(19)
(11)EP 3 041 737 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
26.06.2019 Bulletin 2019/26

(21)Application number: 14842066.4

(22)Date of filing:  28.08.2014
(51)International Patent Classification (IPC): 
B64C 27/12(2006.01)
F16H 37/06(2006.01)
B64D 35/06(2006.01)
(86)International application number:
PCT/US2014/053058
(87)International publication number:
WO 2015/034732 (12.03.2015 Gazette  2015/10)

(54)

ROTARY WING AIRCRAFT WITH A TORQUE SPLIT GEARBOX

DREHFLÜGELFLUGZEUG MIT EINEM LEISTUNGSVERZWEIGUNGSGETRIEBE

AÉRONEF À VOILURE TOURNANTE AVEC UN BOÎTE DE VITESSES À COUPLE DIVISÉ


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 04.09.2013 US 201314017674

(43)Date of publication of application:
13.07.2016 Bulletin 2016/28

(73)Proprietor: Sikorsky Aircraft Corporation
Stratford, CT 06615-9129 (US)

(72)Inventor:
  • GARCIA, Todd A.
    Mansfield, Texas 76063 (US)

(74)Representative: Schmitt-Nilson Schraud Waibel Wohlfrom Patentanwälte Partnerschaft mbB 
Pelkovenstraße 143
80992 München
80992 München (DE)


(56)References cited: : 
US-A- 3 824 875
US-A1- 2006 266 883
US-A1- 2011 194 935
US-B2- 8 397 603
US-A- 4 489 625
US-A1- 2009 084 891
US-A1- 2011 194 935
US-B2- 8 397 603
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    BACKGROUND



    [0001] The subject matter disclosed herein relates to the art of rotary wing aircraft and, more specifically, to rotary wing aircraft with gearboxes.

    [0002] A gearbox system of a rotary wing aircraft transfers power from an engine, or multiple engines, for example, a turbine engine, to the rotor system. A typical system directs power from the engine to a single rotor system including a plurality of rotor blades. Since rotational velocity of the rotor is typically lower than the rotational velocity of the engine, the gearbox is used to reduce the rotational velocity of the turbine engine. Torque is subsequently increased through a series of intermediate gear stages and shafts, with an output velocity provided to the rotor system.

    [0003] In other rotary wing aircraft with more complex rotor systems, the complexity of the gearbox typically also increases. For example, some rotary wing aircraft, such as the X2® helicopter produced by Sikorsky Aircraft Corporation, have two coaxial counter rotating main rotor assemblies. As such, the gearbox must be configured to transfer engine power to both rotor assemblies at the required directions of rotation, requiring two large final reduction stages. Further in X2® - type aircraft, the gearbox is further utilized to transfer power to a propeller assembly, typically located at a tail of the aircraft, to provide additional forward thrust. Consequently, the typical gearbox for such an aircraft is large and heavy.

    [0004] US 2009/084891 A1 discloses a de-rotation system which includes a first ring gear defined about an axis of rotation, a second ring gear defined about the axis of rotation and a gear set in meshing engagement with the first ring gear and the second ring gear to control a position of a housing about the axis of rotation.

    [0005] US 2011/194935 A1 discloses a gearbox assembly including a first face gear driveable about a face gear axis in a first direction by at least one first pinion gear and a second face gear driveable about the face gear axis in a second direction opposite the first direction by at least one second pinion gear. A thrust bearing is located between the first face gear and the second face gear. The first face gear is configured to drive rotation of a first shaft in the first direction and the second face gear is configured to drive rotation of a second shaft in the second direction. US 8 397 603 B2 discloses a split torque gearbox system providing a multiple path, three stage power gear train that transmits torque from a high-speed engine to a low speed output shaft, while providing equal gear load distribution with a floating pinion in the second stage of reduction.

    [0006] US 2006/266883 A discloses a gearbox of a high speed compound rotary-wing aircraft which includes a main module, an input module and a translational thrust module. The input module receives power from the engines to drive a dual, contra-rotating, coaxial main rotor system and a translational thrust system which provides significant translational thrust generally parallel to an aircraft longitudinal axis.

    [0007] US 3824875 A discloses a drive apparatus for imparting rotation in opposite directions to a pair of output shafts which are rotatable about longitudinal axes that are parallel and in close proximity to each other.

    BRIEF DESCRIPTION



    [0008] The invention relates to a rotary wing aircraft according to the appended claims.

    [0009] In one embodiment, a rotary wing aircraft includes an airframe and a rotor assembly. The rotor assembly includes a first rotor rotatable about a rotor axis in a first direction and a second rotor coaxial with the first rotor and rotatable about the rotor axis in a second direction opposite the first direction. A drive system includes an engine outputting a first torque and a gearbox assembly to reduce the first torque to a second torque and transfer the second torque to the rotor assembly. The gearbox assembly includes an input shaft to input the first torque into the gearbox assembly, an input bevel shaft operably connected to the input shaft to transfer the first torque therethrough and two gear sets operably connected to the input bevel shaft. Each gear set includes a first intermediate idler operably connected to the input bevel shaft, the first intermediate idler and a first output gear disposed at a first intermediate shaft, wherein the first intermediate idler is meshed with a transfer gear disposed at the input bevel shaft. Each gear set further includes a first output pinion to transfer a second torque acting in the first direction to the first rotor, a first intermediate gear meshed with the first intermediate idler, wherein the first intermediate gear and a second output gear are disposed at a second intermediate shaft, and a second output pinion to transfer the second torque acting in the second direction to the second rotor.

    [0010] These and other advantages and features will become more apparent from the following description taken in conjunction with the drawings.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0011] The subject matter, which is regarded as the invention, is particularly pointed out and distinctly claimed in the claims at the conclusion of the specification. The foregoing and other features, and advantages of the invention are apparent from the following detailed description taken in conjunction with the accompanying drawings in which:

    FIG. 1 is a schematic view of an embodiment of a rotary wing aircraft;

    FIG. 2 is a perspective view of a main gearbox assembly for a rotary wing aircraft which does not form part of the present invention;

    FIG. 3 is a perspective view of a gear train for a rotary wing aircraft which does not form part of the present invention;

    FIG. 4 is a plan view looking upward of a gear box assembly for a rotary wing aircraft which does not form part of the present invention; and

    FIG. 5 is another plan view of an embodiment of a rotary wing aircraft which does not form part of the present invention.



    [0012] The detailed description explains embodiments of the invention, together with advantages and features, by way of example with reference to the drawings.

    DETAILED DESCRIPTION



    [0013] Shown in FIG. 1 is schematic view of an embodiment of a rotary wing aircraft, in this embodiment a helicopter 10. The helicopter 10 includes an airframe 12 with an extending tail 14. A dual, counter rotating coaxial main rotor assembly 18 is located at the airframe 12 and rotates about a main rotor axis 20. The main rotor assembly 18 is driven by a power source, for example, an engine 24 via a gearbox 26. The main rotor assembly 18 includes an upper rotor assembly 28 driven in a first direction 30 about the main rotor axis 20, and a lower rotor assembly 32 driven in a second direction 34 about the main rotor axis 20, opposite to the first direction 30. While, in FIG. 1, the first direction 30 is illustrated as counter-clockwise and the second direction 34 is illustrated as counter clockwise, it is to be appreciated that in some embodiments the directions of rotation of the upper rotor assembly 28 and lower rotor assembly 32 may be reversed. Each of the upper rotor assembly 28 and the lower rotor assembly 32 include a plurality of rotor blades 36 secured to a rotor hub 38. In some embodiments, the helicopter 10 further includes a translational thrust system 40 located at the extending tail 14 to provide translational thrust for the helicopter 10. The translational thrust system 40 includes a propeller rotor 42 connected to and driven by the engine 24 via the gearbox 26. While shown in the context of a pusher-prop configuration, it is understood that the propeller rotor 42 could also be more conventional puller prop or could be variably facing so as to provide torque in addition to or instead of translational thrust.

    [0014] Shown in FIG. 2 is a perspective view of a main rotor assembly 18 and a gearbox 26. The gearbox 26 includes an upper bull gear 44 located at the main rotor axis 20 and connected to the lower rotor assembly 32 via a lower rotor shaft 46 extending along the main rotor axis 20. A lower bull gear 48 is located at the main rotor axis 20 and is connected to the upper rotor assembly 28 via an upper rotor shaft 50 extending along the main rotor axis 20, and through an interior of the lower rotor shaft 46. Torque and rotational speed are provided to the gearbox 26 via input shaft 52 that transmits the torque and rotational speed from the engine 24 to an input bevel gear 54 disposed at an input bevel shaft 56 of the gearbox 26 via an input bevel pinion 104. In some embodiments, the input bevel shaft 56 rotates about an input bevel shaft axis 58 parallel to the main rotor axis 20. The propeller rotor 42 is driven by a propeller output shaft 106 driven by a propeller output gear 62 disposed at a quill shaft 102, or an extension of input bevel shaft 56. Transfer from the propeller output gear 62 is achieved via connection with a propeller output pinion 60 at the propeller output shaft 106. To transfer torque from the input bevel shaft 56 to the lower rotor assembly 32 and the upper rotor assembly 30, the gearbox 26 includes a torque split gear reduction stage 64. While shown with the propeller output shaft 106 driven by the propeller output gear 62, it is understood that such elements could be removed where the propeller rotor 42 is not used or is separately driven.

    [0015] Referring to FIGs. 3 and 4, the torque split gear reduction stage 64 will now be described in greater detail. A pinion, transfer gear 66 is located at the input bevel shaft 56 and is meshed with two intermediate gear sets 68 to split the torque of the input bevel shaft 56. Each intermediate gear set 68 is substantially the same, so the structure and operation of one gear set 68 will now be described with the understanding that the other gear set 68 is similarly constructed. The gear set 68 includes an inner shaft 70 and an outer shaft 72, with axes 74, 76 of the inner shaft 70 and outer shaft 72, respectively, each parallel to the input bevel shaft axis 58. While shown two intermediate gear sets 68, it is understood that other numbers of intermediate gear sets 68 could be used in other aspects such as where additional engines are used, and/or additional torque splitting is required, as compared to the shown embodiment.

    [0016] Referring to FIG. 4, the inner shaft 70, located closest to transfer shaft 56, includes an inner spur idler 78, which is meshed with the transfer gear 66. Likewise, the outer shaft 72 includes an outer spur gear 80, which is meshed with the inner spur idler78. In some embodiments, a gear ratio between the inner spur idler 78 and the outer spur gear 80 is 1:1, however it is understood that the gear ratio of the inner spur idler 78 and the outer spur gear 80 could be other than 1:1, such as where the bull gears 44, 48 are being driven at different rates or where additional gears (not shown), or ratios, are used which have a like effect to a 1:1 gear ratio.

    [0017] As shown in FIG. 4, in this view looking upward, counterclockwise rotation of the input bevel gear 54 urges clockwise rotation of the inner shaft 70 and clockwise rotation of the outer shaft 72. Referring again to FIG. 3, torque is transmitted from the gear set 68 to the upper bull gear 44 via an upper output pinion 82 at the inner shaft 70, thus urging clockwise rotation of the upper bull gear 44 and the lower rotor assembly 32. A lower output pinion 84 at the outer shaft 72 transfers torque from the gear set 68 to the lower bull gear 48. While the gear sets 68 are described herein as having an inner spur idler 78 and an outer spur gear 80, it is to be appreciated that intermediate idlers (not shown) between the inner spur idler 78 and the outer spur gear 80 to achieve a desired gear reduction at the upper bull gear 44 and/or the lower bull gear 48 are present. Further, while spur idlers and pinions are described and shown herein, it is to be appreciated that other configurations including helical mesh or any other parallel axis gear mesh may be utilized. Lastly, while described in terms of clockwise and counterclockwise rotations, it is understood that the specific rotational direction is not restricted so long as the opposite direction rotations occur for the shafts 56, 70, and 72.

    [0018] Referring to FIG. 5, in some embodiments, the inner shaft 70 and outer shaft 72 at least partially comprise a compliant shaft member 90. The complaint shaft member 90 acts like a torsional spring, and ensures that the torque split between the respective upper output pinions 82 remains a 50 -50 split, and the torque split between the respective lower output gears 84 also remains a 50-50 split. Utilizing two gear sets 68 to split the torque supplied by the transfer shaft 56 allows the upper output pinion 82 and lower output pinion84 to be smaller thus allowing for a greater reduction at the upper bull gear 44 and the lower bull gear 48. In some embodiments, upper output pinion 82 and lower output pinion 84 are identical. Further, because the torque is split between the two gear sets 68, the face width, or thickness of each output pinion 82, 84 can be reduced, thus reducing weight and envelope required to house the gear sets 68. While described as transferring torque from the transfer shaft 56 to the two gear sets 68, it is understood that, in other aspects, the input bevel shaft 56 could receive transferred torque from the two gear sets 68 such as might occur when the rotor assemblies 28, 32 provide the input torque as in the case of a wind or water turbine.

    [0019] While the invention has been described in detail in connection with only a limited number of embodiments, it should be readily understood that the invention is not limited to such disclosed embodiments. Rather, the invention can be modified to incorporate any number of variations, alterations, substitutions or equivalent arrangements not heretofore described, but which are commensurate with the scope of the claims. Additionally, while various embodiments of the invention have been described, it is to be understood that aspects of the invention may include only some of the described embodiments. Accordingly, the invention is not to be seen as limited by the foregoing description, but is only limited by the scope of the appended claims.


    Claims

    1. A rotary wing aircraft (10) comprising:

    an airframe (12);

    a rotor assembly (18) including:

    a first rotor (28) rotatable about a rotor axis (20) in a first direction; and

    a second rotor (32) coaxial with the first rotor (28) and rotatable about the rotor axis (20) in a second direction opposite the first direction; and

    a drive system including:

    an engine (24) outputting a first torque;

    a gearbox assembly (26) to reduce the first torque to a second torque and transfer the second torque to the rotor assembly (18), the gearbox assembly (26) including:

    an input shaft (52) to input the first torque into the gearbox assembly (26);

    an input bevel shaft (56) operably connected to the input shaft (52) to transfer the first torque therethrough; and

    two gear sets (68) operably connected to the input bevel shaft (56), each gear set (68) including:

    a first intermediate idler operably connected to the input bevel shaft (56), the first intermediate idler and a first output gear disposed at a first intermediate shaft, wherein the first intermediate idler is meshed with a transfer gear (66) disposed at the input bevel shaft (56);

    a first output pinion (84) to transfer a second torque acting in the first direction to the first rotor (28);

    a first intermediate gear meshed with the first intermediate idler, the first intermediate gear and a second output gear disposed at a second intermediate shaft; and

    a second output pinion (82) to transfer the second torque acting in the second direction to the second rotor (32).


     
    2. The aircraft of Claim 1, wherein the first output pinion and the second output pinion (82, 84) have axes of revolution parallel to an input bevel shaft axis.
     
    3. The aircraft of Claim 1, wherein the rotor assembly (18) further comprises:

    a first bull gear (48) operably connected to the first rotor (28) via a first rotor shaft; and

    a second bull gear (44) operably connected to the second rotor (32) via a second rotor shaft coaxial with the first rotor shaft.


     
    4. The aircraft of Claim 3, wherein the first output pinion (84) is meshed with the first bull gear (48) and the second output pinion (82) is meshed with the second bull gear (44).
     
    5. The aircraft of Claim 3, wherein the second rotor shaft is disposed inside of the first rotor shaft.
     
    6. The aircraft of Claim 1, further comprising a propeller assembly including:

    a propeller output gear (62) disposed at the input bevel shaft (56) to drive a propeller output shaft (106); and

    a propeller (42) operably connected to the propeller output shaft to provide translational thrust for the aircraft.


     


    Ansprüche

    1. Drehflügelflugzeug (10), umfassend:

    ein Flugwerk (12);

    eine Rotoranordnung (18), beinhaltend:

    einen ersten Rotor (28), der in einer ersten Richtung um eine Rotorachse (20) gedreht werden kann; und

    einen zweiten Rotor (32) koaxial zu dem ersten Rotor (28), der in einer zweiten Richtung gegenüber der ersten Richtung um die Rotorachse (20) gedreht werden kann; und

    ein Antriebssystem, beinhaltend:

    ein Triebwerk (24), das ein erstes Drehmoment ausgibt;

    eine Getriebeanordnung (26) zum Verringern des ersten Drehmoments auf ein zweites Drehmoment und Übertragen des zweiten Drehmoments auf die Rotoranordnung (18), wobei die Getriebeanordnung (26) Folgendes beinhaltet:

    eine Eingangswelle (52) zum Eingeben des ersten Drehmoments in die Getriebeanordnung (26);

    eine Eingangskegelradwelle (56), die mit der Eingangswelle (52) wirkverbunden ist, um das erste Drehmoment dadurch zu übertragen; und

    zwei Getriebesätze (68), die mit der Eingangskegelradwelle (56) wirkverbunden sind, wobei jeder Getriebesatz (68) Folgendes beinhaltet:

    eine erste Zwischenleitrolle, die mit der Eingangskegelradwelle (56) wirkverbunden ist, wobei die erste Zwischenleitrolle und ein erstes Ausgangszahnrad an einer ersten Zwischenwelle angeordnet sind, wobei die erste Zwischenleitrolle mit einem Übertragungszahnrad (66) ineinandergreift, das an der Eingangskegelradwelle (56) angeordnet ist;

    ein erstes Ausgangsritzel (84) zum Übertragen eines zweiten Drehmoments, das in der ersten Richtung an dem ersten Rotor (28) wirkt;

    ein erstes Zwischenzahnrad, das mit der ersten Zwischenleitrolle ineinandergreift, wobei das erste Zwischenzahnrad und ein zweites Ausgangszahnrad an einer zweiten Zwischenwelle angeordnet sind; und

    ein zweites Ausgangsritzel (82) zum Übertragen des zweiten Drehmoments, das in der zweiten Richtung an dem zweiten Rotor (32) wirkt.


     
    2. Flugzeug nach Anspruch 1, wobei das erste Ausgangsritzel und das zweite Ausgangsritzel (82, 84) Drehachsen aufweisen, die parallel zu einer Kegelradwellenachse sind.
     
    3. Flugzeug nach Anspruch 1, wobei die Rotoranordnung (18) ferner Folgendes umfasst:

    ein erstes Antriebszahnrad (48), das durch eine erste Rotorwelle mit dem ersten Rotor (28) wirkverbunden ist; und

    ein zweites Antriebszahnrad (44), das durch eine zweite Rotorwelle koaxial zu der ersten Rotorwelle mit dem zweiten Rotor (32) wirkverbunden ist.


     
    4. Flugzeug nach Anspruch 3, wobei das erste Ausgangsritzel (84) mit dem ersten Antriebszahnrad (48) ineinandergreift und das zweite Ausgangsritzel (82) mit dem zweiten Antriebszahnrad (44) ineinandergreift.
     
    5. Flugzeug nach Anspruch 3, wobei die zweite Rotorwelle in der ersten Rotorwelle angeordnet ist.
     
    6. Flugzeug nach Anspruch 1, ferner umfassend eine Propelleranordnung, beinhaltend:

    ein Propellerausgangszahnrad (62), das an der Kegelradwelle (56) angeordnet ist, um eine Propellerausgangswelle (106) anzutreiben; und

    einen Propeller (42), der mit der Propellerausgangswelle wirkverbunden ist, um einen Übertragungsschub für das Flugzeug bereitzustellen.


     


    Revendications

    1. Aéronef à voilure tournante (10) comprenant :

    une cellule (12) ;

    un ensemble rotor (18) incluant :

    un premier rotor (28) pouvant tourner autour d'un axe de rotor (20) dans une première direction ; et

    un second rotor (32) coaxial au premier rotor (28) et pouvant tourner autour de l'axe de rotor (20) dans une seconde direction opposée à la première direction ; et

    un système d'entraînement incluant :

    un moteur (24) délivrant en sortie un premier couple ;

    un ensemble boîte de vitesses (26) destiné à réduire le premier couple en un second couple et à transférer le second couple à l'ensemble rotor (18), l'ensemble boîte de vitesses (26) incluant :

    un arbre d'entrée (52) destiné à fournir en entrée le premier couple dans l'ensemble boîte de vitesses (26) ;

    un arbre conique d'entrée (56) fonctionnellement raccordé à l'arbre d'entrée (52) pour transférer le premier couple à travers celui-ci ; et

    deux trains d'engrenages (68) fonctionnellement raccordés à l'arbre conique d'entrée (56), chaque train d'engrenages (68) incluant :

    un premier renvoi intermédiaire fonctionnellement raccordé à l'arbre conique d'entrée (56), le premier renvoi intermédiaire et un premier engrenage de sortie étant disposés au niveau d'un premier arbre intermédiaire, dans lequel le premier renvoi intermédiaire s'engrène avec un engrenage de transfert (66) disposé au niveau de l'arbre conique d'entrée (56) ;

    un premier pignon de sortie (84) destiné à transférer un second couple agissant dans la première direction au premier rotor (28) ;

    un premier engrenage intermédiaire engrené avec le premier renvoi intermédiaire, le premier engrenage intermédiaire et un second engrenage de sortie étant disposés au niveau d'un second arbre intermédiaire ; et

    un second pignon de sortie (82) destiné à transférer le second couple agissant dans la seconde direction au second rotor (32).


     
    2. Aéronef selon la revendication 1, dans lequel le premier pignon de sortie et le second pignon de sortie (82, 84) ont des axes de révolution parallèles à un axe d'arbre conique d'entrée.
     
    3. Aéronef selon la revendication 1, dans lequel l'ensemble rotor (18) comprend en outre :

    une première couronne dentée (48) fonctionnellement raccordée au premier rotor (28) par l'intermédiaire d'un premier arbre de rotor ; et

    une seconde couronne dentée (44) fonctionnellement raccordée au second rotor (32) par l'intermédiaire d'un second arbre de rotor coaxial au premier arbre de rotor.


     
    4. Aéronef selon la revendication 3, dans lequel le premier pignon de sortie (84) s'engrène avec la première couronne dentée (48) et le second pignon de sortie (82) s'engrène avec la seconde couronne dentée (44).
     
    5. Aéronef selon la revendication 3, dans lequel le second arbre de rotor est disposé à l'intérieur du premier arbre de rotor.
     
    6. Aéronef selon la revendication 1, comprenant en outre un ensemble hélice incluant :

    un engrenage de sortie d'hélice (62) disposé au niveau de l'arbre conique d'entrée (56) pour entraîner un arbre de sortie de l'hélice (106) ; et

    une hélice (42) fonctionnellement raccordée à l'arbre de sortie de l'hélice pour fournir une poussée de translation à l'aéronef.


     




    Drawing




















    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description