(19)
(11)EP 3 039 343 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
13.01.2021 Bulletin 2021/02

(21)Application number: 14864668.0

(22)Date of filing:  19.08.2014
(51)International Patent Classification (IPC): 
F23R 3/12(2006.01)
F02C 7/22(2006.01)
F23D 11/10(2006.01)
F23R 3/36(2006.01)
F23R 3/28(2006.01)
F23C 1/08(2006.01)
F23R 3/14(2006.01)
(86)International application number:
PCT/US2014/051585
(87)International publication number:
WO 2015/076883 (28.05.2015 Gazette  2015/21)

(54)

DUAL FUEL NOZZLE WITH SWIRLING AXIAL GAS INJECTION FOR A GAS TURBINE ENGINE AND RELATED METHOD

ZWEISTOFFDÜSE MIT AXIALER WIRBELGASINJEKTION FÜR EINE GASTURBINE UND ENTSPRECHENDES VERFAHREN

INJECTEUR DE BICARBURANT AYANT UNE INJECTION DE GAZ AXIAL TOURBILLONNANT POUR UNE TURBINE À GAZ ET PROCÉDÉ ASSOCIÉ


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 30.08.2013 US 201361872306 P

(43)Date of publication of application:
06.07.2016 Bulletin 2016/27

(73)Proprietor: United Technologies Corporation
Farmington, CT 06032 (US)

(72)Inventors:
  • KOPP-VAUGHAN, Kristin
    East Hartford, Connecticut 06118 (US)
  • SNYDER, Timothy S.
    Glastonbury, Connecticut 06033 (US)
  • SMITH, Randolph J.
    Ellington, Connecticut 06029 (US)
  • DAI, Zhongtao
    Glastonbury, CT 06033 (US)

(74)Representative: Dehns 
St. Bride's House 10 Salisbury Square
London EC4Y 8JD
London EC4Y 8JD (GB)


(56)References cited: : 
US-A- 4 977 740
US-A1- 2002 011 064
US-A1- 2009 277 176
US-A1- 2012 047 903
US-A- 5 505 045
US-A1- 2006 248 898
US-A1- 2011 089 264
US-A1- 2013 047 620
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    BACKGROUND



    [0001] The present disclosure relates to a gas turbine engine and, more particularly, to dual fuel nozzles with passages for both a liquid and a gas.

    [0002] Gas turbine engines, such as Industrial Gas Turbines utilized in power production, mechanical drives as well as aero engines in commercial and military aircraft, include a compressor section to pressurize airflow, a combustor section to burn a hydrocarbon fuel in the presence of the pressurized air, and a turbine section to extract energy from the resultant combustion gases.

    [0003] The combustor section includes a multiple of circumferentially distributed fuel nozzles that project into a forward section of a combustion chamber to supply fuel to mix with the pressurized airflow. The fuel nozzles may simultaneously utilize different types and combinations of fuel such as Jet-A, diesel, JP8, natural gas and others. Further, to facilitate lower NOx emissions, water may be injected though the nozzle as well. Although effective, the water-to-fuel ratio may result in decreased circumferential uniformity and swirl.

    [0004] US 2012/047903 A1 discloses staged pilots in an axial fuel nozzle with three axial air swirlers for gas turbine engines. An outer annular liquid fuel passage is positioned radially within an outer air swirler. An inner annular liquid fuel passage terminates with a multiple of skewed slots and is positioned radially outward of an inner air swirler.

    [0005] US 2009/277176 A1 discloses a pure air blast fuel injector.

    [0006] US 4,977,740 discloses a method of directing a fuel gas and a liquid fuel through a dual fuel axial injector nozzle and into a combustor of a gas turbine. The nozzle features an inner and an outer axial air swirler. Fuel gas flows through an annular conduit surrounding the outer air swirler and is ejected through an array of axial holes. Liquid fuel is ejected through an annular orifice between the inner and the outer air swirler.

    SUMMARY



    [0007] From a first aspect, the invention provides a fuel nozzle for a combustor of a gas turbine engine as recited in claim 1.

    [0008] In a further embodiment of the present disclosure, each of the multiple of skewed slots are at least partially defined by a vane within the annular fuel gas passage.

    [0009] In a further embodiment of any of the foregoing embodiments of the present disclosure, each of the multiple of skewed slots are angled with respect to the axis at an angle at an angle greater than an angle of swirl of either of a surrounding air stream.

    [0010] In a further embodiment of any of the foregoing embodiments of the present disclosure, a trailing edge of the multiple of skewed slots at least partially form a boundary of each of the skewed slots.

    [0011] In a further embodiment of any of the foregoing embodiments of the present disclosure, each of the multiple of skewed slots are quadrilateral in shape.

    [0012] In a further embodiment of any of the foregoing embodiments of the present disclosure, each of the multiple of skewed slots are at least partially defined by a vane that extends radially inward from an inner wall of the outer air seal (outer air swirler).

    [0013] In a further embodiment of any of the foregoing embodiments of the present disclosure, each vane extends radially inward toward an outer wall of the inner air seal (inner air swirler).

    [0014] A further embodiment of any of the foregoing embodiments of the present disclosure includes an air inflow tube along the axis within the inner air swirler, the air inflow tube defining a central air passage.

    [0015] This invention also provides a method of directing a fuel gas and a liquid through a fuel nozzle and into a combustor of a gas turbine engine as recited in claim 7.

    [0016] A further embodiment of any of the foregoing embodiments of the present disclosure includes swirling the fuel gas through a multiple of skewed slots.

    [0017] A further embodiment of any of the foregoing embodiments of the present disclosure includes defining a quadrilateral exit for each of the multiple of skewed slots.

    [0018] A further embodiment of any of the foregoing embodiments of the present disclosure includes directing an airflow through a central passage radially within the annular liquid passage.

    [0019] A further embodiment of any of the foregoing embodiments of the present disclosure includes swirling the airflow within the central passage.

    [0020] A further embodiment of any of the foregoing embodiments of the present disclosure includes directing the airflow through the outer annular air passage at least partially radially inward.

    [0021] A further embodiment of any of the foregoing embodiments of the present disclosure includes directing the liquid at least partially radially inward.

    [0022] The foregoing features and elements may be combined in various combinations without exclusivity, unless expressly indicated otherwise. These features and elements as well as the operation thereof will become more apparent in light of the following description and the accompanying drawings. It should be understood, however, the following description and drawings are intended to be exemplary in nature and non-limiting.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0023] Various features will become apparent to those skilled in the art from the following detailed description of the disclosed non-limiting embodiment. The drawings that accompany the detailed description can be briefly described as follows:

    Figure 1 is a schematic cross-section of an example gas turbine engine architecture;

    Figure 2 is a schematic cross-section of another example gas turbine engine architecture;

    Figure 3 is an expanded longitudinal schematic sectional view of a combustor section according to one non-limiting embodiment;

    Figure 4 is an isometric view of a fuel injector;

    Figure 5 is a sectional view of the fuel injector of Figure 4;

    Figure 6 is an expanded sectional view of a fuel nozzle;

    Figure 7 is a perspective sectional view of the fuel nozzle;

    Figure 8 is an expanded front view of the fuel nozzle; and

    Figure 9 is a schematic radially inward looking view of a vane for the fuel nozzle according to one disclosed non-limiting embodiment.


    DETAILED DESCRIPTION



    [0024] Figure 1 schematically illustrates a gas turbine engine 20. The gas turbine engine 20 is disclosed herein as a two-spool turbo fan that generally includes a fan section 22, a compressor section 24, a combustor section 26 and a turbine section 28. The fan section 22 drives air along a bypass flowpath and into the compressor section 24. The compressor section 24 drives air along a core flowpath for compression and communication into the combustor section 26, which then expands and directs the air through the turbine section 28. Although depicted as a turbofan in the disclosed non-limiting embodiment, it should be understood that the concepts described herein are not limited to use with turbofans as the teachings may be applied to other types of turbine engines such as a low bypass augmented turbofan, turbojets, turboshafts, and three-spool (plus fan) turbofans with an intermediate spool. Still other engine architectures 20A are located within an enclosure 30 (Figure 2) typical of an industrial gas turbine (IGT).

    [0025] With reference to Figure 3, the combustor section 26 generally includes a combustor 50 with an outer combustor wall assembly 60, an inner combustor wall assembly 62 and a diffuser case 64. The outer combustor wall assembly 60 and the inner combustor wall assembly 62 are spaced apart such that a combustion chamber 66 is defined therebetween. The combustion chamber 66 may be generally annular in shape.

    [0026] The outer combustor liner assembly 60 is spaced radially inward from an outer diffuser case 64A of the diffuser case module 64 to define an outer annular plenum 76. The inner combustor liner assembly 62 is spaced radially outward from an inner diffuser case 64B of the diffuser case module 64 to define an inner annular plenum 78. It should be understood that although a particular combustor is illustrated, other combustor types with various combustor liner arrangements will also benefit herefrom. It should be further understood that the disclosed cooling flow paths are but an illustrated embodiment and should not be limited only thereto.

    [0027] The combustor wall assemblies 60, 62 contain the combustion products for direction toward the turbine section 28. Each combustor wall assembly 60, 62 generally includes a respective support shell 68, 70 which supports one or more liner panels 72, 74 mounted to a hot side of the respective support shell 68, 70. Each of the liner panels 72, 74 may be generally rectilinear and manufactured of, for example, a nickel based super alloy, ceramic or other temperature resistant material and are arranged to form a liner array. In one disclosed non-limiting embodiment, the liner array includes a multiple of forward liner panels 72A and a multiple of aft liner panels 72B that are circumferentially staggered to line the hot side of the outer shell 68. A multiple of forward liner panels 74A and a multiple of aft liner panels 74B are circumferentially staggered to line the hot side of the inner shell 70.

    [0028] The combustor 50 further includes a forward assembly 80 immediately downstream of the compressor section 24 to receive compressed airflow therefrom. The forward assembly 80 generally includes an annular hood 82 and a bulkhead assembly 84 which locate a multiple of fuel nozzles 86 (one shown) and a multiple of swirlers 90 (one shown). Each of the swirlers 90 is mounted within an opening 92 of the bulkhead assembly 84 to be circumferentially aligned with one of a multiple of annular hood ports 94. Each bulkhead assembly 84 generally includes a bulkhead support shell 96 secured to the combustor wall assembly 60, 62, and a multiple of circumferentially distributed bulkhead liner panels 98 secured to the bulkhead support shell 96.

    [0029] The annular hood 82 extends radially between, and is secured to, the forwardmost ends of the combustor wall assemblies 60, 62. The annular hood 82 forms the multiple of circumferentially distributed hood ports 94 that accommodate the respective fuel nozzle 86 and introduce air into the forward end of the combustion chamber 66. Each fuel nozzle 86 may be secured to the diffuser case module 64 and project through one of the hood ports 94 and the respective swirler 90.

    [0030] The forward assembly 80 introduces core combustion air into the forward section of the combustion chamber 66 while the remainder enters the outer annular plenum 76 and the inner annular plenum 78. The multiple of fuel nozzles 86 and adjacent structure generate a blended fuel-air mixture that supports stable combustion in the combustion chamber 66.

    [0031] Opposite the forward assembly 80, the outer and inner support shells 68, 70 are mounted to a first row of Nozzle Guide Vanes (NGVs) 28A. The NGVs 28A are static engine components which direct the combustion gases onto the turbine blades in the turbine section 28 to facilitate the conversion of pressure energy into kinetic energy. The combustion gases are also accelerated by the NGVs 28A because of their convergent shape and are typically given a "spin" or a "swirl" in the direction of turbine rotation.

    [0032] With reference to Figure 4, each fuel injector 86 generally includes a first inlet 100 and a second inlet 102 defined by an inlet housing 104, a support housing 106 and a nozzle assembly 108. The first inlet 100 is transverse to the second inlet 102. The inlet housing 104 is received within the support housing 106 and a tube 110 extends through the housings 104, 106 (Figure 5).

    [0033] With reference to Figure 5, the first inlet 100 may receive a first fluid such as a liquid and the second inlet 102 may receive a second fluid such as a gas. The fuel injector 86 in the disclosed non-limiting embodiment provides concentric passages for a liquid such as Jet-A, diesel, JP8, water and combinations thereof as well as a gas such as natural gas. Each of the fuels are communicated through separate concentric passages within the fuel injector 86 such that gas turbine engine 20 readily operates on either fuel or combinations thereof.

    [0034] The tube 110 separates the liquid from the gas. The tube 110 is secured within the inlet housing 104 with a seal such as an O-ring at one end section 112 and at the opposite end section 114 in the nozzle assembly 108 via a braze, weld, thread or other attachment. The tube 110 defines an annular gas passage 116 within the housings 104, 106 that operates as a heat shield to minimize or prevent coking of the liquid through the tube 110.

    [0035] With reference to Figure 6, the nozzle assembly 108 is at least partially received within the swirler 90 and generally includes an outer air swirler 120, an inner air swirler 122 and an air inflow tube 124 with a helical inflow vane 126 along a nozzle axis F. An outer annular air passage 128 is defined around axis F and within the outer air swirler 120. An annular fuel gas passage 130 is defined around axis F and between the outer air swirler 120 and the inner air swirler 122. The annular fuel gas passage 130 receives the fuel gas from within the annular gas passage 116 around the tube 110. An annular liquid passage 132 is defined around axis F and between the inner air swirler 122 and the air inflow tube 124. The annular liquid passage 132 receives the liquid from within the tube 110. A central air passage 125 is defined along axis F within the air inflow tube 124.

    [0036] The outer annular air passage 128 is defined between an outer wall 134 and an inner wall 136 of the outer air swirler 120. An end section 138 of the outer wall 134 and an end section 140 of the inner wall 136 may be turned radially inward toward axis F to direct the airflow at least partially radially inward. The outer wall 134 of the outer air swirler 120 includes a multiple of axial slots 135 which receive airflow therethrough. It should be appreciated that various geometries outer air swirler 120 will benefit herefrom.

    [0037] The end section 140 of the inner wall 136 abuts an outer wall 142 of the inner air swirler 122 to define a multiple of skewed slots 144 (best seen in Figure 7) to form an axial swirled exit for the annular gas passage 130. That is, the annular gas passage 130 terminates with the multiple of skewed slots 144.

    [0038] The annular gas passage 130 communicates essentially all, e.g., about one hundred (100) percent of the fuel gas through the multiple of skewed slots 144. The multiple of skewed slots 144 direct the gas axially and imparts a swirl thereto. Each of the multiple of skewed slots 144 in the disclosed non-limiting embodiment are skewed quadrilaterals in shape (best seen in Figure 8). In one disclosed non-limiting embodiment, the multiple of skewed slots 144 are skewed at an angle α (Figure 9) between about fifty to sixty (50-60) degrees around the axis F. In this disclosed non-limiting embodiment, the angle is typically greater than an angle of swirl of either of the surrounding air streams.

    [0039] The outer wall 142 and an inner wall 146 of the inner air swirler 122 define the annular liquid passage 132. An end section 148 of the outer wall 142 and an end section 150 of the inner wall 146 may be turned radially inward toward axis F to direct the liquid at least partially radially inward. The air inflow tube 124 is mounted within the inner wall 146 and includes the upstream helical inflow vane 126 to swirl the airflow therethrough.

    [0040] With reference to Figure 9, each of the multiple of skewed slots 144 are at least partially defined by a vane 160 within the annular fuel gas passage 130. Each vane 160 is defined by an airfoil wall surface 162 between a leading edge 164 and a trailing edge 166 to define a generally concave shaped portion to form a pressure side 168 and a generally convex shaped portion forming a suction side 170. Each vane 160 is angled with respect to the axis F at the aforementioned angle α of about fifty to sixty (50-60) degrees such that the trailing edge 166 thereof, the outer air swirler 120 and the inner air swirler 122 form the skewed quadrilateral exits of the skewed slots 144 (Figure 8).

    [0041] The multiple of skewed slots 144 decrease the injection area and increase axial swirl momentum to increase circumferential uniformity, total air swirl due to the angle of gas injection and increase air stream mixing downstream of nozzle to facilitate fuel-air mixing.

    [0042] It should be understood that relative positional terms such as "forward," "aft," "upper," "lower," "above," "below," and the like are with reference to the normal operational attitude of the vehicle and should not be considered otherwise limiting.

    [0043] It should be understood that like reference numerals identify corresponding or similar elements throughout the several drawings. It should also be understood that although a particular component arrangement is disclosed in the illustrated embodiment, other arrangements will benefit herefrom.

    [0044] Although particular step sequences are shown, described, and claimed, it should be understood that steps may be performed in any order, separated or combined unless otherwise indicated and will still benefit from the present disclosure.

    [0045] The foregoing description is exemplary rather than defined by the limitations within. Various non-limiting embodiments are disclosed herein, however, one of ordinary skill in the art would recognize that various modifications and variations in light of the above teachings will fall within the scope of the appended claims. It is therefore to be understood that within the scope of the appended claims, the disclosure may be practiced other than as specifically described. For that reason the appended claims should be studied to determine true scope and content.


    Claims

    1. A fuel nozzle (86) for a combustor of a gas turbine engine (20;20A) comprising:

    an outer air swirler (120) along an axis, said outer air swirler (120) defining an outer annular air passage (128); and

    an inner air swirler (122) along said axis to define an annular fuel gas passage (130) around said axis between said outer air swirler (120) and said inner air swirler (122), said annular fuel gas passage (130) having an annular liquid passage (132) radially therein and terminating with a multiple of skewed slots (144) angled with respect to said axis at an angle greater than an angle of swirl of a surrounding air stream, wherein each of said multiple of skewed slots (144) is at least partially defined by a vane (160) within said annular fuel gas passage (130).


     
    2. The fuel nozzle as recited in claim 1, wherein a trailing edge (166) of said multiple of skewed slots (144) at least partially form a boundary of each of said skewed slots (144).
     
    3. The fuel nozzle as recited in claim 1 or 2, wherein each of said multiple of skewed slots (144) is quadrilateral in shape.
     
    4. The fuel nozzle as recited in any preceding claim, wherein each of said multiple of skewed slots (144) are at least partially defined by a vane (160) that extends radially inward from an inner wall (136) of said outer air swirler (120).
     
    5. The fuel nozzle as recited in claim 4, wherein each vane (160) extends radially inward toward an outer wall (142) of said inner air swirler (122).
     
    6. The fuel nozzle as recited in any preceding claim, further comprising an air inflow tube (124) along said axis within said inner air swirler (122), said air inflow tube (124) defining a central air passage (125).
     
    7. A method of directing a fuel gas and a liquid through a fuel nozzle (86) and into a combustor of a gas turbine engine, comprising:

    directing an airflow through an outer annular air passage (128), defined by an outer air swirler (120) along an axis;

    directing about one hundred (100) percent of the fuel gas through an annular fuel gas passage (130) defined by an inner air swirler (122) along said axis radially within the outer annular air passage (128);

    directing the liquid though an annular liquid passage (132) radially within the annular fuel gas passage (130); and

    swirling the fuel gas through a multiple of skewed slots (144) angled with respect to said axis at an angle greater than an angle of swirl of a surrounding air stream, wherein each of said multiple of skewed slots (144) is at least partially defined by a vane (160) within said annular fuel gas passage (130).


     
    8. The method as recited in claim 7, further comprising: defining a quadrilateral exit for each of the multiple of skewed slots (144).
     
    9. The method as recited in claim 7 or 8, further comprising: directing an airflow through a central passage (125) radially within said annular liquid passage (132).
     
    10. The method as recited in claim 9, further comprising: swirling the airflow within the central passage (125).
     
    11. The method as recited in any of claims 7 to 10, further comprising: directing the airflow through the outer annular air passage (128) at least partially radially inward.
     
    12. The method as recited in any of claims 7 to 11, further comprising: directing the liquid at least partially radially inward.
     


    Ansprüche

    1. Brennstoffdüse (86) für eine Brennkammer eines Gasturbinentriebwerks (20;20A), umfassend:

    einen äußeren Luftdrallerzeuger (120) entlang einer Achse, wobei der äußere Luftdrallerzeuger (120) einen ringförmigen äußeren Luftdurchgang (128) definiert; und

    einen inneren Luftdrallerzeuger (122) entlang der Achse, um einen ringförmigen Brennstoffgasdurchgang (130) um die Achse zwischen dem äußeren Luftdrallerzeuger (120) und dem inneren Luftdrallerzeuger (122) zu definieren, wobei der ringförmige Brennstoffgasdurchgang (130) einen ringförmigen Flüssigkeitsdurchgang (132) radial darin aufweist und mit einem Vielfachen von schräg gestellten Nuten (144), die in Bezug auf die Achse in einem Winkel, der größer als ein Wirbelwinkel eines umgebenden Luftstroms ist, gewinkelt sind, abschließt, wobei jede des Vielfachen von schräg gestellten Nuten (144) mindestens teilweise durch eine Schaufel (160) innerhalb des ringförmigen Brennstoffgasdurchgangs (130) definiert ist.


     
    2. Brennstoffdüse nach Anspruch 1, wobei eine Hinterkante (166) des Vielfachen von schräg gestellten Nuten (144) mindestens teilweise eine Grenze von jeder der schräg gestellten Nuten (144) ausbildet.
     
    3. Brennstoffdüse nach Anspruch 1 oder 2, wobei jede des Vielfachen von schräg gestellten Nuten (144) eine viereckige Form aufweist.
     
    4. Brennstoffdüse nach einem der vorhergehenden Ansprüche, wobei jede des Vielfachen von schräg gestellten Nuten (144) mindestens teilweise durch eine Schaufel (160) definiert ist, die sich radial nach innen von einer Innenwand (136) des äußeren Luftdrallerzeugers (120) erstreckt.
     
    5. Brennstoffdüse nach Anspruch 4, wobei sich jede Schaufel (160) radial nach innen in Richtung einer Außenwand (142) des inneren Luftdrallerzeugers (122) erstreckt.
     
    6. Brennstoffdüse nach einem der vorhergehenden Ansprüche, ferner umfassend ein Lufteinlassrohr (124) entlang der Achse innerhalb des inneren Luftdrallerzeugers (122), wobei das Lufteinlassrohr (124) einen zentralen Luftdurchgang (125) definiert.
     
    7. Verfahren zum Leiten eines Brennstoffgases und einer Flüssigkeit durch eine Brennstoffdüse (86) und in eine Brennkammer eines Gasturbinentriebwerks, umfassend:

    Leiten eines Luftstroms durch einen ringförmigen äußeren Luftdurchgang (128), der durch einen äußeren Luftdrallerzeuger (120) entlang einer Achse definiert ist;

    Leiten von etwa einhundert (100) Prozent des Brennstoffgases durch einen ringförmigen Brennstoffgasdurchgang (130), der durch einen inneren Luftdrallerzeuger (122) entlang der Achse radial innerhalb des ringförmigen äußeren Luftdurchgangs (128) definiert ist;

    Leiten der Flüssigkeit durch einen ringförmigen Flüssigkeitsdurchgang (132) radial innerhalb des ringförmigen Brennstoffgasdurchgangs (130); und

    Wirbeln des Brennstoffgases durch ein Vielfaches von schräg gestellten Nuten (144), die in Bezug auf die Achse in einem Winkel, der größer als ein Wirbelwinkel eines umgebenden Luftstroms ist, gewinkelt sind, wobei jede des Vielfachen von schräg gestellten Nuten (144) mindestens teilweise durch eine Schaufel (160) innerhalb des ringförmigen Brennstoffgasdurchgangs (130) definiert ist.


     
    8. Verfahren nach Anspruch 7, ferner umfassend: Definieren eines viereckigen Ausgangs für jede des Vielfachen von schräg gestellten Nuten (144).
     
    9. Verfahren nach Anspruch 7 oder 8, ferner umfassend: Leiten eines Luftstroms durch einen zentralen Durchgang (125) radial innerhalb des ringförmigen Flüssigkeitsdurchgangs (132).
     
    10. Verfahren nach Anspruch 9, ferner umfassend: Wirbeln des Luftstroms innerhalb des zentralen Durchgangs (125).
     
    11. Verfahren nach einem der Ansprüche 7 bis 10, ferner umfassend: Leiten des Luftstroms durch den ringförmigen äußeren Luftdurchgang (128) mindestens teilweise radial nach innen.
     
    12. Verfahren nach einem der Ansprüche 7 bis 11, ferner umfassend: Leiten der Flüssigkeit mindestens teilweise radial nach innen.
     


    Revendications

    1. Injecteur de carburant (86) pour une chambre de combustion d'une turbine à gaz (20;20A) comprenant :

    un tourbillonneur d'air extérieur (120) le long d'un axe, ledit tourbillonneur d'air extérieur (120) définissant un passage d'air annulaire extérieur (128) ; et

    un tourbillonneur d'air intérieur (122) le long dudit axe pour définir un passage de gaz combustible annulaire (130) autour dudit axe entre ledit tourbillonneur d'air extérieur (120) et ledit tourbillonneur d'air intérieur (122), ledit passage de gaz combustible annulaire (130) ayant un passage de liquide annulaire (132) radialement à l'intérieur de celui-ci et se terminant par une pluralité de fentes obliques (144) inclinées par rapport audit axe à un angle supérieur à un angle de tourbillon d'un courant d'air environnant, dans lequel chacune de ladite pluralité de fentes obliques (144) est au moins partiellement définie par une aube (160) à l'intérieur dudit passage de gaz combustible annulaire (130).


     
    2. Injecteur de carburant selon la revendication 1, dans lequel un bord arrière (166) de ladite pluralité de fentes obliques (144) forme au moins partiellement une limite de chacune desdites fentes obliques (144).
     
    3. Injecteur de carburant selon la revendication 1 ou 2, dans lequel chacune de ladite pluralité de fentes obliques (144) est de forme quadrilatérale.
     
    4. Injecteur de carburant selon une quelconque revendication précédente, dans lequel chacune de ladite pluralité de fentes obliques (144) est au moins partiellement définie par une aube (160) qui s'étend radialement vers l'intérieur depuis une paroi intérieure (136) dudit tourbillonneur d'air extérieur (120).
     
    5. Injecteur de carburant selon la revendication 4, dans lequel chaque aube (160) s'étend radialement vers l'intérieur vers une paroi extérieure (142) dudit tourbillonneur d'air intérieur (122).
     
    6. Injecteur de carburant selon une quelconque revendication précédente, comprenant en outre un tube d'entrée d'air (124) le long dudit axe à l'intérieur dudit tourbillonneur d'air intérieur (122), ledit tube d'entrée d'air (124) définissant un passage d'air central (125).
     
    7. Procédé de direction d'un gaz combustible et d'un liquide à travers une buse de carburant (86) et dans une chambre de combustion d'une turbine à gaz, comprenant :

    la direction d'un écoulement d'air à travers un passage d'air annulaire extérieur (128), défini par un tourbillonneur d'air extérieur (120) le long d'un axe ;

    la direction d'environ cent (100) pour cent du gaz combustible à travers un passage de gaz combustible annulaire (130) défini par un tourbillonneur d'air intérieur (122) le long dudit axe radialement à l'intérieur du passage d'air annulaire extérieur (128) ;

    la direction du liquide à travers un passage de liquide annulaire (132) radialement à l'intérieur du passage de gaz combustible annulaire (130) ; et

    le tourbillonnement du gaz combustible à travers une pluralité de fentes obliques (144) inclinées par rapport audit axe à un angle supérieur à un angle de tourbillonnement d'un courant d'air environnant, dans lequel chacune de ladite pluralité de fentes obliques (144) est au moins partiellement définie par une aube (160) à l'intérieur dudit passage de gaz combustible annulaire (130).


     
    8. Procédé selon la revendication 7, comprenant en outre : la définition d'une sortie quadrilatérale pour chacune de ladite pluralité de fentes obliques (144).
     
    9. Procédé selon la revendication 7 ou 8, comprenant en outre : la direction d'un écoulement d'air à travers un passage central (125) radialement à l'intérieur dudit passage de liquide annulaire (132).
     
    10. Procédé selon la revendication 9, comprenant en outre : le tourbillonnement de l'écoulement d'air à l'intérieur du passage central (125).
     
    11. Procédé selon l'une quelconque des revendications 7 à 10, comprenant en outre : la direction de l'écoulement d'air à travers le passage d'air annulaire extérieur (128) au moins partiellement radialement vers l'intérieur.
     
    12. Procédé selon l'une quelconque des revendications 7 à 11, comprenant en outre : la direction du liquide au moins partiellement radialement vers l'intérieur.
     




    Drawing
































    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description