(19)
(11)EP 3 035 988 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
09.10.2019 Bulletin 2019/41

(21)Application number: 14837749.2

(22)Date of filing:  21.08.2014
(51)Int. Cl.: 
A61M 16/00  (2006.01)
A61M 16/20  (2006.01)
(86)International application number:
PCT/IB2014/064002
(87)International publication number:
WO 2015/025291 (26.02.2015 Gazette  2015/08)

(54)

OSCILLATING POSITIVE RESPIRATORY PRESSURE DEVICE

SCHWINGENDE VORRICHTUNG FÜR POSITIVEN RESPIRATORISCHEN DRUCK

DISPOSITIF DE PRESSION RESPIRATOIRE POSITIVE OSCILLANTE


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 22.08.2013 US 201361868667 P

(43)Date of publication of application:
29.06.2016 Bulletin 2016/26

(73)Proprietor: Trudell Medical International
London, Ontario N5V 5G4 (CA)

(72)Inventors:
  • MEYER, Adam
    London, Ontario N5X 2E9 (CA)
  • ENGELBRETH, Dan
    London, Ontario N5Y 5P7 (CA)

(74)Representative: Grünecker Patent- und Rechtsanwälte PartG mbB 
Leopoldstraße 4
80802 München
80802 München (DE)


(56)References cited: : 
WO-A1-2014/083418
WO-A2-2012/168780
US-A1- 2006 090 753
US-B1- 8 539 951
WO-A2-2012/168780
AU-A1- 2013 205 095
US-B1- 6 708 690
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    TECHNICAL FIELD



    [0001] The present disclosure relates to a respiratory treatment device, and in particular, to an oscillating positive respiratory pressure device.

    BACKGROUND



    [0002] Each day, humans may produce upwards of 30 milliliters of sputum, which is a type of bronchial secretion. Normally, an effective cough is sufficient to loosen secretions and clear them from the body's airways. However, for individuals suffering from more significant bronchial obstructions, such as collapsed airways, a single cough may be insufficient to clear the obstructions.

    [0003] One type of therapy, utilizing oscillating positive expiratory pressure ("OPEP"), is often used to address this issue. OPEP therapy represents an effective bronchial hygiene technique for the removal of bronchial secretions in the human body and is an important aspect in the treatment and continuing care of patients with bronchial obstructions, such as those suffering from chronic obstructive lung disease. It is believed that OPEP therapy, or the oscillation of exhalation pressure at the mouth during exhalation, effectively transmits an oscillating back pressure to the lungs, thereby splitting open obstructed airways and loosening the secretions contributing to bronchial obstructions.

    [0004] OPEP therapy is an attractive form of treatment because it can be easily taught to most hospitalized patients, and such patients can assume responsibility for the administration of OPEP therapy throughout their hospitalization and also once they have returned home. To that end, a number of portable OPEP devices have been developed.

    [0005] Oscillating positive respiratory pressure devices for a respiratory treatment are known from AU 2013205095 A1 and WO 2012/168780 A2.

    BRIEF SUMMARY



    [0006] The present invention provides devices for rerspiratory treatment according to claims 1, 10 and 11.

    [0007] Preferred embodiments are defined in the dependent claims.

    BRIEF DESCRIPTION



    [0008] 

    FIG. 1 is a front perspective view of a first embodiment of an OPEP device;

    FIG. 2 is a rear perspective view of the OPEP device of FIG. 1;

    FIG. 3 is a cross-sectional perspective view of the OPEP device of FIG. 1;

    FIG. 4 is a perspective view of a blocking member disposed on a vane mountable within the OPEP device of FIG. 1;

    FIGS. 5A-5E are cross-sectional views illustrating the operation of the OPEP device of FIG. 1;

    FIGS. 6A-6F are cross-section views illustrating exemplary modifications to the OPEP device of FIG. 1;

    FIG. 7 is a front perspective view of a second embodiment of an OPEP device;

    FIG. 8 is a rear perspective view of the OPEP device of FIG. 7;

    FIG. 9 is a perspective view of the OPEP device of FIG. 7, shown with a font cover of the device removed;

    FIG. 10 is a cross-sectional view of the OPEP device of FIG. 7;

    FIG. 11 is a perspective view of the OPEP device of FIG. 7, shown with the front cover of the device removed;

    Fig. 12 is a perspective view of the OPEP device of the FIG. 7, shown with a rear cover of the device removed, and with a blocking member in an open position;

    FIG. 13 is a perspective view of the OPEP device of FIG. 7, shown with the rear cover of the device removed, and with the blocking member in a closed position;

    FIG. 14 is a front perspective view of a third embodiment of an OPEP device;

    FIG. 15 is a rear perspective view of the OPEP device of FIG. 14;

    FIG. 16 is an exploded view of the OPEP device of FIG. 14;

    FIG. 17 is a perspective view of an assembly of the internal components of the OPEP device of FIG. 14;

    FIG. 18 is a cross-sectional view of the OPEP device of FIG. 14; and,

    FIG. 19 is a perspective view of a one-way valve usable in the OPEP device of FIG. 14.


    DETAILED DESCRIPTION



    [0009] Referring to FIGS. 1-4, a first embodiment of an OPEP device 100 is shown. In general, the OPEP device 100 includes a housing 102 enclosing a chamber 104, a chamber inlet 106, a first chamber outlet 108, a second chamber outlet 110, a mouthpiece 112 in communication with the chamber inlet 106, a vane 114 mounted within the chamber 104, and a blocking member 116 disposed on the vane 114.

    [0010] The housing 102 and OPEP device 100 components may be constructed of any durable material, such as a low friction plastic or polymer, and may include a front section 103 and a rear section 105 that are removably attachable such that the chamber 104 may be periodically accessed for cleaning and/or replacement of the vane 114. In addition, although the mouthpiece 112 is shown as being fixedly attached to the housing 102, it is envisioned that the mouthpiece 112 may be removeable and replaceable with a mouthpiece of a different shape or size. Preferably, the size or cross-sectional area of the mouthpiece 112 is greater than the size or cross-sectional area of the chamber inlet 106. It is envisioned that other user interfaces, such as breathing tubes or gas masks (not shown), may alternatively be associated with the housing 102.

    [0011] As shown in FIG. 3, the vane 114 is rotatably mounted within the chamber 104 about a shaft 118. The shaft 118 may be supported by bearings 120a, 120b formed in the housing 102. As shown in FIG. 4, the vane 114 is formed as a generally planar member adapted for rotation about the shaft 118 positioned at the center of the vane 114. Alternatively, the vane 114 could be formed with any number of curves or contours. A blocking member 116 is disposed on an end of the vane 114 and is adapted to move relative to the chamber inlet 106 between an closed position, where the flow of air through the chamber inlet 106 is restricted by the blocking member 116, and an open position where the flow of air through the chamber inlet 106 is less restricted. As shown, the blocking member 116 is curved, such that it may travel in close proximity to the chamber inlet 106. The blocking member 116 is also sized and shaped such that the flow of air through the chamber inlet 106 may be completed restricted when the blocking member 116 is in a closed position. As discussed below, it is envisioned that the blocking member 116 and/or the chamber inlet 106 could be any number of shapes and sizes, and that the blocking member 116 may only partially restrict the flow of air through the chamber inlet 106 when the blocking member 116 is in a closed position.

    [0012] The operation of the OPEP device 100 will now be described with reference to the illustrations shown in FIGS. 5A-5E. In FIGS. 5A-5E, the flow of air through the device 100 is illustrated by dashed lines. However, it should be appreciated that the dashed lines are exemplary and provided for purposes of illustration. The actual flow air through the device 100 may traverse any number of flow paths.

    [0013] As shown in FIG. 5A, administration of OPEP therapy using the OPEP device 100 begins with the vane 114 in a first position, and the blocking member 116 in an open position. With the vane 114 in this position, exhaled air flowing into the mouthpiece 112 enters the chamber 104 through the chamber inlet 106, where it is directed by the vane 114 toward the rear portion of the of the chamber 104, denoted in FIG. 5A by "X", and generally toward the first chamber outlet 108. Although some of the exhaled air exits the OPEP device 100 through the first chamber outlet 108, as a user continues to exhale, the pressure in the rear portion of the chamber 104 increases, causing the vane 114 to begin to rotate in a clockwise direction.

    [0014] As a user continues to exhale, the vane 114 rotates from the position shown in FIG. 5A to the position shown in FIG 5B. In this position, exhaled air flowing into the chamber 104 may exit the chamber 104 through the first chamber exit 108, or flow around the vane 114 and exit the chamber 104 through the second chamber exit 110. The blocking member 116 in this position is also partially restricting the flow of air through the chamber inlet 106, thereby causing the pressure in the mouthpiece 112 to increase. In this position, some of the exhaled air exits the OPEP device 100 through the first chamber outlet 108. However, as a user continues to exhale, pressure in the rear of the chamber 104, along with the flow of air around the vane 114, cause the vane 114 to continue to rotate in a clockwise direction.

    [0015] As a user continues to exhale, the vane 114 rotates from the position shown in FIG. 5B to the position shown in FIG. 5C. In this position, the blocking member 116 is in a closed position, and exhaled air is completely restricted from flowing through the chamber inlet 106 into the chamber 104, thereby causing the pressure in the mouthpiece 112 to rapidly increase. In this position, the momentum of the vane 114 and the blocking member 116 continue to drive the vane 114 in a clockwise direction.

    [0016] As the vane 114 continues to rotate in a clockwise direction, the vane 114 rotates from the position shown in FIG. 5C to the position shown in FIG. 5D. In this position, exhaled air flowing into the chamber 104 may exit the chamber 104 through the second chamber exit 110, or flow around the vane 114 and exit the chamber 104 through the first chamber exit 108. In this position, the momentum of the vane 114 and the blocking member 116 is sufficient to overcome any opposing forces and continue rotating the vane 114 in a clockwise direction.

    [0017] As the vane 114 continues to rotate in a clockwise direction, the vane 114 rotates from the position shown in FIG. 5D to the position shown in FIG. 5E. Additional rotation of the vane 114 is prevented if the vane 114 contacts the housing 102. With the vane 114 in this position, exhaled air flowing into the mouthpiece 112 enters the chamber 104 through the chamber inlet 106, where it is directed by the vane 114 toward the rear portion of the of the chamber 104, denoted in FIG. 5E by "X", and generally toward the second chamber outlet 110. Although some of the exhaled air exits the OPEP device 100 through the second chamber outlet 110, as a user continues to exhale, the pressure in the rear portion of the chamber 104 increases, causing the vane 114 to begin to rotate in a counter clockwise direction, repeating the cycle described above, although in reverse order.

    [0018] During a period of exhalation, the vane 114 rotates repeatedly between the first position and the second position in clockwise and counter-counterclockwise directions. As this movement is repeated, the blocking member 116 moves repeatedly between a closed position, where the flow of air through the chamber inlet 106 is restricted by the blocking member 116, and an open position, where the flow of air through the chamber inlet 106 is less restricted. Consequently, the pressure in the mouthpiece 112, or user interface, oscillates between a higher pressure and a lower pressure, which pressures are in turn transmitted to the user's airways, thereby administering OPEP therapy.

    [0019] Turning to FIGS. 6A-6F, various modifications to the OPEP device 100 are shown. As shown in FIGS. 6A and 6B, exemplary modifications to the chamber inlet 106 are shown. Whereas the chamber inlet 106 shown in FIG. 3 is sized and shaped as a long and narrow horizontal opening, as shown in FIG. 6A, a chamber inlet 106' may be sized and shaped as a long and narrow opening, or as shown in FIG. 6B, a chamber inlet 106" may be sized and shaped as two narrow openings. It is also envisioned that the opening could be shaped as a cross, a circle, a square, or any other number of shapes, or combination of shapes. In this way, the shape and size of the chamber inlet 106 may be selected to achieve the desired performance of the OPEP device 100.

    [0020] As shown in FIGS. 6C-6F, exemplary modification to the vane 114 and the blocking member 116 are shown. For example, as compared to the blocking member 116 shown in FIGS. 3-4, a blocking member 116' shown in FIG. 6C is larger, thereby restricting the flow of air through the chamber inlet 106 for a longer period while the blocking member 116' is in a closed position. Similarly, as compared to the vane 114 shown in FIGS. 3-4, a vane 114' and a vane 114" are shorter in length, thereby changing the speed or frequency at which the vanes rotate, and the pressures at which the OPEP device 100 operates. In general, a shorter vane will oscillate faster, while a longer vane will oscillate slower. Finally, as shown in FIG. 6F, a vane 114''' is configured to have an axis of rotation, or the position of the shaft 118, offset from a center of the vane 114'''. It is also envisioned that the total rotation of a vane may be selected or adjusted, for example, by changing the length of the vane while maintaining the size of the housing, or by providing a stop in the housing that limits the rotation of the vane. In general, an increase in the amount of rotation will result in a decreased frequency, while a decrease in the amount of rotation will result in an increased frequency.

    [0021] Referring to FIGS. 7-13, a second embodiment of an OPEP device 200 is shown. In general, the OPEP device 200 includes a housing 202 enclosing a chamber 204 having a first portion 207 and a second portion 209 joined by a passage 211, a chamber inlet 206, a chamber outlet 208, a mouthpiece 212 in communication with the chamber inlet 206, a turbine 214 rotatably mounted within the chamber 204 via a shaft 218, a blocking member 216, a first linkage 220, and a second linkage 222.

    [0022] The housing 202 and OPEP device 200 components may be constructed of any durable material, such as a low friction plastic or polymer, and may include a front cover 203 and a rear cover 205 that are removably attachable such that the chamber 204 may be periodically accessed for cleaning and/or replacement of the turbine 214 and/or linkages 220, 222. In addition, although the mouthpiece 212 is shown as being fixedly attached to the housing 202, it is envisioned that the mouthpiece 212 may be removeable and replaceable with a mouthpiece of a different shape or size. Preferably, the size or cross-sectional area of the mouthpiece 212 is greater than the size or cross-sectional area of the chamber inlet 206. It is envisioned that other user interfaces, such as breathing tubes or gas masks (not shown), may alternatively be associated with the housing 202.

    [0023] As shown in FIGS. 9-11, the turbine 214 is rotatably mounted via the shaft 218 within the first portion 207 of the chamber 204 and is configured to rotate in response to a flow of air through the chamber inlet 206. As shown, the turbine 214 includes a plurality of vanes, although it is envisioned that the turbine could have as few as one vane, or many more vanes. The size and shape of the vanes may also vary.

    [0024] As shown in FIGS. 12-13, the first linkage 220, the second linkage 222, and the blocking member 216 are mounted within the second portion 209 of the chamber 204. The first linkage 220 is fixed about one end to the shaft 218, and as such, is configured to rotate in unison with the turbine 214. The second linkage 222 is hinged to the other end of the first linkage 220, as well as the blocking member 216. The blocking member 216 is surrounded by and in sliding engagement with a first pair and a second pair of guide rails 224, 226. In this way, rotation of the turbine 214 and shaft 218 causes rotation of the first linkage 220, translation and rotation of the second linkage 222, and ultimately, linear translation or reciprocation of the blocking member 216 between the position shown in FIG. 12 and the position shown in FIG. 13. In the position shown in FIG. 13, the blocking member 216 is in a closed position, where the flow of air through the chamber outlet 208 (seen in FIG. 8) is restricted by the blocking member 216, whereas, in the position shown in FIG. 12, the blocking member 216 is in an open position, where the flow of air through the chamber outlet 208 is less restricted. It should be appreciated that the blocking member 216 may completely or partially restrict the flow of air through the chamber outlet 208 when the blocking member 216 is in a closed position.

    [0025] The operation of the OPEP device 200 will now be described with reference to the illustrations shown in FIGS. 9-13. In FIGS. 9-13, the flow of air through the device 200 is illustrated by dashed lines. However, it should be appreciated that the dashed lines are exemplary and provided for purposes of illustration. The actual flow air through the device 200 may traverse any number of flow paths.

    [0026] In general, administration of OPEP therapy using the OPEP device 200 begins with the blocking member 216 in an open position, as shown in FIG. 12. With the blocking member 216 in this position, as a user exhales into the mouthpiece 212, or user interface, exhaled air flows into the chamber 204 through the chamber inlet 206. In response to the flow of air through the chamber inlet 206, the turbine 214 begins to rotate, allowing the air to flow between the chamber inlet 206 and the passage 211 connecting the first portion 207 of the chamber with the second portion 209 of the chamber 204. Because the first linkage 202 is operatively connected to the turbine 214 via the shaft 218, rotation of the turbine 214 results in rotation of the first linkage 202, which in turn causing the second linkage 222 to rotate relative to the first linkage 220 and the blocking member 216, as the blocking member 216 is driven between an open position, shown in FIG. 12, and a closed position, shown in FIG. 13. As the blocking member 216 is moved from an open position shown in FIG. 12 to a closed position shown in FIG. 13, the air flowing from the passage 211 through the second portion 209 of the chamber 204 is restricted from exiting the chamber 204 through the chamber outlet 208, thereby causing the pressure throughout the device 200 to increase. As a user continues to exhale, and the turbine 214 continues to rotate, the blocking member 216 returns to an open position, allowing the air in the chamber 204 to exit the chamber 204 through the chamber outlet 208, resulting in a decrease in pressure throughout the device 200. During a period of exhalation, the blocking member 216 reciprocates repeatedly between an open position and a closed position, causing the pressure in the device to oscillate between a lower pressure and a higher pressure, which is in turn transmitted to the user's airways, thereby administering OPEP therapy.

    [0027] Turning to FIGS. 14-19, a third embodiment of an OPEP device 300 is shown. In general, the OPEP device 300 includes a housing 302 enclosing a chamber 304, a chamber inlet 306, a chamber outlet 308, a vent 338, a mouthpiece 312 in communication with the chamber inlet 306, a turbine 314 rotatably mounted within the chamber 304 via a shaft 318, a blocking member 316, and a pair of arms 320, 322 operatively connected to the shaft 318.

    [0028] The housing 302 and OPEP device 300 components may be constructed of any durable material, such as a low friction plastic or polymer, and may include an upper section 303, an inner section 301, and a lower section 305 that are removably attachable such that the chamber 304 may be periodically accessed for cleaning and/or replacement of the turbine 314. In addition, although the mouthpiece 312 is shown as being fixedly attached to the housing 302, it is envisioned that the mouthpiece 312 may be removeable and replaceable with a mouthpiece of a different shape or size. Preferably, the size or cross-sectional area of the mouthpiece 312 is greater than the size or cross-sectional area of the chamber inlet 306. It is envisioned that other user interfaces, such as breathing tubes or gas masks (not shown), may alternatively be associated with the housing 302.

    [0029] Turning to FIG. 17, an assembly of internal components of the OPEP device 300 includes the turbine 314, the inner section 301 of the housing 302, the pair of arms 320, 322, and the blocking member 316. The turbine 314 is rotatably mounted via the shaft 318 within the inner section 301 of the housing 302, which partially forms the chamber 304, along with the lower section 305 of the housing 302. Like the turbine 214 in the OPEP device 200, the turbine 314 is configured to rotate in response to a flow of air through the chamber inlet 306, and could have as few as one vane, or many more vanes, the size and shape of which may vary. Each of the pair of arms 320, 322 (also shown in FIG. 16) are fixed to the shaft 318 such that rotation of the turbine 314 and the shaft 318 results in rotation of the arms 320, 322.

    [0030] The blocking segment 316 is mounted to the inner section 301 of the housing 302 about a pair of hinges 328, 330, such that the blocking segment 316 may rotate relative to the chamber outlet 308 between a closed position, as shown in FIG. 17, where the flow of air through the chamber outlet 308 is restricted, and an open position, as shown in FIG. 18, where the flow of air through the chamber outlet 308 is less restricted. The blocking member 316 includes a pair of contact surfaces 332, 334 (also shown in FIG. 16) configured to periodically engage the pair of arms 320, 322 as the pair of arms 320, 322 rotate with the turbine 314 and the shaft 318, thereby moving the blocking member 316 from an open position to a closed position. The blocking member 316 also has a center of mass offset from the pair of hinges 328, 330, or the axis of rotation, such that when the contact surfaces 332, 334 are not engaged with the pair of arms 320, 322, the blocking member 316 moves to an open position, where the contact surfaces 332, 334 may engage a stop 336.

    [0031] The operation of the OPEP device 300 will now be described with reference to the illustration shown in FIGS. 17-18. In FIG. 18, the flow of air through the device 300 is illustrated by a dashed line. However, it should be appreciated that the dashed line is exemplary and provided for purposes of illustration. The actual flow air through the device 300 may traverse any number of flow paths.

    [0032] In general, administration of OPEP therapy using the OPEP device 300 begins with the blocking member 316 in an open position, as shown in FIG. 18. As a user exhales in to the mouthpiece 312, exhaled air travels through the housing 302 and enters the chamber 304 through the chamber inlet 306. In response to the flow of air through the chamber inlet 306, the turbine 314 begins to rotate, and exhaled air traverses the chamber 304, exiting the chamber 304 through the chamber outlet 308. Once exhaled air exits the chamber 304, it may travel through the housing 302 and exit the device 300 through the vent 338.

    [0033] As a user continues to exhale, and the turbine 314 continues to rotate, the shaft 318 rotates, causing the pair of arms 320, 322 to also rotate. As the pair of arms 320, 322 rotate, they periodically engage the contact surfaces 332, 334 on the blocking member 316, as shown in FIG. 17, causing the blocking member 316 to rotate about the pair of hinges 328, 330 from an open position, shown in FIG. 18, to a closed position, shown in FIG. 17. As the blocking member 316 is moved from an open to a closed position, the air flowing through the chamber 304 is restricted from exiting the chamber 304 through the chamber outlet 308, thereby causing the pressure in the chamber 304 and the mouthpiece 312 to increase. As a user continues to exhale, and the turbine 314 continues to rotate, the pair of arms 320, 322 disengage the contact surfaces 332, 334, and the blocking member 316 returns to an open position, allowing the air in the chamber 304 to exit the chamber 304 through the chamber outlet 308, resulting in a decrease in pressure in the chamber 304 and the mouthpiece 312. During a period of exhalation, the blocking member 316 moves repeatedly between an open position and a closed position, causing the pressure in the device 300 to oscillate between a lower pressure and a higher pressure, which is in turn transmitted to the user's airways, thereby administering OPEP therapy.

    [0034] Finally, as best seen in FIG. 15-16, the OPEP device 300 is equipped with an inhalation portal 324 having a one-way vale 326, which is shown separately in FIG. 19. The one-way valve 326 includes a plurality of tabs or flaps 327 which are configured to open during a period of inhalation, thereby allowing air to travel through the inhalation port 324 and the one-way valve 326, and close during a period of exhalation, thereby directing the flow of exhaled air through the chamber inlet 306. In this way, a user may exhale into the OPEP device 300 for the administration of OPEP therapy, as described above, and also inhale air surrounding the OPEP device 300 through the inhalation portal 324. Alternatively, the OPEP device 300 may be used in combination with a nebulizer for the combined administration of OPEP and aerosol therapies. Any of a number of commercially available nebulizers may be connected to the OPEP device 300 via the inhalation portal 324. One suitable nebulizer is the AeroEclipse® II breath actuated nebulizer available from Trudell Medical International of London, Canada. Descriptions of suitable nebulizers may also be found, for example, in U.S. Patent No. 5,823,179. In this way, a user may exhale into the OPEP device 300 for the administration of OPEP therapy, as described above, and also inhale an aerosolized medicament from an attached nebulizer through the one-way valve 326 and the inhalation portal 324. While the inhalation port 324 is shown in connection with the OPEP device 300, it should be appreciated that the OPEP device 100 and the OPEP device 200 could also include an inhalation port and one way-valve configured to operate as described above.

    [0035] Although the description of the embodiments described above refer to the administration of OPEP therapy on exhalation, it should be appreciated that such embodiments are also configurable for the administration of oscillating pressure therapy upon exhalation only, inhalation only, or both exhalation and inhalation. Accordingly, the terms "oscillating positive respiratory pressure" and "oscillating positive expiratory pressure," or "OPEP," may be used interchangeably. Similarly, the term "respiratory" may refer to inhalation, exhalation, or both inhalation and exhalation. Use of any such term should not be construed as a limitation to only inhalation or only exhalation.

    [0036] The foregoing description of the inventions has been presented for purposes of illustration and description, and is not intended to be exhaustive or to limit the inventions to the precise forms disclosed. It will be apparent to those skilled in the art that the present inventions are susceptible of many variations and modifications coming within the scope of the following claims.


    Claims

    1. A respiratory treatment device comprising:

    a housing (102) enclosing a chamber (104);

    a chamber inlet (106) configured to receive a flow of air into the chamber;

    a first chamber outlet (108) configured to permit the flow of air to exit the chamber;

    a second chamber outlet (110) configured to permit the flow of air to exit the chamber;

    a vane (114) mounted within the chamber, the vane being configured to rotate between a first position where the flow of air is directed to exit the chamber through the first chamber outlet, and a second position where the flow of air is directed to exit the chamber through the second chamber outlet;

    a curved blocking member (116) disposed on an end of the vane, the blocking member moveable relative to the chamber inlet between a closed position where the flow of air through the chamber inlet is restricted, and an open position where the flow of air through the chamber inlet is less restricted.


     
    2. The respiratory treatment device of claim 1, wherein the vane is configured to rotate in response to the flow of air into the chamber.
     
    3. The respiratory treatment device of claim 1, wherein the vane is configured to repeatedly reciprocate between the first position and the second position in response to the flow of air into the chamber.
     
    4. The respiratory treatment device of claim 1, wherein the vane (114) is prohibited from completing a complete revolution.
     
    5. The respiratory treatment device of claim 1, wherein a size of the blocking member (116) is greater than a size of the chamber inlet (106).
     
    6. The respiratory treatment device of claim 1, wherein a size of the blocking member (116) is less than a size of the chamber inlet (106).
     
    7. The respiratory treatment device of claim 1, wherein an axis of rotation of the vane (114) is offset from a center of the vane (114).
     
    8. The respiratory treatment device of claim 1, furthering comprising a mouthpiece (112), wherein a cross sectional area of the mouthpiece (112) is larger than a cross sectional area of the chamber inlet (106).
     
    9. The respiratory treatment device of claim 8, further comprising an inhalation port (324) in communication with the mouthpiece (112), the inhalation port comprising a one- way valve (326) configured to open upon inhalation and close upon exhalation.
     
    10. A respiratory treatment device (200) comprising:

    a housing (202) enclosing a chamber (204);

    an inlet (206) configured to receive a flow of air into the chamber;

    an outlet (208) configured to permit the flow of air to exit chamber;

    a blocking member (216) mounted in the chamber, the blocking member being moveable relative to the chamber outlet between a closed position where the flow of air through the exit is restricted, and an open position where the flow of air through the chamber outlet is less restricted;

    a turbine (214) comprising at least one vane and being rotatably mounted in the chamber (204), the turbine being configured to move the blocking member between the closed position and the open position in response to the flow of air into the chamber,

    wherein the blocking member is connected to the turbine by a shaft (218) and at least one linkage (220, 222),
    wherein the shaft (218) and the at least one linkage (220, 222) cooperate to move the blocking member (216) in linear reciprocating motion.
     
    11. A respiratory treatment device (300) comprising:

    a housing (302) enclosing a chamber (304);

    an inlet (306) configured to receive a flow of air into the chamber;

    an outlet (308) configured to permit the flow of air to exit chamber;

    a blocking member (316) mounted in the chamber, the blocking member being moveable relative to the chamber outlet between a closed position where the flow of air through the exit is restricted, and an open position where the flow of air through the chamber outlet is less restricted;

    a turbine (314) comprising at least one vane and being rotatably mounted in the chamber (304), the turbine being configured to move the blocking member between the closed position and the open position in response to the flow of air into the chamber,

    wherein the blocking member is configured to move between the open position and the closed position in response to contact from an arm (320, 322) connected to the turbine (314).
     
    12. The respiratory treatment device of claim 11, wherein the blocking member (316) is biased toward the open position.
     
    13. The respiratory treatment device of claims 10 or 11, wherein the the turbine (214, 314) has a plurality of vanes.
     
    14. The respiratory treatment device of claims 10, wherein the chamber comprises a first portion (207) enclosing the at least one vane (214) and a second portion (209) enclosing the blocking member (216).
     
    15. The respiratory treatment device of claim 14, wherein the first portion (207) is in communication with the second portion (209).
     
    16. The respiratory treatment device of claims 10 or 11, further comprising a mouthpiece (212, 312), wherein a cross sectional area of the mouthpiece is larger than a cross sectional area of the chamber inlet.
     
    17. The respiratory treatment device of claim 16, further comprising an inhalation port in communication with the mouthpiece (312), the inhalation port (324) comprising a one-way valve (326) configured to open upon inhalation and close upon exhalation.
     


    Ansprüche

    1. Atmungsbehandlungsvorrichtung, umfassend:

    ein Gehäuse (102), das eine Kammer (104) umschließt;

    einen Kammereinlass (106), der konfiguriert ist, um einen Luftstrom in die Kammer aufzunehmen;

    einen ersten Kammerauslass (108), der es ermöglicht, dass der Luftstrom die Kammer verlässt;

    einen zweiten Kammerauslass (110), der es ermöglicht, dass der Luftstrom die Kammer verlässt;

    ein Flügel (114), der innerhalb der Kammer montiert ist, wobei der Flügel konfiguriert ist, um sich zwischen einer ersten Position, in der der Luftstrom zum Verlassen der Kammer durch den ersten Kammerauslass geleitet wird, und einer zweiten Position, in der der Luftstrom zum Verlassen der Kammer durch den zweiten Kammerauslass geleitet wird, zu drehen;

    ein gebogenes Sperrelement (116), das an einem Ende des Flügels angeordnet ist, wobei das Sperrelement relativ zum Kammereinlass zwischen einer geschlossenen Position, in der der Luftstrom durch den Kammereinlass begrenzt ist, und einer offenen Position, in der der Luftstrom durch den Kammereinlass weniger eingeschränkt ist, beweglich ist.


     
    2. Atmungsbehandlungsvorrichtung nach Anspruch 1, wobei der Flügel konfiguriert ist, um sich als Reaktion auf den Luftstrom in die Kammer zu drehen.
     
    3. Atmungsbehandlungsvorrichtung nach Anspruch 1, wobei der Flügel konfiguriert ist, um sich als Reaktion auf den Luftstrom in die Kammer wiederholt zwischen der ersten Position und der zweiten Position hin und her zu bewegen.
     
    4. Atmungsbehandlungsvorrichtung nach Anspruch 1, wobei es nicht erlaubt ist, dass der Flügel (114) eine vollständige Umdrehung durchführt.
     
    5. Atmungsbehandlungsvorrichtung nach Anspruch 1, wobei eine Größe des Sperrelements (116) größer als eine Größe des Kammereinlasses (106) ist.
     
    6. Atmungsbehandlungsvorrichtung nach Anspruch 1, wobei eine Größe des Sperrelements (116) kleiner als eine Größe des Kammereinlasses (106) ist.
     
    7. Atmungsbehandlungsvorrichtung nach Anspruch 1, wobei eine Drehachse des Flügels (114) von einer Mitte des Flügels (114) versetzt ist.
     
    8. Atmungsbehandlungsvorrichtung nach Anspruch 1, die ferner ein Mundstück (112) umfasst, wobei eine Querschnittsfläche des Mundstücks (112) größer als eine Querschnittsfläche des Kammereinlasses (106) ist.
     
    9. Atmungsbehandlungsvorrichtung nach Anspruch 8, die ferner eine Inhalationsöffnung (324) in Verbindung mit dem Mundstück (112) umfasst, wobei die Inhalationsöffnung ein Einwegventil (326) aufweist, das konfiguriert ist, um sich beim Einatmen zu öffnen und beim Ausatmen zu schließen.
     
    10. Atmungsbehandlungsvorrichtung (200), umfassend:

    ein Gehäuse (202), das eine Kammer (204) umschließt;

    einen Einlass (206), der konfiguriert ist, um einen Luftstrom in die Kammer aufzunehmen;

    einen Auslass (208), der es ermöglicht, dass der Luftstrom die Kammer verlässt;

    ein in der Kammer montiertes Sperrelement (216), wobei das Sperrelement relativ zum Kammerauslass zwischen einer geschlossenen Position, in der der Luftstrom durch den Ausgang begrenzt ist, und einer offenen Position, in der der Luftstrom durch den Kammerauslass weniger eingeschränkt ist, beweglich ist;

    eine Turbine (214), die mindestens einen Flügel umfasst und drehbar in der Kammer (204) montiert ist, wobei die Turbine konfiguriert ist, um das Sperrelement als Reaktion auf den Luftstrom in die Kammer zwischen der geschlossenen Position und der offenen Position zu bewegen,

    wobei das Sperrelement mit der Turbine durch eine Welle (218) und mindestens ein Verbindungsstück (220, 222) verbunden ist,

    wobei die Welle (218) und das mindestens eine Verbindungsstück (220, 222) zusammenwirken, um das Sperrelement (216) linear hin und her zu bewegen.


     
    11. Atmungsbehandlungsvorrichtung (300), umfassend:

    ein Gehäuse (302), das eine Kammer (304) umschließt;

    einen Einlass (306), der konfiguriert ist, um einen Luftstrom in die Kammer aufzunehmen;

    einen Auslass (308), der es ermöglicht, dass der Luftstrom die Kammer verlässt;

    ein in der Kammer montiertes Sperrelement (316), wobei das Sperrelement relativ zum Kammerauslass zwischen einer geschlossenen Position, in der der Luftstrom durch den Ausgang begrenzt ist, und einer offenen Position, in der der Luftstrom durch den Kammerauslass weniger eingeschränkt ist, beweglich ist;

    eine Turbine (314), die mindestens einen Flügel umfasst und drehbar in der Kammer (304) montiert ist, wobei die Turbine konfiguriert ist, um das Sperrelement als Reaktion auf den Luftstrom in die Kammer zwischen der geschlossenen Position und der offenen Position zu bewegen,

    wobei das Sperrelement konfiguriert ist, um sich als Reaktion auf den Kontakt mit einem Arm (320, 322), der mit der Turbine (314) verbunden ist, zwischen der offenen Position und der geschlossenen Position zu bewegen.


     
    12. Atmungsbehandlungsvorrichtung nach Anspruch 11, wobei das Sperrelement (316) in Richtung der offenen Position vorgespannt ist.
     
    13. Atmungsbehandlungsvorrichtung nach Anspruch 10 oder 11, wobei die Turbine (214, 314) mehrere Flügel aufweist.
     
    14. Atmungsbehandlungsvorrichtung nach Anspruch 10, wobei die Kammer einen ersten Abschnitt (207), der den mindestens einen Flügel (214) umschließt, und einen zweiten Abschnitt (209), der das Sperrelement (216) umschließt, umfasst.
     
    15. Atmungsbehandlungsvorrichtung nach Anspruch 14, wobei der erste Abschnitt (207) mit dem zweiten Abschnitt (209) in Verbindung steht.
     
    16. Atmungsbehandlungsvorrichtung nach Anspruch 10 oder 11, die ferner ein Mundstück (212, 312) umfasst, wobei eine Querschnittsfläche des Mundstücks größer als eine Querschnittsfläche des Kammereinlasses ist.
     
    17. Atmungsbehandlungsvorrichtung nach Anspruch 16, die ferner eine Inhalationsöffnung in Verbindung mit dem Mundstück (312) umfasst, wobei die Inhalationsöffnung (324) ein Einwegventil (326) umfasst, das konfiguriert ist, um sich beim Einatmen zu öffnen und beim Ausatmen zu schließen.
     


    Revendications

    1. Dispositif de traitement respiratoire comprenant :

    un logement (102) enfermant une chambre (104) ;

    un orifice d'entrée de chambre (106) configuré pour recevoir un écoulement d'air dans la chambre ;

    un premier orifice de sortie de chambre (108) configuré pour permettre à l'écoulement d'air de sortir de la chambre ;

    un second orifice de sortie de chambre (110) configuré pour permettre à l'écoulement d'air de sortir de la chambre,

    un volet mobile (114) monté à l'intérieur de la chambre, le volet mobile étant configuré pour tourner entre une première position où l'écoulement d'air est dirigé pour sortir de la chambre à travers le premier orifice de sortie de chambre, et une seconde position où l'écoulement d'air est dirigé pour sortir de la chambre à travers le second orifice de sortie de chambre,

    un élément de blocage incurvé (116) disposé sur une extrémité du volet mobile, l'élément de blocage mobile par rapport à l'orifice d'entrée de chambre entre une position fermée où l'écoulement d'air à travers l'orifice d'entrée de chambre est restreint, et une position ouverte où l'écoulement d'air à travers l'orifice d'entrée de chambre est moins restreint.


     
    2. Dispositif de traitement respiratoire selon la revendication 1, où le volet mobile est configuré pour tourner en réponse à l'écoulement d'air dans la chambre.
     
    3. Dispositif de traitement respiratoire selon la revendication 1, le volet mobile étant configuré pour effectuer un mouvement de va-et-vient de manière répétée entre la première position et la seconde position en réponse à l'écoulement d'air dans la chambre.
     
    4. Dispositif de traitement respiratoire selon la revendication 1, le volet mobile (114) étant empêché d'achever une révolution complète.
     
    5. Dispositif de traitement respiratoire selon la revendication 1, dans lequel une taille de l'élément de blocage (116) est supérieure à une taille de l'orifice d'entrée de chambre (106).
     
    6. Dispositif de traitement respiratoire selon la revendication 1, dans lequel une taille de l'élément de blocage (116) est inférieure à une taille de l'orifice d'entrée de chambre (106).
     
    7. Dispositif de traitement respiratoire selon la revendication 1, dans lequel un axe de rotation du volet mobile (114) est décalé depuis un centre du volet mobile (114).
     
    8. Dispositif de traitement respiratoire selon la revendication 1, comprenant en outre un embout buccal (112), où une surface de section transversale de l'embout buccal (112) est plus grande qu'une surface de section transversale de l'orifice d'entrée de chambre (106).
     
    9. Dispositif de traitement respiratoire selon la revendication 8, comprenant en outre un orifice d'inspiration (324) en communication avec l'embout buccal (112), l'orifice d'inspiration comprenant un volet mobile à sens unique (326) configuré pour s'ouvrir lors de l'inspiration et se fermer lors de l'expiration.
     
    10. Dispositif de traitement respiratoire (200) comprenant :

    un logement (202) enfermant une chambre (204) ;

    un orifice d'entrée (206) configuré pour recevoir un écoulement d'air dans la chambre ;

    un orifice de sortie (208) configuré pour permettre à l'écoulement d'air de sortir de la chambre ;

    un élément de blocage (216) monté dans la chambre, l'élément de blocage étant mobile par rapport à l'orifice de sortie de chambre entre une position fermée où l'écoulement d'air à travers la sortie est restreint, et une position ouverte où l'écoulement d'air à travers l'orifice de sortie de chambre est moins restreint ;

    une turbine (214) comprenant au moins un volet mobile et étant montée de manière à pouvoir tourner dans la chambre (204), la turbine étant configurée pour déplacer l'élément de blocage entre la position fermée et la position ouverte en réponse à l'écoulement d'air dans la chambre,

    où l'élément de blocage est relié à la turbine par une tige (218) et au moins un élément de liaison (220, 222),

    où la tige (218) et le au moins un élément de liaison (220, 222) coopèrent pour déplacer l'élément de blocage (216) en mouvement linéaire de va-et-vient.


     
    11. Dispositif de traitement respiratoire (300) comprenant :

    un logement (302) enfermant une chambre (304) ;

    un orifice d'entrée (306) configuré pour recevoir un écoulement d'air dans la chambre ;

    un orifice de sortie (308) configuré pour permettre à l'écoulement d'air de sortir de la chambre ;

    un élément de blocage (316) monté dans la chambre, l'élément de blocage étant mobile par rapport à l'orifice de sortie de chambre entre une position fermée où l'écoulement d'air à travers la sortie est restreint, et une position ouverte où l'écoulement d'air à travers l'orifice de sortie de chambre est moins restreint ;

    une turbine (314) comprenant au moins un volet mobile et étant montée de manière à pouvoir tourner dans la chambre (304), la turbine étant configurée pour déplacer l'élément de blocage entre la position fermée et la position ouverte en réponse à l'écoulement d'air dans la chambre,

    l'élément de blocage étant configuré pour se déplacer entre la position ouverte et la position fermée en réponse au contact depuis un bras (320, 322) relié à la turbine (314).


     
    12. Dispositif de traitement respiratoire selon la revendication 11, l'élément de blocage (316) étant incliné vers la position ouverte.
     
    13. Dispositif de traitement respiratoire selon les revendications 10 ou 11, la turbine (214, 314) ayant une pluralité de volets mobiles.
     
    14. Dispositif de traitement respiratoire selon la revendication 10, la chambre comprenant une première partie (207) enfermant le au moins un volet mobile (214) et une seconde partie (209) enfermant l'élément de blocage (216).
     
    15. Dispositif de traitement respiratoire selon la revendication 14, la première partie (207) se trouvant en communication avec la seconde partie (209).
     
    16. Dispositif de traitement respiratoire selon les revendications 10 ou 11, comprenant en outre un embout buccal (212, 312), où une surface de section transversale de l'embout buccal est plus grande qu'une surface de section transversale de l'orifice d'entrée de chambre.
     
    17. Dispositif de traitement respiratoire selon la revendication 16, comprenant en outre un orifice d'inspiration en communication avec l'embout buccal (312), l'orifice d'inspiration (324) comprenant un volet mobile à sens unique (326) configuré pour s'ouvrir lors de l'inspiration et se fermer lors de l'expiration.
     




    Drawing




























































    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description