(19)
(11)EP 3 039 688 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
13.05.2020 Bulletin 2020/20

(21)Application number: 14858994.8

(22)Date of filing:  06.10.2014
(51)Int. Cl.: 
H01B 3/08  (2006.01)
C03C 3/097  (2006.01)
C03C 8/08  (2006.01)
H05K 1/03  (2006.01)
H05K 1/05  (2006.01)
H05K 1/00  (2006.01)
C03C 8/16  (2006.01)
C09K 5/14  (2006.01)
H05K 3/20  (2006.01)
C03C 8/14  (2006.01)
(86)International application number:
PCT/US2014/059219
(87)International publication number:
WO 2015/065654 (07.05.2015 Gazette  2015/18)

(54)

DIELECTRIC PASTES FOR ALUMINUM SUBSTRATES

DIELEKTRISCHE PASTEN FÜR ALUMINIUMSUBSTRATE

PÂTES DIÉLECTRIQUES POUR SUBSTRATS EN ALUMINIUM


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 28.10.2013 US 201361896187 P

(43)Date of publication of application:
06.07.2016 Bulletin 2016/27

(73)Proprietor: Ferro Corporation
Mayfield Heights, OH 44124 (US)

(72)Inventors:
  • SRIDHARAN, Srinivasan
    Strongsville, OH 44136 (US)
  • BROWN, Orville W.
    Escondido, CA 92026 (US)
  • GRADDY, George E.
    Del Mar, CA 92014 (US)

(74)Representative: Gille Hrabal 
Brucknerstrasse 20
40593 Düsseldorf
40593 Düsseldorf (DE)


(56)References cited: : 
WO-A2-2010/020753
RU-C1- 2 052 850
RU-U1- 123 620
CN-A- 101 740 160
RU-C2- 2 384 027
US-A1- 2012 125 428
  
  • CHUNG D D L ED - CORONAS ALBERTO ET AL: "Materials for thermal conduction", APPLIED THERMAL ENGINEERING, PERGAMON, OXFORD, GB, vol. 21, no. 16, 1 November 2001 (2001-11-01), pages 1593-1605, XP002517087, ISSN: 1359-4311, DOI: 10.1016/S1359-4311(01)00042-4
  
Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


Description

FIELD OF THE INVENTION



[0001] The present invention provides high thermal conductivity dielectric materials systems or pastes for use on aluminum alloy substrates for LED and high power circuitry applications.

BACKGROUND OF THE INVENTION



[0002] There has been continued interest in providing inorganic based dielectrics with good electrical isolation yet possessing excellent thermal conductivity to be applied on substrates made of aluminum and its alloys. Such substrates can act as good heat sinks to take out the heat from the device/dielectrics interface to keep them cool while operating at higher wattage and/or conducting high currents through circuitry laid down on top of these dielectrics coated metal substrates for electronic applications such as substrates for high brightness high power LEDs used in automotive electronics, next generation lighting, television, high power electronics, OLEDs, and solar applications.

[0003] CN 101 740 160 A discloses dielctric compositions similar to those of the present invention.

[0004] Thermal conductivity enhancers for use in, e.g. micro electronics application, are known from D. D. L. Chung, Applied Thermal Engineering, 2001, 21, 1593.

SUMMARY OF THE INVENTION



[0005] The difficulties and drawbacks associated with known systems are overcome in the present invention. The scope of the invention is defined by the claims.

[0006] For relatively low temperature flow and sintering applications (typically 660 °C or less for aluminum and its alloys), but for high use temperatures (up to 200 to 300 °C) inorganic (glass or glass-ceramics or ceramics) based dielectric systems are needed. Among other desirable properties, these glass or glass-ceramic based dielectrics offer low flow temperatures needed to avoid melting aluminum and its alloys. Generally glasses have relatively low thermal conductivity and high insulation resistance. Hence increasing the thermal conductivity (for good heat dissipation) while retaining high breakdown voltage and insulation resistance (for electrical isolation) is a challenge.

[0007] Any attempt to incorporate metallic particles into these glass based dielectrics to improve thermal conductivity could result in loss of electrical isolation. Therefore this research has been carried out to explore attaining high thermal conductivity and higher insulation resistance (or in other words higher breakdown voltage) in glass based inorganic dielectrics.

[0008] An embodiment of the invention is a paste containing a glass component for use in forming a dielectric layer upon an aluminum substrate upon firing.

[0009] The glass component includes at least one glass selected from the group consisting of: (i) an alkali oxide rich glass and (ii) a bismuth oxide rich glass.

[0010] An embodiment of the invention is a dielectric composition comprising: (a) a glass component comprising (i) from about 30 to about 75 mol% SiO2, (ii) from about 5 to about 25 mol% TiO2, (iii) from about 5 to about 40 mol% (Li2O+ Na2O + K2O+ Rb2O + Cs2O), and (iv) from about 0.1 to about 15 mol% (P2O5+Nb2O5+V2O5), (b) an organic vehicle, and (c) a solvent. The dielectric composition further comprises a thermal conductivity enhancer, wherein the thermal conductivity enhancer is an additive enhancing thermal conductivity selected from the group consisting of boron nitride, boron carbide, silicon carbide, silicon, aluminium nitride, metal bonded diamond powder, resin bonded diamond powder, polycrystalline diamond powder, and natural diamond powder.

[0011] Another embodiment of the invention is an electronic device comprising: (a) an aluminum substrate, (b) at least one layer of any dielectric composition disclosed herein, disposed on at least a portion of the aluminum substrate, (c) a conductive trace comprising at least one selected from the group consisting of copper, aluminum, silver, platinum and palladium, and (d) a power circuit, wherein the substrate, dielectric composition and conductive trace are arranged so that the dielectric composition at least one of electrically separates and physically separates the aluminum substrate and conductive trace and wherein the power circuit contacts only the conductive trace.

[0012] Another embodiment of the invention is a method of forming a dielectric layer upon an aluminum substrate comprising the steps of: (a) applying a dielectric composition paste upon an aluminum substrate, and (b) firing the substrate to form a dielectric layer upon the substrate. The dielectric composition is any disclosed herein. Multiple layers of dielectric paste may be applied prior to firing. The firing can be conducted at a temperature of from about 400 to about 660 °C.

[0013] An embodiment of the invention is a method of producing an electronic device comprising (a) providing an aluminum substrate, (b) applying to the aluminum substrate at least one layer of any dielectric composition disclosed herein, (c) applying at least one layer of a conductive paste to the at least one layer of dielectric composition, to form an assembly, (d) firing the assembly at 400-660 °C to sinter the dielectrics and conductive paste, and (e) positioning a power circuit in electrical contact with the at least one layer of conductive paste.

[0014] An embodiment of the invention is an electronic device selected from the group consisting of vacuum insulated glass, solar cell contact, solar cell, solar cell module, organic PV device, plasma display device, nanocrystal display, electrochromic device, electrochromic material system, sensors, suspended particle device, micro-blind, liquid crystal device, smart window, switchable window, smart glass, eglass, quantum dot devices, thermoelectric devices, batteries, light emitting diodes (LED), surface-conduction electron-emitter display

[0015] (SED), field emission displays (FED), organic light emitting diodes (OLED), liquid crystal displays (LCD), digital light processing (DLP), ferro-liquid displays (FLD), interferometric modulator displays (IMOD), thick-film dielectric electroluminescent displays (TDEL), quantum dot electroluminescent displays (QDLED), time multiplexed optical shutters (TMOS), telescopic pixel displays (TPD), liquid crystal lasers (LCL), laser phosphor displays (LPD), organic light-emitting transistors (OLET), and combinations thereof, which comprises at least one layer of any dielectric composition disclosed herein.

BRIEF DESCRIPTION OF THE DRAWING



[0016] FIG.1 is a cross-sectional view of a preferred embodiment of the invention.

DESCRIPTION OF THE PREFERRED EMBODIMENTS



[0017] The present invention provides an electrically insulative, low temperature fireable glass-based dielectric composition that can be used in numerous applications. In certain versions of the invention, not falling within the scope of the claims, the compositions are solvent-free. The invention also provides methods of forming electrically conductive films, circuits, traces, contacts and the like using the inventive compositions. The invention includes devices, products and/or coated substrates formed using the inventive compositions and methods.

[0018] For relatively low temperature flow and sintering applications (typically <660 °C for aluminum and its alloys), but for high use temperatures (up to 200 to 300 °C) inorganic (glass or glass-ceramics or ceramics) based dielectric systems are needed. Among these glass or glass-ceramics based dielectrics offer low flow temperatures needed for not to melt aluminum alloys. Generally glasses have relatively low thermal conductivity and high insulation resistance. Hence increasing the thermal conductivity (for good heat dissipation) while retaining high breakdown voltage (BDV) and insulation resistance (for electrical isolation) is a challenge.

[0019] A device employing the dielectric pastes of the invention is fabricated as follows.

[0020] As shown in Figure 1, an aluminum substrate, 110, which may be made of an aluminum alloy such as those from Table 1, below, is provided. At least one layer (120, 130) of a dielectric paste including any glass composition herein is applied over at least one side of the substrate 110. A conductive paste 140 is selectively applied over the dielectric paste layer(s). The assembly is fired at a temperature sufficient to sinter the dielectrics and conductive paste. Finally, a power circuit, such as an electronic device or LED (for example), signified by 150, is placed in contact with the conductive paste 140. Each layer is printed and fired separately. However, cofiring multiple layers simultaneously is also envisioned.

[0021] The inventors have developed new inorganic dielectrics that: (a) can be applied and sintered on aluminum and its alloys at 4 0 0 - 660 °C (peak temperature using thick film firing profiles); (b) can have conductive traces of copper, aluminum or silver thick films on top to provide current conduction paths; (c) can provide breakdown voltages of 750 V/mil or higher depending on dielectrics layer thickness, length of the conductors and number of layers; (d) can have thermal conductivity as high as 1.0 to 5.0 W/m-K; (e) can have use temperature as high as 350 °C; and (f) can in certain instances pass testing at 85 °C/85% RH for 1,000 hours and higher without losing electrical isolation.

[0022] The major components of the invention: substrate, glass compositions, organic vehicle are set forth hereinbelow.

[0023] Aluminum Substrate. Use of aluminum and its alloys for substrates dictates that the dielectric paste has to fire at temperatures less than the solidus of the alloy. Any aluminum alloy is suitable. Examples of suitable aluminum alloys include AL 1050, AL 1060, AL 1100, AL 2024, AL 3003, AL 380, AL 384, AL 5052, AL 514, AL 6061, and AL 6063, each individually or in any combination, as shown in Table 1. Depending on the solidus of the aluminum alloy the firing temperatures can range from 400 to 660 °C, where the melting point of pure aluminum is 664°C. More preferably the firing temperatures are 450-610 °C, most preferably 480-600 °C.
Table 1: Solidus & Thermal Conductivity of Aluminum Alloys
AlloyAl ContentOthersSolidusThermal Conductivity (@25 °C)
  Wt%   °C W/m-°K
AL 1050 99.1+ Fe, Si 650 222
AL 1060 99.6+ Cu, Si 646 234
AL 1100 99.0+ Cu (0.2-0.5), Fe, Si, Zn, Mn 643 221
AL 3003 98.3+ Mn(1.5)-Cu (0.05-0.2), Fe, Si, Zn 643 193
AL 6063 98.5+ Mg (0.45-0.9); Si (0.2-0.6), Fe, Mn, Zn, Cr, Ti 616 218
AL 5052 96.8+ Mg (2.2-2.8); Cr (0.15-0.35) Fe, Cu, Si, Zn, Mn 607 138
AL 514 96.0 Mg (4.0) 599 138
AL 6061 97.2+ Mg (0.8-1.2) - Si (0.4-0.8) Cr (0.15-0.35) - Cu (0.15-0.4) 582 180
AL 384 77.3+ Si (10.5 - 12.0); Cu (3-4.5); Zn (0-3); Fe (1.3); Mg, Mn, Ni & Sn 516 92
AL 2024 90.7+ Cu (3.8-4.9); Mg (1.2-1.8); Mn (0.3-0.9) Fe, Si, Zn, Ti 502 121


[0024] Glass Compositions. A dielectric composition (in the form of a paste) for forming the dielectric layers can be obtained by mixing an organic vehicle with one or more glass compositions. Appropriate proportions of glass compositions (glass frits) in the dielectric material are determined such that after firing, the desired dielectric layer composition may be obtained. The glass frits useful herein have a D50 particle size of about 0.1 to about 10 microns, preferably about 3 to 8 microns, more preferably about 3 to 5 microns, alternately more preferably about 5 to 8 microns. In another embodiment, the D50 particle size is 0.1-2 microns, preferably 0.1-1 microns. Another particle parameter is D95, which is 15 microns or less, preferably 12 microns or less, more preferably 10 microns or less, and most preferably 5 microns or less. The maximum particle size, Dmax, is 50 microns or less, preferably 30 microns or less, more preferably 25 microns or less, still more preferably 20 microns or less, yet more preferably 15 microns or less and most preferably 10 microns or less. The aforementioned ranges with "or less" can in each case alternately be bounded by a lower limit of 0.01 microns, 0.1 microns or 1 micron. Smaller particle sizes allow the fabrication of thinner dielectric layers, for example less than 100 microns, less than 80 microns, less than 60 microns, less than 50 microns, less than 40 microns, less than 30 microns, less than 20 microns, less than 10 microns and less than 5 microns. Thinner dielectric layers improves thermal conductance.

[0025] Table 2 broadly lists some key glass compositions useful in this invention, not all of which fall within the scope of the claims. An entry such as "Li2O + Na2O + K2O+ Rb2O+Cs2O 5-40" means that any or all of Li2O, Na2O, K2O, Rb2O, and/or Cs2O is present in any combination in an amount of 5 to 40 mole percent of an overall glass composition.
Table 2: Oxide Ranges for Glass Components
Mole %ABCDEFGHJK
Bi2O3 <25 <15 <10 2-8 2-8 2-8 0 0 0 2-8
B2O3 <30 <20 <15 <5 <5 1-3 0 0 0 1-3
ZnO <20 <15 <12 <5 <5 1-4 0 0 0 1-4
SiO2 30-75 30-70 35-70 42-70 42-60 50-68 53-61 50-68 50-68 42-68
TiO2 <25 <20 <15 5-14 5-14 7-15 8-14 9-13 10-12 9-15
Li2O + Na2O + K2O + Rb2O + Cs2O 5-40 10-40 11-37 15-30 15-30   18-27 19-26 20-25 15-30
Nb2O5 + P2O5+V2O5 <15 <10 <10   2-8 <8 1-7   2-7 2-7
Li2O           2-7 2-7 2-7 2-7 2-7
Na2O           9-15 9-15 11-15 11-14 9-15
K2O           4-8 4-8 4.5-7 5-7 4-8


[0026] Table 2 is to be read as additionally disclosing any range noted therein, wherein the lower bound is instead 0.1 or 1 mole %. A range of 5-25 mol% TiO2 may also be understood from column A. Values from different columns in a table may be combined, and certain embodiments may include some, but not all, values from given column. Other embodiments may specify some, but not all components (oxides) from a table. For example an embodiment may include two values from Table 2 (which may or may not be in the same column). Any glass frit in any table may further include at least one selected from the group consisting of: (a) from about 0.1 to about 10 mol% Bi2O3, (b) from about 0.1 to about 15 mol% B2O3, and (c) from about 0.1 to about 12 mol% ZnO. All such combinations are contemplated herein.

[0027] The following glass compositions are also suitable:
Table 3: Key Glass Components in selected glasses.
Oxide/ Mole%ABCDE
Bi2O3 0 4.92 0 6.17 0
B2O3 0 2.28 0 2.86 0
ZnO 0 2.2 0 2.76 0
SiO2 67.73 57.58 57.03 43.59 59.77
TiO2 10.17 9.31 12.43 11.67 11.64
Li2O 3.01 5.15 3.69 6.46 3.45
Na2O 11.64 11.22 14.23 14.08 13.32
K2O 4.92 4.51 6.02 5.66 5.64
Nb2O5 0 0.42 0 0.53 0
P2O5 0.49 0.45 0.6 0.56 0.56
V2O5 2.04 1.86 6 5.66 5.62
Total 100 100 100 100 100


[0028] Suitable commercial glasses, available from Ferro Corporation, Cleveland Ohio, include EG 2871, EG 2934, EG 2964, EG 3046, EG 3600, EG 3608, GL 4317 and others.

[0029] Organic Vehicle. The organic vehicle is a binder in an organic solvent or a binder in water. The binder used herein is not critical; conventional binders such as ethyl cellulose, polyvinyl butanol, ethyl cellulose, and hydroxypropyl cellulose, and combinations thereof are appropriate in combination with a solvent. The organic solvent is also not critical and may be selected in accordance with a particular application method (i.e., printing or sheeting), from conventional organic solvents such as butyl carbitol, acetone, toluene, ethanol, diethylene glycol butyl ether; 2,2,4-trimethyl pentanediol monoisobutyrate (Texanol™); alpha-terpineol; beta-terpineol; gamma terpineol; tridecyl alcohol; diethylene glycol ethyl ether (Carbitol™), diethylene glycol butyl ether (Butyl Carbitol™) and propylene glycol; and blends thereof, Products sold under the Texanol® trademark are available from Eastman Chemical Company, Kingsport, TN; those sold under the Dowanol® and Carbitol® trademarks are available from Dow Chemical Co., Midland, MI. Alternatively, the binder could be selected from polyvinyl alcohol (PVA), polyvinyl acetate (PVAC) in combination with water. Also, commercially available vehicles from Ferro Corporation having product numbers ER2750, ER2761, ER2766 and ER2769, and others, and combinations thereof, are suitable.

[0030] No particular limit is imposed on the organic vehicle content of the pastes. Often the paste contains about 1 to 5 wt % of the binder and about 10 to 50 wt % of the organic solvent, with the balance being the dielectric component (for a dielectric layer). If desired, the respective dielectric compositions may contain up to about 10 wt % of other additives such as dispersants, plasticizers, and thixotropic additives.

[0031] Conductors can be any known in the art, including those disclosed in commonly owned U.S. Pat. No. 7,176,152, with the proviso that such conductors are capable of being fired at 660 °C or less.

[0032] Firing. The dielectric paste is fired in air, at a temperature of less than 660 °C, or from about 500°C to about 660°C, preferably at 560-620 °C, more preferably at 570-600 °C. The dielectric compositions herein require no more than 660 °C to effect full fusion and sintering of the dielectric. The firing temperature is held for about 10-30 minutes to enhance densification. The firing temperature ramp is typically 5°C per minute, although other ramp rates (in degrees Celsius per minute) of 1°, 2°, 10°, 15° or 20° can be used. The pastes can be fired in a typical belt furnace also. Belt furnaces may have 2-15 zones each with different temperatures.

[0033] Use of aluminum and its alloys for substrates dictates that the dielectric paste has to fire at temperatures less than the solidus of the alloy. These aluminum alloys can be any shown in Table 1. Depending on the solidus of the aluminum alloy the firing temperatures can range from 400 to 660 °C, where the melting point of pure aluminum is 664°C. More preferably the firing temperatures are 450-610 °C, most preferably 480-600 °C.

[0034] For such low firing temperatures either high lead glass or high bismuth glass or high alkali glasses can be used. In certain applications lead should be avoided. Glasses having high lead and high bismuth contents can have high breakdown voltage (BDV) so long as the contents of alkali oxides is controlled, to include a value of zero, but the expansion mismatch with aluminum will be high. If the alkali content is increased to increase the expansion then electrical properties suffer.

[0035] The inventors researched various glass compositions and their mixtures, both with glasses alone, and glasses together with oxide additives. Desirable compositional ranges or formulas, are shown in Tables 2 and 3 for the glass component, while the dielectric pastes set forth in Table 4 provide acceptable dielectrics that could be fired at temperatures <660 °C, pass electrical requirements as well as 85C/85% RH for 1,000 hours without losing electrical isolation.

[0036] Note that in connection with the practice of this invention a glass component may comprise a single glass, mixture of glasses, or a mixture of glasses and inorganic oxides additives. For example the glass components in Tables 2 and 3 may contain multiple glasses as well as glass plus crystalline additives. For example the glass component can have a glass rich in bismuth oxide, another glass rich in alkalis with or without crystalline additives such as silica in mineral forms such as quartz, tridymite, cristobalite or in commercially known grades such as minusil; silicates such as zinc silicate (willemite) or titanates such as zinc titanate or bismuth titanate.

[0037] Although it is desired in some applications to avoid lead (Pb) containing glasses, it is envisioned that low melting lead glasses with compositions comprising 25 -75 mole% PbO and a B2O3 content less than 30 mole% can be added to attain firing temperatures <540 °C and thus be utilized in the present invention.

[0038] In addition to these glass components the final dielectric pastes include thermal conductivity enhancing additives (thermal conductivity enhancer) with thermal conductivity (K) typically in the range of 1-2 W/m-K. This is in contrast to typical glass thermal conductivity of about 0.5 W/m-k. The thermal conductivity for the additives is, in a preferred embodiment, K≥30 (such as Boron Nitride), still more preferred K≥50 (that of Boron Carbide) yet more preferred K≥ 80 (that of Silicon Carbide), even more preferred K≥149 (that of Silicon). Still more preferred is when K≥150-200 (that of Aluminum Nitride), and most preferred are additions of diamond powders with thermal conductivity up to 500 W/m-K, such as metal bonded diamond powder (MDP), resin bonded diamond powder (RDP), polycrystalline diamond powder (PDP), or natural diamond powder (NDP) from Advanced Abrasives Corporation, Pennsauken, NJ 08109. The additives detailed in this paragraph are suitable for use in the invention. Metal powders should be avoided as they would degrade the electrical properties of a dielectric composition including them, if there are have current conducting circuit elements on these dielectrics on top of aluminum base.

Examples.



[0039] Table 4 lists key dielectric compositions of the invention tested as dielectrics for aluminum LED substrates. These dielectric pastes were printed and fired on AL3003 substrates at peak temperatures of 580-600 °C in a standard thick film firing profile. The firing was conducted in a Watkin-Johnson 12-zone belt furnace at a belt speed of 3.6" (9.1 cm) per minute. The vehicle is a combination of ethyl-cellulose-based vehicles commercially available from Ferro Corporation. The sequence of dielectric layers on aluminum substrate is shown in Figure 1 and listed in Table 5. After firing the thermal conductivity of these dielectrics is measured using ASTM E1461 Laser Flash Method. The results are summarized in Table 5.
Table 4: Dielectric Pastes
Glass/ wt%Paste E1Paste B1Paste C1Paste C2Paste D1
Glass B   67.59      
Glass C     56.23 53  
Glass D         55.13
Glass E 66.72        
V9250 blue pigment 1.35 1.46 1.35 1.35 1.46
Silicon powder     11.77    
MDP powder       15.01 12.46
Vehicle 25.68 26 25.7 25.69 26
Texanol solvent 6.25 4.95 4.95 4.95 4.95
Total 100 100 100 100 100
Table 5: Dielectrics on Aluminum Substrates and Their Thermal Conductivities
 Paste AIIIIII
Substrate AL3003 AL3003 AL3003 AL3003
Bottom dielectric Paste E1 Paste E1 Paste C1 Paste C2
Top dielectric - layer I Paste B1 Paste D1 Paste D1 Paste D1
Top dielectric - layer II Paste C1 Paste D1 Paste D1 Paste D1
         
At room temperature        
Thickness, dielectrics alone, mm 0.074 0.068 0.094 0.074
Thickness, metal substrate + dielectrics, mm 1.63 1.631 1.649 1.625
Average bulk density of dielectrics, gm/cc 3.08 3.23 3.18 3.25
Specific heat of dielectrics, Cp, J/g-K 0.673 0.706 0.718 0.705
Diffusivity of dielectrics, α, mm2/sec 0.576 0.664 1.05 1.25
Thermal conductivity, K, W/m-K        
Thermal conductivity (Dielectrics alone) W/m-K 1.19 1.51 2.39 2.86
Thermal conductivity (metal substrate+dielectrics) W/m-K 22.8 30 33.9 46.2


[0040] An embodiment of the invention is a device selected from the group consisting of vacuum insulated glass, solar cell contact, solar cell, solar cell module, organic PV device, plasma display device, nanocrystal display, electrochromic device, electrochromic material system, sensors, suspended particle device, micro-blind, liquid crystal device, smart window, switchable window, smart glass, eglass, quantum dot devices, thermolelectric devices, batteries, light emitting diodes (LED), surface-conduction electron-emitter display (SED), field emission displays (FED), organic light emitting diodes (OLED), liquid crystal displays (LCD), digital light processing (DLP), ferro-liquid displays (FLD), interferometric modulator displays (IMOD), thick-film dielectric electroluminescent displays (TDEL), quantum dot electroluminescent displays (QDLED), time multiplexed optical shutters (TMOS), telescopic pixel displays (TPD), liquid crystal lasers (LCL), laser phosphor displays (LPD), organic light-emitting transistors (OLET), and combinations thereof, which comprises at least one dielectric layer including a glass composition disclosed herein.


Claims

1. A dielectric composition comprising:

a) a glass component comprising

i. from about 30 to about 75 mol% SiO2,

ii. from about 5 to about 25 mol% TiO2,

iii. from about 5 to about 40 mol% (Li2O+ Na2O + K2O+ Rb2O + Cs2O), and

iv. from about 0.1 to about 15 mol% (P2O5+Nb2O5+V2O5),

b) an organic vehicle,

c) a solvent, and

d) a thermal conductivity enhancer, wherein the thermal conductivity enhancer is an additive enhancing thermal conductivity selected from the group consisting of boron nitride, boron carbide, silicon carbide, silicon, aluminum nitride, metal bonded diamond powder, resin bonded diamond powder, polycrystalline diamond powder, and natural diamond powder.


 
2. The dielectric composition of claim 1, wherein the glass component comprises:

a) from about 35 to about 70 mol% SiO2,

b) from about 5 to about 15 mol% TiO2,

c) from about 11 to about 37 mol% (Li2O+Na2O+K2O+ Rb2O + Cs2O), and

d) from about 1 to about 10 mol% (P2O5+Nb2O5+V2O5),


 
3. The dielectric composition of claim 2, wherein the glass component further comprises at least one selected from the group consisting of:

a) from about 0.1 to about 10 mol% Bi2O3,

b) from about 0.1 to about 15 mol% B2O3, and

c) from about 0.1 to about 12 mol% ZnO.


 
4. The dielectric composition of claim 1, comprising:

a) from about 42 to about 70 mol% SiO2,

b) from about 5 to about 14 mol% TiO2,

c) from about 15 to about 30 mol% (Li2O+Na2O+K2O+ Rb2O + Cs2O), and

d) from about 2 to about 8 mol% (P2O5+Nb2O5+V2O5),


 
5. The dielectric composition of claim 4, wherein the glass component further comprises at least one selected from the group consisting of:

a) from about 2 to about 8 mol% Bi2O3,

b) from about 0.1 to about 5 mol% B2O3, and

c) from about 0.1 to about 5 mol% ZnO.


 
6. The dielectric composition of any of claims 1-5 wherein the glass component includes glass frit particles having a D50 particle size of 0.1-10 microns and a D95 particle size of 0.1-15 microns.
 
7. An electronic device comprising:

a) an aluminum substrate,

b) at least one dielectric layer from the dielectric composition according to any of claims 1-6 disposed on at least a portion of the aluminum substrate and fired to form the at least one dielectric layer,

c) a conductive trace, and

d) a power circuit,

wherein the substrate, dielectric composition and conductive trace are arranged so that the dielectric composition at least one of electrically separates and physically separates the aluminum substrate and conductive trace and wherein the power circuit contacts only the conductive trace.
 
8. The electronic device of any of claim 7, wherein the aluminum substrate is selected from the group consisting of AL 1050, AL 1060, AL 1100, AL 2024, AL 3003, AL 380, AL 384, AL 5052, AL 514, AL 6061, and AL 6063.
 
9. The electronic device of of any of claims 7 or 8, wherein the conductive trace includes at least one metal selected from the group consisting of copper, aluminum, silver, platinum and palladium.
 
10. A method of forming a dielectric layer upon an aluminum substrate comprising:

a) applying at least one layer of the dielectric composition of any of claims 1-6 upon an aluminum substrate, and

b) firing said dielectric composition to form a dielectric layer upon the substrate.


 
11. The method of claim 10, wherein firing is conducted at a temperature of from about 400 °C to about 660 °C.
 
12. A method of producing an electronic device comprising

a) providing an aluminum substrate,

b) applying to the aluminum substrate at least one layer of the dielectric composition of any of claims 1-6,

c) applying at least one layer of a conductive paste to the at least one layer of dielectric composition, to form an assembly,

d) firing the assembly at 400-660 °C to sinter the dielectrics and conductive paste, and

e) positioning a power circuit in electrical contact with the at least one layer of conductive paste.


 
13. An electronic device selected from the group consisting of vacuum insulated glass, solar cell contact, solar cell, solar cell module, organic PV device, plasma display device, nanocrystal display, electrochromic device, electrochromic material system, sensors, suspended particle device, micro-blind, liquid crystal device, smart window, switchable window, smart glass, eglass, quantum dot devices, thermoelectric devices, batteries, light emitting diodes, surface-conduction electron-emitter displays, field emission displays, organic light emitting diodes, liquid crystal displays, digital light processing, ferro-liquid displays, interferometric modulator displays, thick-film dielectric electroluminescent displays, quantum dot electroluminescent displays, time multiplexed optical shutters, telescopic pixel displays, liquid crystal lasers, laser phosphor displays, organic light-emitting transistors, and combinations thereof, which comprises at least one layer of the dielectric composition of any of claims 1-6.
 


Ansprüche

1. Dielektrische Zusammensetzung mit:

a) einer Glaskomponente aufweisend

i. von ungefähr 30 bis ungefähr 75 mol% SiO2,

ii. von ungefähr 5 bis ungefähr 25 mol% TiO2,

iii. von ungefähr 5 bis ungefähr 40 mol% (Li2O + Na2O + K2O + Rb2O + Cs2O) und

iv. von ungefähr 0,1 bis ungefähr 15 mol% (P2O5 + Nb2O5 + V2O5),

b) einem organischen Medium,

c) einem Lösemittel, und

d) einem Verstärkungsmittel für die thermische Leitfähigkeit, wobei das Verstärkungsmittel für die thermische Leitfähigkeit ein Zusatzstoff ist, der die thermische Leitfähigkeit verbessert,
und der ausgewählt ist aus der Gruppe, die aus Bornitrid, Borkarbid, Siliziumkarbid, Silizium, Aluminiumnitrid, metallgebundenem Diamantpulver, kunstharzgebundenem Diamantpulver, polykristallinem Diamantpulver und natürlichem Diamantpulver besteht.


 
2. Dielektrische Zusammensetzung gemäß Anspruch 1, wobei die Glaskomponente aufweist:

a) von ungefähr 35 bis ungefähr 70 mol% SiO2,

b) von ungefähr 5 bis ungefähr 15 mol% TiO2

c) von ungefähr 11 bis ungefähr 37 mol% (Li2O + Na2O + K2O + Rb2O + CS2O) und

d) von ungefähr 1 bis ungefähr 10 mol% (P2O5 + Nb2O5 + V2O5).


 
3. Dielektrische Zusammensetzung gemäß Anspruch 2, wobei die Glaskomponente ferner aufweist:
zumindest eine Verbindung, die ausgewählt ist aus der Gruppe, die besteht aus:

a) von ungefähr 0,1 bis ungefähr 10 mol% Bi2O3,

b) von ungefähr 0,1 bis ungefähr 15 mol% B2O3, und

c) von ungefähr 0,1 bis ungefähr 12 mol% ZnO.


 
4. Dielektrische Zusammensetzung gemäß Anspruch 1,, mit:

a) von ungefähr 42 bis ungefähr 70 mol% SiO2,

b) von ungefähr 5 bis ungefähr 14 mol% TiO2,

c) von ungefähr 15 bis ungefähr 30 mol% (Li2O + Na2O + K2O + Rb2O + CS2O) und

d) von ungefähr 2 bis ungefähr 8 mol% (P2O5 + Nb2O5 + V2O5).


 
5. Dielektrische Zusammensetzung gemäß Anspruch 4, wobei die Glaskomponente ferner aufweist:
zumindest eine Verbindung, die ausgewählt ist aus der Gruppe, die besteht aus:

a) von ungefähr 2 bis ungefähr 8 mol% Bi2O3,

b) von ungefähr 0,1 bis ungefähr 5 mol% B2O3, und

c) von ungefähr 0,1 bis ungefähr 5 mol% ZnO.


 
6. Dielektrische Zusammensetzung gemäß irgendeinem der Ansprüche q1 bis 5, wobei die Glaskomponente Glasurmassenpartikel mit einer D50-Partikelgröße von 0,1 - 10 Mikrometer und eine D95-Partikelgröße von 0,1 - 15 Mikrometer aufweist.
 
7. Elektronische Vorrichtung mit:

a) einem Aluminiumsubstrat

b) zumindest einer dielektrischen Schicht aus der dielektrischen Zusammensetzung gemäß irgendeinem der Ansprüche 1 bis 6, die auf zumindest einem Bereich des Aluminiumsubstrats angeordnet ist und gebrannt wird, um die zumindest eine dielektrische Schicht zu bilden,

c) einer leitenden Spur, und

d) einem Stromkreis,
wobei das Substrat, die dielektrische Zusammensetzung und die leitende Spur derart angeordnet sind, dass die dielektrische Zusammensetzung zumindest entweder elektrisch oder physikalisch das Aluminiumsubstrat und die leitende Spur trennt und wobei der Stromkreis nur in Kontakt mit der leitenden Spur kommt.


 
8. Elektronische Vorrichtung gemäß Anspruch 7, wobei das Aluminiumsubstrat ausgewählt ist aus der Gruppe, die aus Al 1050, Al 1060, Al 1100, Al 2024, Al 3003, Al 380, Al 384, Al 5052, Al 514, Al 6061 und Al 6063 besteht.
 
9. Elektronische Vorrichtung gemäß Anspruch 7 oder 8, wobei die leitende Spur zumindest ein Metall aufweist, das aus der Gruppe ausgewählt ist, die aus Kupfer, Aluminium, Silber, Platin und Palladium besteht.
 
10. Verfahren zur Ausbildung einer dielektrischen Schicht auf einem Aluminiumsubstrat mit den Schritten:

a) Aufbringen zumindest einer Schicht aus der dielektrischen Zusammensetzung gemäß irgendeinem der Ansprüche 1 bis 6 auf ein Aluminiumsubstrat, und

b) Brennen der dielektrischen Zusammensetzung, um eine dielektrische Schicht auf dem Substrat auszubilden.


 
11. Verfahren gemäß Anspruch 10, wobei das Brennen bei einer Temperatur von ungefähr 400°C bis ungefähr 660°C ausgeführt wird.
 
12. Verfahren zur Herstellung einer elektronischen Vorrichtung mit den Schritten:

a) Bereitstellung eines Aluminiumsubstrats,

b) Aufbringen zumindest einer Schicht der dielektrischen Zusammensetzung gemäß irgendeinem der Ansprüche 1 bis 6 auf das Aluminiumsubstrat,

c) Aufbringen zumindest einer Schicht aus einer leitenden Paste auf die zumindest eine Schicht der dielektrischen Zusammensetzung, um eine Anordnung zu bilden,

d) Brennen der Anordnung bei 400-660°C, um die Dielektrika und die leitende Paste zu sintern, und

e) Positionierung eines Stromkreises in elektrischem Kontakt mit der zumindest einen Schicht aus der leitenden Paste.


 
13. Elektronische Vorrichtung, die ausgewählt ist aus der Gruppe, die aus vakuumisolierten Glas, einem Solarzellenkontakt, einer Solarzelle, einem Solarzellenmodul, einer organischen Photovoltaik-Vorrichtung, einer Plasmaanzeigevorrichtung, einer Nanokristallanzeige, einer elektrochromen Vorrichtung, einem elektrochromen Materialsystem, Sensoren, einer Schwebstoffvorrichtung, einer Mikro-Maske, einer Flüssigkristallvorrichtung, einem Smart-Fenster, einem schaltbaren Fenster, intelligentem Glas, e-glass, Quantenpunktvorrichtungen, thermoelektrischen Vorrichtungen, Batterien, Leuchtdioden, SED-Displays, Feldemissionsbildschirmen , organischen Leuchtdioden, Flüssigkristallanzeigen, digitalen Lichtverarbeitungs-Ferro-Flüssigkeits-Anzeigen, Bildschirmen mit interferrometrisch arbeitendem Modulator, dielektrischen Dickschicht-Elektrolumineszenz-Displays, Quantenpunkt-Elektrolumineszenz-Displays, optischen Zeitmultiplexverschlüssen, teleskopischen Pixel-Displays, Flüssigkristall-Lasern, Laser-Phosphor-Displays, organischen Leuchttransistoren und Kombinationen daraus besteht, und die zumindest eine Schicht der dielektrischen Zusammensetzung gemäß irgendeinem der Ansprüche 1 bis 6 aufweist.
 


Revendications

1. Composition diélectrique comprenant :

a) un composant de verre comprenant

i. d'environ 30 à environ 75 mol% de SiO2,

ii. d'environ 5 à environ 25 mol% de TiO2,

iii. d'environ 5 à environ 40 mol% de (Li2O + Na2O + K2O + Rb2O + CS2O) et

iv. d'environ 0,1 à environ 15 mol% de (P2O5 + Nb2O5 + V2O5)

b) un véhicule organique,

c) un solvant, et

d) un amplificateur de conductivité thermique, dans lequel l'amplificateur de conductivité thermique est un additif, qui améliore la conductivité thermique et qui est sélectionné dans le groupe composé de nitrure de bore, de carbure de bore, de carbure de silicium, de silicium, de nitrure d'aluminium, de poudre de diamant à liant métallique, de poudre de diamant à liant de résine, de poudre de diamant polycristallin et de poudre de diamant naturel.


 
2. Composition diélectrique selon la revendication 1, dans laquelle le composant de verre comprend :

a) d'environ 35 à environ 70 mol% de SiO2,

b) d'environ 5 à environ 15 mol% de TiO2,

c) d'environ 11 à environ 37 mol% de (Li2O + Na2O + K2O + Rb2O + CS2O) et

d) d'environ 1 à environ 10 mol% de (P2O5 + Nb2O5 + V2O5).


 
3. Composition diélectrique selon la revendication 2, dans laquelle le composant de verre comprend en outre
au moins un composé sélectionné dans le groupe composé de:

a) d'environ 0,1 à environ 10 mol% de Bi2O3,

b) d'environ 0,1 à environ 15 mol% de B2O3, et

c) d'environ 0,1 à environ 12 mol% de ZnO.


 
4. Composition diélectrique selon la revendication 1, comprenant :

a) d'environ 42 à environ 70 mol% de SiO2,

b) d'environ 5 à environ 14 mol% de TiO2,

c) d'environ 15 à environ 30 mol% de (Li2O + Na2O + K2O + Rb2O + CS2O) et

d) d'environ 2 à environ 8 mol% de (P2O5 + Nb2O5 + V2O5).


 
5. Composition diélectrique selon la revendication 4, dans laquelle le composant de verre comprend en outre
au moins un composé sélectionné dans le groupe composé de:

a) d'environ 2 à environ 8 mol% de Bi2O3,

b) d'environ 0,1 à environ 5 mol% de B2O3, et

c) d'environ 0,1 à environ 5 mol% de ZnO.


 
6. Composition diélectrique selon l'une quelconque des revendications 1 à 5, dans laquelle le composant de verre comprend des particules de fritte de verre ayant une taille de particule D50 de 0,1 à 10 micromètres et une taille de particule D95 de 0,1 à 15 micromètres.
 
7. Dispositif électronique comprenant :

a) un substrat en aluminium,

b) au moins une couche diélectrique en la composition diélectrique selon l'une quelconque des revendications 1 à 6 disposée sur au moins une partie du substrat en aluminium et cuite pour former l'au moins une couche diélectrique,

c) une trace conductrice, et

d) un circuit électrique,
dans lequel le substrat, la composition diélectrique et la trace conductrice sont disposés, de sorte que la composition diélectrique sépare au moins électriquement ou physiquement le substrat en aluminium de la trace conductrice et dans lequel le circuit électrique n'est en contact qu'avec la trace conductrice.


 
8. Dispositif électronique selon la revendication 7, dans lequel le substrat en aluminium est sélectionné dans le groupe composé de Al 1050, de Al 1060, de Al 1100, de Al 2024, de Al 3003, de Al 380, de Al 384, de Al 5052, de Al 514, de Al 6061 et de Al 6063.
 
9. Dispositif électronique selon l'une quelconque des revendications 7 ou 8, dans lequel la trace conductrice comprend au moins un métal sélectionné dans le groupe composé de cuivre, d'aluminium, d'argent, de platine et de palladium.
 
10. Procédé de formation d'une couche diélectrique sur le substrat en aluminium comprenant les étapes de :

a) appliquer au moins une couche de la composition diélectrique selon l'une quelconque des revendications 1 à 6 sur le substrat en aluminium, et

b) cuire ladite composition diélectrique pour former une couche diélectrique sur le substrat.


 
11. Procédé selon la revendication 10, dans lequel l'étape de cuire est effectuée à une température comprise entre environ 400°C et environ 660°C.
 
12. Procédé de fabrication d'un dispositif électronique comprenant les étapes de :

a) fournir un substrat en aluminium,

b) appliquer au moins une couche de la composition diélectrique selon l'une quelconque des revendications 1 à 6 sur le substrat en aluminium,

c) appliquer au moins une couche d'une pâte conductrice sue l'au moins une couche de la composition diélectrique pour former un ensemble,

d) cuire l'ensemble à 400 - 660°C pour fritter les diélectriques et la pâte conductrice, et

e) positionner un circuit électrique en contact électrique avec l'au moins une couche de la pâte conductrice.


 
13. Dispositif électronique sélectionné dans le groupe composé de verre à isolation sous vide, d'un contact de cellule solaire, d'une cellule solaire, d'un module de cellule solaire, d'un dispositif photovoltaïque organique, d'un dispositif d'écran à plasma, d'un écran nanocristallin, d'un dispositif électrochimique, d'un système de matériau électrochimique, de capteurs, d'un dispositif de particules suspendues, d'un micro-store, d'un dispositif à cristaux liquides, d'une fenêtre à transmission variable, d'une fenêtre commutable, de verre intelligent, d'e-glass, de dispositifs à points quantiques, de dispositifs thermoélectriques, de piles, de diodes électroluminescentes, d'écrans à émission d'électrons par conduction de surface, d'écrans d'émission par effet de champ, de diodes électroluminescentes organiques, d'écrans à cristaux liquides, d'écrans ferro-liquides de traitement numérique de la lumière, d'écrans à modulation d'interférence, d'écrans électroluminescents diélectriques à film épais, d'écrans électroluminescents à points quantiques, d'obturateurs optiques multiplexés dans le temps, d'écrans de pixels télescopiques, de lasers à cristaux liquides, d'écrans à laser au phosphore, de transistors émettant de la lumière et de combinaisons de ceux-ci, lequel dispositif comprend au moins une couche de la composition diélectrique selon l'une quelconque des revendications 1 à 6.
 




Drawing






REFERENCES CITED IN THE DESCRIPTION



This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description




Non-patent literature cited in the description