a combination thereof. The thickness of the upper substrate 150 may range from about 10 µm to 200 µm. The upper substrate 150 may be referred to as the upper metal substrate.

    [0040] As shown in FIG. 1, the upper substrate 150 similar to an embodiment of the prior art has the bottom surface BS, the top surface TS facing the bottom surface BS, and a first side surface 1SS. The first side surface 1SS of the upper substrate 150 is a flat surface extended from one end of the bottom surface BS of the upper substrate 150 to one end of the top surface TS of the upper substrate 150. In other words, the first side surface 1SS of the upper substrate 150 spans from one end of the bottom surface BS of the upper substrate 150 to one end of the top surface TS of the upper substrate 150. The first side surface 1SS and the bottom surface BS make an obtuse angle θB. That is, the angle θB made by the first side surface 1SS and the bottom surface BS of the upper substrate 150 is greater than 90 degrees and less than 180 degrees. Accordingly, the first side surface 1SS of the upper substrate 150 has a reverse-tapered shape when viewed in the cross section. As the first side surface 1SS of the upper substrate 150 has a reverse-tapered shape, the area of the top surface TS of the upper substrate 150 may be larger than the area of the bottom surface BS of the upper substrate 150. In other words, as shown in FIG. 1, a protruding portion of the upper substrate 150 protrudes beyond the organic light-emitting element 120 in cross-section view, and the protruding portion of the upper substrate 150 includes the side surface having the first side surface 1SS with a reverse-tapered shape.

    [0041] The in-plane area of the upper substrate 150 increases continuously from the bottom surface BS to the top surface TS of the upper substrate 150. With reference to FIG. 1, as the first side surface 1SS of the upper substrate 150 is a flat surface, the first side surface 1SS has a straight-line, and a reverse-tapered shape when viewed in the cross section. That is, the in-plane area of the upper substrate 150 may linearly increase from the bottom surface BS to the top surface TS of the upper substrate 150, and thus, the area of the top surface of the upper substrate 150 is larger than the area of the bottom surface BS of the upper substrate 150. Accordingly, the first side surface 1SS has a straight-line shape in the vertical cross section of the upper substrate 150.

    [0042] As mentioned earlier, the first side surface 1SS of the upper substrate 150 may continually receive external impact during the manufacturing process such as an alignment process. Due to such impact, deformation may occur on the first side surface 1SS of the upper substrate 150. For example, the upper substrate 150 may be bent toward the lower substrate 110. At this time, if the upper substrate 150 made of a metal material contacts the lines formed on the lower substrate 110 due to bending toward the lower substrate 110, a short-circuit may be created between the lines on the lower substrate 110. As a result, the area around the lines may be burnt, e.g., causing burnt defects.

    [0043] In view of this, similar to an example of the prior art, the first side surface 1SS of the upper substrate 150 is formed in a reverse-tapered shape making an obtuse angle with the bottom surface BS, and thus reduces the problem that the upper substrate 150 is bent toward the lower substrate 110. For example, as the upper substrate 150 has a slope of the first side surface 1SS, when impact is inflicted on the upper substrate 150, the area of the first side surface 1SS receiving the impact is reduced, so that the force can be dispersed. In particular, if the first side surface 1SS of the upper substrate 150 is sloped in a reverse-tapered shape, the first side surface 1SS is deformed away from the lower substrate 110. Accordingly, it is possible to decrease the burnt defects that the upper substrate 150 comes in contact with the lines on the lower substrate 110.

    [0044] Accordingly, in the OLED device 100 similar to the embodiment of the prior art, the first side surface 1SS of the upper substrate 150 is extended from one end of the bottom surface BS of the upper substrate 150 to one end of the top surface TS of the upper substrate 150 at an obtuse angle with respect to the bottom surface BS of the upper substrate 150. As a result, it is possible to resolve the reliability issues caused by the deformation of the upper substrate 150 when it is bent toward the lower substrate 110 due to an external impact or the like. Accordingly, the reliability and productivity of the OLED device 100 may be improved.

    [0045] FIG. 2 shows a cross-sectional view and a perspective view of an OLED device 200 similar to the example embodiment of the prior art. In describing this example embodiment, descriptions of the same or similar elements as those in the above example embodiment may be omitted.

    [0046] With reference to FIG. 2, a driving film 260 attached on the pad 130 of the lower substrate 110 may be directly connected to the upper substrate 250 without being bent. Specifically, a driver-IC 261 is disposed on a second surface 260b of the driving film 260. The other surface, e.g., a first surface 260a of the driving film 260, is attached on the pad 130. That is, the driving film 260 may be disposed on the top surface TS of the upper substrate 250 without protruding more than the lower substrate 110. In this case, a double-side flexible printed circuit board may be employed as the driving film 260.

    [0047] Unlike the OLED device 100 shown in FIG. 1, in the OLED device 200 employing the driving film 260 shown in FIG. 2, no part of the driving film 260 may protrude more than the lower substrate 110. Accordingly, the OLED device 200 may not require space between the lower substrate 110 and the cover 170. Therefore, the OLED device 200 may be advantageous in implementing a narrow bezel.

    [0048] In the OLED device 200 similar to this embodiment of the prior art, the angle θ1 between the first side surface 1SS and the top surface TS of the upper substrate 250 can be adjusted so that unwanted deformation of the first side surface 1SS of the upper substrate 250 may be reduced and damage to the driving film 260 by the upper substrate 250 may also be reduced and/or minimized.

    [0049] With reference to the perspective view of FIG. 2, the first side surface 1SS of the upper substrate 250 is a surface extended from one end of the bottom surface BS of the upper substrate 250 to one end of the top surface TS of the upper substrate 250. In other words, the first side surface 1SS may be a plane extended along the shortest path from line BS-1SS where the bottom surface BS meets the first side surface 1SS of the upper substrate 250 to line TS-1SS where the top surface TS meets the first side surface 1SS of the upper substrate 250. In this connection, the first side surface 1SS has a flat surface, and a straight-line, reverse-tapered shape when viewed in the cross section. Therefore, the first side surface 1SS may be a plane extended along the shortest path.

    [0050] With reference to FIG. 2, the angle θB made by the first side surface 1SS and the bottom surface BS of the upper substrate 250 may be an obtuse angle, and the angle θ1 made by the first side surface 1SS and the top surface TS of the upper substrate 250 may range from 60 degrees to 90 degrees. In other words, the angle θ1, which is made by the top surface TS of the upper substrate 250 and the plane extended along the shortest path from line BS-1SS, where the bottom surface BS meets the first side surface 1SS of the upper substrate 250, to line TS-1SS, where the top surface TS meets the first side surface 1SS of the upper substrate 250, may be equal to or greater than 60 degrees and less than 90 degrees. Accordingly, a distance L that is the projection of the first side surface 1SS of the upper substrate 250 onto the top surface TS of the upper substrate 250, (e.g., the distance L indicating a protrusion length of the first side surface 1SS of the upper substrate 250), may be limited.

    [0051] The distance L that is the projection of the first side surface 1SS of the upper substrate 250 onto the top surface TS of the upper substrate 250 may be expressed by Equation 1:




    where T denotes thickness of the upper substrate 250, e.g., the shortest distance from the bottom surface BS to the top surface TS of the upper substrate 250. According to Equation 1, the distance L that is the projection of the first side surface 1SS onto the top surface TS of the upper substrate 250 becomes smaller as the angle θ1 made by the first side surface 1SS and the top surface TS of the upper substrate 250 increases. That is, as the angle θ1 made by the first side surface 1SS and the top surface TS of the upper substrate 250 is equal to or greater than 60 degrees and less than 90 degrees, the distance L indicating a protrusion length of the first side surface 1SS of the upper substrate 250 can be limited.

    [0052] Accordingly, in the OLED device 200 similar to this example of the prior art, by adjusting the angle θ1 made by the first side surface 1SS and the top surface TS of the upper substrate 250, it may be possible to reduce the amount that the first side surface 1SS of the upper substrate 250 is bent toward the lower substrate 110 due to an external impact or the like, and also reduce the amount that the first side surface 1SS protrudes toward the driving film 260. Accordingly, defects, which may be caused when the driving film 260 is damaged by the upper substrate 250, can be reduced. For example, the cracks that occur in driving lines formed on the driving film 260 or disconnections between the driving lines can be reduced. Further, reliability issues due to deformation of the upper substrate 250 as the upper substrate 250 is bent toward the lower substrate 110 may be resolved. As a result, the reliability of the OLED device 200 can be improved. Additionally, as the distance L is limited, the upper substrate 250 otherwise overly protrudes toward the driving film 260 such that the protruding portion of the upper substrate 250 may make a scratch on processing equipment handling the upper substrate 250 during the manufacturing process of the OLED device 200. As a result, it may be possible to avoid unnecessary replacement of equipment components, and thus productivity of the OLED device 200 can be improved.

    [0053] With reference to FIG. 2, the distance L that is the projection of the first side surface 1SS onto the top surface TS of the upper substrate 250 may also be defined as the distance L that is the projection of the shortest distance L1 from line BS-1SS, where the bottom surface BS meets the first side surface 1SS of the upper substrate 250, to line TS-1SS, where the top surface TS meets the first side surface 1SS of the upper substrate 250. In addition, as described above, the first side surface 1SS of the upper substrate 250 may have a flat surface, and a straight-line, reverse-tapered shape when viewed in the cross section. Therefore, the first side surface 1SS may be a plane extended along the shortest path. Accordingly, in this example embodiment, the shortest distance LI from line BS-1SS, where the bottom surface BS of the upper substrate meets the first side surface 1SS of the upper substrate 250, to line TS-1SS, where the top surface TS of the upper substrate meets the first side surface 1SS of the upper substrate 250, may be equal to the length of the first side surface 1SS in the cross section.

    [0054] FIG. 3 is a cross-sectional view of an OLED device 300 according to an example embodiment of the present disclosure. The OLED device 300 shown in FIG. 3 may be identical to the OLED device 200 shown in FIG. 2, except for the shape of a first side surface 1SS of an upper substrate 350. Therefore, FIG. 3 shows an enlarged portion of the upper substrate 250 and the adhesive layer 140, and other elements are not depicted in FIG. 3 for convenience of illustration. Further, descriptions of the same or similar elements as those in the above example embodiments may be omitted.

    [0055] The first side surface 1SS of the upper substrate 350 is extended from one end of the bottom surface BS of the upper substrate 350. The first side surface 1SS and the bottom surface BS of the upper substrate 350 make an obtuse angle θB. The in-plane area of the upper substrate 350 may increase continuously from the bottom surface BS to the top surface TS of the upper substrate 350, possibly non-linearly. That is, when viewed in the cross section, the first side surface 1SS of the upper substrate 350 has a curved, reverse-tapered shape. For example, as shown in FIG. 3, the first side surface 1SS of the upper substrate 350 has a concave surface. In an embodiment not forming part of the present invention, the first side surface 1SS of the upper substrate 350 may have a convex surface.

    [0056] The upper substrate 350 may be cut, e.g., via a press process or an etching process. The shape of the first side surface 1SS may be determined depending on the condition of processes. For example, in a press process, the upper substrate 350 may be cut by using a mechanical cutter such as a blade or the like. As a result, the side shape of the upper substrate 350 may be a flat surface. On the other hand, in an etching process, the upper substrate 350 is cut by using an etchant for a metal material. As a result, the side shape of the upper substrate 350 may be a concave surface by the circulation of an etchant solution. The above-mentioned processes are merely examples, and various processes may be employed depending on the characteristics of the metal material and processing conditions.

    [0057] The angle θ1, which is made by the top surface TS of the upper substrate 350 and the plane PI extended along the shortest path from line BS-1SS where the bottom surface BS meets the first side surface 1SS of the upper substrate 350 to line TS-1SS where the top surface TS meets the first side surface 1SS of the upper substrate 350, may be equal to or greater than 60° (degrees) and less than 90° (degrees). Accordingly, the distance L indicating a protrusion length of the first side surface 1SS of the upper substrate 350 may be limited.

    [0058] According to this example embodiment, because the first side surface 1SS of the upper substrate 350 has a concave surface, plane PI, extended along the shortest path from line BS-1SS where the bottom surface BS meets the first side surface 1SS of the upper substrate 350 to line TS-1SS where the top surface TS meets the first side surface 1SS of the upper substrate 350, may not correspond to the first side surface 1SS of the upper substrate 350. That is, the distance L indicating a protrusion length of the first side surface 1SS of the upper substrate 350 may be determined depending on the angle θ1 made by the top surface TS of the upper substrate 350 and the plane P1.

    [0059] In addition, the distance L indicating a protrusion length of the first side surface 1SS of the upper substrate 350 may be defined as the distance that is the projection, onto the top surface TS of the upper substrate 350, of the shortest distance L1 from line BS-1SS where the bottom surface BS of the upper substrate 350 meets the first surface 1SS of the upper substrate 350, to line TS-1SS where the top surface TS of the upper substrate 350 meets the first surface 1SS.

    [0060] In the OLED device 300 according to this example embodiment of the present disclosure, the first side surface 1SS of the upper substrate 350 has a curved shape. In this case, the distance L indicating a protrusion length of the first side surface 1SS of the upper substrate 350 may be limited by adjusting the angle θ1 made by the top surface TS of the upper substrate 350 and plane PI extended along the shortest path from line BS-1SS where the bottom surface BS meets the first side surface 1SS of the upper substrate 350 to line TS-1SS where the top surface TS meets the first side surface 1 SS of the upper substrate 350. In this manner, the side portion of the upper substrate 350 may be less likely to overly protrude toward the lower substrate 110 or the driving film 260 such that possible reliability issues due to the deformation of the upper substrate 350 may be resolved. As a result, the reliability and the productivity of the OLED device 300 may be be improved.

    [0061] FIG. 4 shows a cross-sectional view and a perspective view of an OLED device 400 according to another example embodiment of the present disclosure. The OLED device 400 shown in FIG. 4 may be identical to the OLED device 200 shown in FIG. 2 except for the shape of an upper substrate 450. Therefore, the same or similar elements as those described in the above example embodiments may not be described.

    [0062] With reference to FIG. 4, the upper substrate 450 includes a bottom surface BS, a top surface TS opposed to the bottom surface BS, a first side surface 1SS, and a second side surface 2SS. The first side surface 1SS of the upper substrate 450 is extended from one end of the bottom surface BS of the upper substrate 450. The first side surface 1SS and the bottom surface BS of the upper substrate 450 make an obtuse angle θB. The second side surface 2SS of the upper substrate 450 is extended from one end of the top surface TS of the upper substrate 450. The second side surface 2SS and the top surface TS of the upper substrate 450 make an obtuse angle θT. Each of the first side surface 1SS and the second side surface 2SS of the upper substrate 450 has a flat surface and has a straight-line shape when viewed in the cross section. In other words, the first side surface 1SS of the upper substrate 450 has a straight-line, reverse-tapered shape, and the second side surface 2SS of the upper substrate 450 has a straight-line, tapered shape.

    [0063] The in-plane area of the upper substrate 450 may increase continuously and decrease back continuously from the bottom surface BS to the top surface TS of the upper substrate 450. With reference to FIG. 4, the first side surface 1SS of the upper substrate 450 corresponds to the portion where the in-plane area of the upper substrate 450 increases continuously from the bottom surface BS to the top surface TS of the upper substrate 450. The second side surface 2SS of the upper substrate 450 corresponds to the portion where the in-plane area of the upper substrate 450 decreases back continuously toward the top surface TS of the upper substrate 450. As described above, because the first side surface 1SS and the second side surface 2SS have a straight-line shape when viewed in the cross section, the in-plane area of the upper substrate 450 increases linearly and decreases back linearly from the bottom surface BS to the top surface TS of the upper substrate 450. That is, the in-plane area of the upper substrate 450 continuously increases from the bottom surface BS of the upper substrate 450 to a particular position, for example, line X, and continuously decreases from line X to the top surface TS of the upper substrate 450.

    [0064] In this example embodiment, each of the first side surface 1SS and the second side surface 2SS of the upper substrate 450 has a flat surface and a straight-line shape when viewed in the cross section. Therefore, each of the first side surface 1SS and the second side surface 2SS is a plane extended along the shortest path. Accordingly, a plane extended along the shortest path from line BS-1SS, where the bottom surface BS meets the first side surface 1SS of the upper substrate 450, to line X, corresponds to the first side surface 1SS. A plane extended along the shortest path from line TS-2SS, where the top surface TS meets the second side surface 2SS of the upper substrate 450, to line X, corresponds to the second side surface 2SS.

    [0065] It may be desirable to have the protruding distance of the side portion of the upper substrate 450 to be as short as possible to the extent that an external impact can be relieved and dispersed. For example, when the first side surface 1SS of the upper substrate 450 meets the second side surface 2SS at line X as shown in FIG. 4, the angle θ2, which may be made by the first plane extended along the shortest path from line BS-1SS, where the bottom surface BS meets the first side surface 1SS of the upper substrate 450, to line X, and the second plane extended along the shortest path from line TS-2SS, where the top surface TS of the upper substrate 450 meets the second surface 2SS, to line X, may be equal to or greater than 60 degrees and less than 180 degrees. Accordingly, the distance L indicating a protrusion length of the first side surface 1SS and the second surface 2SS of the upper substrate 450 may be limited. If the side portion of the upper substrate 450 overly protrudes, it may be difficult to handle the upper substrate 450 during the manufacturing process of the OLED device 400. Also, a scratch may be made by the device on the processing equipment handling the upper substrate 250, and this may require an unnecessary replacement of the equipment components. As a result, the productivity of the OLED device 400 may decrease.

    [0066] As shown in the perspective view of FIG. 4, presuming an imaginary plane Y that is parallel with the bottom surface BS of the upper substrate 450 and includes line X where the first side surface 1SS meets the second side surface 2SS, the distance L indicating a protrusion length of the first side surface 1SS and the second surface 2SS of the upper substrate 450 may be defined as the projection of the first side 1SS or the second side surface 2SS onto plane Y. The distance L that is the projection of the first side surface 1SS or the second side surface 2SS onto plane Y may be expressed by Equations 2 and 3:








    where T1 and T2 denote the shortest distance from the bottom surface BS and top surface TS of the upper substrate 450, respectively, to plane Y. The sum of T1 and T2 is equal to the thickness of the upper substrate 450. In addition, θ21 and θ22 denote angles made by the first side surface 1SS and the second side surface 2SS, respectively, and plane Y. The sum of θ21 and θ22 is equal to θ2. With reference to FIG. 4, the first side surface 1SS and the second side surface 2SS are symmetric with each other with respect to plane Y when viewed in the cross section. Accordingly, the middle portion of the side surface of the upper substrate 450 protrudes. That is, the shortest distance T1 from the bottom surface BS of the upper substrate 550 to plane Y may be equal to the shortest distance T2 from the top surface TS of the upper substrate 550 to plane Y. In this case, θ21 may be equal to θ22. In other words, line X where the first side surface 1SS meets the second side surface 2SS may be located in the middle between the top surface TS and the bottom surface BS of the upper substrate 650.

    [0067] As described above, the side portion of the upper substrate 450 may continually receive an external impact during the manufacturing process, such as an alignment process, so that it may be deformed. In contrast, in the OLED device 400 according to this example embodiment of the present disclosure, the upper substrate 450 includes the first side surface 1SS in a reverse-tapered shape and the second side surface 2SS in a tapered shape, and line X where the first side surface 1SS meets the second side surface 2SS is located in the middle of the side portion, so that an external impact can be relieved and dispersed by protruding middle portion of the side surface of the upper substrate 450. Accordingly, the side portion of the upper substrate 450 may be less deformed toward the lower substrate 110 or the driving film 260 such that the possible reliability issue due to the deformation of the upper substrate 450 may be resolved. As a result, the reliability and the productivity of the OLED device 400 may be improved.

    [0068] FIG. 5 is a cross-sectional view of an OLED device 500 according to yet another example embodiment of the present disclosure. The OLED device 500 shown in FIG. 5 may be identical to the OLED device 400 shown in FIG. 4, except for the shape of a side surface of an upper substrate 550. Therefore, FIG. 5 shows an enlarged portion of the upper substrate 550, and the adhesive layer 140 and other elements are not depicted in FIG. 5 for convenience of illustration. Further, descriptions of the same or similar elements as those in the above example embodiments may be omitted.

    [0069] The first side surface 1SS of the upper substrate 550 is extended from one end of the bottom surface BS of the upper substrate 550. The first side surface 1SS and the bottom surface BS of the upper substrate 550 make an obtuse angle θB. The second side surface 2SS of the upper substrate 550 is extended from one end of the top surface TS of the upper substrate 550. The second side surface 2SS and the top surface TS of the upper substrate 450 also make an obtuse angle θT. The in-plane area of the upper substrate 550 may increase non-linearly from the bottom surface BS to the top surface TS of the upper substrate 550 and may decrease back non-linearly. That is, the in-plane area of the upper substrate 550 may continuously increase from the bottom surface BS of the upper substrate 550 to a particular position, for example, line X, and may continuously decrease from line X to the top surface TS of the upper substrate 550. The first side surface 1SS may correspond to the portion where the in-plane area of the upper substrate 550 increases non-linearly. The second side surface 2SS may correspond to the portion where the in-plane area of the upper substrate 550 decreases non-linearly. In other words, the first side surface 1SS has a curved, reverse-tapered shape, and the second side surface 2SS has a curved, tapered shape. For example, as shown in FIG. 5, the first side surface 1SS and the second side surface 2SS of the upper substrate 550 have a concave surface

    [0070] As described above, the shape of the first side surface 1SS of the upper substrate 550 may be determined depending on the process of cutting the upper substrate 550. The upper substrate 550 may be cut via a press process or an etching process.

    [0071] With reference to FIG. 5, the angle θ2, which is made by plane 1 extended along the shortest path from line BS-1SS, where the bottom surface BS meets the first side surface 1SS of the upper substrate 550, to line X, where the first side surface 1SS meets the second side surface 2SS, and plane P2 extended along the shortest path from line TS-2SS, where the top surface TS of the upper substrate 550 meets the second surface 2SS, to line X, may be equal to or greater than 60° (degrees) and less than 180° (degrees). Accordingly, the distance L indicating a protrusion length of the first side surface 1SS and the second surface 2SS of the upper substrate 550 may be limited.

    [0072] According to this example embodiment, because each of the first side surface 1SS and the second side surface 2SS of the upper substrate 550 has a concave surface, plane PI extended along the shortest path from line BS-1SS, where the bottom surface BS meets the first side surface 1SS of the upper substrate 550, to line X, does not correspond to the first side surface 1SS of the upper substrate 550. Further, plane P2 extended along the shortest path from line TS-2SS, where the top surface TS meets the second side surface 2SS of the upper substrate 550, to line X, does not correspond to the second side surface 2SS of the upper substrate 550. That is, the distance L indicating a protrusion length of the first side surface 1SS and the second surface 2SS of the upper substrate 550 may be determined depending on the angles θ2 between plane PI and plane P2. In addition, the distance L indicating a protrusion length of the first side surface 1SS and the second surface 2SS of the upper substrate 550 may be defined as the projection, onto plane Y, of the shortest distance L1 from line BS-1 SS where the bottom surface BS of the upper substrate 550 meets the first surface 1SS to line X or the projection, onto plane Y, of the shortest distance L2 from line TS-2SS where the top surface TS of the upper substrate 550 meets the second surface 2SS to line X.

    [0073] In the OLED device 500 according to this example embodiment of the present disclosure, the first side surface 1SS and the second side surface 2SS of the upper substrate 550 have a curved shape. In this case, by adjusting the angles θ2 between plane PI and plane P2, the protruding length of the upper substrate 550 may be limited. In this manner, an external impact can be relieved and dispersed by means of a protruding middle portion of the side surface of the upper substrate 550. Thus, reliability issues due to the deformation of the upper substrate 450 caused when the upper substrate 550 is bent in an unwanted direction may be resolved. As a result, the reliability and the productivity of the OLED device 500 may be improved.

    [0074] FIG. 6 is a cross-sectional view of an OLED device 600 according to yet another example embodiment of the present disclosure. The OLED device 600 shown in FIG. 6, like the OLED device 500 shown in FIG. 5, may be identical to the OLED device 400 shown in FIG. 4, except for the shape of a side surface of an upper substrate 650. Therefore, FIG. 6 shows an enlarged portion of the upper substrate 650 and the adhesive layer 140, and other elements are not depicted in FIG. 6 for convenience of illustration. Further, descriptions of the same or similar elements as those in the above example embodiments may be omitted.

    [0075] With reference to FIG. 6, the shortest distance T1 from the bottom surface BS of the upper substrate 650 to plane Y may be greater than the shortest distance T2 from the top surface TS of the upper substrate 650 to plane Y. That is, line X where the first side surface 1SS meets the second side surface 2SS may be located closer to the top surface TS than the bottom surface BS of the upper substrate 650. In this case, if the side portion of the upper substrate 650 is deformed due to an external impact or the like, the upper substrate 650 is more likely to be bent toward the driving film 260 than the lower substrate 110. Accordingly, defects which occur when the upper substrate 650 comes in contact with lines formed on the lower substrate 110 may be reduced so that the lines are not burnt out.

    [0076] As shown in FIG. 6, because line X is closer to the top surface TS than bottom surface BS of the upper substrate 650, the angle θ22 made by the second side surface 2SS and plane Y is smaller than the angle θ21 made by the first side surface 1SS and plane Y. In addition, the angle θ2 made by the first side surface 1SS and the second side surface 2SS is the sum of the angle θ21 made by the first side surface 1SS and plane Y and the angle θ22 made by the second side surface 2SS and plane Y, and may be equal to or greater than 60° (degrees) and less than 180° (degrees).

    [0077] The distance L indicating a protrusion length of the first side surface 1 SS and the second surface 2SS of the upper substrate 650 may also be limited by the angle θ21 made by the first side surface 1SS and plane Y or the angle θ22 made by the second side surface 2SS and plane Y. As described above, the distance L indicating a protrusion length of the first side surface 1SS and the second surface 2SS of the upper substrate 650 may be defined as the projection, onto plane Y, of the shortest distance L1 from line BS-1 SS where the bottom surface BS of the upper substrate 650 meets the first surface 1 SS to line X or the projection, onto plane Y, of the shortest distance L2 from line TS-2SS where the top surface TS of the upper substrate 650 meets the second surface 2SS to line X. In addition, according to this example embodiment, the distance L (indicating a protrusion length of the first side surface 1SS and the second surface 2SS of the upper substrate 650) may be regarded as the projection of the first side surface 1 SS or the second side surface 2SS onto plane Y.

    [0078] In the OLED device 600 according to this example embodiment of the present disclosure, line X (where the first side surface 1SS meets the second side surface 2SS of the upper substrate 650) may be located closer to the top surface TS than the bottom surface BS of the upper substrate 650. In this manner, even if the side portion of the upper substrate 650 is deformed due to an external impact or the like, the upper substrate 650 is more likely to be bent toward the driving film 260 than the lower substrate 110. Accordingly, reliability issues which may occur when the upper substrate 650 comes in contact with lines formed on the lower substrate 110 may be resolved.


    Claims

    1. An organic light-emitting display (OLED) device (300, 500), comprising:

    an organic light-emitting element (120) disposed between a top surface (110a) of a lower substrate (110) and an upper substrate (350, 550), under a cover (170) disposed on the outer periphery of the (OLED) device (300, 500),

    wherein an adhesive layer (140) is disposed on the light-emitting element (120) and between the top surface (110a) of the lower substrate (110) and a bottom surface (BS) of the upper substrate (350, 550),

    wherein the adhesive layer (140) seals the organic light-emitting element (120),

    wherein at least a part of a side surface (ISS) of the upper substrate (350, 550) has a reverse-tapered shape configured to reduce damage to the lower substrate (110) caused by deformation of the upper substrate (350, 550) due to an external impact, and

    wherein the side surface (ISS) of the upper substrate (350) comprises a first side surface (1SS) being extended from one end of the bottom surface (BS) of the upper substrate (350, 550) and having a curved reverse tapered shape in a vertical cross section view of the upper substrate (350, 550) whereby the first side surface (ISS) of the upper substrate (350, 550) has a concave shape.


     
    2. The organic light-emitting display (OLED) device (500) according to claim 1, wherein the upper substrate (550) further comprises a second side surface (2SS) being extended from one end of a top surface (TS) of the upper substrate (550) and having a tapered shape, wherein the second side surface (2SS) of the upper substrate (450; 550, 650) has a curved shape in the vertical cross section view of the upper substrate (550), wherein the first side surface (ISS) meets the second side surface (2SS) at a line (X) in a plane (Y) being parallel with the bottom surface (BS) of the upper substrate (550).
     
    3. An organic light-emitting display (OLED) device (400, 600), comprising:

    an organic light-emitting element (120) disposed between a top surface (110a) of a lower substrate (110) and an upper substrate (450; 650), under a cover (170) disposed on the outer periphery of the (OLED) device (400, 600),

    wherein an adhesive layer (140) is disposed on the light-emitting element (120) and between the top surface (110a) of the lower substrate (110) and a bottom surface (BS) of the upper substrate (450; 650),

    wherein the adhesive layer (140) seals the organic light-emitting element (120),

    wherein at least a part of a side surface (ISS) of the upper substrate (450; 650) has a reverse-tapered shape configured to reduce damage to the lower substrate (110) caused by deformation of the upper substrate (450; 650) due to an external impact,

    wherein the side surface (ISS) of the upper substrate (450, 650) comprises a first side surface (1SS) being extended from one end of the bottom surface (BS) of the upper substrate (450; 650) and having a reverse tapered shape,

    wherein the first side surface (1SS) of the upper substrate (450, 650) has a straight-line shape in a vertical cross section view of the upper substrate (450; 650),

    wherein the upper substrate (450; 650) further comprises a second side surface (2SS) being extended from one end of a top surface (TS) of the upper substrate (450; 650) and having a tapered shape,

    wherein the second side surface (2SS) of the upper substrate (450; 650) has a straight-line shape in the vertical cross section view of the upper substrate (450; 650), and

    wherein the first side surface (1SS) meets the second side surface (2SS) at a line (X) in a plane (Y) being parallel with the bottom surface (BS) of the upper substrate (450; 650).


     
    4. The OLED device (300) of claim 1, wherein:

    the first side surface (1 SS) of the upper substrate (350) spans from one end of a bottom surface (BS) of the upper substrate (350) to one end of a top surface (TS) of the upper substrate, and

    an angle (Θ1) which is made by the top surface (TS) of the upper substrate (350) and a plane (P1) extended along the shortest path from a line (BS-1SS), where the bottom surface (BS) meets the first side surface (1SS) of the upper substrate (350), to a line (TS-1SS), where the top surface (TS) meets the first side surface (1SS) of the upper substrate (350), is equal to or greater than sixty degrees and less than ninety degrees.


     
    5. The OLED device (300) of claim 1,
    wherein an in-plane area of the upper substrate (350) increases continuously from the bottom surface (BS) of the upper substrate to the top surface (TS) of the upper substrate (350).
     
    6. The OLED device (300) of claim 5,
    wherein the in-plane area of the upper substrate (350) increases non-linearly.
     
    7. The OLED device (400; 500; 600) of claim 2 or 3,
    wherein an in-plane area of the upper substrate (450; 550; 650) increases continuously from the bottom surface (BS) of the upper substrate (450, 550, 650) to a particular position (X) and decreases continuously from the particular position (X) to the top surface (TS) of the upper substrate (450, 550, 650).
     
    8. The OLED device (300; 500) of claim 1, wherein the upper substrate (350; 550) is an upper metal substrate, and wherein the first side surface (1SS) of the upper metal substrate (350; 550) is at an obtuse angle (ΘB) with respect to the bottom surface (BS) of the upper metal substrate (350; 550).
     
    9. The OLED device (300) of claim 8,

    wherein the first side surface (1SS) of the upper substrate (350) made of metal spans from one end of the bottom surface (BS) of the upper metal substrate (350) to the top surface (TS) of the upper metal substrate (350),

    wherein an area of the top surface (TS) of the upper metal substrate (350) is greater than an area of the bottom surface (BS) of the upper metal substrate (350),

    wherein, preferably, an angle (Θ1) between the top surface (TS) of the upper metal substrate (350) and a plane (P1) is equal to or greater than sixty degrees and less than ninety degrees, the plane (P1) extended along a shortest path (L1) from a line (BS-1SS) where the bottom surface (BS) of the upper metal substrate (350) meets the first side surface (1SS) of the upper metal substrate (350), to a line (TS-1SS) where the top surface (TS) of the upper metal substrate (350) meets the first side surface (1SS) of the upper metal substrate (350).


     
    10. The OLED device (500) of claim 8,

    wherein the upper substrate (550) made of metal further comprises a second side surface (2SS) at an obtuse angle (ΘT) with respect to the top surface (TS) of the upper metal substrate (550),

    wherein the second side surface (2SS) of the upper metal substrate (550) has a curved shape in a cross section view.


     
    11. The OLED device (500) of claim 10, wherein:

    the first side surface (1SS) of the upper metal substrate (550) meets the second side surface (2SS) of the upper metal substrate (550) to define a line X;

    an angle between a first plane (P1) and a second plane (P2) is equal to or greater than sixty degrees and less than one hundred eighty degrees;

    the first plane (P1) extends along a shortest path (L1) from a line (BS-1SS) where the bottom surface (BS) of the upper metal substrate (550) meets the first side surface (1SS) of the upper metal substrate (550), to the line X; and the second plane (P2) extends along a shortest path (L2) from a line (TS-2SS) where the top surface (TS) of the upper metal substrate (550) meets the second side surface (2SS) of the upper metal substrate (450; 550; 650), to the line X,

    wherein preferably a plane Y is parallel with the bottom surface (BS) of the upper metal substrate (550) and comprises the line X, and a shortest distance (T1) from the bottom surface (BS) of the upper metal substrate (550) to the plane Y is equal to or greater than a shortest distance (T2) from the top surface (TS) of the upper metal substrate (550) to the plane Y.


     
    12. The OLED device (300) of claim 1,

    wherein a protruding portion of the upper substrate (350) protrudes beyond the organic light-emitting element (120) in a cross-section view; and

    wherein the protruding portion of the upper substrate (350) includes the side surface having the first side surface (1SS) with the reverse-tapered shape,

    the OLED device (300) preferably further comprising

    a driving film (160; 260) attached to the top surface of the lower substrate (110) and above the top surface (TS) of the upper substrate (350),

    a driver integrated circuit (IC) (161; 261) on one side of the driving film, and

    a pad (130) on the other side of the driving film between the driving film and the top surface of the lower substrate (110), the lower substrate protruding further than the driving film in the cross-section view.


     
    13. The organic light-emitting display device (400; 500; 600) of claim 2 or 3,

    wherein a protruding portion of the upper substrate (450; 550; 650) protrudes beyond the organic light-emitting element (120) in a cross-section view,

    wherein the protruding portion of the upper substrate (450; 550; 650) includes the side surface having the first side surface (1SS) with the reverse-tapered shape,

    the OLED device preferably further comprising

    a driving film (260) attached to the top surface of the lower substrate (110) and above the top surface (TS) of the upper substrate (450; 550; 650),

    a driver integrated circuit (IC) (161) on one side of the driving film, and

    a pad (130) on the other side of the driving film between the driving film and the top surface of the lower substrate (110), the lower substrate protruding further than the driving film in the cross-section view,

    wherein the first side surface (1SS) forms an obtuse angle (ΘB) with the bottom surface (BS) of the upper substrate (450, 550, 650).


     
    14. The organic light-emitting display device (400; 500; 600) of claim 13,
    wherein the second side surface (2SS) forms an obtuse angle (ΘT) with the top surface (TS) of the upper substrate (450; 550; 650), the first and second side surfaces (1SS, 2SS) meet at a furthest protrusion point of the protruding portion of the upper substrate (450; 550; 650).
     


    Ansprüche

    1. Organische lichtemittierende Anzeigevorrichtung (OLED) (300, 500), aufweisend:

    ein organisches lichtemittierendes Element (120), das zwischen einer oberen Oberfläche (110a) eines unteren Substrats (110) und einem oberen Substrat (350, 550) angeordnet ist, unter einer Abdeckung (170), die an der Außenperipherie der (OLED) Vorrichtung (300, 500) angeordnet ist,

    wobei eine Klebeschicht (140) auf dem lichtemittierenden Element (120) und zwischen der oberen Oberfläche (110a) des unteren Substrats (110) und einer unteren Oberfläche (BS) des oberen Substrats (350, 550) angeordnet ist,

    wobei die Klebeschicht (140) das organische lichtemittierende Element (120) versiegelt,

    wobei zumindest ein Teil einer Seitenfläche (ISS) des oberen Substrats (350, 550) eine umgekehrt verjüngte Form hat, die konfiguriert ist, um eine Beschädigung des unteren Substrats (110) zu reduzieren, die durch eine Verformung des oberen Substrats (350, 550) verursacht wird aufgrund einer äußeren Einwirkung, und

    wobei die Seitenfläche (ISS) des oberen Substrats (350) eine erste Seitenfläche (1SS) aufweist, die sich von einem Ende der unteren Oberfläche (BS) des oberen Substrats (350, 550) erstreckt und eine gekrümmte, umgekehrt verjüngte Form in einer vertikalen Querschnittsansicht des oberen Substrats (350, 550) hat, wobei die erste Seitenfläche (1SS) des oberen Substrats (350, 550) eine konkave Form hat.


     
    2. Organische lichtemittierende Anzeigevorrichtung (OLED) (500) nach Anspruch 1, wobei das obere Substrat (550) ferner eine zweite Seitenfläche (2SS) aufweist, die sich von einem Ende einer oberen Oberfläche (TS) des oberen Substrats (550) erstreckt und eine sich verjüngende Form aufweist, wobei die zweite Seitenfläche (2SS) des oberen Substrats (450; 550, 650) eine gekrümmte Form in der vertikalen Querschnittsansicht des oberen Substrats (550) aufweist, wobei die erste Seitenfläche (1SS) die zweite Seitenfläche (2SS) an einer Linie (X) in einer Ebene (Y) trifft, die parallel zur unteren Oberfläche (BS) des oberen Substrats (550) ist.
     
    3. Organische lichtemittierende Anzeige (OLED)-Vorrichtung (400, 600), aufweisend:

    ein organisches lichtemittierendes Element (120), das zwischen einer oberen Oberfläche (110a) eines unteren Substrats (110) und einem oberen Substrat (450; 650) angeordnet ist, unter einer Abdeckung (170), die an der Außenperipherie der (OLED)-Vorrichtung (400, 600) angeordnet ist,

    wobei eine Klebeschicht (140) auf dem lichtemittierenden Element (120) und zwischen der oberen Oberfläche (110a) des unteren Substrats (110) und einer unteren Oberfläche (BS) des oberen Substrats (450; 650) angeordnet ist,

    wobei die Klebeschicht (140) das organische lichtemittierende Element (120) versiegelt,

    wobei zumindest ein Teil einer Seitenfläche (ISS) des oberen Substrats (450; 650) eine umgekehrt verjüngte Form aufweist, die konfiguriert ist, um eine Beschädigung des unteren Substrats (110) zu verringern, die durch eine Verformung des oberen Substrats (450; 650) verursacht wird durch äußere Einwirkung,

    wobei die Seitenfläche (ISS) des oberen Substrats (450, 650) eine erste Seitenfläche (1SS) aufweist, die sich von einem Ende der unteren Oberfläche (BS) des oberen Substrats (450; 650) erstreckt und eine umgekehrt verjüngte Form aufweist,

    wobei die erste Seitenfläche (1SS) des oberen Substrats (450, 650) in einer vertikalen Querschnittsansicht des oberen Substrats (450; 650) eine geradlinige Form hat,

    wobei das obere Substrat (450; 650) ferner eine zweite Seitenfläche (2SS) aufweist, die sich von einem Ende einer oberen Oberfläche (TS) des oberen Substrats (450; 650) erstreckt und eine sich verjüngende Form aufweist,

    wobei die zweite Seitenfläche (2SS) des oberen Substrats (450; 650) in der vertikalen Querschnittsansicht des oberen Substrats (450; 650) eine geradlinige Form aufweist, und

    wobei die erste Seitenfläche (1SS) die zweite Seitenfläche (2SS) an einer Linie (X) in einer Ebene (Y) trifft, die parallel zu der unteren Oberfläche (BS) des oberen Substrats (450; 650) ist.


     
    4. OLED-Vorrichtung (300) nach Anspruch 1, wobei:

    die erste Seitenfläche (1SS) des oberen Substrats (350) sich von einem Ende einer unteren Oberfläche (BS) des oberen Substrats (350) zu einem Ende einer oberen Oberfläche (TS) des oberen Substrats erstreckt, und

    ein Winkel (Θ1), der durch die obere Oberfläche (TS) des oberen Substrats (350) und eine Ebene (P1) gebildet wird, die sich entlang des kürzesten Weges von einer Linie (BS-1SS), wo die untere Oberfläche (BS) auf die erste Seitenfläche (1SS) des oberen Substrats (350) trifft, bis zu einer Linie (TS-1SS) erstreckt, wo die obere Oberfläche (TS) auf die erste Seitenfläche (1SS) des oberen Substrats (350) trifft, gleich oder größer als sechzig Grad und weniger als neunzig Grad ist.


     
    5. OLED-Vorrichtung (300) nach Anspruch 1,
    wobei eine in der Ebene liegende Fläche des oberen Substrats (350) kontinuierlich von der unteren Oberfläche (BS) des oberen Substrats zu der oberen Oberfläche (TS) des oberen Substrats (350) zunimmt.
     
    6. OLED-Vorrichtung (300) nach Anspruch 5,
    wobei die in der Ebene liegende Fläche des oberen Substrats (350) nichtlinear zunimmt.
     
    7. OLED-Vorrichtung (400; 500; 600) nach Anspruch 2 oder 3,
    wobei eine in der Ebene liegende Fläche des oberen Substrats (450; 550; 650) kontinuierlich von der unteren Oberfläche (BS) des oberen Substrats (450, 550, 650) bis zu einer bestimmten Position (X) zunimmt und von der bestimmten Position (X) bis zur oberen Oberfläche (TS) des oberen Substrats (450, 550, 650) kontinuierlich abnimmt.
     
    8. OLED-Vorrichtung (300; 500) nach Anspruch 1, wobei das obere Substrat (350; 550) ein oberes Metallsubstrat ist, und wobei die erste Seitenfläche (1SS) des oberen Metallsubstrats (350; 550) in einem stumpfen Winkel (OB) in Bezug auf die unter Oberfläche (BS) des oberen Metallsubstrats (350; 550) angeordnet ist.
     
    9. OLED-Vorrichtung (300) nach Anspruch 8,

    wobei die aus Metall hergestellte erste Seitenfläche (1SS) des oberen Substrats (350) sich von einem Ende der unteren Oberfläche (BS) des oberen Metallsubstrats (350) bis zur oberen Oberfläche (TS) des oberen Metallsubstrats (350) erstreckt,

    wobei eine Fläche der oberen Oberfläche (TS) des oberen Metallsubstrats (350) größer ist als eine Fläche der unteren Oberfläche (BS) des oberen Metallsubstrats (350),

    wobei, vorzugsweise, ein Winkel (Θ1) zwischen der oberen Oberfläche (TS) des oberen Metallsubstrats (350) und einer Ebene (P1) gleich oder größer als sechzig Grad und kleiner als neunzig Grad ist, wobei die Ebene (P1) sich entlang eines kürzesten Weges (L1) von einer Linie (BS-1SS), wo die untere Oberfläche (BS) des oberen Metallsubstrats (350) auf die erste Seitenfläche (1SS) des oberen Metallsubstrats (350) trifft, zu einer Linie (TS-1SS) erstreckt, wo die obere Oberfläche (TS) des oberen Metallsubstrats (350) auf die erste Seitenfläche (1SS) des oberen Metallsubstrats (350) trifft.


     
    10. OLED-Vorrichtung (500) nach Anspruch 8,

    wobei das obere Substrat (550) aus Metall ferner eine zweite Seitenfläche (2SS) in einem stumpfen Winkel (ΘT) in Bezug auf die obere Oberfläche (TS) des oberen Metallsubstrats (550) aufweist,

    wobei die zweite Seitenfläche (2SS) des oberen Metallsubstrats (550) in einer Querschnittsansicht eine gekrümmte Form hat.


     
    11. OLED-Vorrichtung (500) nach Anspruch 10, wobei:

    die erste Seitenfläche (1SS) des oberen Metallsubstrats (550) die zweite Seitenfläche (2SS) des oberen Metallsubstrats (550) trifft, um eine Linie X zu definieren;

    ein Winkel zwischen einer ersten Ebene (P1) und einer zweiten Ebene (P2) gleich oder größer als sechzig Grad und kleiner als einhundertachtzig Grad ist;

    sich die erste Ebene (P1) entlang eines kürzesten Weges (L1) von einer Linie (BS-1SS), wo die untere Oberfläche (BS) des oberen Metallsubstrats (550) auf die erste Seitenfläche (1SS) des oberen Metallsubstrats trifft (550), zu der Linie X erstreckt; und die zweite Ebene (P2) sich entlang eines kürzesten Weges (L2) von einer Linie (TS-2SS), wo die obere Oberfläche (TS) des oberen Metallsubstrats (550) auf die zweite Seitenfläche (2SS) des oberen Metallsubstrats (450; 550; 650) trifft, zu der Linie X erstreckt,

    wobei vorzugsweise eine Ebene Y parallel zur unteren Oberfläche (BS) des oberen Metallsubstrats (550) ist und die Linie X aufweist, und ein kürzester Abstand (T1) von der unteren Oberfläche (BS) des oberen Metallsubstrats (550) zu der Ebene Y gleich oder größer als ein kürzester Abstand (T2) von der oberen Oberfläche (TS) des oberen Metallsubstrats (550) zu der Ebene Y ist.


     
    12. OLED-Vorrichtung (300) nach Anspruch 1,

    wobei ein vorstehender Abschnitt des oberen Substrats (350) in einer Querschnittsansicht über das organische lichtemittierende Element (120) hinausragt; und

    wobei der vorstehende Abschnitt des oberen Substrats (350) die Seitenfläche mit der ersten Seitenfläche (1SS) mit der umgekehrt verjüngten Form aufweist,

    wobei die OLED-Vorrichtung (300) vorzugsweise ferner aufweist

    einen Treiberfilm (160; 260), der an der oberen Oberfläche des unteren Substrats (110) und über der oberen Oberfläche (TS) des oberen Substrats (350) angebracht ist,

    eine integrierte Treiberschaltung (IC) (161; 261) auf einer Seite des Treiberfilms, und

    ein Pad (130) auf der anderen Seite des Treiberfilms zwischen dem Treiberfilm und der oberen Oberfläche des unteren Substrats (110), wobei das untere Substrat weiter als der Treiberfilm in der Querschnittsansicht vorsteht.


     
    13. Organische lichtemittierende Anzeigevorrichtung (400; 500; 600) nach Anspruch 2 oder 3,

    wobei ein vorstehender Abschnitt des oberen Substrats (450; 550; 650) in einer Querschnittsansicht über das organische lichtemittierende Element (120) hinausragt,

    wobei der vorstehende Abschnitt des oberen Substrats (450; 550; 650) die Seitenfläche mit der ersten Seitenfläche (1SS) mit der umgekehrt verjüngten Form beinhaltet,

    wobei die OLED-Vorrichtung vorzugsweise ferner aufweist

    einen Treiberfilm (260), der an der oberen Oberfläche des unteren Substrats (110) und über der oberen Oberfläche (TS) des oberen Substrats (450; 550; 650) angebracht ist,

    eine integrierte Treiberschaltung (IC) (161) auf einer Seite des Treiberfilms, und

    ein Pad (130) auf der anderen Seite des Treiberfilms zwischen dem Treiberfilm und der oberen Oberfläche des unteren Substrats (110), wobei das untere Substrat in der Querschnittsansicht weiter vorsteht als der Treiberfilm,

    wobei die erste Seitenfläche (1SS) einen stumpfen Winkel (ΘB) mit der unteren Oberfläche (BS) des oberen Substrats (450, 550, 650) bildet.


     
    14. Organische lichtemittierende Anzeigevorrichtung (400; 500; 600) nach Anspruch 13,
    wobei die zweite Seitenfläche (2SS) einen stumpfen Winkel (ΘT) mit der oberen Oberfläche (TS) des oberen Substrats (450; 550; 650) bildet, die erste und die zweite Seitenfläche (1SS, 2SS) sich an einem am weitesten hervorstehenden Punkt des hervorstehenden Abschnitts des oberen Substrats (450; 550; 650) treffen.
     


    Revendications

    1. Dispositif d'affichage électroluminescent organique (OLED) (300, 500), comprenant :

    un élément électroluminescent organique (120) disposé entre une surface supérieure (110a) d'un substrat inférieur (110) et un substrat supérieur (350, 550), sous une couverture (170) disposée sur la périphérie extérieure du dispositif (OLED) (300, 500),

    dans lequel une couche adhésive (140) est disposée sur l'élément électroluminescent (120) et entre la surface supérieure (110a) du substrat inférieur (110) et une surface inférieure (BS) du substrat supérieur (350, 550),

    dans lequel la couche adhésive (140) scelle l'élément électroluminescent organique (120),

    dans lequel au moins une partie d'une surface latérale (ISS) du substrat supérieur (350, 550) a une forme effilée inversée configurée pour réduire les dommages au substrat inférieur (110) causés par une déformation du substrat supérieur (350, 550) due à un impact externe, et

    dans lequel la surface latérale (ISS) du substrat supérieur (350) comprend une première surface latérale (1SS) s'étendant à partir d'une extrémité de la surface inférieure (BS) du substrat supérieur (350, 550) et ayant une forme incurvée et effilée inversée dans une vue en coupe verticale du substrat supérieur (350, 550), moyennant quoi la première surface latérale (1SS) du substrat supérieur (350, 550) a une forme concave.


     
    2. Dispositif d'affichage électroluminescent organique (OLED) (500) selon la revendication 1, dans lequel le substrat supérieur (550) comprend en outre une deuxième surface latérale (2SS) s'étendant depuis une extrémité d'une surface supérieure (TS) du substrat supérieur (550) et ayant une forme effilée, dans lequel la deuxième surface latérale (2SS) du substrat supérieur (450 ; 550, 650) a une forme incurvée dans la vue en coupe verticale du substrat supérieur (550), dans lequel la première surface latérale (1SS) rencontre la deuxième surface latérale (2SS) à une ligne (X) dans un plan (Y) qui est parallèle à la surface inférieure (BS) du substrat supérieur (550).
     
    3. Dispositif d'affichage électroluminescent organique (OLED) (400, 600), comprenant :

    un élément électroluminescent organique (120) disposé entre une surface supérieure (110a) d'un substrat inférieur (110) et un substrat supérieur (450 ; 650), sous une couverture (170) disposée sur la périphérie extérieure du dispositif (OLED) (400, 600),

    dans lequel une couche adhésive (140) est disposée sur l'élément électroluminescent (120) et entre la surface supérieure (110a) du substrat inférieur (110) et une surface inférieure (BS) du substrat supérieur (450 ; 650),

    dans lequel la couche adhésive (140) scelle l'élément électroluminescent organique (120),

    dans lequel au moins une partie d'une surface latérale (ISS) du substrat supérieur (450 ; 650) a une forme effilée inversée configurée pour réduire les dommages au substrat inférieur (110) causés par une déformation du substrat supérieur (450 ; 650) due à un impact externe,

    dans lequel la surface latérale (ISS) du substrat supérieur (450, 650) comprend une première surface latérale (1SS) s'étendant à partir d'une extrémité de la surface inférieure (BS) du substrat supérieur (450 ; 650) et ayant une forme effilée inversée , dans lequel la première surface latérale (1SS) du substrat supérieur (450, 650) a une forme rectiligne dans une vue en coupe verticale du substrat supérieur (450 ; 650),

    dans lequel le substrat supérieur (450 ; 650) comprend en outre une deuxième surface latérale (2SS) s'étendant depuis une extrémité d'une surface supérieure (TS) du substrat supérieur (450 ; 650) et ayant une forme effilée,

    dans lequel la deuxième surface latérale (2SS) du substrat supérieur (450 ; 650) a une forme rectiligne dans la vue en coupe verticale du substrat supérieur (450 ; 650), et

    dans lequel la première surface latérale (1SS) rencontre la deuxième surface latérale (2SS) à une ligne (X) dans un plan (Y) parallèle à la surface inférieure (BS) du substrat supérieur (450 ; 650).


     
    4. Dispositif OLED (300) selon la revendication 1, dans lequel :

    la première surface latérale (1SS) du substrat supérieur (350) s'étend d'une extrémité d'une surface inférieure (BS) du substrat supérieur (350) à une extrémité d'une surface supérieure (TS) du substrat supérieur, et

    un angle (Θ1) qui est fait par la surface supérieure (TS) du substrat supérieur (350) et un plan (P1) étendu le long du chemin le plus court depuis une ligne (BS-1SS), où la surface inférieure (BS) rencontre la première surface latérale (1SS) du substrat supérieur (350), jusqu'à une ligne (TS-1SS), où la surface supérieure (TS) rencontre la première surface latérale (1SS) du substrat supérieur (350), est égal ou supérieur à soixante degrés et inférieur à quatre-vingt-dix degrés.


     
    5. Dispositif OLED (300) selon la revendication 1,
    dans lequel une zone dans le plan du substrat supérieur (350) augmente de manière continue depuis la surface inférieure (BS) du substrat supérieur jusqu'à la surface supérieure (TS) du substrat supérieur (350).
     
    6. Dispositif OLED (300) selon la revendication 5,
    dans lequel la zone dans le plan du substrat supérieur (350) augmente de manière non linéaire.
     
    7. Dispositif OLED (400 ; 500 ; 600) selon la revendication 2 ou 3,
    dans lequel une zone dans le plan du substrat supérieur (450 ; 550 ; 650) augmente de manière continue de la surface inférieure (BS) du substrat supérieur (450, 550, 650) à une position particulière (X) et diminue de manière continue de la position particulière (X) à la surface supérieure (TS) du substrat supérieur (450, 550, 650).
     
    8. Dispositif OLED (300 ; 500) selon la revendication 1, dans lequel le substrat supérieur (350 ; 550) est un substrat métallique supérieur, et dans lequel la première surface latérale (1SS) du substrat métallique supérieur (350 ; 550) forme un angle obtus (ΘB) par rapport à la surface inférieure (BS) du substrat métallique supérieur (350 ; 550).
     
    9. Dispositif OLED (300) selon la revendication 8,

    dans lequel la première surface latérale (1SS) du substrat supérieur (350) en métal s'étend d'une extrémité de la surface inférieure (BS) du substrat métallique supérieur (350) à la surface supérieure (TS) du substrat métallique supérieur (350),

    dans lequel une zone de la surface supérieure (TS) du substrat métallique supérieur (350) est supérieure à une zone de la surface inférieure (BS) du substrat métallique supérieur (350),

    dans lequel, de préférence, un angle (Θ1) entre la surface supérieure (TS) du substrat métallique supérieur (350) et un plan (P1) est égal ou supérieur à soixante degrés et inférieur à quatre-vingt-dix degrés, le plan (P1) s'étendant le long d'un chemin le plus court (L1) depuis une ligne (BS-1SS) où la surface inférieure (BS) du substrat métallique supérieur (350) rencontre la première surface latérale (1SS) du substrat métallique supérieur (350), jusqu'à une ligne (TS-1SS) où la surface supérieure (TS) du substrat métallique supérieur (350) rencontre la première surface latérale (1SS) du substrat métallique supérieur (350).


     
    10. Dispositif OLED (500) selon la revendication 8,

    dans lequel le substrat supérieur (550) en métal comprend en outre une deuxième surface latérale (2SS) à un angle obtus (ΘT) par rapport à la surface supérieure (TS) du substrat métallique supérieur (550),

    dans lequel la deuxième surface latérale (2SS) du substrat métallique supérieur (550) a une forme incurvée dans une vue en coupe transversale.


     
    11. Dispositif OLED (500) selon la revendication 10, dans lequel :

    la première surface latérale (1SS) du substrat métallique supérieur (550) rencontre la deuxième surface latérale (2SS) du substrat métallique supérieur (550) pour définir une ligne X ;

    un angle entre un premier plan (P1) et un deuxième plan (P2) est égal ou supérieur à soixante degrés et inférieur à cent quatre-vingts degrés ;

    le premier plan (P1) s'étend le long d'un chemin le plus court (L1) depuis une ligne (BS-1SS) où la surface inférieure (BS) du substrat métallique supérieur (550) rencontre la première surface latérale (1SS) du substrat métallique supérieur (550), jusqu'à la ligne X ; et le deuxième plan (P2) s'étend le long d'un chemin le plus court (L2) depuis une ligne (TS-2SS) où la surface supérieure (TS) du substrat métallique supérieur (550) rencontre la deuxième surface latérale (2SS) du substrat métallique supérieur (450 ; 550 ; 650), jusqu'à la ligne X,

    dans lequel, de préférence, un plan Y est parallèle à la surface inférieure (BS) du substrat métallique supérieur (550) et comprend la ligne X, et une distance la plus courte (T1) de la surface inférieure (BS) du substrat métallique supérieur (550) au plan Y est égale ou supérieure à une distance la plus courte (T2) de la surface supérieure (TS) du substrat métallique supérieur (550) au plan Y.


     
    12. Dispositif OLED (300) selon la revendication 1,

    dans lequel une partie en saillie du substrat supérieur (350) fait saillie au-delà de l'élément électroluminescent organique (120) dans une vue en coupe transversale ; et

    dans lequel la partie en saillie du substrat supérieur (350) comprend la surface latérale ayant la première surface latérale (1SS) avec la forme effilée inversée,

    le dispositif OLED (300) comprenant de préférence en outre :

    un film de commande (160 ; 260) fixé à la surface supérieure du substrat inférieur (110) et au-dessus de la surface supérieure (TS) du substrat supérieur (350),

    un circuit intégré (IC) de commande (161 ; 261) sur un côté du film de commande, et

    un coussinet (130) sur l'autre côté du film de commande entre le film de commande et la surface supérieure du substrat inférieur (110), le substrat inférieur dépassant davantage que le film de commande dans la vue en coupe.


     
    13. Dispositif d'affichage électroluminescente organique (400 ; 500 ; 600) selon la revendication 2 ou 3,

    dans lequel une partie en saillie du substrat supérieur (450 ; 550 ; 650) fait saillie au-delà de l'élément électroluminescent organique (120) dans une vue en coupe,

    dans lequel la partie en saillie du substrat supérieur (450 ; 550 ; 650) comprend la surface latérale ayant la première surface latérale (1SS) avec la forme effilée inversée,

    le dispositif OLED comprenant de préférence en outre :

    un film de commande (260) fixé à la surface supérieure du substrat inférieur (110) et au-dessus de la surface supérieure (TS) du substrat supérieur (450 ; 550 ; 650),

    un circuit intégré (IC) de commande (161) sur un côté du film de commande, et

    un coussinet (130) sur l'autre côté du film de commande entre le film de commande et la surface supérieure du substrat inférieur (110), le substrat inférieur dépassant davantage que le film de commande dans la vue en coupe,

    dans lequel la première surface latérale (1SS) forme un angle obtus (ΘB) avec la surface inférieure (BS) du substrat supérieur (450, 550, 650).


     
    14. Dispositif d'affichage électroluminescent organique (400 ; 500 ; 600) selon la revendication 13,
    dans lequel la deuxième surface latérale (2SS) forme un angle obtus (ΘT) avec la surface supérieure (TS) du substrat supérieur (450 ; 550 ; 650), les première et deuxième surfaces latérales (1SS, 2SS) se rencontrent à un point de saillie le plus éloigné de la partie en saillie du substrat supérieur (450 ; 550 ; 650).
     




    Drawing























    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description