(19)
(11)EP 3 041 259 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
27.11.2019 Bulletin 2019/48

(21)Application number: 15201913.9

(22)Date of filing:  22.12.2015
(51)Int. Cl.: 
H04R 1/10  (2006.01)

(54)

IN-EAR HEADPHONES HAVING A FLEXIBLE NOZZLE AND RELATED METHODS

OHRINTERNER KOPFHÖRER MIT FLEXIBLER DÜSE UND ZUGEHÖRIGE VERFAHREN

ÉCOUTEUR INTRA-AURICULAIRE AYANT UNE BUSE FLEXIBLE ET PROCÉDÉS ASSOCIÉS


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 31.12.2014 US 201462098911 P

(43)Date of publication of application:
06.07.2016 Bulletin 2016/27

(73)Proprietor: Skullcandy, Inc.
Park City, UT 84098 (US)

(72)Inventor:
  • KELLY, Peter M.
    Park City, UT Utah 84098 (US)

(74)Representative: Schröer, Gernot H. 
Meissner Bolte Patentanwälte Rechtsanwälte Partnerschaft mbB Bankgasse 3
90402 Nürnberg
90402 Nürnberg (DE)


(56)References cited: : 
EP-A1- 0 894 604
WO-A2-2008/118248
US-A1- 2006 279 084
US-A1- 2010 246 879
EP-A1- 2 809 081
US-A- 6 129 175
US-A1- 2009 161 885
US-A1- 2011 188 689
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    PRIORITY CLAIM



    [0001] This application claims the benefit of U.S. Provisional Patent Application Serial No. 62/098,911, filed December 31, 2014.

    TECHNICAL FIELD



    [0002] The present disclosure relates to in-ear headphone assemblies having a flexible nozzle, and related methods for manufacturing headphone assemblies having a flexible nozzle.

    BACKGROUND



    [0003] In recent years, in-ear headphones have gained popularity. This increase in popularity may be partly due to the generally smaller, lighter, and less obtrusive geometry offered by in-ear headphones compared to on-ear and over-ear headphones. Also, some people may prefer the sound generated by in-ear headphones compared to other types of headphones.

    [0004] Although in-ear headphones offer advantages over other types of headphones, there are also some disadvantages associated with in-ear headphones. Among these disadvantages is the difficulty of designing in-ear headphones that fit properly in the ears of most or all people. The size and shape of each different person's inner and outer ears is unique. In fact, the size and shape of one of a person's ears may be different from the size and/or shape of that same person's other ear.

    [0005] Some manufacturers of in-ear headphones have addressed the variability in size and shape of different peoples' ears by selling in-ear headphones with multiple interchangeable soft eartips of different sizes. FIG. 1 is a simplified side view of this type of conventional in-ear headphone 100. The in-ear headphone 100 includes a housing 110, a rigid nozzle 120 coupled to the housing, and a soft eartip 130 removably coupled to the rigid nozzle 120.

    [0006] With the soft eartip 130 coupled to the rigid nozzle 120, the eartip 130 and part of the rigid nozzle 120 may be inserted into the ear canal of the user's ear. The soft eartip 130 may provide some conformity to different shapes of ears. Also, users of this kind of in-ear headphone 100 can try on the headphone 100 with the various different soft eartips 130 until the most comfortable soft eartip 130 is identified.

    [0007] Document WO 2008/118248 A2 discloses an integrated eartip having a one-piece design, and comprised of a first portion that includes at least one, or at least two, sound delivery tubes and a second portion that is comprised of a compressible region, and means for releasably attaching the eartip to an earphone, thus allowing the eartip to be replaced as desired. When attached, the sound delivery tube, or tubes, of the integrated eartip are aligned with the acoustic port, or ports, of the earphone. The first and second portions of the integrated eartip may exhibit different rigidity and/or compressibility characteristics.

    [0008] Document US 2011/0188689 A1 discloses a hearing apparatus, where sound or electrical signals have to be conducted from a housing, worn outside of an auditory canal of a user, to an earpiece which has been inserted into the auditory canal. An appropriate conduction device often has a soft tube. The tube must be fixedly connected to the earpiece so that the latter can be pulled out of the auditory canal using the tube. The connection between the tube and the earpiece is made detachable by an appropriate plug so that the earpiece can be cleaned.

    [0009] Document US 2009/0161885 A1 discloses an active noise reduction component for provision in an earphone housing, wherein a driver and a sensing microphone, being housed in a component housing. The earphone housing has an outlet passageway from the active noise reduction component to an auditory canal.

    [0010] Document EP 2 809 081 A1 describes a headphone device that is equipped with an ear pad to be inserted into an ear. In order to improve in-ear wearability and prevent a pain from being caused inside the ear, the headphone device is equipped with a driver unit that is fixed to a housing and has a diaphragm for emitting a sound of an audio signal; and a nozzle section that is fixed to the housing at one end, holds an ear pad at the other end, has a hollow interior, and is formed so as to slope from the part where the nozzle is fixed to the housing toward the tip of the nozzle section at a predetermined angle with respect to the housing.

    [0011] Document US 2010/0246879 A1 describes a removable ear tip for use with an earphone, wherein the ear tip is suitable for in-ear operation and can have a cosmetic deformable outer member. The deformable outer member can enable the ear tip to readily conform to a user's ear. The ear tip can also include an inner member to structurally support the outer member and to facilitate attachment to a headphone.

    [0012] Document EP 0 894 604 A1 describes a method for forming a multilayer plastic article by over molding where second layer of the article includes a portion having a different geometrical profile than the first one.

    [0013] Document US 2006/0279084 A1 describes an air duct that includes a rigid thermoplastic body having softer elastomeric cuff members welded to the ends thereof.

    DI SCLOSURE



    [0014] Embodiments according to the invention are in particular disclosed in the attached claims, wherein any feature mentioned in one claim category can be claimed in another claim category as well. The dependencies or references back in the attached claims are chosen for formal reasons only. However any subject matter resulting from a deliberate reference back to any previous claims (in particular multiple dependencies) can be claimed as well, so that any combination of claims and the features thereof is disclosed and can be claimed regardless of the dependencies chosen in the attached claims. The subject-matter which can be claimed comprises not only the combinations of features as set out in the attached claims but also any other combination of features in the claims, wherein each feature mentioned in the claims can be combined with any other feature or combination of other features in the claims. Furthermore, any of the embodiments and features described or depicted herein can be claimed in a separate claim and/or in any combination with any embodiment or feature described or depicted herein or with any of the features of the attached claims.

    [0015] In some embodiments, the present disclosure comprises an in-ear headphone assembly. The in-ear headphone assembly includes a rigid shell defining a volume and configured for housing an audio driver. A first side of the rigid shell defines a sound aperture. The in-ear headphone assembly also includes a rigid nozzle defining a sound channel extending axially therethrough. The rigid nozzle includes a distal end configured for insertion at least partially into an ear canal of a user. The rigid nozzle also includes a proximal end opposite the distal end. The headphone assembly further includes a resilient overmold structure permanently molded to the rigid nozzle and the rigid shell. The resilient overmold structure secures the proximal end of the rigid nozzle proximate to the first side of the rigid shell. The resilient overmold structure defines a sound passage acoustically coupling the volume to the sound channel through the sound aperture and the proximal end of the rigid nozzle.

    [0016] In some embodiments, the present disclosure comprises a method of flexibly attaching a rigid nozzle to a rigid shell to form an in-ear headphone assembly. The method includes positioning a rigid nozzle and a rigid shell within a cavity of a mold such that a proximal end of the rigid nozzle is located proximate to a sound aperture in a first side of the rigid shell. The method also includes injecting a polymer or polymer precursor material into the cavity of the mold and forming an overmold structure around the rigid nozzle and the rigid shell, the overmold structure including a sound passage coupling the sound aperture to a sound channel extending axially through the rigid nozzle, the overmold structure providing a permanent, flexible connection between the rigid nozzle and the rigid shell.

    BRIEF DESCRIPTION OF THE SEVERAL VI EWS OF THE DRAWINGS



    [0017] 

    FIG. 1 is a simplified side view of a conventional in-ear headphone;

    FIG. 2 is a simplified side view of a headphone assembly according to embodiments of the present disclosure;

    FIGS. 3A through 3D are different simplified views of a portion of the headphone assembly of FIG. 2;

    FIG. 3A is a side view of the portion of the headphone assembly;

    FIG. 3B is a top view of the portion of the headphone assembly;

    FIG. 3C is a cross-sectional view of the portion of the headphone assembly that is taken along line 3C of FIG. 3B;

    FIG. 3D is a bottom view of the portion of the headphone assembly;

    FIGS. 4A and 4B are simplified side views of an example of a mold assembly that assembly that may be used for manufacturing the headphone assembly of FIGS. 2 through 3D;

    FIG. 4A is a view of the mold assembly 400 with a first mold half 480 and a second mold half 470 enclosing at least a portion of a rigid nozzle 320 and a rigid shell 210; and

    FIG. 4B is a view of the mold assembly 400 with the first mold half 480 removed to show the interior of the second mold half 470.


    MODE(S) FOR CARRYING OUT THE INVENTION



    [0018] In the following detailed description, reference is made to the accompanying drawings which form a part hereof, and in which is shown by way of illustration specific embodiments in which the present disclosure may be practiced. These embodiments are described in sufficient detail to enable those of ordinary skill in the art to practice the present disclosure. It should be understood, however, that the detailed description and the specific examples, while indicating examples of embodiments of the present disclosure, are given by way of illustration only and not by way of limitation. From this disclosure, various substitutions, modifications, additions rearrangements, or combinations thereof within the scope of the present disclosure may be made and will become apparent to those of ordinary skill in the art.

    [0019] In accordance with common practice the various features illustrated in the drawings may not be drawn to scale. The illustrations presented herein are not meant to be actual views of any particular apparatus (e.g., device, system, etc.) or method, but are merely idealized representations that are employed to describe various embodiments of the present disclosure. Accordingly, the dimensions of the various features may be arbitrarily expanded or reduced for clarity. In addition, some of the drawings may be simplified for clarity. Thus, the drawings may not depict all of the components of a given apparatus or all operations of a particular method.

    [0020] Embodiments of the present disclosure include headphones having a flexible nozzle, and methods for manufacturing such headphones.

    [0021] As used herein, the term "overmold structure" refers to a structure that is formed by molding the overmold structure to another existing structure, forming a permanent bond between the overmold structure and the existing structure.

    [0022] FIG. 2 is a simplified side view of a headphone assembly 200. The headphone assembly 200 may include a rigid shell 210 defining a volume inside the rigid shell 210, in which an audio driver may be housed. The headphone assembly 200 may also include an overmold structure 240 including a shell portion 244 and a nozzle portion 242. The shell portion 244 may be configured to couple to the rigid shell 210, and the nozzle portion 242 may be configured to couple to a rigid nozzle 320 (FIGS. 3A through 3D). In other words, the rigid nozzle 320 may be permanently coupled to the rigid shell 210 by the overmold structure 240. The nozzle portion 242 of the overmold structure 240 may extend from an outer face 246 of the shell portion 244 of the overmold structure 240.

    [0023] The headphone assembly 200 may further include a resilient eartip 230, which may be removably or permanently coupled to the rigid nozzle 320. In embodiments in which the resilient eartip 230 is removable, the headphone assembly may benefit from the ability to interchange different resilient eartips 230 of different sizes and/or materials to provide a customizable fit.

    [0024] The resilient eartip 230, and at least part of the rigid nozzle 320 may be configured for insertion into the ear canal of a user's ear. In some embodiments, to provide a comfortable fit, an undeformed axis 250 of the nozzle portion 242 (and of the rigid nozzle 320) may extend at an angle θ from the central axis 260 of the rigid shell 210. In other words, when no deforming force is applied to the nozzle portion 242, the nozzle portion 242 may form the angle θ with the central axis 260 of the rigid shell 210. The angle θ may be selected such that the headphone assembly 200 fits properly into an average ear. By way of non-limiting example, the angle θ may be between about 18° and about 30° (e.g., about 24°).

    [0025] Since most people's ears are different from the average ear, the overmold structure 240 may include a resilient material selected to enable the nozzle portion 242 to flex away from the undeformed axis 250.

    [0026] The overmold structure 240 may be formed from and comprise an elastomeric material. The elastomeric material may comprise a thermoset or a thermoplastic polymer material.

    [0027] The nozzle portion 242 of the overmold structure 240 may be configured to flex in any direction away from the undeformed axis 250 of the nozzle portion 242 when a deforming force is applied to the nozzle portion 242 (e.g., when the headphone 200 is inserted into a user's ear and the walls of the user's ear canal apply a deforming force to the nozzle portion 242). In other words, the nozzle portion 242 may be configured with a 360° range of motion around the undeformed axis 250 of the nozzle portion 242. In some embodiments, the nozzle portion 242 may be configured to flex to at least about 5°, at least about 10°, or even at least about 20° in any direction away from the undeformed axis 250 of the nozzle portion 242. The range of motion of the nozzle portion 242 may define an imaginary circular cone 252 around the undeformed axis 250 of the nozzle portion 242. This ability of the nozzle portion 242 to flex away from the undeformed axis 250 in any direction may enable the headphone assembly 200 to comfortably conform to the shape of most or all ears. Also, this ability of the nozzle portion 242 to flex, along with the ability to switch the resilient eartip 230 for different sized eartips 230 may enable the headphone assembly 200 to fit both the size and shape of most or all ears.

    [0028] FIGS. 3A through 3D are different views of a portion of the headphone assembly 200 with the eartip 230 removed from the rigid nozzle 320 (to enable the rigid nozzle 320 to be seen). FIG. 3A is a side view of the portion of the headphone assembly 200. FIG. 3B is a top view of the portion of the headphone assembly 200. FIG. 3C is a cross-sectional view of the portion of the headphone assembly 200 that is taken along line 3C of FIG. 3B. FIG. 3D is a bottom view of the portion of the headphone assembly 200. The following discussion refers to FIGS. 3A through 3D together.

    [0029] As previously discussed, the headphone assembly 200 includes the rigid shell 210, permanently and flexibly coupled to the rigid nozzle 320 by the overmold structure 240. As perhaps best shown in the cross-sectional view of FIG. 3C, the rigid shell 210 defines a volume 316, in which an audio driver may be housed. The rigid shell 210 may also include a first side 312 having a sound aperture 314 therein.

    [0030] The rigid nozzle 320 may include a proximal end 326 and a distal end 324, the terms "proximal" and "distal" being relative to the rigid shell 210 in the assembled state. The rigid nozzle 320 may define a sound channel 322 extending axially therethrough from the proximal end 326 to the distal end 324. The proximal end 326 may be positioned proximate to the sound aperture 314 of the rigid shell 210. In some embodiments, the distal end 324 may include a lip 328 for removably securing the resilient eartip 230 (FIG. 2) to the distal end 324 of the rigid nozzle 320.

    [0031] The interior surfaces of the overmold structure 240 may define a sound passage 349 acoustically coupling the volume 316 through the sound aperture 314 in the rigid shell 210 to the sound channel 322 of the rigid nozzle 320. In operation, sound waves from an audio driver housed within the rigid shell 210 may travel from the volume 316 through the sound aperture 314, the sound passage 349, and the sound channel 322 into a user's ear canal.

    [0032] The overmold structure 240 may permanently secure the rigid nozzle 324 to the rigid shell 210. By way of non-limiting example, a chemical adhesion bond and/or mechanical interference resulting from molding the overmold structure 240 to the rigid nozzle 324 and the rigid shell 210 may secure the overmold structure 240 to the rigid nozzle 324 and the rigid shell 210.

    [0033] The nozzle portion 242 of the overmold structure 240 may extend over an outside surface of the proximal end 326 of the rigid nozzle 320. The shell portion 244 of the overmold structure 240 may at least substantially cover the first side 312 of the rigid shell 210. The overmold structure 240 may also include irregularities such as protrusions 347 that matingly engage with indentations 318 in the rigid shell 210 and the rigid nozzle 320 to improve mechanical strength. Of course, rather than protrusions 347 of the overmold structure 240 that matingly engage with indentations 318 in the rigid shell 210 and the rigid nozzle 320, indentations in the overmold structure 240 could also matingly engage with protrusions from the rigid shell 210 and the rigid nozzle 320. For example, these protrusions 347 and mating indentations 318 may increase a bonded surface area between the overmold structure 240 and each of the rigid nozzle 320 and the rigid shell 210. Also, these protrusions 347 and mating indentations 318 may provide mechanical interference to further prevent bonded surfaces from being separated.

    [0034] To improve flexibility of the rigid nozzle 320 with respect to the rigid shell 210, the overmold structure 240 may include a recess 348 in the outer face 246 of the overmold structure 240 at least partially around an interface between the nozzle portion 242 and the shell portion 244. In some embodiments, the overmold structure 240 may indent into the sound aperture 314 at the recess 348. Accordingly, the sound aperture may be larger than a diameter of the proximal end 326 of the rigid nozzle 320.

    [0035] In some embodiments, the recess 348 may extend continuously all the way around the interface between the nozzle portion 242 and the shell portion 244. In some embodiments, the recess 348 may extend only partially around the interface between the nozzle portion 242 and the shell portion 244. In some embodiments, the recess 348 may include a plurality of disjointed recesses around the interface between the nozzle portion 242 and the shell portion 244.

    [0036] FIGS. 4A and 4B are simplified views of an example of a mold assembly 400 that may be used for manufacturing the headphone assembly 200 of FIGS. 3A through 3D. FIG. 4A is a view of the mold assembly 400 with a first mold half 480 and a second mold half 470 enclosing at least a portion of a rigid nozzle 320 and a rigid shell 210. FIG. 4B is a view of mold assembly 400 with the first mold half 480 removed to show the interior of the second mold half 470.

    [0037] The first mold half 480 and the second mold half 470 may be configured to at least partially enclose a rigid nozzle 320 and a rigid shell 210. As shown in figures 4A and 4B, the rigid nozzle 230 and the rigid shell 210 may be positioned at least partially within the first mold half 480 and the second mold half 470 with the proximal end 326 of the rigid nozzle 230 proximate to the sound aperture 314 of the rigid shell 210. In some embodiments, the rigid nozzle 320 may be positioned in the mold assembly 400 at an acute angle from a central axis 260 (FIG. 2) of the rigid shell 210. In some embodiments, the rigid shell may be positioned at an angle of between about 18 degrees and about 30 degrees (e.g., about 24 degrees) from the central axis 260 of the rigid shell 210.

    [0038] In some embodiments, an inner surface 472 of the second mold half 470 may define structures for supporting the rigid nozzle 320 and the rigid shell 210 in the proper position with respect to the mold assembly 400. Although not shown in FIGS. 4A and 4B, an inner surface 472 of the first mold half 480 may also define structures for supporting the rigid nozzle 320 and the rigid shell 210. In some embodiments, support for positioning the rigid nozzle 320 and the rigid body 210 in the proper position may be provided externally to the mold assembly 400 instead of, or in addition to, support structures of the first mold half 480 and the second mold half 470.

    [0039] The inner surface of the first mold half 480 and the inner surface 472 of the second mold half 470 may also define a mold cavity 450 shaped to form an overmold structure 240 around the rigid nozzle 230 and the rigid shell 210. For example, the mold cavity 450 may define the nozzle portion 244 and the shell portion 246 of the overmold structure 240. An insert (not shown) may be positioned within the mold cavity 450 to form the sound passage 349.

    [0040] At least one of the first mold half 480 and the second mold half 470 may also define at least one injection passage 474 extending from outside the mold assembly 400 into the mold cavity 450. A flowable polymer or polymer precursor material for forming the overmold structure 240 may be injected into the mold cavity 450 through the injection passage 474 (e.g., often referred to as a "gate" and/or "runner" in injection molding terminology). The polymer or polymer precursor material may take the form of the overmold structure 240, as defined by the mold cavity 450 and insert. When the polymer or polymer precursor material has cooled or cured, the first mold half 480, the second mold half 470, and the insert may be removed, leaving the rigid nozzle 230 permanently and flexibly coupled to the rigid shell 210 by the overmold structure 240.

    [0041] In some embodiments, the flowable polymer or polymer precursor material may be heated before injection sufficiently to melt the surfaces of the rigid nozzle 320 and the rigid shell 210 to cause chemical adhesion between the overmold structure 240 and each of the rigid nozzle 320 and the rigid shell 210. In some embodiments, the mold assembly 400 may be cured to bond the overmold structure 240 to the rigid nozzle 320 and the rigid shell 210.

    [0042] Additional non-limiting example embodiments of the disclosure are set forth below.

    Embodiment 1: An in-ear headphone assembly, comprising: a rigid shell defining a volume and configured for housing an audio driver, a first side of the rigid shell defining a sound aperture; a rigid nozzle defining a sound channel extending axially therethrough, the rigid nozzle comprising a distal end configured for insertion at least partially into an ear canal of a user, and a proximal end opposite the distal end; and a resilient overmold structure permanently molded to the rigid nozzle and the rigid shell, securing the proximal end of the rigid nozzle proximate to the first side of the rigid shell, the resilient overmold structure defining a sound passage acoustically coupling the volume to the sound channel through the sound aperture and the proximal end of the rigid nozzle.

    Embodiment 2: The headphone assembly of Embodiment 1, wherein the overmold structure includes a shell portion coupled to the first side of the rigid shell and a nozzle portion extending from an outer face of the shell portion around an outside surface of the rigid nozzle, and wherein the shell portion includes a recess indented toward the sound aperture around an interface between the shell portion and the nozzle portion to increase flexibility between the rigid stem and the rigid shell.

    Embodiment 3: The headphone assembly of Embodiment 2, wherein the shell portion of the overmold structure is indented at least slightly into the sound aperture of the rigid shell at the recess of the shell portion of the overmold structure.

    Embodiment 4: The headphone assembly of Embodiment 2 or Embodiment 3, wherein the recess includes a continuous recess extending all the way around the interface between the nozzle portion and the shell portion of the overmold structure.

    Embodiment 5: The headphone assembly of any one of Embodiments 1 through 4, wherein an undeformed axis of the rigid nozzle forms an acute angle with a central axis of the rigid shell when no deforming force is applied to the rigid nozzle.

    Embodiment 6: The headphone assembly of Embodiment 5, wherein the acute angle is between about 18 degrees and about 30 degrees.

    Embodiment 7: The headphone assembly of Embodiment 6, wherein the acute angle is about 24 degrees.

    Embodiment 8: The headphone assembly of any one of Embodiments 1 through 7, wherein, when deforming forces are applied to the rigid nozzle, the rigid nozzle is capable of deflecting within a range of motion defined by a circular cone about an undeformed axis of the rigid nozzle, the undeformed axis of the rigid nozzle defined by a central axis of the rigid nozzle when no deforming force is applied to the rigid nozzle.

    Embodiment 9: The headphone assembly of Embodiment 8, wherein the rigid nozzle is capable of deflecting at least about 5 degrees in all directions about the undeformed axis of the rigid nozzle.

    Embodiment 10: The headphone assembly of any one of Embodiments 1 through 9, wherein the resilient overmold structure includes an elastomeric material.

    Embodiment 11: The headphone assembly of any one of Embodiments 1 through 10, further comprising a resilient eartip removably coupled to the distal end of the rigid nozzle.

    Embodiment 12: The headphone assembly of any one of Embodiments 1 through 11, wherein the resilient overmold structure includes a plurality of protrusions matingly engaging indentations in the rigid nozzle and the rigid shell.

    Embodiment 13: A method of flexibly attaching a rigid nozzle to a rigid shell to form an in-ear headphone assembly as recited in any one of Embodiments 1 through 12, the method comprising: positioning a rigid nozzle and a rigid shell within a cavity of a mold such that a proximal end of the rigid nozzle is located proximate to a sound aperture in a first side of the rigid shell; and injecting a polymer or polymer precursor material into the cavity of the mold and forming an overmold structure around the rigid nozzle and the rigid shell, the overmold structure including a sound passage coupling the sound aperture to a sound channel extending axially through the rigid nozzle, the overmold structure providing a permanent, flexible connection between the rigid nozzle and the rigid shell.

    Embodiment 14: The method of Embodiment 13, wherein injecting the polymer or polymer precursor material into the cavity of the mold comprises: heating the polymer or polymer precursor material to a temperature that is sufficiently high to at least partially melt surfaces of the rigid nozzle and the rigid shell when the polymer or polymer precursor material contacts the rigid nozzle and the rigid shell; and injecting the heated polymer or polymer precursor material into the cavity of the mold.

    Embodiment 15: The method of Embodiment 13 or Embodiment 14, wherein injecting the polymer or polymer precursor material into the cavity of the mold comprises injecting a material selected to permanently bond to the rigid nozzle and the rigid shell when cured.

    Embodiment 16: The method of Embodiment 15, further comprising heating the polymer or polymer precursor material to permanently bond the overmold structure to the rigid nozzle and the rigid shell.

    Embodiment 17: The method of any one of Embodiments 13 through 16, wherein injecting the polymer or polymer precursor material into the cavity of the mold comprises injecting at least one of a thermoplastic elastomer and a thermoset elastomer into the cavity of the mold.

    Embodiment 18: The method of any one of Embodiments 13 through 17, wherein positioning the rigid nozzle and the rigid shell within the cavity of the mold comprises positioning the rigid nozzle at an angle of about 18 degrees to about 30 degrees to a central axis of the rigid shell.



    [0043] While certain illustrative embodiments have been described in connection with the figures, those of ordinary skill in the art will recognize and appreciate that embodiments encompassed by the disclosure are not limited to those embodiments explicitly shown and described herein. Rather, many additions, deletions, and modifications to the embodiments described herein may be made without departing from the scope of embodiments encompassed by the disclosure, such as those hereinafter claimed. In addition, features from one disclosed embodiment may be combined with features of another disclosed embodiment while still being encompassed within the scope of embodiments encompassed by the disclosure as contemplated by the inventors.


    Claims

    1. An in-ear headphone assembly (200), comprising:

    a rigid shell (210) defining a volume (316) and configured for housing an audio driver, a first side (312) of the rigid shell (210) defining a sound aperture (314);

    a rigid nozzle (320) defining a sound channel (322) extending axially therethrough, the rigid nozzle (320) comprising a distal end (324) configured for insertion at least partially into an ear canal of a user, and a proximal end (326) opposite the distal end (324); and

    a resilient overmold structure (240) permanently molded to the rigid nozzle (320) and the rigid shell (210), securing the proximal end (326) of the rigid nozzle (320) proximate to the first side (312) of the rigid shell (210), the resilient overmold structure (240) defining a sound passage (349) acoustically coupling the volume (316) to the sound channel (322) through the sound aperture (314) and the proximal end (326) of the rigid nozzle (320);

    the resilient overmold structure (240) characterized in that the resilient overmold structure (240) includes a shell portion (244) coupled to the first side (312) of the rigid shell (210) and a nozzle portion (242) extending from the shell portion (244) around an outside surface of the rigid nozzle (320), and wherein the shell portion (244) of the resilient overmold structure (240) includes a recess (348) located in an outer face (246) of the resilient overmold structure (240) and extending at least slightly into the sound aperture (314) at an interface between the shell portion (244) and the nozzle portion (242) to increase flexibility between the rigid nozzle (320) and the rigid shell (210).


     
    2. The headphone assembly (200) of claim 1, wherein the recess (348) comprises a plurality of disjointed recesses around the interface between the nozzle portion (242) and the shell portion (244).
     
    3. The headphone assembly (200) of claim 1, wherein the recess (348) includes a continuous recess (348) extending all the way around the interface between the nozzle portion (242) and the shell portion (244) of the resilient overmold structure (240).
     
    4. The headphone assembly (200) of any one of claims 1 through 3, wherein an undeformed axis (250) of the rigid nozzle (320) forms an acute angle with a central axis (260) of the rigid shell (210) when no deforming force is applied to the rigid nozzle (320).
     
    5. The headphone assembly (200) of claim 4, wherein the acute angle is between about 18 degrees and about 30 degrees.
     
    6. The headphone assembly (200) of claim 4, wherein the acute angle is about 24 degrees.
     
    7. The headphone assembly (200) of any one of claims 1 through 3, wherein, when deforming forces are applied to the rigid nozzle (320), the rigid nozzle (320) is capable of deflecting within a range of motion defined by a circular cone (252) about an undeformed axis (250) of the rigid nozzle (320), the undeformed axis (250) of the rigid nozzle (320) defined by a central axis (260) of the rigid nozzle (320) when no deforming force is applied to the rigid nozzle (320).
     
    8. The headphone assembly (200) of claim 7, wherein the rigid nozzle (320) is capable of deflecting at least about 5 degrees in all directions about the undeformed axis (250) of the rigid nozzle (320).
     
    9. The headphone assembly (200) of any one of claims 1 through 3, wherein the resilient overmold structure (240) includes an elastomeric material.
     
    10. The headphone assembly (200) of any one of claims 1 through 3, further comprising a resilient eartip (230) removably coupled to the distal end (324) of the rigid nozzle (320).
     
    11. The headphone assembly (200) of any one of claims 1 through 3, wherein the resilient overmold structure (240) includes a plurality of protrusions (347) matingly engaging indentations (318) in the rigid nozzle (320) and the rigid shell (210).
     
    12. A method of flexibly attaching a rigid nozzle (320) to a rigid shell (210) to form an in-ear headphone assembly (200) as recited in any one of claims 1, 3, and 4, the method comprising:

    positioning a rigid nozzle (320) and a rigid shell (210) within a cavity (450) of a mold (400) such that a proximal end (326) of the rigid nozzle (320) is located proximate to a sound aperture (314) in a first side (312) of the rigid shell (210); and

    injecting a polymer or polymer precursor material into the cavity (450) of the mold (400) and forming an overmold structure (240) around the rigid nozzle (320) and the rigid shell (210), the overmold structure (240) including a sound passage (349) coupling the sound aperture (314) to a sound channel (322) extending axially through the rigid nozzle (320), the overmold structure (240) providing a permanent, flexible connection between the rigid nozzle (320) and the rigid shell (210);

    the method characterized in that forming the overmold structure (240) comprises forming the overmold structure (240) to include a shell portion (244) coupled to the first side (312) of the rigid shell (210) and a nozzle portion (242) extending from the shell portion (244) around an outside surface of the rigid nozzle (320), and forming the shell portion (244) of the resilient overmold structure (240) to include a recess (348) located in an outer face (246) of the resilient overmold structure (240) and extending at least slightly into the sound aperture (314) at an interface between the shell portion (244) and the nozzle portion (242) to increase flexibility between the rigid nozzle (320) and the rigid shell (210).


     
    13. The method of claim 12, wherein injecting the polymer or polymer precursor material into the cavity (450) of the mold (400) comprises:

    heating the polymer or polymer precursor material to a temperature that is sufficiently high to at least partially melt surfaces of the rigid nozzle (320) and the rigid shell (210) when the polymer or polymer precursor material contacts the rigid nozzle (320) and the rigid shell (210); and

    injecting the heated polymer or polymer precursor material into the cavity (450) of the mold (400).


     
    14. The method of claim 12, wherein positioning the rigid nozzle (320) and the rigid shell (210) within the cavity (450) of the mold (400) comprises positioning the rigid nozzle (320) at an angle of about 18 degrees to about 30 degrees to a central axis (260) of the rigid shell (210).
     


    Ansprüche

    1. In-Ohr-Kopfhörer-Baugruppe (200), umfassend:

    eine starre Kapsel (210), die ein Volumen (316) definiert und konfiguriert ist, um einen Audiotreiber aufzunehmen, wobei eine erste Seite (312) der starren Kapsel (210) eine Schallöffnung (314) definiert;

    einen starren Stutzen (320), der einen Schallkanal (322) definiert, der sich axial durch diesen hindurch erstreckt, wobei der starre Stutzen (320) ein distales Ende (324), das konfiguriert ist, um mindestens teilweise in einen Ohrkanal eines Benutzers eingefügt zu werden, und ein proximales Ende (326) gegenüber dem distalen Ende (324) umfasst; und

    eine nachgiebige umspritzte Struktur (240), die dauerhaft mit dem starren Stutzen (320) und der starren Kapsel (210) verspritzt ist und das proximale Ende (326) des starren Stutzens (320) in der Nähe der ersten Seite (312) der starren Kapsel (210) sichert, wobei die nachgiebige umspritzte Struktur (240) einen Schalldurchgang (349) definiert, der das Volumen (316) mit dem Schallkanal (322) durch die Schallöffnung (314) und das proximale Ende (326) des starren Stutzens (320) hindurch akustisch koppelt;

    die nachgiebige umspritzte Struktur (240), dadurch gekennzeichnet ist, dass die nachgiebige umspritzte Struktur (240) einen Kapselabschnitt (244), der mit der ersten Seite (312) der starren Kapsel (210) gekoppelt ist, und einen Stutzenabschnitt (242), der sich von dem Kapselabschnitt (244) aus um eine äußere Oberfläche des starren Stutzens (320) herum erstreckt, umfasst, und wobei der Kapselabschnitt (244) der nachgiebigen umspritzte Struktur (240) eine Vertiefung (348) umfasst, die sich in einer äußeren Seite (246) der nachgiebigen umspritzten Struktur (240) befindet und sich an einer Grenzfläche zwischen dem Kapselabschnitt (244) und dem Stutzenabschnitt (242) mindestens geringfügig in die Schallöffnung (314) hinein erstreckt, um die Flexibilität zwischen dem starren Stutzen (320) und der starren Kapsel (210) zu erhöhen.


     
    2. Ohrhörerbaugruppe (200) nach Anspruch 1, wobei die Vertiefung (348) eine Vielzahl von unzusammenhängenden Vertiefungen um die Grenzfläche zwischen dem Stutzenabschnitt (242) und dem Kapselabschnitt (244) herum umfasst.
     
    3. Ohrhörerbaugruppe (200) nach Anspruch 1, wobei die Vertiefung (348) eine durchgehende Vertiefung (348) umfasst, die sich ganz um die Grenzfläche zwischen dem Stutzenabschnitt (242) und dem Kapselabschnitt (244) der nachgiebigen umspritzten Struktur (240) herum erstreckt.
     
    4. Ohrhörerbaugruppe (200) nach einem der Ansprüche 1 bis 3, wobei eine unverformte Achse (250) des starren Stutzens (320) einen spitzen Winkel mit einer Mittelachse (260) der starren Kapsel (210) bildet, wenn keine Verformungskraft auf den starren Stutzen (320) ausgeübt wird.
     
    5. Ohrhörerbaugruppe (200) nach Anspruch 4, wobei der spitze Winkel zwischen ungefähr 18 Grad und ungefähr 30 Grad beträgt.
     
    6. Ohrhörerbaugruppe (200) nach Anspruch 4, wobei der spitze Winkel ungefähr 24 Grad beträgt.
     
    7. Ohrhörerbaugruppe (200) nach einem der Ansprüche 1 bis 3, wobei, wenn Verformungskräfte auf den starren Stutzen (320) ausgeübt werden, der starre Stutzen (320) in der Lage ist, innerhalb eines Bewegungsbereichs nachzugeben, der durch einen kreisförmigen Kegel (252) um eine unverformte Achse (250) des starren Stutzens (320) herum definiert ist, wobei die unverformte Achse (250) des starren Stutzens (320) durch eine Mittelachse (260) des starren Stutzens (320) definiert ist, wenn keine Verformungskraft auf den starren Stutzen (320) ausgeübt wird.
     
    8. Ohrhörerbaugruppe (200) nach Anspruch 7, wobei der starre Stutzen (320) in der Lage ist, um mindestens ungefähr 5 Grad in allen Richtungen um die unverformte Achse (250) des starren Stutzens (320) herum nachzugeben.
     
    9. Ohrhörerbaugruppe (200) nach einem der Ansprüche 1 bis 3, wobei die nachgiebige umspritzte Struktur (240) ein Elastomermaterial umfasst.
     
    10. Ohrhörerbaugruppe (200) nach einem der Ansprüche 1 bis 3, ferner umfassend ein nachgiebiges Ohrstück (230), das mit dem distalen Ende (324) des starren Stutzens (320) abnehmbar gekoppelt ist.
     
    11. Ohrhörerbaugruppe (200) nach einem der Ansprüche 1 bis 3, wobei die nachgiebige umspritzte Struktur (240) eine Vielzahl von Vorsprüngen (347) umfasst, die passend in Einkerbungen (318) in dem starren Stutzen (320) und der starren Kapsel (21) eingreifen.
     
    12. Verfahren zum flexiblen Anbringen eines starren Stutzens (320) an einer starren Kapsel (210), um eine In-Ohr-Kopfhörerbaugruppe (200) nach einem der Ansprüche 1, 3 und 4 zu bilden, wobei das Verfahren folgende Schritte umfasst:

    Positionieren eines starren Stutzens (320) und einer starren Kapsel (210) im Innern einer Formhöhlung (450) einer Form (400), so dass sich ein proximales Ende (326) des starren Stutzens (320) in der Nähe einer Schallöffnung (314) in einer ersten Seite (312) der starren Kapsel (210) befindet; und Einspritzen eines Polymer- oder Polymervorstufenmaterials in die Formhöhlung (450) der Form (400) und Bilden einer umspritzten Struktur (240) um den starren Stutzen (320) und die starre Kapsel (210) herum, wobei die umspritzte Struktur (240) einen Schalldurchgang (349) umfasst, der die Schallöffnung (314) mit einem Schallkanal (322) koppelt, der sich axial durch den starren Stutzen (320) hindurch erstreckt, wobei die umspritzte Struktur (240) eine dauerhafte, flexible Verbindung zwischen dem starren Stutzen (320) und der starren Kapsel (210) bereitstellt;

    wobei das Verfahren dadurch gekennzeichnet ist, dass das Bilden der umspritzten Struktur (240) das Bilden der umspritzten Struktur (240), damit sie einen Kapselabschnitt (244), der mit der ersten Seite (312) der starren Kapsel (210) gekoppelt ist, und einen Stutzenabschnitt (242), der sich von dem Kapselabschnitt (244) um eine äußere Oberfläche des starren Stutzen (320) herum erstreckt, umfasst, und das Bilden des Kapselabschnitts (244) der nachgiebigen umspritzten Struktur (240), damit sie eine Vertiefung (348) umfasst, die sich in einer äußeren Seite (246) der nachgiebigen umspritzten Struktur (240) befindet und sich an einer Grenzfläche zwischen dem Kapselabschnitt (244) und dem Stutzenabschnitt (242) mindestens geringfügig in die Schallöffnung (314) erstreckt, um die Flexibilität zwischen dem starren Stutzen (320) und der starren Kapsel (210) zu erhöhen, umfasst.


     
    13. Verfahren nach Anspruch 12, wobei das Einspritzen des Polymer- oder Polymervorstufenmaterials in die Formhöhlung (450) der Form (400) folgende Schritte umfasst:

    Erhitzen des Polymer- oder Polymervorstufenmaterials auf eine Temperatur, die hoch genug ist, um die Oberflächen des starren Stutzens (320) und der starren Kapsel (210) mindestens teilweise zu schmelzen, wenn das Polymer- oder Polymervorstufenmaterial den starren Stutzen (320) und die starre Kapsel (210) berührt; und

    Einspritzen des erhitzten Polymer- oder Polymervorstufenmaterials in die Formhöhlung (450) der Form (400).


     
    14. Verfahren nach Anspruch 12, wobei das Positionieren des starren Stutzens (320) und der starren Kapsel (210) im Innern der Formhöhlung (450) der Form (400) das Positionieren des starren Stutzens (320) in einem Winkel von ungefähr 18 Grad bis ungefähr 30 Grad um eine Mittelachse (260) der starren Kapsel (210) herum umfasst.
     


    Revendications

    1. Ensemble écouteur intra-auriculaire (200), comprenant:

    une coque rigide (210) définissant un volume (316) et configurée pour recevoir un équipage mobile audio, un premier côté (312) de la coque rigide (210) définissant une ouverture acoustique (314);

    une buse rigide (320) définissant un canal acoustique (322) s'étendant axialement à travers celle-ci, la buse rigide (320) comprenant une extrémité distale (324) configurée pour une introduction au moins partiellement dans un canal auditif d'un utilisateur, et une extrémité proximale (326) opposée à l'extrémité distale (324); et

    une structure de surmoulage souple (240) moulée de manière permanente sur la buse rigide (320) et la coque rigide (210), fixant l'extrémité proximale (326) de la buse rigide (320) à proximité du premier côté (312) de la coque rigide (210), la structure de surmoulage souple (240) définissant un passage acoustique (349) couplant acoustiquement le volume (316) au canal acoustique (322) par l'intermédiaire de l'ouverture acoustique (314) et de l'extrémité proximale (326) de la buse rigide (320);

    la structure de surmoulage souple (240) étant caractérisée par le fait que la structure de surmoulage souple (240) comprend une partie de coque (244) couplée au premier côté (312) de la coque rigide (210) et une partie de buse (242) s'étendant à partir de la partie de coque (244) autour d'une surface extérieure de la buse rigide (320), et la partie de coque (244) de la structure de surmoulage souple (240) comprenant un évidement (348) situé dans une face externe (246) de la structure de surmoulage souple (240) et s'étendant au moins légèrement dans l'ouverture acoustique (314) au niveau d'une interface entre la partie de coque (244) et la partie de buse (242) pour accroître une souplesse entre la buse rigide (320) et la coque rigide (210).


     
    2. Ensemble écouteur (200) selon la revendication 1, dans lequel l'évidement (348) comprend une pluralité d'évidements disjoints autour de l'interface entre la partie de buse (242) et la partie de coque (244).
     
    3. Ensemble écouteur (200) selon la revendication 1, dans lequel l'évidement (348) comprend un évidement continu (348) s'étendant tout autour de l'interface entre la partie de buse (242) et la partie de coque (244) de la structure de surmoulage souple (240).
     
    4. Ensemble écouteur (200) selon l'une quelconque des revendications 1 à 3, dans lequel un axe non déformé (250) de la buse rigide (320) forme un angle aigu avec un axe central (260) de la coque rigide (210) lorsqu'aucune force de déformation n'est appliquée à la buse rigide (320).
     
    5. Ensemble écouteur (200) selon la revendication 4, dans lequel l'angle aigu est compris entre environ 18 degrés et environ 30 degrés.
     
    6. Ensemble écouteur (200) selon la revendication 4, dans lequel l'anglais aigu est d'environ 24 degrés.
     
    7. Ensemble écouteur (200) selon l'une quelconque des revendications 1 à 3, dans lequel, lorsque des forces de déformation sont appliquées à la buse rigide (320), la buse rigide (320) est capable de dévier dans une plage de mouvement définie par un cône circulaire (252) autour d'un axe non déformé (250) de la buse rigide (320), l'axe non déformé (250) de la buse rigide (320) étant défini par un axe central (260) de la buse rigide (320) lorsqu'aucune force de déformation n'est appliquée à la buse rigide (320).
     
    8. Ensemble écouteur (200) selon la revendication 7, dans lequel la buse rigide (320) est capable de dévier d'au moins environ 5 degrés dans toutes les directions autour de l'axe non déformé (250) de la buse rigide (320).
     
    9. Ensemble écouteur (200) selon l'une quelconque des revendications 1 à 3, dans lequel la structure de surmoulage souple (240) comprend un matériau élastomère.
     
    10. Ensemble écouteur (200) selon l'une quelconque des revendications 1 à 3, comprenant en outre un embout souple (230) couplé de manière amovible à l'extrémité distale (324) de la buse rigide (320).
     
    11. Ensemble écouteur (200) selon l'une quelconque des revendications 1 à 3, dans lequel la structure de surmoulage souple (240) comprend une pluralité de saillies (347) engagées à accouplement dans des creux (318) dans la buse rigide (320) et la coque rigide (210).
     
    12. Procédé de fixation souple d'une buse rigide (320) à une coque rigide (210) pour former un ensemble écouteur intra-auriculaire (200) selon l'une quelconque des revendications 1, 3 et 4, le procédé comprenant:

    positionner une buse rigide (320) et une coque rigide (210) à l'intérieur d'une cavité (450) d'un moule (400) de telle sorte qu'une extrémité proximale (326) de la buse rigide (320) est située à proximité d'une ouverture acoustique (314) dans un premier côté (312) de la coque rigide (210); et

    injecter un matériau de polymère ou de précurseur de polymère dans la cavité (450) du moule (400), et former une structure de surmoulage (240) autour de la buse rigide (320) et de la coque rigide (210), la structure de surmoulage (240) comprenant un passage acoustique (349) couplant l'ouverture acoustique (314) à un canal acoustique (322) s'étendant axialement à travers la buse rigide (320), la structure de surmoulage (240) établissant une liaison souple permanente entre la buse rigide (320) et la coque rigide (210);

    le procédé étant caractérisé par le fait que former la structure de surmoulage (240) comprend former la structure de surmoulage (240) pour inclure une partie de coque (244) couplée au premier côté (312) de la coque rigide (210) et une partie de buse (242) s'étendant à partir de la partie de coque (244) autour d'une surface extérieure de la buse rigide (320), et former la partie de coque (244) de la structure de surmoulage souple (240) pour inclure un évidement (348) situé dans une face externe (246) de la structure de surmoulage souple (240) et s'étendant au moins légèrement dans l'ouverture acoustique (314) au niveau d'une interface entre la partie de coque (244) et la partie de buse (242) pour accroître une souplesse entre la buse rigide (320) et la coque rigide (210).


     
    13. Procédé selon la revendication 12, dans lequel injecter le matériau de polymère ou de précurseur de polymère dans la cavité (450) du moule (400) comprend:

    chauffer le matériau de polymère ou de précurseur de polymère à une température qui est suffisamment élevée pour fondre au moins partiellement des surfaces de la buse rigide (320) et de la coque rigide (210) lorsque le matériau de polymère ou de précurseur de polymère entre en contact avec la buse rigide (320) et la coque rigide (210); et

    injecter le matériau de polymère ou de précurseur de polymère chauffé dans la cavité (450) du moule (400).


     
    14. Procédé selon la revendication 12, dans lequel positionner la buse rigide (320) et la coque rigide (210) à l'intérieur de la cavité (450) du moule (400) comprend positionner la buse rigide (320) à un angle compris entre environ 18 degrés et environ 30 degrés par rapport à un axe central (260) de la coque rigide (210).
     




    Drawing



























    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description