CROSS REFERENCE TO RELATED APPLICATIONS
FIELD OF INVENTION
[0002] This application is related to vehicle electronics.
BACKGROUND
[0003] Some vehicles now have stop-start systems that automatically limit idling in a motionless vehicle. In particular, when the vehicle comes to a stop, the engine computer or control unit stops sparking and providing fuel. When the driver lifts his or her foot off the brake, or engages the clutch, the engine fires back up. In these stop-start situations, current is drawn from the overall vehicle electrical systems when re-cranking the vehicle through the main battery and starter circuit. This may cause brown out conditions with respect to the overall vehicle electrical systems, such as the radio, navigation and or other vehicle electrical systems.
[0004] DE102008054885 (A1) describes a device (100) having an energy storage (110) for providing electricity to a starter, a generator (130) for producing a generator voltage, and a controllable logic element (140), which is provided between the energy storage and the generator. The controllable logic element is formed in such a manner that it permits current flow only in a direction from the energy storage to the generator during operation of the vehicle. An independent claim is also included for a method for steering a power supply of a vehicle electrical system.
SUMMARY
[0005] Described herein is a device and method for current flow control for dual battery vehicle architecture. The dual battery vehicle architecture includes a second energy source that is used to support electrical loads, such as radio and navigation systems, during re-cranking in stop-start situations. A quasi-diode device is configured to effectively split a main battery and starter circuit from the rest of the vehicle electrical system including the second energy source. The quasi-diode device includes a plurality of field effect transistors (FET) that conducts current in both directions between the main battery and starter circuit and the rest of the vehicle electrical system when the FETs are turned on and conducts current only from the main battery and starter circuit to the rest of the vehicle electrical system when the FETs are turned off, i.e. when re-cranking is occurring during a start-stop situation.
[0006] The scope of the invention is defined by the device of independent claim 1 and the method of independent claim 12.
BRIEF DESCRIPTION OF THE DRAWINGS
[0007]
Figure 1 shows an example dual battery vehicle architecture and circuit in accordance with one or more disclosed embodiments;
Figure 2 shows an example high level block diagram of a quasi-diode device in accordance with one or more disclosed embodiments;
Figure 3 shows an example circuit diagram of a quasi-diode device in accordance with one or more disclosed embodiments;
Figure 4 shows an example schematic for a quasi-diode device in accordance with one or more disclosed embodiments;
Figure 5 shows an example view of a quasi-diode device in accordance with one or more disclosed embodiments;
Figure 6 shows an example perspective view of a quasi-diode device in accordance with one or more disclosed embodiments;
Figure 7 shows an example internal view of a quasi-diode device in accordance with one or more disclosed embodiments;
Figure 8 shows an example view of a quasi-diode device in accordance with one or more disclosed embodiments with outer casing removed; and
Figure 9 shows an example view of a quasi-diode device in accordance with one or more disclosed embodiments with outer casing and cover removed.
DETAILED DESCRIPTION
[0008] In general, in a dual battery vehicle architecture or system, a quasi-diode device is configured to effectively split a main battery and starter circuit from the rest of the vehicle electrical system including a second energy source. The quasi-diode device includes a plurality of field effect transistors (FET) that conducts current in both directions between the main battery and starter circuit and the rest of the vehicle electrical system when the FETs are turned on and conducts current only from the main battery and starter circuit to the rest of the vehicle electrical system when the FETs are turned off, i.e. when re-cranking is occurring during a start-stop situation. The quasi-diode device limits the voltage drop at the second energy source during re-cranking and prevents current from being drawn from the overall electrical system to the main battery and starter circuit.
[0009] In comparison to a simple semiconductor diode, the quasi-diode device uses FETs to conduct current and therefore has lower voltage drops and less power losses, which eliminate the need for costly heat sinking. In addition, as compared to an electromechanical solution, (such as a relay), the quasi-diode device offers higher life cycles and noiseless operation.
[0010] Figure 1 shows an example dual cell system 100 using a quasi-diode device 105 connected between a main battery and starter circuit 110 and a remaining vehicle electrical system 115. The main battery and starter circuit 110 includes at least a battery 140 and a starter 142. The remaining vehicle electrical system 115 includes at least a second energy source 150 and loads 152. A generator 160 may be part of the main battery and starter circuit 110 or the remaining vehicle electrical system 115, depending on vehicle system implementation.
[0011] The quasi-diode device 105 includes four (4) N-channel FETs 107 that are connected in parallel. Although N-channel FETs are used in the description herein of the quasi-diode device, P-channel FETs may also be used. The quasi-diode device 105 has an enable control signal 170 provided by an engine control unit 175 for turning or switching the quasi-diode device 105 on or off in accordance with engine re-start conditions. In a diode emulation mode, when the enable control signal 170 is low, the quasi-diode device 105 is off and current flows from the main battery and starter circuit 110 to the remaining vehicle electrical system 115. In an ON state, when the enable control signal 170 is high or not connected, the quasi-diode device 105 is on and current flows in both directions between the main battery and starter circuit 110 and the remaining vehicle electrical system 115. Although the quasi-diode device 105 is described herein below with respect to an active low enable control signal, an active high enable control signal may also be used. As further described herein below, during cranking, no current is nominally flowing through the quasi-diode device while the voltage at the main battery and starter circuit 110 is lower than the remaining vehicle electrical system 115. A ground path 180 is provided for the dual cell system 100.
[0012] In an embodiment, the quasi-diode device 105 may be implemented by 4 OptiMOS
™ N-channel 0.9mΩ transistors connected in parallel, (OptiMOS
™ is a trademark of Infineon Technologies), where illustrative operating characteristics and/or features are noted in Table 1.
Table 1
• 4 OptiMOS N-channel 0.9mΩ transistors connected in parallel |
• Operating temperature range: -400C ... 1050C |
• Maximum continuous Load Current: |
|
|
∘ 200A @ Ta = 250C |
|
|
∘ 160A @ Ta = 1050C |
• Maximum Body Diode conduction current: |
|
|
∘ 50A @ Ta = 250C |
|
|
∘ 20A @ Ta = 1050C |
• Increase in Tj during transient peak current (if the application requires the QD to be ON during cold crank): 450C maximum |
• Quiescent Current Consumption: 280µA - measured @ 12V & 250C (QD ON state) |
• Current Consumption Diode Emulation state = 4.38mA - measured @ 12V & 250C |
• QDiode Ron: ∼330µΩ - measured @ Ta = 250C |
• Short to ground protection: |
|
o Starter side - YES: QD turns/stays off if V_BAT goes below V_BN/2 - adjustable. |
|
o Boardnet side - NO (due to direct conduction through the body diodes) |
Note: The numbers shown above are illustrative and are for purposes of example only. |
[0013] Figure 2 shows a high level block diagram of a quasi-diode module 200 that has four input signals: 1) an enable control signal, EN_Q, which is the quasi-diode device 200 control signal and in this illustrative embodiment, is active low; 2) a ground path, GND; 3) a battery current connection, BATT; and 4) a remaining vehicle electrical system current connection, which is also known as boardnet, BN. The quasi-diode module 200 includes a filtering module 205 connected to a boost converter module 210, a protection module 215 connected to the boost converter module 210 and a fast gate discharge 220 via an AND logic gate 225. The boost converter module 210 is further connected to a quasi-diode device 230. The quasi-device diode 230 includes a plurality of FETs 235 that are connected in parallel.
[0014] The BATT is connected to a source (3) of each of the plurality of FETs 235 and the BN is connected to a drain (2) of each of the plurality of FETs 235. The BATT and BN are also connected to the filtering module 205 and the protection module 215. The control signal EN_Q and the output of the protection module 215 are connected to the AND logic gate 225. The output of the AND logic gate 225, control signal shutdown (SHDN), is connected to the boost converter module 210 and the fast gate discharge 220. The outputs of the boost converter module 210 and the fast gate discharge 220 are connected to a gate (1) of each of the plurality of FETs 235. In an embodiment, as further described herein below, the quasi-diode device 230 may be implemented on a power board 240 and the filtering module 205, the protection module 215, the boost converter module 210, fast gate discharge module 220 and the AND logic gate may be implemented on a control board 245.
[0015] Operationally, the filtering module 205 performs standard filtering, and overvoltage, overcurrent and reverse battery protection with respect to BATT and BN. To turn the quasi-diode device 230 on, the control signal EN_Q is high or not connected and the gate voltage must be greater than the source voltage, which as described herein above is tied to BATT. This is accomplished by the boost converter module 210, which takes the voltage coming out of the filtering module 205 and boosts the voltage by a predetermined voltage. This boosted voltage then becomes the gate voltage. In an embodiment, the predetermined voltage is ten (10) volts.
[0016] The quasi-diode device 230 may be in one of three modes or states, an ON-state, a diode emulation state or a short circuit state. In the diode emulation state, the control signal EN_Q signal is low, the control signal SHDN is active and the boost converter module 210 is inactive or off. Consequently, the quasi-diode device 230 is off. In this mode, the plurality of FETs 235 emulates ideal diode function, that is, current is only allowed to flow from the main battery and starter circuit 110 to the remaining vehicle electrical system 115 as shown in Figure 1.
[0017] In the ON-state, the control signal EN_Q is high or not connected (NC), and the quasi-diode device 230 is in an ON-state as long as the BATT voltage is higher than a predetermined value of the BN. Once a short circuit condition is detected while the control signal EN_Q is high or not connected and the BN voltage becomes higher than the BATT voltage, then the quasi-diode device 230 switches from an ON-state to a short circuit state in order to protect itself from being damaged. In the short circuit state, the FETs 235 are switched-off. The quasi-diode device 230 resides in this state until the short-circuit situation is rectified. In an embodiment, the short circuit threshold is when the BATT voltage is equal to or higher than half the BN voltage. The short circuit functionality is implemented by the protection module 215, which causes the control signal SHDN to be low in the event of a short circuit. As shown in Figure 3, the short circuit threshold can be set up by a resistive divider ratio at the input of a comparator circuit in an example embodiment. Short circuits to ground are detected only at the main battery and starter circuit 110 (BATT) as shown in Figure 1. A short circuit (to ground) detection at the remaining vehicle electrical system 115 (BN) is rendered ineffective by the fact that current flow in the BN direction cannot be blocked.
[0018] In the event of a short circuit, the power in the quasi-diode device 230 must be dissipated quickly or the FETs 235 may be damaged. This is implemented by the fast gate discharge module 220, which establishes a path to ground when the control signal SHDN is low.
[0019] Figure 3 shows an example circuit diagram for a quasi-diode module 300 including example circuits for a filtering circuit 305, a boost converter circuit 307, a protection circuit 309 and a fast gate discharge circuit 311. The control signal EN_Q is pulled up with 10k resistor 302 through a protection diode 304.
[0020] The filtering circuit 305 has a battery current connection, BATT, tied to a capacitor circuit 315 and a diode 317, and a boardnet current connection, BN, tied to a capacitor circuit 320 and a diode 321. The capacitor circuit 315 and capacitor circuit 320 provide electromagnetic interference (EMI) filtering and electrostatic discharge (ESD) protection. The diodes 317 and 321 provide reverse battery protection. The outputs of the diodes 317 and 321 are tied together at a node B+. The capacitor circuit 322 provides further EMI filtering. The node B+ represents a voltage net and is the supply voltage after the reverse polarity protection. The B+ node is connected to a current limiting resistor 325, which provides overcurrent protection. The other end of current limiting resistor 325 is connected to a circuit 327 which provides over-voltage protection.
[0021] The boost converter circuit 307 uses a switch mode step-up circuit 340 which has a V
IN pin connected to the output of the filtering circuit 305 and a SHDN pin connected to an output of the protection circuit 309 and the control signal EN_Q. The switch mode step-up circuit 340 is, for example, a micropower step-up DC/DC converter. The output of the boost converter circuit 307 is set by resistor 342, transistor 344 and resistor 346 to V
IN + 10V. The voltage offset, i.e. 10V in this example, can be set by changing the values of resistor 342, transistor 344 and resistor 346.
[0022] The protection circuit 309 includes a conventionally configured comparator circuit 350 which has BATT and BN connected as inputs via resistor network circuits 352 and 354, respectively. As described herein above, the resistor network circuits 352 and 354 can be configured to establish the short circuit threshold. The output of the protection circuit 309 is connected to the switch mode step-up circuit 340 and to the fast gate discharge circuit 311.
[0023] The fast gate discharge circuit 311 has two (2) N-channel FETs 360 and 362, respectively, which provide a path to ground in the event of a short circuit, i.e. when control signal SHDN is low and active. The purpose of the fast gate discharge circuit 311 is to turn off the 4 FETs , e.g. the plurality of FETs 235 in Figure 2, very fast. This is accomplished by providing a path to discharge to ground the 4 FETs gate charge. As described herein above, this happens when the quasi-diode device is on. This fast discharge is activated at the same time with turning the boost converter circuit 307 off, (i.e. pulling SHDN low), and is done either by EN_Q going low or in case of short circuit when the protection circuit 309 is triggered.
[0024] Figures 4A, 4B and 4C show example packaging schematic diagrams for a quasi-diode module 400 in accordance with one or more disclosed embodiments. In particular, Figure 4A shows a direct view of a BN connector 405, a BATT connector 410, and connector port 412 including a ground pin 415 and a control signal EN_Q pin 420. Figure 4B shows a bottom view of the quasi-diode module 400 including a view of a rubber grommet 430 for environmental sealing and a heat sink 440. Figure 4C shows a side view of the BN connector 405 and the connector port 412.
[0025] Figure 5 shows an example view of a quasi-diode module 500 in accordance with one or more disclosed embodiments. In particular, a housing or enclosure 505 is shown with a BN connector 510, a BATT connector 515, and connector port 520.
[0026] Figure 6 shows an example perspective view of a quasi-diode module 600 in accordance with one or more disclosed embodiments and in particular, a bottom view of the embodiment shown in Figure 5. A BN connector 610, a BATT connector 615, a connector port 620 and a heat sink 625 are shown.
[0027] Figure 7 shows an example internal view of a quasi-diode module 700 in accordance with one or more disclosed embodiments with a front surface or wall removed. This view of the a quasi-diode module 700 shows a BN connector 710, a BATT connector 715, a ground pin 720, a EN_Q pin 725, a control board 730, a heat sink 735, a thermal pad 740, a rubber grommet 745, and a power board 750.
[0028] Figure 8 shows an example view of a quasi-diode module 800 in accordance with one or more disclosed embodiments with an outer casing removed. This view of the a quasi-diode module 800 shows a BN connector 810, a BATT connector 815, a ground pin 820, a EN_Q pin 825, a control board 830, a heat sink 835, a thermal pad 840, a rubber grommet 845, a power board 850, a BN connector 855, a BATT connector 860 and an output voltage (for a gate of the FETs) connector 865.
[0029] Figure 9 shows an example view of a quasi-diode module 900 in accordance with one or more disclosed embodiments with outer casing and a control board removed. This view of the a quasi-diode module 900 shows a BN connector 910, a BATT connector 915, a heat sink 935, a thermal pad 940, a rubber grommet 945, a power board 950, a BN connector 955, a BATT connector 960, an output voltage (for a gate of the FETs) connector 965 and FETs 970.
1. A device (105), comprising:
a plurality of field effect transistors, FETs, (107; 235) electrically connected between a vehicle electrical system (115) and a battery and starter circuit (110);
a boost converter circuit (307) configured to provide a gate voltage for the plurality of FETs (107; 235) greater than a source voltage for the plurality of FETs (107; 235) by a predetermined voltage;
a fast gate discharge circuit (311) configured to establish a switchable path to ground; and
a control circuit electrically connected to the plurality of FETs (107; 235), the boost converter circuit (307), and the fast gate discharge circuit (311), wherein the control circuit includes a first state and a second state and is configured to:
receive a control signal (170) from an engine control unit (175), and in response to the control signal (170) being at a first level:
turn on the boost converter circuit (307), and switch the plurality of FETs (107; 235) to the first state, wherein the first state allows current flow between the vehicle electrical system (115) and the battery and starter circuit (110), and
in response to the control signal (170) being at a second level:
turn off the boost converter circuit (307); and
switch the plurality of FETs (107; 235) to the second state,
wherein the second state allows current flow from the battery and starter circuit (110) to the vehicle electrical system (115) wherein
the control circuit further comprises a filtering circuit (305) configured to provide standard filtering, overvoltage protection, overcurrent protection, and reverse battery protection for the vehicle electrical system (115) and the battery and starter circuit (110).
2. The device according to claim 1, being configured to prohibit current flow from flowing from the vehicle electrical system (115) to the battery and starter circuit (110) on a condition that the control signal (170) is at a second level.
3. The device according to claim 1, wherein the filtering circuit (305) is electrically connected to the boost converter circuit (307).
4. The device according to claim 1, the control circuit further comprising a protection circuit (309) connected to the boost converter circuit (307), the protection circuit (309) being configured to turn off the plurality of FETs (107; 235) upon detection of a short circuit.
5. The device according to claim 4, wherein the short circuit is detected when a voltage at the battery and starter circuit (110) exceeds a voltage at the vehicle electrical system (115) by a short circuit threshold.
6. The device according to claim 5, wherein the short circuit threshold is set such that it is reached when the voltage at the battery and starter circuit (110) is equal to or higher than half the voltage at the vehicle electrical system (115).
7. The device according to claim 4, wherein the fast gate discharge circuit (311) is electrically connected to the protection circuit (309) and the fast gate discharge circuit (311) is configured to establish a path to ground in an event of a short circuit.
8. An apparatus (700; 800; 900) including the device of claim 1 comprising:
a power board (750; 850; 950) including the plurality of FETs (107; 235) electrically connected to the vehicle electrical system (115) and the battery and starter circuit (110);
a control board (730; 830) configured to receive the control signal (170) from the engine control unit (175), the control board (730; 830) connected to the vehicle electrical system (115) and the battery and starter circuit (110);
a boost converter module (210) comprising the boost converter circuit (307),
a fast gate discharge module (220) comprising the fast gate discharge circuit (311); and
a filtering module (205) comprising the filtering circuit (305),
wherein the control board (730; 830) comprises the control circuit.
9. The apparatus (700; 800; 900) according to claim 8, being configured to prohibit current flow from flowing from the vehicle electrical system (115) to the battery and starter circuit (110) on a condition that the control signal (170) is at the second level.
10. The apparatus (700; 800; 900) according to claim 8, wherein the control board (730; 830) further comprises:
a protection module (215) electrically connected to the boost converter module (210) and fast gate discharge module (220) via a logical circuit, the protection module (215) configured to turn off the plurality of FETs (107; 235) upon detection of a short circuit.
11. The apparatus (700; 800; 900) according to claim 10, wherein the logical circuit is configured to output a shutdown signal upon detection of the short circuit by the protection module (215).
12. A method for current flow control in a dual battery system, the method comprising:
connecting a plurality of field effect transistors, FETs, (107; 235) between a vehicle electrical system (115) and a battery and starter circuit (110); and
connecting a control circuit to the plurality of FETs (107; 235), wherein the control circuit comprises a boost converter circuit (307), a fast gate discharge circuit (311) and a filtering circuit (305) configured to provide standard filtering, overvoltage protection, overcurrent protection, and reverse battery protection for the vehicle electrical system (115) and the battery and started circuit (110); (311); and
receiving by the control circuit, a control signal (170) from an engine control unit (175); and
switching the plurality of FETs (107; 235) to a first state in response to the control signal (170) being at a first level to allow current flow between the vehicle electrical system (115) and the battery and starter circuit (110), wherein in the first state the method further comprises turning on the boost converter circuit (307) to boost a gate voltage for each gate of the plurality of FETs (107; 235) to greater than a source voltage for each source of the plurality of FETs (107; 235) by a predetermined voltage and turning on the plurality of FETs (107; 235); and
switching the plurality of FETs (107; 235) to a second state in response to the control signal (170) being at a second level to allow current flow from the battery and starter circuit (110) to the vehicle electrical system (115) wherein in the second state the method further comprises turning off the boost converter circuit (307) and turning off the plurality of FETs (107; 235).
13. The method according to claim 12, wherein current flow is prohibited from flowing from the vehicle electrical system (115) to the battery and starter circuit (110) on a condition that the control signal (170) is at the second level.
14. The method according to claim 12, further comprising:
detecting a short circuit condition by determining if a voltage at the battery and starter circuit (110) exceeds a voltage at the vehicle electrical system (115) by a short circuit threshold; and
generating a shutdown signal; and
simultaneously turning off the plurality of FETs (107; 235) and establishing a fast gate discharge path to ground upon detection of the short circuit.
1. Eine Vorrichtung (105), umfassend:
eine Vielzahl von Feldeffekttransistoren, FETs, (107; 235), die elektrisch zwischen einem elektrischen Fahrzeugsystem (115) und einer Batterie und einer Starterschaltung (110) verbunden sind;
eine Aufwärtswandlerschaltung (307), die konfiguriert ist, um eine Gate-Spannung für die Vielzahl von FETs (107; 235) bereitzustellen, die um eine vorbestimmte Spannung größer als eine Source-Spannung für die Vielzahl von FETs (107; 235) ist;
eine schnelle Gate-Entladungsschaltung (311), die konfiguriert ist, um einen schaltbaren Pfad zur Masse herzustellen; und
eine Steuerschaltung, die elektrisch mit der Vielzahl von FETs (107; 235), der Aufwärtswandlerschaltung (307) und der schnellen Gate-Entladungsschaltung (311) verbunden ist, wobei die Steuerschaltung einen ersten Zustand und einen zweiten Zustand beinhaltet und konfiguriert ist, um:
ein Steuersignals (170) von einer Motorsteuereinheit (175) zu empfangen und als Reaktion darauf, dass sich das Steuersignal (170) an einem ersten Pegel befindet:
die Aufwärtswandlerschaltung (307) einzuschalten und die Vielzahl von FETs (107; 235) in den ersten Zustand zu schalten,
wobei der erste Zustand Stromfluss zwischen dem elektrischen Fahrzeugsystem(115) und der Batterie und der Starterschaltung (110) gestattet, und
als Reaktion darauf, dass sich das Steuersignal (170) an einem zweiten Pegel befindet:
die Aufwärtswandlerschaltung (307) auszuschalten; und
die Vielzahl von FETs (107; 235) in den zweiten Zustand zu schalten, wobei der zweite Zustand Stromfluss von der Batterie und der Starterschaltung (110) zu dem elektrischen Fahrzeugsystem (115) gestattet, wobei
die Steuerschaltung ferner eine Filterschaltung (305) umfasst, die konfiguriert ist, um Standardfilterung, Überspannungsschutz, Überstromschutz und Verpolungsschutz für das elektrische Fahrzeugsystem (115) und die Batterie- und Starterschaltung (110) bereitzustellen.
2. Vorrichtung nach Anspruch 1, die konfiguriert ist, um unter der Bedingung, dass sich das Steuersignal (170) an einem zweiten Pegel befindet, verhindert, dass Strom von dem elektrischen Fahrzeugsystem (115) zu der Batterie und zu der Startschaltung (110) fließt.
3. Vorrichtung nach Anspruch 1, wobei die Filterschaltung (305) elektrisch mit der Aufwärtswandlerschaltung (307) verbunden ist.
4. Vorrichtung nach Anspruch 1, wobei die Steuerschaltung ferner eine Schutzschaltung (309) umfasst, die mit der Aufwärtswandlerschaltung (307) verbunden ist, wobei die Schutzschaltung (309) konfiguriert ist, um die Vielzahl von FETs (107; 235) bei Erfassung eines Kurzschlusses auszuschalten.
5. Vorrichtung nach Anspruch 4, wobei der Kurzschluss erfasst wird, wenn eine Spannung an der Batterie- und Starterschaltung (110) eine Spannung an dem elektrischen Fahrzeugsystem (115) um einen Kurzschlussschwellenwert überschreitet.
6. Vorrichtung nach Anspruch 5, wobei der Kurzschlussschwellewert eingestellt ist, um erreicht zu werden, wenn die Spannung an der Batterie- und Starterschaltung (110) gleich oder größer als die Hälfte der Spannung an dem elektrischen Fahrzeugsystem (115) ist.
7. Vorrichtung nach Anspruch 4, wobei die schnelle Gate-Entladungsschaltung (311) elektrisch mit der Schutzschaltung (309) verbunden ist, und die schnelle Gate-Entladungsschaltung (311) konfiguriert ist, um im Falle eines Kurzschlusses einen Pfad zur Masse herzustellen.
8. Gerät (700; 800; 900), das die Vorrichtung nach Anspruch 1 beinhaltet, umfassend:
eine Leistungsplatine (750; 850; 950), die die Vielzahl von FETs (107; 235) beinhaltet, die elektrisch mit dem elektrischen Fahrzeugsystem (115) und der Batterie und der Starterschaltung (110) verbunden sind;
eine Steuerplatine (730; 830), die konfiguriert ist, um das Steuersignal (170) von der Motorsteuereinheit (175) zu empfangen, wobei die Steuerplatine (730; 830) mit dem elektrischen Fahrzeugsystem (115) und der Batterie und der Starterschaltung (110) verbunden ist;
ein Awärtswandlermodul (210), das die Aufwärtswandlerschaltung (307) umfasst,
ein schnelles Gate-Entlademodul (220), das die schnelle Gate-Entladungsschaltung (311) umfasst; und
ein Filtermodul (205), das die Filterschaltung (305) umfasst,
wobei die Steuerplatine (730; 830) die Steuerschaltung umfasst.
9. Gerät (700; 800; 900) nach Anspruch 8, das konfiguriert ist, um unter einer Bedingung, dass sich das Steuersignal (170) an dem zweiten Pegel befindet, zu verhindern, dass Strom von dem elektrischen Fahrzeugsystem (115) zu der Batterie und zu der Startschaltung (110) fließt.
10. Gerät (700; 800; 900) nach Anspruch 8, wobei die Steuerplatine (730; 830) ferner Folgendes umfasst:
ein Schutzmodul (215), das über eine Logikschaltung elektrisch mit dem Aufwärtswandlermodul (210) und dem schnellen Gate-Entlademodul (220) verbunden ist, wobei das Schutzmodul (215) konfiguriert ist, um bei Erfassung eines Kurzschlusses die Vielzahl von FETs (107; 235) auszuschalten.
11. Gerät (700; 800; 900) nach Anspruch 10, wobei die Logikschaltung konfiguriert ist, um bei Erfassung des Kurzschlusses durch das Schutzmodul (215) ein Abschaltsignal auszugeben.
12. Verfahren zur Stromflusssteuerung in einem Doppelbatteriesystem, wobei das Verfahren Folgendes umfasst:
Verbinden einer Vielzahl von Feldeffekttransistoren, FETs, (107; 235) zwischen einem elektrischen Fahrzeugsystem (115) und einer Batterie und einer Starterschaltung (110); und Verbinden einer Steuerschaltung mit der Vielzahl von FETs (107; 235), wobei die Steuerschaltung eine Aufwärtswandlerschaltung (307), eine schnelle Gate-Entladungsschaltung (311) und eine Filterschaltung (305) umfasst, die konfiguriert ist, um Standardfilterung und Überspannungsschutz, Überstromschutz und Batterieverpolungsschutz für das elektrische Fahrzeugsystem (115) und die Batterie- und Starterschaltung (110); (311) bereitzustellen; und
Empfangen eines Steuersignals (170) von einer Motorsteuereinheit (175) durch die Steuerschaltung; und
Schalten der Vielzahl von FETs (107; 235) in einen ersten Zustand als Reaktion darauf, dass sich das Steuersignal (170) an einem ersten Pegel befindet, um Stromfluss zwischen dem elektrischen Fahrzeugsystem (115) und der Batterie und der Starterschaltung (110) zu gestatten, wobei
in dem ersten Zustand das Verfahren ferner das Einschalten der Aufwärtswandlerschaltung (307) umfasst, um eine Gate-Spannung für jedes Gate der Vielzahl von FETs (107; 235) auf mehr als eine Source-Spannung für jede Source der Vielzahl von FETs (107; 235) um eine vorbestimmte Spannung anzuheben, und Einschalten der Vielzahl von FETs (107; 235); und
Schalten der Vielzahl von FETs (107; 235) in einen zweiten Zustand als Reaktion darauf, dass sich das Steuersignal (170) an einem zweiten Pegel befindet, um Stromfluss von der Batterie und der Starterschaltung (110) zu dem elektrischen Fahrzeugsystem (115) zu gestatten, wobei in dem zweiten Zustand das Verfahren ferner das Ausschalten der Aufwärtswandlerschaltung (307) und das Ausschalten der Vielzahl von FETs (107; 235) umfasst.
13. Verfahren nach Anspruch 12, wobei der Stromfluss unter einer Bedingung, dass das Steuersignal (170) an dem zweiten Pegel ist, daran gehindert wird, von dem elektrischen Fahrzeugsystem (115) zu der Batterie und der Starterschaltung (110) zu fließen.
14. Verfahren nach Anspruch 12, ferner umfassend:
Erfassen eines Kurzschlusszustands durch Bestimmen, ob eine Spannung an der Batterie- und Starterschaltung(110) eine Spannung an dem elektrischen Fahrzeugsystem (115) um einen Kurzschlussschwellenwert überschreitet; und
Erzeugen eines Abschaltsignals; und
gleichzeitig Ausschalten der Vielzahl von FETs (107; 235) und Einrichten eines schnellen Gate-Entladungspfads zur Masse bei Erfassung des Kurzschlusses.
1. Dispositif (105), comprenant :
une pluralité de transistors à effet de champ (FET) (107 ; 235) connectés électriquement entre un système électrique de véhicule (115) et un circuit de batterie et de démarrage (110) ;
un circuit convertisseur élévateur (307) configuré pour fournir une tension de grille pour la pluralité de FET (107 ; 235) supérieure à une tension de source pour la pluralité de FET (107 ; 235) d'une tension prédéterminée ;
un circuit de décharge à grille rapide (311) configuré pour établir un chemin commutable vers la masse ; et
un circuit de commande connecté électriquement à la pluralité de FET (107 ; 235), au circuit convertisseur élévateur (307) et au circuit de décharge à grille rapide (311), dans lequel le circuit de commande comprend un premier état et un second état et est configuré pour :
recevoir un signal de commande (170) d'une unité de commande de moteur (175), et en réponse au fait que le signal de commande (170) est à un premier niveau :
activer le circuit convertisseur élévateur (307), et commuter la pluralité de FET (107 ; 235) vers le premier état,
dans lequel le premier état permet la circulation du courant entre le système électrique du véhicule (115), le circuit de batterie et de démarrage (110), et
en réponse au fait que le signal de commande (170) est à un second niveau :
désactiver le circuit convertisseur élévateur (307) ; et
commuter la pluralité de FET (107 ; 235) vers le second état, dans lequel le second état permet la circulation du courant depuis le circuit de batterie et de démarrage (110) vers le système électrique du véhicule (115) dans lequel le circuit de commande comprend en outre un circuit de filtrage (305) configuré pour fournir un filtrage standard, une protection contre les surtensions, une protection contre les surintensités et une protection contre l'inversion de batterie pour le système électrique du véhicule (115), la batterie et le circuit de démarrage (110).
2. Dispositif selon la revendication 1, le dispositif étant configuré pour interdire la circulation du courant depuis le système électrique du véhicule (115) vers le circuit de batterie et de démarrage (110) à condition que le signal de commande (170) soit à un second niveau.
3. Dispositif selon la revendication 1, dans lequel le circuit de filtrage (305) est connecté électriquement au circuit convertisseur élévateur (307).
4. Dispositif selon la revendication 1, dans lequel le circuit de commande comprend en outre un circuit de protection (309) connecté au circuit convertisseur élévateur (307), le circuit de protection (309) étant configuré pour désactiver la pluralité de FET (107 ; 235) lors de la détection d'un court-circuit.
5. Dispositif selon la revendication 4, dans lequel le court-circuit est détecté lorsqu'une tension au niveau du circuit de batterie et de démarrage (110) dépasse une tension au niveau du système électrique du véhicule (115) d'un seuil de court-circuit.
6. Dispositif selon la revendication 5, dans lequel le seuil de court-circuit est réglé de telle sorte qu'il soit atteint lorsque la tension au niveau du circuit de batterie et de démarrage (110) est égale ou supérieure à la moitié de la tension au niveau du système électrique du véhicule (115).
7. Dispositif selon la revendication 4, dans lequel le circuit de décharge à grille rapide (311) est connecté électriquement au circuit de protection (309) et le circuit de décharge à grille rapide (311) est configuré pour établir un chemin vers la masse en cas de court-circuit.
8. Appareil (700 ; 800 ; 900) comportant le dispositif selon la revendication 1 comprenant :
une carte de puissance (750 ; 850 ; 950) comprenant la pluralité de FET (107 ; 235) connectés électriquement au système électrique du véhicule (115) et au circuit de batterie et de démarrage (110) ;
une carte de commande (730 ; 830) configurée pour recevoir le signal de commande (170) de l'unité de commande du moteur (175), la carte de commande (730 ; 830) étant connectée au système électrique du véhicule (115) et au circuit de batterie et de démarrage (110) ;
un module convertisseur élévateur (210) comprenant le circuit convertisseur élévateur (307),
un module de décharge à grille rapide (220) comprenant le circuit de décharge à grille rapide (311) ; et
un module de filtrage (205) comprenant le circuit de filtrage (305),
dans lequel la carte de commande (730 ; 830) comprend le circuit de commande.
9. Appareil (700 ; 800 ; 900) selon la revendication 8, l'appareil étant configuré pour interdire la circulation du courant depuis le système électrique du véhicule (115) vers le circuit de batterie et de démarrage (110) à condition que le signal de commande (170) soit à un second niveau.
10. Appareil (700 ; 800 ; 900) selon la revendication 8, dans lequel la carte de commande (730 ; 830) comprend en outre :
un module de protection (215) connecté électriquement au module convertisseur élévateur (210) et au module de décharge à grille rapide (220) par le biais d'un circuit logique, le module de protection (215) étant configuré pour désactiver la pluralité de FET (107 ; 235) lors de la détection d'un court-circuit.
11. Appareil (700 ; 800 ; 900) selon la revendication 10, dans lequel le circuit logique est configuré pour émettre un signal d'arrêt lors de la détection du court-circuit par le module de protection (215).
12. Procédé de régulation de circulation de courant dans un système à double batterie, le procédé comprenant :
la connexion d'une pluralité de transistors à effet de champ (FET) (107 ; 235) entre un système électrique de véhicule (115) et un circuit de batterie et de démarrage (110) ; et
la connexion d'un circuit de commande à la pluralité de FET (107 ; 235), dans lequel le circuit de commande comprend un circuit convertisseur élévateur (307), un circuit de décharge à grille rapide (311) et un circuit de filtrage (305) configuré pour fournir un filtrage standard, une protection contre les surtensions, une protection contre les surintensités et une protection contre l'inversion de batterie pour le système électrique du véhicule (115), la batterie et le circuit de démarrage (110) ; (311) ; et
la réception, par le circuit de commande, d'un signal de commande (170) provenant d'une unité de commande de moteur (175) ; et
la commutation de la pluralité de FET (107 ; 235) dans un premier état en réponse au fait que le signal de commande (170) est à un premier niveau pour permettre la circulation du courant entre le système électrique du véhicule (115) et le circuit de batterie et de démarrage (110), dans lequel
dans le premier état, le procédé comprend en outre l'activation du circuit convertisseur élévateur (307) pour élever une tension de grille pour chaque grille de la pluralité de FET (107 ; 235) à une valeur supérieure à une tension de source pour chaque source de la pluralité de FET (107 ; 235) par une tension prédéterminée et activer la pluralité de FET (107 ; 235) ; et
la commutation de la pluralité de FET (107 ; 235) dans un second état en réponse au fait que le signal de commande (170) est à un second niveau pour permettre la circulation du courant depuis le circuit de batterie et de démarrage (110) vers le système électrique du véhicule (115) dans lequel dans le second état, le procédé comprend en outre l'arrêt du circuit convertisseur élévateur (307) et l'arrêt de la pluralité de FET (107 ; 235).
13. Procédé selon la revendication 12, dans lequel la circulation de courant est interdite du système électrique du véhicule (115) vers le circuit de batterie et de démarrage (110) à condition que le signal de commande (170) soit à un second niveau.
14. Procédé selon la revendication 12, comprenant en outre :
la détection d'une condition de court-circuit en déterminant si une tension au niveau du circuit de batterie et de démarrage (110) dépasse une tension au niveau du système électrique du véhicule (115) d'un seuil de court-circuit ; et
la génération d'un signal d'arrêt ; et
la désactivation simultanée de la pluralité de FET (107 ; 235) et l'établissement d'un trajet de décharge à grille rapide vers la masse lors de la détection du court-circuit.