(19)
(11)EP 3 046 459 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
14.08.2019 Bulletin 2019/33

(21)Application number: 14872146.7

(22)Date of filing:  04.11.2014
(51)International Patent Classification (IPC): 
A61B 3/10(2006.01)
A61B 3/00(2006.01)
(86)International application number:
PCT/US2014/063929
(87)International publication number:
WO 2015/094496 (25.06.2015 Gazette  2015/25)

(54)

SYSTEM AND METHOD FOR ASSESSING RESIDUAL ACCOMMODATION IN PRESBYOPIC EYES

VORRICHTUNG UND VERFAHREN ZUR BEURTEILUNG DER RESTAKKOMMODATION BEI AUGEN MIT ALTERSWEITSICHTIGKEIT

DISPOSITIF ET PROCÉDÉ D'ÉVALUATION DE L'ACCOMMODATION RÉSIDUELLE DANS DES YEUX PRESBYTES


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 20.12.2013 US 201361918877 P

(43)Date of publication of application:
27.07.2016 Bulletin 2016/30

(73)Proprietor: Novartis AG
4056 Basel (CH)

(72)Inventors:
  • CAMPIN, John A.
    Fort Worth, TX 76134 (US)
  • PETTIT, George H.
    Fort Worth, TX 76134 (US)
  • STANLEY, Daniel W.
    Midlothian, TX 76065 (US)

(74)Representative: Hanna Moore + Curley 
Garryard House 25/26 Earlsfort Terrace
Dublin 2, D02 PX51
Dublin 2, D02 PX51 (IE)


(56)References cited: : 
WO-A2-2005/104994
US-A1- 2005 041 210
US-A1- 2010 130 888
US-A1- 2012 038 883
US-A- 5 843 188
US-A1- 2008 177 170
US-A1- 2011 160 852
US-A1- 2012 053 459
  
  • FISHER R F: "THE FORCE OF CONTRACTION OF THE HUMAN CILIARY MUSCLE DURING ACCOMMODATION", THE JOURNAL OF PHYSIOLOGY,, vol. 270, no. 1, 1 August 1977 (1977-08-01), pages 51-74, XP009194284,
  • HERMANS ET AL: "Change in the accommodative force on the lens of the human eye with age", VISION RESEARCH, PERGAMON PRESS, OXFORD, GB, vol. 48, no. 1, 4 December 2007 (2007-12-04), pages 119-126, XP022441961, ISSN: 0042-6989, DOI: 10.1016/J.VISRES.2007.10.017
  
Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


Description

TECHNICAL FIELD



[0001] This invention relates generally to the field of accommodating intraocular lenses and, more particularly, to a method for assessing residual accommodation in presbyopic eyes.

BACKGROUND OF THE INVENTION



[0002] The human eye in its simplest terms functions to provide vision by transmitting light through a clear outer portion called the cornea, and focusing the image by way of a crystalline lens onto a retina. The quality of the focused image depends on many factors including the size and shape of the eye, and the transparency of the cornea and the lens. When age or disease causes the lens to become less transparent, vision deteriorates because of the diminished light which can be transmitted to the retina. This deficiency in the lens of the eye is medically known as a cataract. An accepted treatment for this condition is surgical removal of the lens and replacement of the lens function by an artificial intraocular lens (IOL). In the United States, the majority of cataractous lenses are removed by a surgical technique called phacoemulsification. During this procedure, an opening is made in the anterior capsule and a thin phacoemulsification cutting tip is inserted into the diseased lens and ultrasonically vibrated. The vibrating cutting tip liquefies or emulsifies the lens so that the lens may be aspirated out of the eye. The diseased lens, once removed, is replaced by an IOL.

[0003] In the natural lens, distance and near vision is provided by a mechanism known as accommodation. The natural lens is contained within the capsular bag and is soft early in life. The bag is suspended from the ciliary muscle by the zonules. Relaxation of the ciliary muscle tightens the zonules, and stretches the capsular bag. As a result, the natural lens tends to flatten. Tightening of the ciliary muscle relaxes the tension on the zonules, allowing the capsular bag and the natural lens to assume a more rounded shape. In this way, the natural lens can focus alternatively on near and far objects.

[0004] As the lens ages, it becomes harder and is less able to change its shape in reaction to the tightening of the ciliary muscle. Furthermore, the ciliary muscle loses flexibility and range of motion. This makes it harder for the lens to focus on near objects, a medical condition known as presbyopia. Presbyopia affects nearly all adults upon reaching the age of 45 to 50. Various accommodative intraocular lenses (IOLs) have been proposed. However, it can be difficult to assess the accommodative response in particular eyes, making it likewise difficult to predict how an implanted IOL will respond.

[0005] Fisher, R. F., "The force of contraction of the human ciliary muscle during accommodation", Journal of Physiology, vol. 270, no. 1, 1st August 1977, pages 51-74, and US 2010/130888 A1 are representative of the relevant state of the art. Document US 2010/130888 A1 relates to systems and methods for selecting an intraocular lens based on an available amount of accommodative force measured by an angle indicator inserted into the capsular bag.

BRIEF DESCRIPTION OF THE DRAWINGS



[0006] 

FIGURE 1 is a schematic depicting a mechanical model of a patient's eye;

FIGURE 2 is an example system for determining an accommodative force in a patient; and

FIGURE 3 is an example method for determining at least one intraocular lens parameter based on a determination of accommodative force in a patient.


SUMMARY OF THE INVENTION



[0007] The present invention provides a system and method for determining an accommodative force in a patient as defined in claims 1 and 8, respectively.

[0008] Various embodiments of the present invention provide sensors for assessing residual accommodative function. In a particular embodiment, a system for determining an accommodative force in a patient includes a sensor adapted to detect motion of a lens of the patient relative to a globe of the patient's eye, a controller configured to determine an accommodative force in the patient based on the relative motion and to determine at least one parameter for an intraocular lens based on the accommodative force, and an interface adapted to output the at least one parameter for the intraocular lens. The embodiments discussed below are exemplary, and various changes can be made to these illustrative embodiments. For example, the features of one embodiment can be combined with those of another embodiment.

DETAILED DESCRIPTION



[0009] As shown in FIGURE 1, the eye 100 can be illustrated mechanically as a system in which the lens 102 is suspended by zonules 104 attached to the ciliary body 106, causing the lens to be flattened by the tension in the zonules. As a patient accommodates, the ciliary body 106 contracts, and the tension in the zonules 104 is reduced, allowing the lens 102 to become more round. The change in tension when the zonules are tightened or slackened reflects the residual accommodative force in a presbyopic eye.

[0010] The lens 102 floats in liquid (vitreous and aqueous humor) within the eye 100. This allows the lens 102 to move relative to the surrounding eye tissue forming the globe of the eye, including the sclera and cornea. Ordinarily, the zonule tension is such that the lens 102 moves simultaneously with the eye 100, such as when the head turns. However, rapid eye movements can cause the lens 102 to lag behind the movement of the eye 100. This is the case with saccadic motions, rapid movements of the eye corresponding to changes between points of fixations. During a saccade, the eye 100 moves rapidly enough that the lens 102 can lag behind. This causes a wobble in the lens 102 as the tension in the zonules causes the lens 102 to settle back into position.

[0011] One technique for measuring residual accommodative force is to compare the wobble caused by saccadic motion when the patient is accommodating versus when the patient is not accommodating. The lens 102 can be modeled as a damped harmonic oscillator with a spring constant k representing the elastic tension in the zonules and a damping force reflecting the surrounding viscous fluids. The time required for the oscillations to stop then can be used to model the corresponding zonular tension.

[0012] FIGURE 2 illustrates an example system 200 for measuring the oscillations of the lens 102 relative to the eye. The system 200 includes a light source 202, a photosensor 204 and controller 206. The controller 206 include a processor 208, a memory 210 and a user interface 212. In the example embodiment, the light source 202 projects light onto a patient's eye. The light source 202 can also generate a suitable fixation pattern within the patient's field of view to cause the patient to accommodate or disaccommodate as needed. The photosensor 204 measures the reflections of light from the patient's eye in order to provide an indication of the relative location of the lens 102 relative to the globe of the eye 100. In an example embodiment, the photosensor 204 can record Purkinje reflections from various interfaces in the eye, such as the first and fourth Purkinje reflections corresponding to the anterior corneal surface and the posterior lens surface, respectively. The Purkinje reflections can likewise be used to track the relative motion of the lens 102 and the globe of the eye 100 using known techniques for eye tracking, thus providing an indication of the degree of oscillation.

[0013] The controller 206 includes the processor 208, which may include any microprocessor, microcontroller, integrated circuit, or other suitable electronic components suitable for processing electronic information. The memory 210 may be any volatile or non-volatile information storage suitable for storing information for processor 208, including magnetic, electronic, or optical storage. The interface 212 allows the system 200 to exchange information with a user of the system, including input devices such as a keyboard, keypad, touch screen or mouse controller and output devices such as a monitor or a printer.

[0014] In operation, the controller 206 receives signals from the photosensor 204 indicative of the relative motion of the lens 102 and the globe of the eye 100 during saccadic motion, determines the relative zonular tension in accommodating and disaccommodating states, and calculates the residual accommodative force in the patient's eye based on the comparison. As noted previously, this comparison can be based on a damped harmonic oscillator model that accounts for the viscosity of the surrounding fluid with the zonules applying a different spring force when tightened and slackened. The system 200 can then output the calculated accommodative demand via the interface 212. The output can be a direct measurement of the residual accommodative force, or it can instead represent a selection of an intraocular lens for the patient that responds to the accommodative demand.

[0015] In the case of intraocular lens selection, there could be a selection from a variety of lens models or an adjustment of an adjustable lens parameter to provide the needed combination of accommodation with the residual accommodation of the patient. In one example, a variety of accommodative lenses could be designed with varying haptic shapes or other mechanical features that provide a different response depending on the accommodative force exerted on the lens. In another example, there may be a tension adjustment or distance adjustment in the haptics of the lens that can be set based on the measurement of the residual accommodation force. In another example, an accommodative lens might be a liquid-filled, curvature changing lens that changes accommodative power as force is exerted on it, and the amount of liquid used to fill the lens could be adjusted to alter the mechanical response. In short, any suitable parameter that varies as a function of accommodative force could conceivably be selected or adjusted based on the residual accommodation measured.

[0016] Other alternative systems for measuring the relative motion of the lens and the globe of the eye could include ultrasound or optical coherence tomography (OCT) techniques. In general, any suitable method for locating the relative positions of the lens to the globe of the eye with sufficient resolution and acquisition speed could in principle be adapted for the present invention. Therefore, while a light source and photosensor as disclosed as an example above, any sensor for measuring the position of the lens relative to the globe can function within the system 200.

[0017] FIGURE 3 is a flowchart 300 of an example method of determining a parameter for an intraocular lens according to a particular embodiment of the present invention. At step 302, the method includes measuring motion of a lens of a patient relative to a globe of the patient's eye. The method then includes determining an accommodative force in the patient based on the relative motion at step 304. Next, at step 306, the method includes determining at least one parameter for an intraocular lens based on the accommodative force. Finally, at step 308, the method includes outputting the at least one parameter for the intraocular lens. The various method steps can be performed using any suitable apparatus according to any embodiment of the invention described herein or other suitable variations apparent to one skilled in the art.


Claims

1. A system (200) for determining an accommodative force in a patient, comprising:

a sensor adapted to detect oscillations of a lens of the patient relative to a globe of the patient's eye (100) caused by saccadic motion;

a controller (206) configured to determine an accommodative force in the patient based on the oscillations using a damped harmonic oscillator model of the lens and to determine at least one parameter for an intraocular lens based on the accommodative force; and

an interface (212) adapted to output the at least one parameter for the intraocular lens.


 
2. The system of Claim 1, wherein the sensor comprises a light source (202) and a photosensor (204).
 
3. The system of Claim 2, wherein the photosensor (204) detects Purkinje reflections from an anterior surface of the eye and from at least one surface of the lens.
 
4. The system of Claim 1, wherein the sensor is an optical coherence tomography (OCT) sensor.
 
5. The system of Claim 1, wherein the sensor is an ultrasound sensor.
 
6. The system of Claim 1, wherein the at least one parameter is a haptic tension for the intraocular lens.
 
7. The system of Claim 1, wherein the at least one parameter is a fill volume for the intraocular lens.
 
8. A method of determining a parameter for an intraocular lens, comprising:

measuring (302) oscillations of a lens of a patient relative to a globe of the patient's eye caused by saccadic motion;

determining (304) an accommodative force in the patient based on the oscillations using a damped harmonic oscillator model of the lens;

determining (306) at least one parameter for an intraocular lens based on the accommodative force; and

outputting (308) the at least one parameter for the intraocular lens.


 
9. The method of Claim 8, wherein the oscillations of the lens are measured (302) using a light source (202) and a photosensor (204).
 
10. The method of Claim 9, wherein the photosensor (204) detects Purkinje reflections from an anterior surface of the eye and from at least one surface of the lens.
 
11. The method of Claim 8, wherein the oscillations of the lens are measured (302) using an optical coherence tomography (OCT) sensor.
 
12. The method of Claim 8, wherein the oscillations of the lens are measured (302) using an ultrasound sensor.
 
13. The method of Claim 8, wherein the at least one parameter is a haptic tension for the intraocular lens.
 
14. The method of Claim 8, wherein the at least one parameter is a fill volume for the intraocular lens.
 


Ansprüche

1. System (200) zum Ermitteln einer Akkommodationskraft bei einem Patienten, umfassend:

einen Sensor, der eingerichtet ist, um Oszillationen einer Linse des Patienten relativ zu einem Augapfel des Patienten (100) zu detektieren, die durch Sakkadenbewegung herbeigeführt werden;

eine Steuerung (206), die ausgestaltet ist, um eine Akkommodationskraft bei dem Patienten basierend auf den Oszillationen zu ermitteln, indem ein gedämpftes harmonisches Oszillatormodell der Linse verwendet wird, und mindestens einen Parameter für eine Intraokularlinse basierend auf der Akkommodationskraft zu ermitteln; und

eine Schnittstelle (212), die eingerichtet ist, um den mindestens einen Parameter für die Intraokularlinse auszugeben.


 
2. System nach Anspruch 1, wobei der Sensor eine Lichtquelle (202) und einen Photosensor (204) umfasst.
 
3. System nach Anspruch 2, wobei der Photosensor (204) Purkinje-Reflexionen von einer anterioren Oberfläche des Auges und von mindestens einer Oberfläche der Linse detektiert.
 
4. System nach Anspruch 1, wobei der Sensor ein optischer Kohärenztomographie- (OCT)-Sensor ist.
 
5. System nach Anspruch 1, wobei der Sensor ein Ultraschallsensor ist.
 
6. System nach Anspruch 1, wobei der mindestens eine Parameter eine haptische Zugspannung für die Intraokularlinse ist.
 
7. System nach Anspruch 1, wobei der mindestens eine Parameter ein Füllvolumen für die Intraokularlinse ist.
 
8. Verfahren zum Ermitteln eines Parameters für eine Intraokularlinse, umfassend:

Messen (302) von Oszillationen einer Linse eines Patienten relativ zu einem Augapfel des Patienten, die durch Sakkadenbewegung herbeigeführt werden;

Ermitteln (304) einer Akkommodationskraft bei dem Patienten basierend auf den Oszillationen unter Verwendung eines gedämpften harmonischen Oszillatormodells der Linse;

Ermitteln (306) mindestens eines Parameters für eine Intraokularlinse basierend auf der Akkommodationskraft; und

Ausgeben (308) von mindestens einem Parameter für die Intraokularlinse.


 
9. Verfahren nach Anspruch 8, wobei die Oszillationen der Linse unter Verwendung einer Lichtquelle (202) und eines Photosensors (204) gemessen (302) werden.
 
10. Verfahren nach Anspruch 9, wobei der Photosensor (204) Purkinje-Reflexionen von einer anterioren Oberfläche des Auges und von mindestens einer Oberfläche der Linse detektiert.
 
11. Verfahren nach Anspruch 8, wobei die Oszillationen der Linse unter Verwendung eines optischen Kohärenztomographie- (OCT)-Sensors gemessen (302) werden.
 
12. Verfahren nach Anspruch 8, wobei die Oszillationen der Linse unter Verwendung eines Ultraschallsensors gemessen (302) werden.
 
13. Verfahren nach Anspruch 8, wobei der mindestens eine Parameter eine haptische Zugspannung für die Intraokularlinse ist.
 
14. Verfahren nach Anspruch 8, wobei der mindestens eine Parameter ein Füllvolumen für die Intraokularlinse ist.
 


Revendications

1. Système (200) pour déterminer une force d'accommodation chez un patient, comprenant :

un capteur adapté pour détecter des oscillations d'un cristallin du patient relativement à un globe oculaire du patient (100) causées par un mouvement saccadé ;

un organe de commande (206) configuré pour déterminer une force d'accommodation chez le patient sur la base des oscillations en utilisant un modèle d'oscillateur harmonique amorti du cristallin et pour déterminer au moins un paramètre pour une lentille intraoculaire sur la base de la force d'accommodation ; et

une interface (212) adaptée pour délivrer en sortie l'au moins un paramètre pour la lentille intraoculaire.


 
2. Système selon la revendication 1, le capteur comprenant une source lumineuse (202) et un photocapteur (204).
 
3. Système selon la revendication 2, le photocapteur (204) détectant des réflexions de Purkinje à partir d'une surface antérieure de l'oeil et à partir d'au moins une surface du cristallin.
 
4. Système selon la revendication 1, le capteur étant un capteur de tomographie par cohérence optique (OCT).
 
5. Système selon la revendication 1, le capteur étant un capteur à ultrasons.
 
6. Système selon la revendication 1, l'au moins un paramètre étant une tension haptique pour la lentille intraoculaire.
 
7. Système selon la revendication 1, l'au moins un paramètre étant un volume de remplissage pour la lentille intraoculaire.
 
8. Procédé de détermination d'un paramètre pour une lentille intraoculaire, comprenant :

la mesure (302) des oscillations d'un cristallin d'un patient relativement à un globe oculaire du patient causées par un mouvement saccadé ;

la détermination (304) d'une force d'accommodation chez le patient sur la base des oscillations en utilisant un modèle d'oscillateur harmonique amorti du cristallin ;

la détermination (306) d'au moins un paramètre pour une lentille intraoculaire sur la base de la force d'accommodation ; et

la délivrance en sortie (308) de l'au moins un paramètre pour la lentille intraoculaire.


 
9. Procédé selon la revendication 8, les oscillations du cristallin étant mesurées (302) en utilisant une source lumineuse (202) et un photocapteur (204).
 
10. Procédé selon la revendication 9, le photocapteur (204) détectant des réflexions de Purkinje à partir d'une surface antérieure de l'oeil et à partir d'au moins une surface du cristallin.
 
11. Procédé selon la revendication 8, les oscillations du cristallin étant mesurées (302) en utilisant un capteur de tomographie par cohérence optique (OCT).
 
12. Procédé selon la revendication 8, les oscillations du cristallin étant mesurées (302) en utilisant un capteur à ultrasons.
 
13. Procédé selon la revendication 8, l'au moins un paramètre étant une tension haptique pour la lentille intraoculaire.
 
14. Procédé selon la revendication 8, l'au moins un paramètre étant un volume de remplissage pour la lentille intraoculaire.
 




Drawing











Cited references

REFERENCES CITED IN THE DESCRIPTION



This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description




Non-patent literature cited in the description