(19)
(11)EP 3 038 633 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
14.10.2020 Bulletin 2020/42

(21)Application number: 14765883.5

(22)Date of filing:  28.08.2014
(51)International Patent Classification (IPC): 
A61K 38/00(2006.01)
C07K 14/47(2006.01)
(86)International application number:
PCT/EP2014/068282
(87)International publication number:
WO 2015/028558 (05.03.2015 Gazette  2015/09)

(54)

STABLE POLYPEPTIDES BINDING TO HUMAN COMPLEMENT C5

AN HUMANES KOMPLEMENT C5 BINDENDE STABILE POLYPEPTIDE

POLYPEPTIDES STABLES SE LIANT AU C5 DU COMPLÉMENT HUMAIN


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR
Designated Extension States:
BA ME

(30)Priority: 28.08.2013 SE 1350986

(43)Date of publication of application:
06.07.2016 Bulletin 2016/27

(73)Proprietor: IPC Research, LLC
New Castle, Delaware 19808-1674 (US)

(72)Inventors:
  • NILSSON, Joakim
    182 52 Danderyd (SE)
  • NORDLING, Erik
    182 35 Danderyd (SE)
  • STRÖMBERG, Patrik
    191 34 Sollentuna (SE)

(74)Representative: Soames, Candida Jane et al
Maschio & Soames IP Limited 30 Carlton Crescent
Southampton SO15 2EW
Southampton SO15 2EW (GB)


(56)References cited: : 
WO-A1-2005/075507
WO-A1-2013/126006
US-A1- 2005 090 448
WO-A1-2009/077175
WO-A2-2012/004384
  
  • STROMBERG PATRIK ET AL: "Development of Affibody (R) C5 inhibitors for versatile and efficient therapeutic targeting of the terminal complement pathway", MOLECULAR IMMUNOLOGY, vol. 61, no. 2, Sp. Iss. SI, October 2014 (2014-10), page 256, XP002733197, & 25TH INTERNATIONAL COMPLEMENT WORKSHOP; RIO DE JANEIRO, BRAZIL; SEPTEMBER 14 -18, 2014 ISSN: 0161-5890
  
Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


Description

TECHNICAL FIELD



[0001] The present invention relates to polypeptides that bind to human complement component 5 (C5) and to the use of such polypeptides in therapy.

BACKGROUND ART



[0002] The complement protein C5 is a central component of the complement system; a key part of the innate immune system. The complement system is an intricate immune surveillance system with numerous tasks in tightly controlled, diverse processes. It functions as a first line host defense system against infection by other organisms, and also in discriminating healthy host tissues from cellular debris and apoptotic and necrotic cells. Furthermore, it is involved in clearance of immune complexes, regulation of the adaptive immune response, promotion of tissue regeneration, angiogenesis, mobilization of stem cells and development of the central nervous system (Woodruff et al. Mol Immunol 2011, 48 (14):1631-1642); Ricklin et al. Nat Immunol 2010, 11(9):785-795). Any trigger, for example erroneous or unrestricted activation or insufficient regulation, that disturbs the fine balance of complement activation and regulation may lead to pathologic conditions including self-attack of the host's cells leading to extensive tissue damage.

[0003] The complement system consists of about 30 proteins. There are three pathways to initiate complement; the classical pathway that employs C1q to recognize immune complexes on the surface of cells; the lectin pathway that is initiated when mannose-binding lectin (MBL) recognizes certain sugars; and the alternative pathway that is initiated spontaneously by hydrolysis of complement factor 3 (C3), a process suppressed by certain mammalian cell surface molecules not present on invading pathogens. The alternative pathway also acts as an amplification loop for the complement system. All three pathways converge at the level of C3. Cleavage of C3 into C3a and C3b leads to the formation of a convertase that in turn cleaves complement factor 5 (C5) into C5a and C5b. C5a is a very potent attractant of various immune cells while C5b oligomerizes with C6-9 to form a pore known as the membrane attack complex (MAC) or sometimes the terminal complement complex (TCC). Activation of the complement system leads to a number of mechanisms with the purpose of neutralizing the pathogen; formation of MAC on the surface of a cell such as an invading bacteria leads to lysis, deposition of C3 and C4 cleavage products C3b and C4b aids opsonization leading to phagocytosis of the pathogen by macrophages and anaphylatoxins such as C3a and C5a attracts monocytes and neutrophils to the site of activation, up-regulates surface markers leading to increased immunologic susceptibility and to the release of cytokines.

[0004] C5 is a 190-kDa glycoprotein comprised of 2 disulfide-linked polypeptide chains, alpha and beta, with a molecular mass of 115 and 75 kDa, respectively (Tack et al. Biochem 1979, 18:1490-1497). Haviland et al. (J Immun 1991, 146: 362-368) constructed the complete cDNA sequence of human complement pro-C5, which is predicted to encode a 1,676-amino acid pro-molecule that contains an 18-amino acid leader peptide and a 4-amino acid linker separating the beta and alpha chains (SEQ ID NO: 251). Since C5 is common to all pathways of complement activation, blocking C5 will stop the progression of the cascade regardless of the stimuli and thereby prevent the deleterious properties of terminal complement activation while leaving the immunoprotective and immunoregulatory functions of the proximal complement cascade intact.

[0005] The complement system's key role in the defense against pathogens in general makes it an interesting target for pharmaceutical intervention. This is emphasized by the fact that many mutations or impaired regulation of complement is involved in various diseases and conditions. These include increased susceptibility to auto-immune diseases such as systemic lupus erythematosis (SLE) where deposition of immune complexes triggers the classical pathway (Manderson et al. Annu Rev Immunol 2004, 22:431-456). In addition, mutations of the complement proteins C1-C5 often result in SLE or SLE like symptoms. Other autoimmune diseases with a strong involvement of the complement system are rheumatoid arthritis (RA) where immune complexes may activate complement in the RA joint, Sjögren's syndrome, dermatomyositis and other autoantibody driven diseases such as Guillain-Barré syndrome (GBS), Fisher syndrome (Kaida et al. J. Neuroimmun 2010, 223:5-12), different types of vasculitis, systemic sclerosis, anti-glomerular basement membrane (anti-GBM) and anti-phospholipid syndrome (APS) (Chen et al. J Autoimmun 2010, 34:J276-J286). Furthermore, complement inhibition have been proven effective in animal models of such different conditions as periodontitis (Abe et al. J Immunol 2012, 189:5442-5448), wound healing (Cazender et al. Clin Dev Immunol 2012, on-line publication), tumor growth (Markiewski et al. Nat Immunol 2008, 9:1225-1235) and diseases of the eye such as uveitis and age-related macular degeneration (AMD) (Copland et al. Clin Exp Immunol 2009, 159:303-314).

[0006] Antibodies targeted to human complement C5 are known from, e.g., WO 95/29697; WO 02/30985; and WO 2004/007553. Eculizumab (Soliris™) is a humanized monoclonal antibody directed against protein C5 and prevents cleavage of C5 into C5a and C5b. Eculizumab has been shown to be effective in treating paroxysmal nocturnal hemoglobinuria (PNH), a rare and sometimes life threatening disease of the blood characterized by intravascular hemolytic anemia, thrombophilia and bone marrow failure, and is approved for this indication. Eculizumab was also recently approved by the FDA for treatment of atypical hemolytic syndrome (aHUS), a rare but life threatening disease caused by loss of control of the alternative complement pathway leading to over-activation manifested as thrombotic microangiopathy (TMA) leading to constant risk of damage to vital organs such as kidney, heart and the brain. In aHUS, transplantation of the damaged organ only temporarily helps the patient as the liver continues to produce the mutated form of controlling protein (most often complement factor H or other proteins of the alternative pathway). A related disease with a transient acute pathophysiology is HUS caused by infection of Shiga toxin positive E. coli (STEC-HUS) and there are promising clinical data suggesting efficacy also for this condition (Lapeyraque et al, N Engl J Med 2011, 364:2561-2563). Finally, the C5 blocking antibody Eculizumab has proven efficacious in preventing antibody mediated rejection (AMR) in recipients of highly mismatched kidneys (Stegall, M. D. et al. Am J Transplant 2011, 11:2405-2413), and in treating autoimmune neuropathies such as neuromyelitis optica and myasthenia gravis (Pittock et al. Lancet Neurol 2013, 12:554-562; Howard et al. Muscle Nerve 2013, 48:76-84).

[0007] Apart from full length antibodies, single-chain variable fragments (scFV), minibodies and aptamers targeting C5 are described in literature. These C5 inhibitors may bind to different sites (epitopes) on the C5 molecule and may have different modes of action. For example, whereas Eculizumab interacts with C5 at some distance of the convertase cleavage site, the minibody Mubodina® interacts with the cleavage site of C5. The C5 inhibitory protein Ornithodoros moubata Complement Inhibitor (OmCI, Nunn, M. A. et al. J Immunol 2005, 174:2084-2091) from soft tick Ornithodoros moubata has been hypothesized to bind to the distal end of the CUB-C5d-MG8 superdomain, which is close to the convertase cleavage site (Fredslund et al. Nat Immunol 2008, 9 (7):753-760). In contrast to the three proteins mentioned above inhibiting cleavage of C5, the monoclonal antibody TNX-558 binds to a C5a epitope present both on intact C5 and released C5a without inhibiting the cleavage of C5. (Fung et al. Clin Exp Immunol 2003, 133 (2):160-169).

[0008] C5 binding polypeptides, comprising a C5 binding motif, are disclosed in the International Patent Application No. PCT/SE2013/050139, published as WO 2013/126006. In particular, WO 2013/126006 discloses a C5 binding motif, BM, consisting of the amino acid sequence
EX2X3X4A X6X7EID X11LPNL X16X17X18QW X21AFIX25 X26LX28D,
wherein, independently of each other,
X2 is selected from H, Q, S, T and V;
X3 is selected from I, L, M and V;
X4 is selected from A, D, E, H, K, L, N, Q, R, S, T and Y;
X6 is selected from N and W;
X7 is selected from A, D, E, H, N, Q, R, S and T;
X11 is selected from A, E, G, H, K, L, Q, R, S, T and Y;
X16 is selected from N and T;
X17 is selected from I, L and V;
X18 is selected from A, D, E, H, K, N, Q, R, S and T;
X21 is selected from I, L and V;
X25 is selected from D, E, G, H, N, S and T;
X26 is selected from K and S; and
X28 is selected from A, D, E, H, N, Q, S, T and Y.

[0009] Examples of specific C5 binding motifs, as previously disclosed in WO 2013/126006, are shown as SEQ ID NO: 1-248 in the present patent application.

[0010] It is known from WO 2013/126006 that additional peptides or polypeptides may improve stabilization of C5 binding polypeptides. One example of such a polypeptide is the albumin binding domain (ABD) shown as SEQ ID NO: 250 in the present description. Other examples of suitable albumin binding domains are disclosed in WO 2009/016043 and WO 2012/004384. An ABD-extended polypeptide binds to serum albumin in vivo, and benefits from its longer half-life, which increases the net half-life of the polypeptide itself (see e.g. WO 91/01743).

[0011] The continued provision of agents with comparable C5 blocking activity remains a matter of substantial interest within the field. In particular, there is a continued need for molecules that prevent the terminal complement cascade as well as the formation of the pro-inflammatory molecule C5a. Of great interest is also a provision of uses of such molecules in the treatment of disease.

BRIEF DESCRIPTION OF THE DRAWINGS



[0012] 

Figure 1 illustrates an SDS-PAGE gel wherein the bands represent the C5 binding compound PSI0242 (SEQ ID NO: 249) (0) prior to stability test; and (2w) after 2 weeks stability test.

Figure 2 is a chromatogram from reversed phase HPLC of PSI0242 (SEQ ID NO: 249) prior to stability test (solid line) and after 2 weeks stability test (dotted line).

Figure 3 illustrates an SDS-PAGE gel wherein the first lane contains SeeBlue 2P size marker and the bands represent (0) the initial samples; and (2w) the samples after 2 weeks stability test. Fig. 3A: SEQ ID NO: 249; Fig. 3B: SEQ ID NO: 261; Fig. 3C: SEQ ID NO: 262; Fig. 3D: SEQ ID NO: 264.

Figure 4 is a chromatogram from reversed phase HPLC of a C5 binding compound (SEQ ID NO: 253) prior to stability test (solid line) and after 2 weeks stability test (dotted line).

Figure 5 is a chromatogram from reversed phase HPLC of a C5 binding compound (SEQ ID NO: 264) prior to stability test (solid line) and after 2 weeks stability test (dotted line).

Figure 6A-D show images of SDS-PAGE gels comparing original and modified polypeptide variants (0) before and (2w) after 2 weeks stability test. The molecular size marker (Mw) was Novex® Sharp Pre-stained Protein Standard (216, 160, 110, 80, 60, 50, 40, 30, 20, 15, 10, 3.5 kDa). Fig. 6A shows a gel of HER2 binding polypeptides wherein the lanes show lane 1: Mw, lane 2: (0) Z02891 (SEQ ID NO: 272), lane 3: (2w) Z02891 (SEQ ID NO: 272), lane 4: Mw, lane 5: (0) Z17341 (SEQ ID NO: 273), lane 6: (2w) Z17341 (SEQ ID NO: 273), lane 7: (0) Z17342 (SEQ ID NO: 274), lane 8: (2w) Z17342 (SEQ ID NO: 274). Fig. 6B is a gel of PDGF-Rβ binding polypeptides wherein the lanes show: lane 1: Mw, lane 2: (0) Z15805 (SEQ ID NO: 275), lane 3: (2w) Z15805 (SEQ ID NO: 275), lane 4: Mw, lane 5: (0) Z17343 (SEQ ID NO: 276), lane 6: (2w) Z17343 (SEQ ID NO: 276), lane 7: (0) Z17344 (SEQ ID NO: 277), lane 8: (2w) Z17344 (SEQ ID NO: 277). Fig. 6C shows a gel of FcRn binding polypeptides wherein the lanes show: lane 1: (0) Z10103 (SEQ ID NO: 278), lane 2: (2w) Z10103 (SEQ ID NO: 278), lane 3: Mw, lane 4: (0) Z17347 (SEQ ID NO: 279), lane 5: (2w) Z17347 (SEQ ID NO: 279), lane 6: (0) Z17348 (SEQ ID NO: 280), lane 7: (2w) Z17348 (SEQ ID NO: 280). The diagonal bands seen in Figure 6C is an artefact resulting from an imprint from a second gel stained in the same container. Fig. 6D is a gel of CAIX binding polypeptides wherein the lanes show lane 1:Mw, lane 2: (0) Z09782 (SEQ ID NO: 281), lane 3: (2w) Z09782 (SEQ ID NO: 281), lane 4: Mw, lane 5: (0) Z17351 (SEQ ID NO: 282), lane 6: (2w) Z17351 (SEQ ID NO: 282), lane 7: (0) Z17352 (SEQ ID NO: 283), lane 8: (2w) Z17352 (SEQ ID NO: 283); lane 9: (0) Z17355 (SEQ ID NO: 284), lane 10: (2w) Z17355 (SEQ ID NO: 284), lane 11: (0) Z17357 (SEQ ID NO: 285), lane 12: (2w) Z17357 (SEQ ID NO: 285), lane 13: (0) Z17359 (SEQ ID NO: 286), lane 14: (2w) Z17359 (SEQ ID NO: 286), lane 15: (0) Z17360 (SEQ ID NO: 287), lane 16: (2w) Z17360 (SEQ ID NO: 287).

Figure 7 is a table showing the amino acid sequences of:

  • examples of C5 binding motifs (SEQ ID NO: 1-248);
  • the C5 binding compound designated PSI0242 (SEQ NO: 249);
  • an albumin binding domain (SEQ ID NO: 250);
  • the Swiss-Prot entry P01031 of human C5 (SEQ ID NO:251) wherein the α-chain corresponds to amino acid residues 678-1676 and the β-chain corresponds to amino acid residues 19-673;
  • examples of modified C5 binding polypeptides (SEQ ID NO: 260, 265-267).
  • examples of modified C5 binding compounds (SEQ ID NO: 252-259, 261-264, 268-270).
  • examples of polypeptide variants with binding affinity for other target molecules (SEQ ID NO: 272, 275, 278, 281)
  • examples of stability improved polypeptide variants with binding affinity for other targets with (SEQ ID NO: 273-274, 276-277, 279-280, 282-287).


DISCLOSURE OF THE INVENTION



[0013] It has surprisingly been found that C5 binding polypeptides and compounds, wherein the amino acid sequences have been modified in specific positions, have improved stability when compared to previously known C5 binding polypeptides and compounds.

[0014] Consequently, this invention provides a polypeptide capable of binding human complement component 5 (C5), said polypeptide comprising the amino acid sequence:
[BM]-[L2]-QSX42X43LLX46EAKKLX52X53X54Q
wherein, independently of each other,
[BM] is a C5 binding motif comprising the amino acid sequence
EX9X10X11A X13X14EIDX18LPNLX23X24X25QWX28AFIX32X33LX35;
wherein, independently of each other,
X9 is selected from H, Q, S, T and V;
X10 is selected from I, L, M and V;
X11 is selected from A, D, E, H, K, L, N, Q, R, S, T and Y;
X13 is selected from N and W;
X14 is selected from A, D, E, H, N, Q, R, S and T;
X18 is selected from A, E, G, H, K, L, Q, R, S, T and Y;
X23 is selected from N and T;
X24 is selected from I, L and V;
X25 is selected from A, D, E, H, K, N, Q, R, S and T;
X28 is selected from I, L and V;
X32 is selected from D, E, G, H, N, S and T;
X33 is selected from K and S; and
X35 is selected from A, D, E, H, N, Q, S, T and Y;
[L2] is selected from DDPS and RQPE;
X42 is selected from A and S;
X43 is selected from N and E;
X46 is selected from A, S and C;
X52 is selected from E, N and S;
X53 is selected from D, E and S, provided that X53 is not D when X52 is N; and
X54 is selected from A and S.

[0015] The inventors have surprisingly found that modification or substitution of amino acid residue(s) in certain position(s) of the amino acid sequence of the C5 binding polypeptides as described in WO 2013/126006 improves stability of the C5 binding polypeptides while biological activity, such as binding affinity for human complement component 5 (C5) and inhibition of complement pathway function, is essentially retained. Thus, the biological activity of the modified C5 binding polypeptides is comparable to the biological activity of the known C5 binding polypeptides. Stability testing of the C5 binding polypeptides of the present invention demonstrates that substitution in either X52, from N to E or S, or X53, from D to E or S, improves stability. It has moreover been found that specific amino acid substitution in [L2] independently may promote stability.

[0016] The terms "C5 binding" and "binding affinity for C5" as used in this specification refers to a property of a polypeptide which may be tested for example by the use of surface plasmon resonance technology, such as in a Biacore instrument (GE Healthcare). C5 binding affinity may e.g. be tested in an experiment in which C5 is immobilized on a sensor chip of a Biacore instrument, and the sample containing the polypeptide to be tested is passed over the chip. Alternatively, the polypeptide to be tested is immobilized on a sensor chip of the instrument, and a sample containing C5, or fragment thereof, is passed over the chip. The skilled person may then interpret the results obtained by such experiments to establish at least a qualitative measure of the binding of the polypeptide to C5. If a quantitative measure is desired, for example to determine the apparent equilibrium dissociation constant KD for the interaction, surface plasmon resonance methods may also be used. Binding values may for example be defined in a Biacore 2000 instrument (GE Healthcare). C5 is immobilized on a sensor chip of the measurement, and samples of the polypeptide whose affinity is to be determined are prepared by serial dilution and injected over the chip. KD values may then be calculated from the results using for example the 1:1 Langmuir binding model of the BIAevaluation software provided by the instrument manufacturer. The C5 or fragment thereof used in the KD determination may for example comprise the amino acid sequence represented by SEQ ID NO: 251. Examples of how C5 binding affinity may be tested are given herein, see Example 3 and 5.

[0017] In a preferred form of the invention, said polypeptide comprises the amino acid sequence:
AEAKYAK-[BM]-[L2]-QSX42X43LLX46EAKKLX52X53X54QAP
wherein, independently of each other,
[BM], [L2], X42, X43, X46, X52, X53 and X54 are as defined above.

[0018] As previously disclosed in WO 2013/126006, the C5 binding polypeptide according to the invention may form part of a three-helix bundle protein domain. Said C5 binding motif [BM] essentially may form part of two alpha helices, with an interconnecting loop, within said three-helix bundle. A second interconnecting loop, referred to herein as [L2], connects the C5 binding motif to the third alpha helix, referred to as the "Backbone".

[0019] In one embodiment, the C5 binding motif [BM] is essentially as disclosed in WO 2013/126006. However, according to the present invention the C5 binding motif preferably consists of 28, rather than 29, amino acids, and may in addition carry further amino acid substitutions.

[0020] In a preferred embodiment, the C5 binding motif [BM] is essentially as disclosed in WO 2013/126006. Said [BM] is accordingly a polypeptide comprising the amino acid sequence:
EX9X10X11A X13X14EIDX18LPNLX23X24X25QWX28AFIX32X33LX35;
wherein, independently of each other,
X9 is selected from H, Q, S, T and V;
X10 is selected from I, L, M and V;
X11 is selected from A, D, E, H, K, L, N, Q, R, S, T and Y;
X13 is selected from N and W;
X14 is selected from A, D, E, H, N, Q, R, S and T;
X18 is selected from A, E, G, H, K, L, Q, R, S, T and Y;
X23 is selected from N and T;
X24 is selected from I, L and V;
X25 is selected from A, D, E, H, K, N, Q, R, S and T;
X28 is selected from I, L and V;
X32 is selected from D, E, G, H, N, S and T;
X33 is selected from K and S;
X35 is selected from A, D, E, H, N, Q, S, T and Y.

[0021] In a further preferred aspect, [BM] comprises or consists of an amino acid sequence selected from the group consisting of positions 1-28 in SEQ ID NOS: 1-248. More preferably, [BM] comprises or consists of the amino acid sequence shown as positions 1-28 in SEQ ID NO: 1.

[0022] In a further aspect, the C5 binding polypeptide according to the invention comprises the amino acid sequence:

wherein, independently of each other,
X9 is selected from H, Q, S, T and V;
X10 is selected from I, L, M and V;
X11 is selected from A, D, E, H, K, L, N, Q, R, S, T and Y;
X13 is selected from N and W;
X14 is selected from A, D, E, H, N, Q, R, S and T;
X18 is selected from A, E, G, H, K, L, Q, R, S, T and Y;
X23 is selected from N and T;
X24 is selected from I, L and V;
X25 is selected from A, D, E, H, K, N, Q, R, S and T;
X28 is selected from I, L and V;
X32 is selected from D, E, G, H, N, S and T;
X33 is selected from K and S;
X35 is selected from A, D, E, H, N, Q, S, T and Y;
[L2] is selected from DDPS and RQPE;
X42 is selected from A and S;
X43 is selected from N and E;
X46 is selected from A, S and C;
X52 is selected from E, N and S;
X53 is selected from D, E and S, provided that X53 is not D when X52 is N; and
X54 is selected from A and S.

[0023] In preferred forms of the invention, at least one of the following eighteen, optionally nineteen, conditions is fulfilled:
X9 is V,
X10 is L,
X11 is E,
X13 is W,
X14 is D,
optionally X17 is D,
X18 is R,
X23 is T,
X24 is I,
X25 is E,
X28 is L,
X32 is N,
X33 is K,
X35 is D,
[L2] is DDPS,
X42 is S,
X43 is E,
X46 is S,
X54 is S.

[0024] More preferably, at least two, three, four, five, six, seven, eight, nine, ten, eleven, twelve, thirteen, fourteen, fifteen, sixteen, seventeen, eighteen or nineteen of the above conditions are fulfilled.

[0025] In an embodiment, X52 and X53 are independently selected from E and S. Preferably, (a) X52 is S and X53 is E, or (b) X52 is E and X53 is S.

[0026] In an embodiment, X52 is S and X53 is D.

[0027] In another embodiment, X52 is N and X53 is E.

[0028] In a further aspect, the polypeptide according to the invention comprises the amino acid sequence shown as SEQ ID NO: 260, SEQ ID NO: 265, SEQ ID NO: 266, or SEQ ID NO: 267.

[0029] In a further aspect, there is provided a compound capable of binding C5, said compound comprising:
  1. a. at least one C5 binding polypeptide as defined above;
  2. b. at least one albumin binding domain of streptococcal protein G, or a derivative thereof; and
  3. c. optionally, at least one linking moiety for linking said at least one albumin binding domain or derivative thereof to the C or N terminal of said at least one C5 binding polypeptide.


[0030] Preferably, said albumin binding domain comprises the amino acid sequence shown as SEQ ID NO: 250.

[0031] Preferably, said linking moiety is a peptide comprising the amino acid sequence KVX60GS, wherein X60 is selected from D, E and A. When X60 is D, a preferred compound comprises or consists of the amino acid sequence shown as SEQ ID NO: 253. When X60 is E, preferred compounds comprise or consist of the amino acid sequence shown as SEQ ID NO: 261, SEQ ID NO: 263, SEQ ID NO: 264, SEQ ID NO: 269 or SEQ ID NO: 270. When X60 is A, a preferred compound comprises or consists of the amino acid sequence shown as SEQ ID NO: 262. In the above listed amino acid sequences of the C5 binding compounds, amino acid residues 1-57 represent the amino acid sequence of a C5 binding polypeptide, residues 58-62 represent the amino acid sequence of a linker, and residues 63-108 represent the amino acid sequence of an albumin binding domain.

[0032] In an embodiment, the linking moiety is absent.

[0033] As discussed above, preferred C5 binding polypeptides according to the invention include those wherein X52 and X53 are independently selected from E and S. Specifically, compounds according to the invention can be derived from PSI0242 (SEQ ID NO: 249) but have modifications in at least one of positions 52, 53 and 60. For instance, as shown in Fig. 7 and the sequence listing, the preferred compound designated PSI0378 (SEQ ID NO: 261) carries the amino acid substitutions N52S, D53E and D60E; the preferred compound designated PSI0379 (SEQ ID NO: 262) carries the amino acid substitutions N52S, D53E and D60A; the preferred compound designated PSI0381 (SEQ ID NO: 263) carries the amino acid substitutions N52E, D53S and D60E; and the preferred compound designated PSI0383 (SEQ ID NO: 264) carries the amino acid substitutions N52S, D53E and D60E. Further, SEQ ID NO: 264 also carries substitutions in the loop [L2], namely D36R, D37Q and S39E. Moreover, the preferred compound designated PSI0403 (SEQ ID NO: 269) carries the amino acid substitutions D53E and D60E, and the preferred compound designated PSI0404 (SEQ ID NO: 270) carries the amino acid substitutions N52S and D60E.

[0034] As accounted for above, the inventors have surprisingly found that amino acid substitutions in certain positions of the amino acid sequence of the C5 binding polypeptides as described in WO 2013/126006 may improve stability. Such substitutions improve stability of the C5 binding compounds while biological activity, such as C5 binding capability and inhibition of hemolysis in vitro, is retained. Stability testing of the C5 binding compounds of the present invention demonstrate that for instance each of N52S (X52) and D53E (X53) (SEQ ID NO: 253) individually, as well as removal of D60 (X60) (SEQ ID NO: 259 lacking linking moiety) improves stability. The combination of the substitutions N52S, D53E and D60E or D60A further improves the stability (SEQ ID NO: 261 and SEQ ID NO: 262). Each of the combined substitutions of N52S and D60E (SEQ ID NO: 270) and D53E and D60E (SEQ ID NO: 269) has similarly been found to improve stability. This indicates that each of the listed amino acid substitutions is involved in improving the stability of the polypeptide, and thus that each of these substitutions will provide further stabilized C5 binding polypeptides and compounds compared to previously known C5 binding polypeptides and compounds.

[0035] However, the skilled person will be able to identify polypeptides and/or compounds which have modifications in at least one of positions 52, 53 and 60, and/or in the loop [L2], but which also carry additional modifications like substitutions, small deletions, insertions or inversions, and nevertheless have substantially the disclosed biological activities and improved stability. Further, a C5 binding polypeptide and/or compound according to the invention could comprise further C terminal and/or N terminal amino acids that improve production, purification, stabilization in vivo or in vitro, coupling, or detection of the polypeptide.

[0036] It has been found that removal of D60 or an amino acid substitution in position 60 of SEQ ID NO: 249 alone improves stability of the C5 binding compounds of the invention compared to previously known C5 binding compounds. Preferably, the linking moiety is KVEGS (X60=E) while X52X53 may be ND, and an example of a preferred compound carrying such a linking moiety is PSI0410 (SEQ ID NO: 268). In another preferred embodiment, D60 and the entire linking moiety is absent and an example of such a compound is the preferred compound designated PSI0369 (SEQ ID NO: 259).

[0037] Specific amino acid substitutions in the loop [L2] have been found to improve stability of the C5 binding compounds (e.g. SEQ ID NO: 252) of the invention compared to previously known C5 binding compounds.

[0038] Included in the invention are C5 binding polypeptides and compounds as described above, for use in therapy. In particular, the C5 binding polypeptides and compounds according to the invention are useful in methods for the treatment and/or prophylaxis of C5-related conditions, such as inflammatory diseases; autoimmune diseases; infectious diseases; cardiovascular diseases; neurodegenerative disorders; graft injury; eye diseases; kidney diseases; pulmonary diseases; haematological diseases such as paroxysmal nocturnal hemoglobinuria (PNH); allergic diseases and dermatological diseases.

[0039] In methods for treatment and/or prophylaxis, the said C5 binding polypeptide or compound can preferably be administered intravenously, subcutaneously, by inhalation, nasally, orally, intravitreally, or topically.

EXAMPLES


EXAMPLE 1: Stability test of known C5 inhibitor



[0040] The C5 binding compound designated PSI0242 (SEQ ID NO: 249) was formulated in 25 mM NaP /125 mM NaCl pH 7.0 and subjected to an accelerated stability study for 2 weeks at 37 °C. The stability was measured by the appearance of new variants after the stability testing by SDS-PAGE and Reversed Phase HPLC (RPC). In both analyses the initial sample and the one subjected to the stability study were run in parallel. For the SDS-PAGE, 7.5 µg protein was loaded into each well. The RPC was run on an Agilent 1100 HPLC using a Mobile Phase A consisting of 0.1 % trifluoroacetic acid (TFA) in water, and using a Mobile Phase B consisting of 0.1 % TFA / 45 % MeOH / 45 % isopropylamine (IPA) / 10 % water.

[0041] The results show that new forms of the protein are formed during incubation, these new forms visualized as bands in SDS-PAGE (Fig.1) and as new peaks in Reversed Phase HPLC (RPC) chromatograms (Fig. 2). In Fig. 2, the main peak after 2 weeks incubation corresponds to 57 % of the original protein sample.

[0042] Positions 1-60 in SEQ ID NO: 249 correspond to the polypeptide Z06175a, previously disclosed in WO 2013/126006 as SEQ ID NO: 753. PSI0242 (SEQ ID NO: 249) was produced essentially as disclosed in WO 2013/126006.

EXAMPLE 2: Stability of modified C5 binding polypeptides and compounds



[0043] Modified C5 binding polypeptides and compounds were synthesized and purified essentially as described in WO 2013/126006.

[0044] Briefly, DNA encoding C5 binding Z variants was E. coli codon optimized and synthesized by GeneArt, GmbH. The synthetic genes representing the C5 binding Z variants were subcloned and expressed in E. coli.

[0045] Intracellularly expressed Z variants were purified using conventional chromatography methods. Homogenization and clarification was performed by sonication followed by centrifugation and filtration. Anion exchange chromatography was used as capture step. Further purification was obtained by hydrophobic interaction chromatography. The purifications were executed at acidic conditions (pH 5.5). Polishing and buffer exchange was performed by size exclusion chromatography.

[0046] The purified proteins were formulated in 25 mM NaP /125 mM NaCl pH 7.0 and subjected to an accelerated stability study for 2 weeks at 37 °C. The stability was measured by the appearance of new variants after the stability testing by SDS-PAGE and Reversed Phase HPLC (RPC). In both analyses the initial sample and the one subjected to the stability study were run in parallel. For the SDS-PAGE, 7.5 µg protein was loaded into each well. An example of a resulting gel is shown in Fig. 3.

[0047] The RPC was run on an Agilent 1100 HPLC using a Mobile Phase A consisting of 0.1 % trifluoroacetic acid (TFA) in water, and a Mobile Phase B consisting of 0.1 % TFA / 45 % MeOH / 45 % isopropylamine (IPA) / 10 % water. An example of a resulting chromatogram is shown in Fig. 4 for SEQ ID NO: 253.

[0048] The results of the stability testing are summarized in Table I, below.
TABLE I
SEQ ID NO:NameSDS-PAGE bandsRPC prepeaksMain peak (% of total protein)RPC post peaks
249 PSI0242 2 2 57 1
252 PSI0332 2 1 57 1
253 PSI0334 1 1 73 0
254 PSI0335 2 2 57 1
255 PSI0336 2 2 57 1
256 PSI0337 2 2 57 1
257 PSI0339 2 2 57 1
258 PSI0340 2 2 67 1
259 PSI0369 2 1 90 1
260 PSI0377 1 0 77 0
261 PSI0378 1 0 89 0
262 PSI0379 1 0 88 0
263 PSI0381 1 0 87 0
264 PSI0383 1 0 91 0
267 PSI0400 1 0 91 0
268 PSI0410 1 1 72 1
269 PSI0403 1 1 77 1
270 PSI0404 1 1 88 0


[0049] It can be concluded from Table I that certain modified C5 binding polypeptides or compounds have improved properties, such as increased stability, when compared with PSI0242. Such improved C5 binding polypeptides or compounds include PSI0334 (SEQ ID NO: 253), PSI0340 (SEQ ID NO: 258), PSI0369 (SEQ ID NO: 259), PSI0377 (SEQ ID NO: 260), PSI0378 (SEQ ID NO: 261), PSI0379 (SEQ ID NO: 262), PSI0381 (SEQ ID NO: 263), PSI0383 (SEQ ID NO: 264), PSI0400 (SEQ ID NO: 267), PSI0410 (SEQ ID NO: 268), PSI0403 (SEQ ID NO: 269) and PSI0404 (SEQ ID NO: 270). In six of the mentioned variants (SEQ ID NO: 253, 260, 261, 262, 264 and 267), the amino acid residues in positions 52-53 have been substituted from ND (cf PSI0242) to SE. In SEQ ID NO: 263, the corresponding substitution is from ND to ES. In SEQ ID NO: 269 only the amino acid residue in position 53 has been substituted from D to E, while in SEQ ID NO: 270 the amino acid residue in position 52 has been substituted from N to S.

[0050] Further, PSI0378 (SEQ ID NO: 261), PSI0381 (SEQ ID NO: 263), PSI0383 (SEQ ID NO: 264), PSI0410 (SEQ ID NO: 268), PSI0403 (SEQ ID NO: 269) and PSI0404 (SEQ ID NO: 270) have in common an amino acid residue substitution from D to E in position 60.

[0051] The combined benefit of stability enhancing substitutions in position 52 or 53 and position 60 can be seen in Fig. 5, showing the chromatogram of PSI0383 (SEQ ID NO: 264). In PSI0379 (SEQ ID NO: 262) the substitution in position 60 is from D to A.

[0052] In PSI0369 (SEQ ID NO: 259) the linker moeity (including D60) is altogether removed, yielding a more stable C5 binding compound and indicating the influence of position 60 upon stability of the C5 binding compounds.

EXAMPLE 3: Binding of modified compounds to human C5



[0053] Human serum albumin was immobilized to Amine Reactive 2nd generation (AR2G) Dip and Read Biosensors (Pall Life sciences (ForteBio) Cat # 18-5092) by amine coupling. PSI0242 (SEQ ID NO: 249; 1 µM) and C5 binding compounds (1 µM) in read buffer (HBS-EP Buffer ready-to-use 200 ml, GE Healthcare #BR100188) were loaded, each onto a separate sensor with HSA, for 120 seconds followed by a base line recording for 60 seconds in read buffer before being subjected to human C5 (Quidel Cat # 403) in concentrations ranging from 0.79 nM to 25 nM in read buffer with a regeneration cycle and a base line recording between each concentration. Regeneration conditions for the sensors were 10 mM Glycine, pH 2 (three pulses with 30 seconds and running buffer for 60 seconds). Each spectrogram was reference subtracted against an analogous construct containing an albumin binding domain (SEQ ID NO: 250) but without the C5 binding capacity. The data were analyzed according to Langmuir 1:1 model using ForteBio Analysis 7.1 (Pall Life sciences (ForteBio) kinetics software).

[0054] The KD of the interaction with C5 relative to PSI0242 (SEQ ID NO: 249) is shown in Table II. The KD of PSI0242 varied from 1-3 nM in different runs.

[0055] The results in Table II indicate that C5 binding compounds according to the invention have a binding capacity to human C5 which is similar to that of the polypeptide PSI0242 (SEQ ID NO: 249) disclosed in WO 2013/126006.
TABLE II
SEQ ID NO:NameRel. KD
249 PSI0242 1.0
253 PSI0334 1.1
261 PSI0378 1.3
263 PSI0381 23
264 PSI0383 2.1

EXAMPLE 4: Stability of chemically synthesized C5 binding polypeptide



[0056] A chemically synthesized PSI0400 (SEQ ID NO: 267) was ordered from BACHEM AG. The stability of the polypeptide was tested according to the same methodology as in Example 2. The results of the stability testing are shown in Table III.
TABLE III
SEQ ID NO:NameSDS-PAGE bandsRPC prepeaksMain peak (% of total protein)RPC post peaks
267 PSI0400 1 0 91 0


[0057] The stability of the PSI0400 was comparable to the polypeptides that were produced in E.coli in Example 2.

[0058] The integrity of the fold of PSI0400 (SEQ ID NO: 267) was compared to a recombinant C5 binding polypeptide (PSI0257, SEQ ID NO: 271), produced in accordance with the methods of Example 2, using far UV circular dichroism (CD) spectra.

[0059] The CD spectra were recorded by a J-720 CD spectropolarimeter (Jasco, Japan). The samples were diluted to 0.17 mg/ml protein concentration using Pi buffer (5 mM Na-K-PO4, pH 7.0). A CD spectrum of Pi buffer was firstly recorded, then spectra were recorded for each of the samples and lastly for the Pi buffer again. As the two buffer spectra coincide, the firstly recorded spectrum was used as the buffer spectrum. The buffer spectrum was smoothened using the Savitzky-Golay procedure with convolution width of 25. The other spectra were smoothened according to the same procedure with a convolution width of 15. The smoothened buffer spectrum was then subtracted from each of the other smoothened spectra. The CDNN program was used to estimate the secondary structure content of the proteins and the resulting estimations are presented in Table IV. The results showed that neither the two amino acid substitutions at position 52 and 53 nor the polypeptide production by chemical synthesis influence the secondary structure content of the chemically synthesized polypeptide. The integrity of the secondary structure content was compared to the recombinantly produced PSI0257 (SEQ ID NO: 271).
TABLE IV
 SEQ ID NO: 271SEQ ID NO: 267
Helix 63 % 69%
Antiparallel 3 % 2%
Parallel 3 % 3%
Beta- Turn 13 % 12 %
Rndm. Coil 13 % 11 %

EXAMPLE 5: Binding of modified compounds and polypeptides to human C5



[0060] The binding affinity of the C5 binding compounds PSI0242 (SEQ ID NO: 249), PSI0340 (SEQ ID NO: 258), PSI0378 (SEQ ID NO: 261), and PSI0410 (SEQ ID NO: 268) and the C5 binding polypeptide PSI0400 (SEQ ID NO: 267) for human C5 was analyzed using a Biacore T200 instrument (GE Healthcare). Human C5 (A403, Quidel Corporation) was coupled to a CM5 sensor chip (900 RU) using amine coupling chemistry according to the manufacturer's protocol. The coupling was performed by injecting hC5 at a concentration of 7.5 µg/mL in 10 mM Na-acetate buffer pH=5 (GE Healthcare). The reference cell was treated with the same reagents but without injecting human C5. Binding of the C5 binders to immobilized hC5 was studied with the single cycle kinetics method, in which five concentrations of sample, typically 25, 12.5, 6.25, 3.12 and 1.56 nM in HBS-EP buffer (10 mM HEPES pH 7.4, 150 mM NaCl, 3 mM EDTA, 0.005% Surfactant P20, GE Healthcare) were injected one after the other at a flow rate of 30 µL/min at 25°C in the same cycle without regeneration between injections. Data from the reference cell were subtracted to compensate for bulk refractive index changes. In most cases, an injection of HBS-EP was also included as control so that the sensorgrams were double blanked. The surfaces were regenerated in HBS-EP buffer. Kinetic constants were calculated from the sensorgrams using the Langmuir 1:1 analyte model of the Biacore T200 Evaluation Software version 1.0.The resulting KD values of the interactions are tabulated in the Table V.
TABLE V
SEQ ID NO:NameKD (nM)
249 PSI0242 1.3
258 PSI0340 2.5
261 PSI0378 2.1
267 PSI0400 0.53
268 PSI0410 1.3


[0061] The stability enhancing amino acid substitutions are not detrimental for the ability of the molecules to bind to C5 and thus do not influence their biological activities.

EXAMPLE 6: Inhibition of hemolysis



[0062] For studies of classical complement pathway function and inhibition thereof by the C5 binding compounds PSI0378 (SEQ ID NO: 261) and PSI0410 (SEQ ID NO: 268), and C5 binding polypeptide PSI0400 (SEQ ID NO: 267), sheep erythrocytes were prepared from fresh sheep whole blood in Alsever's solution (Swedish National Veterinary Institute) and thereafter treated with rabbit anti-sheep erythrocyte antiserum (Sigma) to become antibody sensitized sheep erythrocyte (EA). The whole process was conducted under aseptic conditions. All other reagents were from commercial sources.

[0063] The in vitro assay was run in 96-well U-form microtiter plate by consecutive additions of a test protein, a complement serum and EA suspension. The final concentrations of all reagents, in a total reaction volume of 50 µL per well and at pH 7.3-7.4, were: 0.15 mM CaCl 2; 0.5 mM MgCl 2; 3 mM NaN 3; 138 mM NaCl; 0.1 % gelatin; 1.8 mM sodium barbital; 3.1 mM barbituric acid; 5 million EA; complement protein C5 serum at suitable dilution, and C5 binding compound or polypeptide at desired concentrations.

[0064] The C5 binding compounds and polypeptide were pre-incubated with the above described complement serum for 20 min on ice prior to starting the reaction by the addition of EA suspension. The hemolytic reaction was allowed to proceed at 37 °C during agitation for 45 min and was then optionally ended by addition of 100 µL ice-cold saline containing 0.02 % Tween 20. The cells were centrifuged to the bottom and the upper portion, corresponding to 100 µL supernatant, was transferred to a transparent microplate having half-area and flat-bottom wells. The reaction results were analyzed as optical density using a microtiter plate reader at a wavelength of 415 nm.

[0065] On all test occasions, a control sample (PSI0242, SEQ ID NO: 249) and vehicle were included in each plate to define values for uninhibited and fully inhibited reactions, respectively. These values were used to calculate the % inhibition of the complement hemolysis at any given sample concentration. The inhibitory potencies (IC 50-values) of tested C5 binding compounds and polypeptide were defined by applying the same assay in the presence of a controlled concentration of human C5 added to C5 depleted serum. For highly potent inhibitors (low nanomolar to sub-nanomolar), a final C5 concentration of the reaction mixture was controlled at 0.1 nM, which was optionally established by using C5 depleted or deficient sera. The results are presented below in Table VI.
TABLE VI
SEQ ID NO:NamePotency (%)IC 50 (nM)
249 PSI0242 100 0.47
261 PSI0378 83 0.58
267 PSI0400 - 4
268 PSI0410 107 0.49


[0066] The results from the hemolysis assay show that the improved C5 binding compounds SEQ ID NO: 261 and 268 are comparable to the reference compound. The C5 binding polypeptide SEQ ID NO: 267 was functional in the assay but since it does not contain an albumin binding domain the results cannot be directly compared to the reference compound.

EXAMPLE 7: Binding to human albumin



[0067] For assessment of C5 binding compounds binding affinity for albumin, a human albumin ELISA utilizing recombinant human albumin (coating) and commercially available antibodies (primary and detecting) purchased from Novozymes, Affibody AB and DakoCytomation, respectively, was used. A method standard prepared from PSI0242 (SEQ ID NO:249), comprising a C5 binding polypeptide and an albumin binding domain of streptococcal protein G, was used for quantification of samples. A 96-well microplate was coated with recombinant human albumin. The plate was then washed with phosphate buffered saline containing 0.05 % Tween 20 (PBST) and blocked for 1-2 hours with 1 % casein in PBS. After a plate wash, the standard, method controls, control sample and test samples are added to the plate. After incubation for 2 hours, unbound material was removed by a wash. A goat Anti-Affibody® IgG (Affibody AB, cat no. 20.1000.01.0005) was added to the wells and the plate was incubated for 1.5 hours to allow binding to the bound C5 binding compounds. After a wash, rabbit anti-goat IgG HRP was allowed to bind to the goat antibodies for 1 h. After a final wash, the amount of bound HRP was detected by addition of TMB substrate, which was converted to a blue product by the enzyme. Addition of 1 M hydrochloric acid after 30 minutes stopped the reaction and the color of the well contents changed from blue to yellow. The absorbance at 450 nm was measured photometrically, using the absorbance at 650 nm as a reference wavelength. The color intensity was proportional to the amount of PSI0242 (SEQ ID NO:249) and the sample concentrations were determined from the standard curve.

[0068] The C5 binding compounds comprising an albumin binding domain of streptococcal protein G proved capable of binding to human albumin and the data is presented in Table VII below.
TABLE VII
SEQ ID NO:Name% of total protein content
249 PSI0242 103
261 PSI0378 85
268 PSI0410 150


[0069] The results from the assay showed that both of the investigated stability improved C5 binding compounds maintain their ability to bind human albumin.

EXAMPLE 8: 3 month stability test of C5 binding polypeptides/compounds



[0070] The C5 binding polypeptides/compounds that showed an improved stability compared toPSI0242 in the 2 weeks stability test at 37 °C (Example 2) were subjected to a longer 3 month stability test at 37 °C. The setup of the stability test was as described in Example 2 and the evaluation of the stability was made by measuring the main peak of the chromatogram percentage of the total protein content by Reversed Phase HPLC (RPC), the RPC method was performed as described in example 2. The 2 weeks data from example 2 is included in Table VIII below to make the interpretation easier.
TABLE VIII
SEQ ID NO:Name2 weeks, 37 °C Main peak (% of total protein)3 months, 37 °C Main peak (% of total protein)
253 PSI0334 73 16
261 PSI0378 89 59
262 PSI0379 88 58
263 PSI0381 87 46
264 PSI0383 91 59
268 PSI0410 72 16
269 PSI0403 77 35
270 PSI0404 88 46


[0071] C5 binding compounds with amino acid substitutions in position 52, 53 from ND to SE and a replacement in position 60 from D to E or A (SEQ ID NO: 261, 264, and 262) compared to PSI0242 have a higher proportion of protein in the original form after 3 months at 37 °C than PSI0242 (SEQ ID NO: 249) has after 2 weeks at the same conditions. The other compounds also displayed an increased stability.

EXAMPLE 9: Stability of similarly modified polypeptides



[0072] Previously known polypeptide variants derived from protein Z (Grönwall et al. J Biotechnol 2007, 128:162-183) with binding affinity for other target molecules than C5 were similarly modified in specific positions of the amino acid sequence in order to improve stability. Selection and production of the original polypeptide variants with binding affinity for the human epidermal growth factor receptor 2 (HER2), the platelet-derived growth factor receptor beta (PDGF-Rβ), the neonatal Fc receptor (FcRn), and the carbonic anhydrase IX (CAIX) is disclosed in e.g. WO 2009/080810, WO 2009/077175, PCT/EP2014/055299, and WO 2014/096163. The stability improved polypeptide variants were produced by site-directed mutagenesis at selected positions of the amino acid sequence. The stability improving amino acid substitutions in the polypeptide variants Z02891 (SEQ ID NO: 272), targeting HER2; Z15805 (SEQ ID NO: 275), targeting PDGF-Rβ; Z10103 (SEQ ID NO: 278), targeting FcRn; and Z09782 (SEQ ID NO: 281), targeting CAIX, are specified below in Table IX. These stability improved polypeptide variants differ from the C5 binding polypeptides of the present invention for example in that they have a binding motif [BM] with binding affinity for HER2, PDGF-Rβ, FcRn, and CAIX.

[0073] All variants were cloned with an N-terminal 6 x Histidine-tag (His6) and the achieved constructs encoded polypeptides in the format MGSSHHHHHHLQ-[Z#####]. Mutations were introduced in the plasmids of the polypeptide variants using overlapping oligonucleotide primer pairs encoding the desired amino acid substitutions and by applying established molecular biology techniques. The correct plasmid sequences were verified by DNA sequencing.

[0074] E coli (strain T7E2) cells (GeneBridge) were transformed with plasmids containing the gene fragments encoding the original and the modified polypeptides. The cells were cultivated at 37 °C in TSB-YE medium supplemented with 50 µg/ml kanamycin and protein expression was subsequently induced by addition of IPTG. Pelleted cells were disrupted using a FastPrep®-24 homogenizer (Nordic Biolabs) and cell debris was removed by centrifugation. Each supernatant containing the polypeptide variant as a His6-tagged protein was purified by immobilized metal ion affinity chromatography (IMAC) using His GraviTrapTM columns (GE Healthcare) according to the manufacturers instructions. Purified polypeptide variants were buffer exchanged to phosphate-buffered saline (PBS; 1.47 mM KH2PO4, 8.1 mM Na2HPO4, 137 mM NaCl, 2.68 mM KCl, pH 7.4) using PD-10 desalting columns (GE Healthcare). The correct identity of each polypeptide was verified by SDS-PAGE and HPLC-MS.
TABLE IX.
SEQ ID NO:NameTargetAmino acid substitutionsOriginal vs modified
272 Z02891 HER2 - Original
273 Z17341 HER2 N52S, D53E Modified
274 Z17342 HER2 D36R, D37Q, S39E, N52S, D53E Modified
275 Z15805 PDGF-Rβ - Original
276 Z17343 PDGF-Rβ N52S, D53E Modified
277 Z17344 PDGF-Rβ D36R, D37Q, S39E, N52S, D53E Modified
278 Z10103 FcRn - Original
279 Z17347 FcRn N52S, D53E Modified
280 Z17348 FcRn D36R, D37Q, S39E, N52S, D53E Modified
281 Z09782 CAIX - Original
282 Z17351 CAIX N52S, D53E Modified
283 Z17352 CAIX D36R, D37Q, S39E, N52S, D53E Modified
284 Z17355 CAIX D53E Modified
285 Z17357 CAIX D36R, D37Q, S39E, D53E Modified
286 Z17359 CAIX N52S Modified
287 Z17360 CAIX D36R, D37Q, S39E, N52S Modified


[0075] Apart from the substitutions of one of (SEQ ID NO: 284-287) or both of (SEQ ID NO: 273-274, 276-277, 279-280, 282-283) N52 and D53, substitutions were also performed in the positions corresponding to the loop [L2]. Thus, in the polypeptide variants of SEQ ID NO: 274, 277, 280, 283, 285, and 287, [L2] is RQPE.

[0076] For carrying out the stability testing, the polypeptide variants, formulated in PBS pH 7.4, were diluted to 1 mg/ml and 200 µl aliquotes were incubated at 37 °C for 2 weeks. Samples collected prior to and after the stability test were analyzed by SDS-PAGE using 10% Bis-Tris NuPAGE gels (Invitrogen) and loading 5 µg protein into each well. Resulting Coomassie blue stained gels are shown in Fig. 6. The stability was assessed by the appearance of new variants after incubation at the elevated temperature and mutated variants were compared to respective original polypeptide.

[0077] All polypeptide variants with the modifications as outlined in Table IX showed improved stability compared to the respective original polypeptide in the sense that a second band just above the main band observed for samples of the original polypeptide was not visible in samples of the modified polypeptides with the substitution D53E and/or N52S, see Fig. 6. Polypeptides with the substitutions D53E and/or N52S combined with the substitutions D36R, D37Q and S39E showed similar profiles on the SDS-PAGE gel. The substitution D53E alone or in combination with the substitutions D36R, D37Q and S39E seemed to reduce the amount of the species with an alternative conformation observed as a second band on the SDS-PAGE gel, but could not completely prevent the formation of this species.

[0078] In addition, the binding capability of the modified polypeptide variants was tested. All polypeptide variants retained their binding affinity for their target after being modified (results not shown).

[0079] The results presented above for the polypeptide variants having binding affinity for other target molecules than C5 correspond well with the results presented for the C5 binding polypeptides and compounds of the present invention (see e.g. Example 2 and 4). Thus, the specific amino acid modifications as described herein appear to have a stabilizing effect irrespective of the amino acid sequence of the [BM]. The amino acid modifications or substitutions as described herein are thus considered to improve stability of all the C5 binding polypeptides and compounds as described herein and in WO 2013/126006.

SEQUENCE LISTING



[0080] 

<110> Swedish Orphan Biovitrum AB

<120> STABLE POLYPEPTIDES BINDING TO HUMAN COMPLEMENT C5

<130> 21070713

<160> 287

<170> PatentIn version 3.5

<210> 1
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 1

<210> 2
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 2

<210> 3
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 3



<210> 4
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 4

<210> 5
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 5

<210> 6
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 6

<210> 7
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 7

<210> 8
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 8

<210> 9
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 9

<210> 10
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 10



<210> 11
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 11

<210> 12
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 12

<210> 13
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 13

<210> 14
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 14

<210> 15
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 15

<210> 16
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 16

<210> 17
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 17



<210> 18
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 18

<210> 19
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 19

<210> 20
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 20

<210> 21
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 21

<210> 22
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 22

<210> 23
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 23

<210> 24
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 24



<210> 25
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 25

<210> 26
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 26

<210> 27
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 27

<210> 28
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 28

<210> 29
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 29

<210> 30
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 30

<210> 31
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 31



<210> 32
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 32

<210> 33
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 33

<210> 34
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 34

<210> 35
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 35

<210> 36
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 36

<210> 37
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 37

<210> 38
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 38



<210> 39
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 39

<210> 40
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 40

<210> 41
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 41

<210> 42
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 42

<210> 43
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 43

<210> 44
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 44

<210> 45
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 45



<210> 46
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 46

<210> 47
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 47

<210> 48
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 48

<210> 49
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 49

<210> 50
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 50

<210> 51
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 51

<210> 52
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 52



<210> 53
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 53

<210> 54
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 54

<210> 55
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 55

<210> 56
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 56

<210> 57
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 57

<210> 58
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 58

<210> 59
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 59



<210> 60
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 60

<210> 61
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 61

<210> 62
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 62

<210> 63
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 63

<210> 64
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 64

<210> 65
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 65

<210> 66
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 66



<210> 67
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 67

<210> 68
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 68

<210> 69
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 69

<210> 70
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 70

<210> 71
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 71

<210> 72
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 72

<210> 73
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 73



<210> 74
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 74

<210> 75
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 75

<210> 76
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 76

<210> 77
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 77

<210> 78
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 78

<210> 79
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 79

<210> 80
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 80



<210> 81
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 81

<210> 82
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 82

<210> 83
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 83

<210> 84
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 84

<210> 85
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 85

<210> 86
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 86

<210> 87
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 87



<210> 88
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 88

<210> 89
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 89

<210> 90
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 90

<210> 91
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 91

<210> 92
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 92

<210> 93
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 93

<210> 94
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 94



<210> 95
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 95

<210> 96
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 96

<210> 97
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 97

<210> 98
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 98

<210> 99
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 99

<210> 100
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 100

<210> 101
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 101



<210> 102
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 102

<210> 103
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 103

<210> 104
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 104

<210> 105
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 105

<210> 106
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 106

<210> 107
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 107

<210> 108
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 108



<210> 109
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 109

<210> 110
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 110

<210> 111
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 111

<210> 112
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 112

<210> 113
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 113

<210> 114
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 114

<210> 115
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 115



<210> 116
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 116

<210> 117
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 117

<210> 118
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 118

<210> 119
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 119

<210> 120
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 120

<210> 121
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 121

<210> 122
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 122



<210> 123
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 123

<210> 124
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 124

<210> 125
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 125

<210> 126
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 126

<210> 127
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 127

<210> 128
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 128

<210> 129
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 129



<210> 130
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 130

<210> 131
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 131

<210> 132
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 132

<210> 133
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 133

<210> 134
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 134

<210> 135
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 135

<210> 136
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 136



<210> 137
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 137

<210> 138
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 138

<210> 139
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 139

<210> 140
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 140

<210> 141
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 141

<210> 142
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 142

<210> 143
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 143



<210> 144
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 144

<210> 145
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 145

<210> 146
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 146

<210> 147
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 147

<210> 148
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 148

<210> 149
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 149

<210> 150
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 150



<210> 151
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 151

<210> 152
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 152

<210> 153
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 153

<210> 154
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 154

<210> 155
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 155

<210> 156
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 156

<210> 157
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 157



<210> 158
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 158

<210> 159
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 159

<210> 160
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 160

<210> 161
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 161

<210> 162
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 162

<210> 163
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 163

<210> 164
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 164



<210> 165
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 165

<210> 166
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 166

<210> 167
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 167

<210> 168
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 168

<210> 169
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 169

<210> 170
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 170

<210> 171
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 171



<210> 172
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 172

<210> 173
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 173

<210> 174
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 174

<210> 175
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 175

<210> 176
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 176

<210> 177
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 177

<210> 178
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 178



<210> 179
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 179

<210> 180
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 180

<210> 181
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 181

<210> 182
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 182

<210> 183
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 183

<210> 184
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 184

<210> 185
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 185



<210> 186
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 186

<210> 187
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 187

<210> 188
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 188

<210> 189
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 189

<210> 190
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 190

<210> 191
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 191

<210> 192
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 192



<210> 193
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 193

<210> 194
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 194

<210> 195
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 195

<210> 196
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 196

<210> 197
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 197

<210> 198
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 198

<210> 199
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 199



<210> 200
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 200

<210> 201
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 201

<210> 202
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 202

<210> 203
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 203

<210> 204
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 204

<210> 205
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 205

<210> 206
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 206



<210> 207
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 207

<210> 208
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 208

<210> 209
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 209

<210> 210
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 210

<210> 211
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 211

<210> 212
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 212

<210> 213
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 213



<210> 214
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 214

<210> 215
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 215

<210> 216
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 216

<210> 217
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 217

<210> 218
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 218

<210> 219
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 219

<210> 220
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 220



<210> 221
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 221

<210> 222
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 222

<210> 223
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 223

<210> 224
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 224

<210> 225
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 225

<210> 226
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 226

<210> 227
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 227



<210> 228
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 228

<210> 229
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 229

<210> 230
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 230

<210> 231
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 231

<210> 232
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 232

<210> 233
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 233

<210> 234
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 234



<210> 235
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 235

<210> 236
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 236

<210> 237
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 237

<210> 238
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 238

<210> 239
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 239

<210> 240
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 240

<210> 241
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 241



<210> 242
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 242

<210> 243
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 243

<210> 244
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 244

<210> 245
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 245

<210> 246
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 246

<210> 247
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 247

<210> 248
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 248



<210> 249
<211> 108
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 249

<210> 250
<211> 46
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 250

<210> 251
<211> 1676
<212> PRT
<213> Homo sapiens

<400> 251













<210> 252
<211> 108
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 252

<210> 253
<211> 108
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 253



<210> 254
<211> 108
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 254

<210> 255
<211> 108
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 255



<210> 256
<211> 108
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 256

<210> 257
<211> 108
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 257

<210> 258
<211> 108
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 258



<210> 259
<211> 103
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 259

<210> 260
<211> 57
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 260



<210> 261
<211> 108
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 261

<210> 262
<211> 108
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 262



<210> 263
<211> 108
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 263

<210> 264
<211> 108
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 264

<210> 265
<211> 57
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 265

<210> 266
<211> 57
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 266

<210> 267
<211> 58
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 267

<210> 268
<211> 108
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 268

<210> 269
<211> 108
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 269



<210> 270
<211> 108
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 270

<210> 271
<211> 62
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 271



<210> 272
<211> 58
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 272

<210> 273
<211> 58
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 273

<210> 274
<211> 58
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 274

<210> 275
<211> 58
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 275

<210> 276
<211> 58
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 276



<210> 277
<211> 58
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 277

<210> 278
<211> 58
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 278

<210> 279
<211> 58
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 279

<210> 280
<211> 58
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 280

<210> 281
<211> 58
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 281



<210> 282
<211> 58
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 282

<210> 283
<211> 58
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 283

<210> 284
<211> 58
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 284

<210> 285
<211> 58
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 285

<210> 286
<211> 58
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 286

<210> 287
<211> 58
<212> PRT
<213> Artificial Sequence

<220>
<223> Modified bacterial sequence

<400> 287




Claims

1. A polypeptide capable of binding human complement component 5 (C5), said polypeptide comprising the amino acid sequence:
[BM]-[L2]-QSX42X43LLX46EAKKLX52X53X54Q
wherein, independently of each other,
[BM] is a C5 binding motif comprising the amino acid sequence
EX9X10X11A X13X14EIDX18LPNLX23X24X25QWX28AFIX32X33LX35;
wherein, independently of each other,
X9 is selected from H, Q, S, T and V;
X10 is selected from I, L, M and V;
X11 is selected from A, D, E, H, K, L, N, Q, R, S, T and Y;
X13 is selected from N and W;
X14 is selected from A, D, E, H, N, Q, R, S and T;
X18 is selected from A, E, G, H, K, L, Q, R, S, T and Y;
X23 is selected from N and T;
X24 is selected from I, L and V;
X25 is selected from A, D, E, H, K, N, Q, R, S and T;
X28 is selected from I, L and V;
X32 is selected from D, E, G, H, N, S and T;
X33 is selected from K and S; and
X35 is selected from A, D, E, H, N, Q, S, T and Y;
[L2] is selected from DDPS and RQPE;
X42 is selected from A and S;
X43 is selected from N and E;
X46 is selected from A, S and C;
X52 is selected from E, N and S;
X53 is selected from D, E and S, provided that X53 is not D when X52 is N; and
X54 is selected from A and S.
 
2. The polypeptide according to claim 1, said polypeptide comprising the amino acid sequence:
AEAKYAK-[BM-[L2]-QSX42X43LLX46EAKKLX52X53X54QAP
wherein, independently of each other,
[BM], [L2], X42, X43, X46, X52, X53 and X54 are as defined in claim 1.
 
3. The polypeptide according to claim 1 or 2, wherein
X52 and X53 are independently selected from E and S;
X52 is S and X53 is E;
X52 is E and X53 is S;
X52 is S and X53 is D, or
X52 is N and X53 is E.
 
4. The polypeptide according to any one of claims 1 to 3 comprising the amino acid sequence:

wherein, independently of each other,
X9 is selected from H, Q, S, T and V;
X10 is selected from I, L, M and V;
X11 is selected from A, D, E, H, K, L, N, Q, R, S, T and Y;
X13 is selected from N and W;
X14 is selected from A, D, E, H, N, Q, R, S and T;
X18 is selected from A, E, G, H, K, L, Q, R, S, T and Y;
X23 is selected from N and T;
X24 is selected from I, L and V;
X25 is selected from A, D, E, H, K, N, Q, R, S and T;
X28 is selected from I, L and V;
X32 is selected from D, E, G, H, N, S and T;
X33 is selected from K and S;
X35 is selected from A, D, E, H, N, Q, S, T and Y;
[L2] is selected from DDPS and RQPE;
X42 is selected from A and S;
X43 is selected from N and E;
X46 is selected from A, S and C;
X52 is selected from E, N and S;
X53 is selected from D, E and S, provided that X53 is not D when X52 is N; and
X54 is selected from A and S.
 
5. The polypeptide according to any one of the claims 1 to 4, wherein at least one of the following conditions is fulfilled:
X9 is V,
X10 is L,
X11 is E,
X13 is W,
X14 is D,
X18 is R,
X23 is T,
X24 is I,
X25 is E,
X28 is L,
X32 is N,
X33 is K,
X35 is D,
[L2] is DDPS,
X42 is S,
X43 is E,
X46 is S,
X54 is S.
 
6. The polypeptide according to any one of claims 1 to 5, wherein [BM] comprises an amino acid sequence selected from the group consisting of positions 1-28 in SEQ ID NOS: 1-248, preferably wherein [BM] comprises the amino acid sequence shown as positions 1-28 in SEQ ID NO: 1.
 
7. The polypeptide according to any one of claims 1 to 6, selected from a polypeptide comprising the amino acid sequence shown as SEQ ID NO: 260, SEQ ID NO: 265, SEQ ID NO: 266 and SEQ ID NO: 267.
 
8. A compound capable of binding C5, said compound comprising:

a. at least one C5 binding polypeptide according to any one of the preceding claims;

b. at least one albumin binding domain of streptococcal protein G; and

c. optionally, at least one linking moiety for linking said at least one albumin binding domain to the C or N terminal of said at least one C5 binding polypeptide, said linking moiety preferably being a peptide comprising the amino acid sequence KVX60GS, wherein X60 is selected from D, E and A.


 
9. The compound according to claim 8, wherein X60 is E and said compound is a polypeptide comprising the amino acid sequence shown as SEQ ID NO: 261, SEQ ID NO: 263, SEQ ID NO: 264, SEQ ID NO: 269 or SEQ ID NO: 270.
 
10. The compound according to claim 8, wherein X60 is A and said compound is a polypeptide comprising the amino acid sequence shown as SEQ ID NO: 262.
 
11. The C5 binding polypeptide according to any one of claims 1-7 or the C5 binding compound according to any one of claims 8-10 for use in therapy.
 
12. The C5 binding polypeptide according to any one of claims 1-7 or the C5 binding compound according to any one of claims 8-10 for use in a method for treatment and/or prophylaxis of a C5-related condition.
 
13. The C5 binding polypeptide for use according to claim 12 or the C5 binding compound for use according to claim 12, wherein said C5-related condition is a condition selected from inflammatory diseases; autoimmune diseases; infectious diseases; cardiovascular diseases; neurodegenerative disorders; graft injury; eye diseases; kidney diseases; pulmonary diseases; hematological diseases such as paroxysmal nocturnal hemoglobinuria (PNH); allergic diseases and dermatological diseases.
 
14. The C5 binding polypeptide for use according to any one of claims 11-13 or the C5 binding compound for use according to any one of claims 11-13, wherein said C5 binding polypeptide or compound is administered intravenously, subcutaneously, by inhalation, nasally, orally, intravitreally, or topically.
 


Ansprüche

1. Polypeptid, das in der Lage ist, menschliche Komplementkomponente 5 (C5) zu binden, das Polypeptid umfassend die Aminosäuresequenz:
[BM]-[L2]-QSX42X43LLX46EAKKLX52X53X54Q
wobei unabhängig voneinander
[BM] ein C5-Bindungsmotiv ist, das die Aminosäuresequenz EX9X10X11AX13X14EIDX18LPNLX23X24X25QWX28AFIX32X33LX35 umfasst;
wobei unabhängig voneinander
X9 ausgewählt ist aus H, Q, S, T und V;
X10 ausgewählt ist aus I, L, M und V;
X11 ausgewählt ist aus A, D, E, H, K, L, N, Q, R, S, T und Y;
X13 ausgewählt ist aus N und W;
X14 ausgewählt ist aus A, D, E, H, N, Q, R, S und T;
X18 ausgewählt ist aus A, E, G, H, K, L, Q, R, S, T und Y;
X23 ausgewählt ist aus N und T;
X24 ausgewählt ist aus I, L und V;
X25 ausgewählt ist aus A, D, E, H, K, N, Q, R, S und T;
X28 ausgewählt ist aus I, L und V;
X32 ausgewählt ist aus D, E, G, H, N, S und T;
X33 ausgewählt ist aus K und S; und
X35 ausgewählt ist aus A, D, E, H, N, Q, S, T und Y;
[L2] ausgewählt ist aus DDPS und RQPE;
X42 ausgewählt ist aus A und S;
X43 ausgewählt ist aus N und E;
X46 ausgewählt ist aus A, S und C;
X52 ausgewählt ist aus E, N und S;
X53 ausgewählt ist aus D, E und S, vorausgesetzt, dass X53 nicht D ist, wenn X52 N ist; und
X54 ausgewählt ist aus A und S.
 
2. Polypeptid nach Anspruch 1, das Polypeptid umfassend die Aminosäuresequenz:
AEAKYAK-[BM]-[L2]-QSX42X43LLX46EAKKLX52X53X54QAP
wobei unabhängig voneinander
[BM], [L2], X42, X43, X46, X52, X53 und X54 sind, wie in Anspruch 1 definiert.
 
3. Polypeptid nach Anspruch 1 oder 2, wobei
X52 und X53 unabhängig ausgewählt sind aus E und S;
X52 S ist und X53 E ist;
X52 E ist und X53 S ist;
X52 S ist und X53 D ist, oder
X52 N ist und X53 E ist.
 
4. Polypeptid nach einem der Ansprüche 1 bis 3, umfassend die Aminosäuresequenz:

wobei unabhängig voneinander
X9 ausgewählt ist aus H, Q, S, T und V;
X10 ausgewählt ist aus I, L, M und V;
X11 ausgewählt ist aus A, D, E, H, K, L, N, Q, R, S, T und Y;
X13 ausgewählt ist aus N und W;
X14 ausgewählt ist aus A, D, E, H, N, Q, R, S und T;
X18 ausgewählt ist aus A, E, G, H, K, L, Q, R, S, T und Y;
X23 ausgewählt ist aus N und T;
X24 ausgewählt ist aus I, L und V;
X25 ausgewählt ist aus A, D, E, H, K, N, Q, R, S und T;
X28 ausgewählt ist aus I, L und V;
X32 ausgewählt ist aus D, E, G, H, N, S und T;
X33 ausgewählt ist aus K und S;
X35 ausgewählt ist aus A, D, E, H, N, Q, S, T und Y;
[L2] ausgewählt ist aus DDPS und RQPE;
X42 ausgewählt ist aus A und S;
X43 ausgewählt ist aus N und E;
X46 ausgewählt ist aus A, S und C;
X52 ausgewählt ist aus E, N und S;
X53 ausgewählt ist aus D, E und S, vorausgesetzt, dass X53 nicht D ist, wenn X52 N ist;
und
X54 ausgewählt ist aus A und S.
 
5. Polypeptid nach einem der Ansprüche 1 bis 4, wobei mindestens eine der folgenden Bedingungen erfüllt ist:
X9 ist V,
X10 ist L,
X11 ist E,
X13 ist W,
X14 ist D,
X18 ist R,
X23 ist T,
X24 ist I,
X25 ist E,
X28 ist L,
X32 ist N,
X33 ist K,
X35 ist D,
[L2] ist DDPS,
X42 ist S,
X43 ist E,
X46 ist S,
X54 ist S.
 
6. Polypeptid nach einem der Ansprüche 1 bis 5, wobei [BM] eine Aminosäuresequenz, ausgewählt aus der Gruppe bestehend aus den Positionen 1-28 in SEQ ID NOS: 1-248, umfasst, bevorzugt wobei [BM] die Aminosäuresequenz, die als Positionen 1-28 in SEQ ID NO: 1 dargestellt ist, umfasst.
 
7. Polypeptid nach einem der Ansprüche 1 bis 6, ausgewählt aus einem Polypeptid, das die als SEQ ID NO:260, SEQ ID NO:265, SEQ ID NO:266 und SEQ ID NO:267 dargestellte Aminosäuresequenz, umfasst.
 
8. Verbindung, die in der Lage ist, C5 zu binden, die Verbindung umfassend:

a. mindestens ein C5-bindendes Polypeptid nach einem der vorstehenden Ansprüche;

b. mindestens eine Albumin-Bindungsdomäne des Streptokokkenproteins G; und

c. optional mindestens eine Verknüpfungseinheit zum Verknüpfen der mindestens einen Albumin-Bindungsdomäne mit dem C- oder N-Terminal des mindestens einen C5-bindenden Polypeptids, wobei die Verknüpfungseinheit bevorzugt ein Peptid ist, das die Aminosäuresequenz KVX60GS umfasst, wobei X60 ausgewählt ist aus D, E und A.


 
9. Verbindung nach Anspruch 8, wobei X60 E ist und die Verbindung ein Polypeptid ist, das die Aminosäuresequenz umfasst, die als SEQ ID NO: 261, SEQ ID NO: 263, SEQ ID NO: 264, SEQ ID NO: 269 oder SEQ ID NO: 270 dargestellt ist.
 
10. Verbindung nach Anspruch 8, wobei X60 A ist und die Verbindung ein Polypeptid ist, das die Aminosäuresequenz umfasst, die als SEQ ID NO: 262 dargestellt ist.
 
11. C5-bindendes Polypeptid nach einem der Ansprüche 1-7 oder C5-bindende Verbindung nach einem der Ansprüche 8-10 zur Verwendung in der Therapie.
 
12. C5-bindendes Polypeptid nach einem der Ansprüche 1-7 oder C5-bindende Verbindung nach einem der Ansprüche 8-10 zur Verwendung in einem Verfahren zur Behandlung und/oder Prophylaxe einer C5-bezogenen Erkrankung.
 
13. C5-bindendes Polypeptid zur Verwendung nach Anspruch 12 oder C5-bindende Verbindung zur Verwendung nach Anspruch 12, wobei die C5-bezogene Erkrankung eine Erkrankung ist, die ausgewählt ist aus Entzündungskrankheiten; Autoimmunerkrankungen; Infektionserkrankungen; Herz-Kreislauf-Erkrankungen; neurodegenerative Störungen; Transplantatverletzung; Augenerkrankungen; Nierenerkrankungen; Lungenerkrankungen; hämatologische Erkrankungen wie paroxysmale nächtliche Hämoglobinurie (PNH); allergische Erkrankungen und dermatologische Erkrankungen.
 
14. C5-bindendes Polypeptid zur Verwendung nach einem der Ansprüche 11-13 oder die C5-bindende Verbindung zur Verwendung nach einem der Ansprüche 11-13, wobei das C5-bindende Polypeptid oder die C5-bindende Verbindung intravenös, subkutan, durch Inhalation, nasal, oral, intravitreal oder topisch verabreicht wird.
 


Revendications

1. Polypeptide capable de se lier au composant 5 (C5) du complément humain, ledit polypeptide comprenant la séquence d'acides aminés :
[BM]-[L2]-QSX42X43LLX46EAKKLX52X53X54Q
dans lequel, indépendamment les uns des autres,
[BM] est un motif de liaison à C5 comprenant la séquence d'acides aminés EX9X10X11AX13X14EIDX18LPNLX23X24X25QWX28AFIX32X33LX35 ;
dans lequel, indépendamment les uns des autres,
X9 est choisi parmi H, Q, S, T et V ;
X10 est choisi parmi I, L, M et V ;
X11 est choisi parmi A, D, E, H, K, L, N, Q, R, S, T et Y ;
X13 est choisi parmi N et W ;
X14 est choisi parmi A, D, E, H, N, Q, R, S et T ;
X18 est choisi parmi A, E, G, H, K, L, Q, R, S, T et Y ;
X23 est choisi parmi N et T ;
X24 est choisi parmi I, L et V ;
X25 est choisi parmi A, D, E, H, K, N, Q, R, S et T ;
X28 est choisi parmi I, L et V ;
X32 est choisi parmi D, E, G, H, N, S et T ;
X33 est choisi parmi K et S ; et
X35 est choisi parmi A, D, E, H, N, Q, S, T et Y ;
[L2] est choisi parmi DDPS et RQPE ;
X42 est choisi parmi A et S ;
X43 est choisi parmi N et E ;
X46 est choisi parmi A, S et C ;
X52 est choisi parmi E, N et S ;
X53 est choisi parmi D, E et S, à condition que X53 n'est pas D lorsque X52 est N ;
et
X54 est choisi parmi A et S.
 
2. Polypeptide selon la revendication1, ledit polypeptide comprenant la séquence d'acides aminés :
AEAKYAK-[BM]-[L2]-QSX42X43LLX46EAKKLX52X53X54QAP
dans lequel, indépendamment les uns des autres,
[BM], [L2], X42, X43, X46, X52, X53 et X54 sont définis selon la revendication 1.
 
3. Polypeptide selon la revendication 1 ou 2, dans lequel
X52 et X53 sont choisis indépendamment parmi E et S ;
X52 est S et X53 est E ;
X52 est E et X53 est S ;
X52 est S et X53 est D, ou
X52 est N et X53 est E.
 
4. Polypeptide selon l'une quelconque des revendications 1 à 3 comprenant la séquence d'acides aminés :

dans lequel, indépendamment les uns des autres,
X9 est choisi parmi H, Q, S, T et V ;
X10 est choisi parmi I, L, M et V ;
X11 est choisi parmi A, D, E, H, K, L, N, Q, R, S, T et Y ;
X13 est choisi parmi N et W ;
X14 est choisi parmi A, D, E, H, N, Q, R, S et T ;
X18 est choisi parmi A, E, G, H, K, L, Q, R, S, T et Y ;
X23 est choisi parmi N et T ;
X24 est choisi parmi I, L et V ;
X25 est choisi parmi A, D, E, H, K, N, Q, R, S et T ;
X28 est choisi parmi I, L et V ;
X32 est choisi parmi D, E, G, H, N, S et T ;
X33 est choisi parmi K et S ;
X35 est choisi parmi A, D, E, H, N, Q, S, T et Y ;
[L2] est choisi parmi DDPS et RQPE ;
X42 est choisi parmi A et S ;
X43 est choisi parmi N et E ;
X46 est choisi parmi A, S et C ;
X52 est choisi parmi E, N et S ;
X53 est choisi parmi D, E et S, à condition que X53 n'est pas D lorsque X52 est N ;
et
X54 est choisi parmi A et S.
 
5. Polypeptide selon l'une quelconque des revendications 1 à 4, dans lequel au moins l'une des conditions suivantes est remplie :
Xg est V,
X10 est L,
X11 est E,
X13 est W,
X14 est D,
X18 est R,
X23 est T,
X24 est I,
X25 est E,
X28 est L,
X32 est N,
X33 est K,
X35 est D,
[L2] est DDPS,
X42 est S,
X43 est E,
X46 est S,
X54 est S.
 
6. Polypeptide selon l'une quelconque des revendications 1 à 5, dans lequel [BM] comprend une séquence d'acides aminés choisi parmi le groupe se composant des positions 1-28 dans les SEQ ID N : 1-248, de préférence dans lequel [BM] comprend la séquence d'acides aminés telle que représentée par les positions 1-28 de la SEQ ID N : 1.
 
7. Polypeptide selon l'une quelconque des revendications 1 à 6, choisi parmi un polypeptide comprenant la séquence d'acides aminés telle que représentée par la SEQ ID N : 260, la SEQ ID N : 265, la SEQ ID N : 266 et la SEQ ID N : 267.
 
8. Composé capable de se lier à C5, ledit composé comprenant :

a. au moins un polypeptide de liaison à C5 selon l'une quelconque des revendications précédentes ;

b. au moins un domaine de liaison à l'albumine de la protéine streptococcique G ; et

c. facultativement, au moins un fragment de liaison destiné à lier ledit au moins un domaine de liaison à l'albumine à l'extrémité C- ou N-terminale dudit au moins un polypeptide de liaison à C5, ledit fragment de liaison étant de préférence un peptide comprenant la séquence d'acides aminés KVX60GS, dans lequel X60 est choisi parmi D, E et A.


 
9. Composé selon la revendication 8, dans lequel X60 est E et ledit composé est un polypeptide comprenant la séquence d'acides aminés telle que représentée par la SEQ ID N : 261, la SEQ ID N : 263, la SEQ ID N : 264, la SEQ ID N : 269 ou la SEQ ID N : 270.
 
10. Composé selon la revendication 8, dans lequel X60 est A et ledit composé est un polypeptide comprenant la séquence d'acides aminés telle que représentée par la SEQ ID N : 262.
 
11. Polypeptide de liaison à C5 selon l'une quelconque des revendications 1-7 ou composé de liaison à C5 selon l'une quelconque des revendications 8-10 destiné à une utilisation thérapeutique.
 
12. Polypeptide de liaison à C5 selon l'une quelconque des revendications 1-7 ou composé de liaison à C5 selon l'une quelconque des revendications 8-10 destiné à une utilisation dans une méthode de traitement et/ou en prophylaxie d'une maladie liée à C5.
 
13. Polypeptide de liaison à C5 destiné à une utilisation selon la revendication 12 ou composé de liaison à C5 destiné à une utilisation selon la revendication 12, dans lequel ladite maladie liée à C5 est une maladie choisie parmi les maladies inflammatoires; maladies auto-immunes ; maladies infectieuses; maladies cardiovasculaires ; maladies neurodégénératives ; lésion du greffon; maladies oculaires; maladies pulmonaires; maladies hématologiques telles que l'hémoglobinurie paroxystique nocturne (HPN) ; maladies allergiques et maladies dermatologiques.
 
14. Polypeptide de liaison à C5 destiné à une utilisation selon l'une quelconque des revendications 11-13 ou composé de liaison à C5 destiné à une utilisation selon l'une quelconque des revendications 11-13, dans lequel ledit polypeptide ou composé de liaison à C5 est administré par voie intraveineuse, par voie sous-cutanée, par voie inhalée, par voie nasale, par voie orale, par voie intravitréenne, ou par voie topique.
 




Drawing






























































Cited references

REFERENCES CITED IN THE DESCRIPTION



This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description




Non-patent literature cited in the description