(19)
(11)EP 3 048 962 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
06.05.2020 Bulletin 2020/19

(21)Application number: 14781023.8

(22)Date of filing:  25.09.2014
(51)Int. Cl.: 
A61B 5/0402  (2006.01)
(86)International application number:
PCT/US2014/057488
(87)International publication number:
WO 2015/048309 (02.04.2015 Gazette  2015/13)

(54)

SELF-AUTHENTICATING ELECTROCARDIOGRAPHY MONITORING CIRCUIT

SELBSTAUTHENTIFIZIERENDE ELEKTROKARDIOGRAFISCHE ÜBERWACHUNGSSCHALTUNG

CIRCUIT DE SUVEILLANCE D'ÉLECTROCARDIOGRAPHIE AUTO-AUTHENTIFIANT


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 25.09.2013 US 201361882403 P
14.11.2013 US 201314080725
14.11.2013 US 201314080717
15.11.2013 US 201314082066

(43)Date of publication of application:
03.08.2016 Bulletin 2016/31

(73)Proprietor: Bardy Diagnostics, Inc.
Charlotte, NC 28207 (US)

(72)Inventors:
  • FELIX, Jason
    Vashon Island, Washington 98070 (US)
  • BARDY, Gust H.
    Carnation, Washington 98014 (US)
  • BISHAY, Jon Mikalson
    Lexington, KY 40502 (US)

(74)Representative: Hanna Moore + Curley 
Garryard House 25/26 Earlsfort Terrace
Dublin 2, D02 PX51
Dublin 2, D02 PX51 (IE)


(56)References cited: : 
WO-A1-2006/009767
WO-A2-00/78213
US-A1- 2007 208 233
WO-A1-2009/036306
US-A1- 2006 224 072
US-A1- 2008 088 467
  
  • Dorthe B Saadi ET AL: "Heart Rhythm Analysis using ECG recorded with a Novel Sternum based Patch Technology -A Pilot Study", Proceedings of the International Congress on Cardiovascular Technologies, 20 September 2013 (2013-09-20), XP055155616, Retrieved from the Internet: URL:http://www.delta.dk/imported/images/DE LTA_Web/documents/Innovation/Konference_Po rtugal_September2013_Artikel.pdf [retrieved on 2014-11-27]
  • Anonymous: "Omegawave Launches Consumer App 2.0 in U.S. - Endurance Sportswire | Endurance Sportswire", , 11 July 2013 (2013-07-11), XP055156124, Retrieved from the Internet: URL:http://endurancesportswire.com/omegawa ve-launches-consumer-app-2-0-in-u-s/ [retrieved on 2014-12-01]
  • Alexander M. Chan ET AL: "Wireless patch sensor for remote monitoring of heart rate, respiration, activity, and falls", 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 1 July 2013 (2013-07-01), pages 6115-6118, XP055157468, DOI: 10.1109/EMBC.2013.6610948 ISBN: 978-1-45-770216-7
  
Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


Description

TECHNICAL FIELD



[0001] This application relates in general to electrocardiographic monitoring and, in particular, to a self-authenticating electrocardiography monitoring circuit.

BACKGROUND ART



[0002] The heart emits electrical signals as a by-product of the propagation of the action potentials that trigger depolarization of heart fibers. An electrocardiogram (ECG) measures and records such electrical potentials to visually depict the electrical activity of the heart over time. Conventionally, a standardized set format 12-lead configuration is used by an ECG machine to record cardiac electrical signals from well-established traditional chest locations. Electrodes at the end of each lead are placed on the skin over the anterior thoracic region of the patient's body to the lower right and to the lower left of the sternum, on the left anterior chest, and on the limbs. Sensed cardiac electrical activity is represented by PQRSTU waveforms that can be interpreted post-ECG recordation to derive heart rate and physiology. The P-wave represents atrial electrical activity. The QRSTU components represent ventricular electrical activity.

[0003] An ECG is a tool used by physicians to diagnose heart problems and other potential health concerns. An ECG is a snapshot of heart function, typically recorded over 12 seconds, that can help diagnose rate and regularity of heartbeats, effect of drugs or cardiac devices, including pacemakers and implantable cardioverter-defibrillators (ICDs), and whether a patient has heart disease. ECGs are used in-clinic during appointments, and, as a result, are limited to recording only those heart-related aspects present at the time of recording. Sporadic conditions that may not show up during a spot ECG recording require other means to diagnose them. These disorders include fainting or syncope; rhythm disorders, such as tachyarrhythmias and bradyarrhythmias; apneic episodes; and other cardiac and related disorders. Thus, an ECG only provides a partial picture and can be insufficient for complete patient diagnosis of many cardiac disorders.

[0004] Diagnostic efficacy can be improved, when appropriate, through the use of long-term extended ECG monitoring. Recording sufficient ECG and related physiology over an extended period is challenging, and often essential to enabling a physician to identify events of potential concern. A 30-day observation period is considered the "gold standard" of ECG monitoring, yet achieving a 30-day observation day period has proven unworkable because such ECG monitoring systems are arduous to employ, cumbersome to the patient, and excessively costly. Ambulatory monitoring in-clinic is implausible and impracticable. Nevertheless, if a patient's ECG could be recorded in an ambulatory setting, thereby allowing the patient to engage in activities of daily living, the chances of acquiring meaningful information and capturing an abnormal event while the patient is engaged in normal activities becomes more likely to be achieved.

[0005] For instance, the long-term wear of ECG electrodes is complicated by skin irritation and the inability ECG electrodes to maintain continual skin contact after a day or two. Moreover, time, dirt, moisture, and other environmental contaminants, as well as perspiration, skin oil, and dead skin cells from the patient's body, can get between an ECG electrode, the non-conductive adhesive used to adhere the ECG electrode, and the skin's surface. All of these factors adversely affect electrode adhesion and the quality of cardiac signal recordings. Furthermore, the physical movements of the patient and their clothing impart various compressional, tensile, and torsional forces on the contact point of an ECG electrode, especially over long recording times, and an inflexibly fastened ECG electrode will be prone to becoming dislodged. Notwithstanding the cause of electrode dislodgment, depending upon the type of ECG monitor employed, precise replacement of a dislodged ECG electrode maybe essential to ensuring signal capture at the same fidelity. Moreover, dislodgment may occur unbeknownst to the patient, making the ECG recordings worthless. Further, some patients may have skin that is susceptible to itching or irritation, and the wearing of ECG electrodes can aggravate such skin conditions. Thus, a patient may want or need to periodically remove or replace ECG electrodes during a long-term ECG monitoring period, whether to replace a dislodged electrode, reestablish better adhesion, alleviate itching or irritation, allow for cleansing of the skin, allow for showering and exercise, or for other purpose. Such replacement or slight alteration in electrode location actually facilitates the goal of recording the ECG signal for long periods of time; however, ensuring that the level of quality of ECG recording and patient service remains constant over an extended period of time is dependent upon the monitoring equipment being up to a known standard. Use of third party consumables, such as ECG electrodes, could undermine expectations of ECG recording fidelity and adversely skew monitoring results.

[0006] Conventionally, Holter monitors are widely used for long-term extended ECG monitoring. Typically, they are used for only 24-48 hours. A typical Holter monitor is a wearable and portable version of an ECG that include cables for each electrode placed on the skin and a separate battery-powered ECG recorder. The cable and electrode combination (or leads) are placed in the anterior thoracic region in a manner similar to what is done with an in-clinic standard ECG machine. The duration of a Holter monitoring recording depends on the sensing and storage capabilities of the monitor, as well as battery life. A "looping" Holter monitor (or event) can operate for a longer period of time by overwriting older ECG tracings, thence "recycling" storage in favor of extended operation, yet at the risk of losing event data. Although capable of extended ECG monitoring, Holter monitors are cumbersome, expensive and typically only available by medical prescription, which limits their usability. Further, the skill required to properly place the electrodes on the patient's chest hinders or precludes a patient from replacing or removing the precordial leads and usually involves moving the patient from the physician office to a specialized center within the hospital or clinic.

[0007] The ZIO XT Patch and ZIO Event Card devices, manufactured by iRhythm Tech., Inc., San Francisco, CA, are wearable stick-on monitoring devices that are typically worn on the upper left pectoral region to respectively provide continuous and looping ECG recording. The location is used to simulate surgically implanted monitors. Both of these devices are prescription-only and for single patient use. The ZIO XT Patch device is limited to a 14-day monitoring period, while the electrodes only of the ZIO Event Card device can be worn for up to 30 days. The ZIO XT Patch device combines both electronic recordation components, including battery, and physical electrodes into a unitary assembly that adheres to the patient's skin. The ZIO XT Patch device uses adhesive sufficiently strong to support the weight of both the monitor and the electrodes over an extended period of time and to resist disadherance from the patient's body, albeit at the cost of disallowing removal or relocation during the monitoring period. Moreover, throughout monitoring, the battery is continually depleted and battery capacity can potentially limit overall monitoring duration. The ZIO Event Card device is a form of downsized Holter monitor with a recorder component that must be removed temporarily during baths or other activities that could damage the non-waterproof electronics. Both devices represent compromises between length of wear and quality of ECG monitoring, especially with respect to ease of long term use, female-friendly fit, and quality of atrial (P-wave) signals. Moreover, both devices rely on the same set of ECG electrodes for the duration of the monitoring period; signal capture can suffer as the ECG electrodes disadhere from the patient's body over time.

[0008] Therefore, a need remains for an extended wear continuously recording ECG monitor practicably capable of being worn for a long period of time in both men and women and capable of recording atrial signals reliably with quality assurance implemented as part of disposable component replenishment.

[0009] A further need remains for a device capable of recording signals ideal for arrhythmia discrimination, especially a device designed for atrial activity recording.

[0010] WO2006009767-A1 discloses a wireless bio-potential monitoring system composed of a wireless electrode module which can be attached to a disposable electrode strip. Such device can be conveniently affixed to a patient's skin and will transmit the physiological signals to a remote receiver where the signals can be monitored by a clinician.

[0011] WO2009036306-A1 discloses an adherent device which comprises an adhesive patch with at least two electrodes and an accelerometer. The accelerometer can be used to determine an orientation of the at least two measurement electrodes on a patient. By determining the orientation of the electrodes of the patch on the patient, physiologic measurements with the at least two electrodes can be adjusted and/or corrected in response to the orientation of the patch on the patient. The adherent patch and/or electrodes can be replaced with a second adherent patch and/or electrodes, and the orientation of the second adherent patch and/or electrodes can be determined with the accelerometer or a second accelerometer. The determined orientation of the second patch and/or electrodes on the patient can be used to correct measurements made with the second adherent patch and/or electrodes.

[0012] US2007208233-A1 discloses a wearable physiologic monitor which comprises a mixed analog and digital application-specific integrated circuit (ASIC) including signal conditioning circuitry, an A/D converter, a real-time clock, and digital control logic. The signal conditioning circuitry includes analog amplification circuitry, analog (continuous-time or switched capacitor) filtering circuitry before the A/D converter, and in some embodiments digital (DSP) filtering circuitry after the A/D converter. The monitor includes sensors such as electrocardiogram (ECG) electrodes, accelerometers, and a temperature sensor, some of which may be integrated on the ASIC. The digital control logic receives digital physiologic data sampled at different rates, assembles the data into physiologic data packets, time-stamps at least some of the packets, and periodically stores the packets in a digital memory. The monitor may include a disposable patch including the ASIC, and a reusable, removable digital memory such as flash memory card. Applications include ambulatory monitoring and quantitative titration of care.

[0013] WO0078213-A2 discloses a sensor system which includes a biopotential signal monitor, a smart sensor and the accompanying hardware and software interface which authenticates the source and validity of the smart sensor and also verifies that the smart sensor meets various criteria for use.

[0014] Dorthe B Saadi ET AL, "Heart Rhythm Analysis using ECG recorded with a Novel Sternum based Patch Technology -A Pilot Study", Proceedings of the International Congress on Cardiovascular Technologies, (20130920), XP055155616 is a paper describing the use of a wireless patch technology designed for easy, reliable long-term ECG recordings. The device is designed for high compliance and low patient burden.

[0015] "Omegawave Launches Consumer App 2.0 in U.S. - Endurance Sportswire Endurance Sportswire", URL: http://endurancesportswire.com/omegawavelaunches-consumer-app-2-0-in-u-s/ XP055156124 is a webpage describing the launch of an App intended to pair with a ECG.

DISCLOSURE OF THE INVENTION



[0016] The present application provides an extended wear electrocardiography and physiological sensor monitor in accordance with the claims which follow. The invention is set out in the appended claims.

[0017] Still other embodiments will become readily apparent to those skilled in the art from the following detailed description, wherein are described embodiments by way of illustrating the best mode contemplated. As will be realized, other and different embodiments are possible and the embodiments' several details are capable of modifications in various obvious respects, all without departing from the scope. Accordingly, the drawings and detailed description are to be regarded as illustrative in nature and not as restrictive.

DESCRIPTION OF THE DRAWINGS



[0018] 

FIGURES 1 and 2 are diagrams showing, by way of examples, an extended wear electrocardiography and physiological sensor monitor respectively fitted to the sternal region of a female patient and a male patient.

FIGURE 3 is a functional block diagram showing a system for providing a self-authenticating electrocardiography monitoring circuit in accordance with one embodiment.

FIGURE 4 is a perspective view showing an extended wear electrode patch with a monitor recorder in accordance with one embodiment inserted.

FIGURE 5 is a perspective view showing the monitor recorder of FIGURE 4.

FIGURE 6 is a perspective view showing the extended wear electrode patch of FIGURE 4 without a monitor recorder inserted.

FIGURE 7 is a bottom plan view of the monitor recorder of FIGURE 4.

FIGURE 8 is a top view showing the flexible circuit of the extended wear electrode patch of FIGURE 4 when mounted above the flexible backing.

FIGURE 9 is a functional block diagram showing the component architecture of the circuitry of the monitor recorder of FIGURE 4.

FIGURE 10 is a functional block diagram showing the circuitry of the extended wear electrode patch of FIGURE 4.

FIGURE 11 is a flow diagram showing a monitor recorder-implemented method for monitoring ECG data for use in the monitor recorder of FIGURE 4.

FIGURE 12 is a graph showing, by way of example, a typical ECG waveform.

FIGURE 13 is a flow diagram showing a method for providing a self-authenticating electrocardiography monitoring circuit in accordance with one embodiment.


BEST MODE FOR CARRYING OUT THE INVENTION



[0019] Physiological monitoring can be provided through a wearable monitor that includes two components, a flexible extended wear electrode patch and a removable reusable monitor recorder. FIGURES 1 and 2 are diagrams showing, by way of examples, an extended wear electrocardiography and physiological sensor monitor 12, including a monitor recorder 14 in accordance with one embodiment, respectively fitted to the sternal region of a female patient 10 and a male patient 11. The wearable monitor 12 sits centrally (in the midline) on the patient's chest along the sternum 13 oriented top-to-bottom with the monitor recorder 14 preferably situated towards the patient's head. In a further embodiment, the orientation of the wearable monitor 12 can be corrected post-monitoring, as further described infra. The electrode patch 15 is shaped to fit comfortably and conformal to the contours of the patient's chest approximately centered on the sternal midline 16 (or immediately to either side of the sternum 13). The distal end of the electrode patch 15 extends towards the Xiphoid process and, depending upon the patient's build, may straddle the region over the Xiphoid process. The proximal end of the electrode patch 15, located under the monitor recorder 14, is below the manubrium and, depending upon patient's build, may straddle the region over the manubrium.

[0020] The placement of the wearable monitor 12 in a location at the sternal midline 16 (or immediately to either side of the sternum 13) significantly improves the ability of the wearable monitor 12 to cutaneously sense cardiac electric signals, particularly the P-wave (or atrial activity) and, to a lesser extent, the QRS interval signals in the ECG waveforms that indicate ventricular activity, while simultaneously facilitating comfortable long-term wear for many weeks. The sternum 13 overlies the right atrium of the heart and the placement of the wearable monitor 12 in the region of the sternal midline 13 puts the ECG electrodes of the electrode patch 15 in a location better adapted to sensing and recording P-wave signals than other placement locations, say, the upper left pectoral region or lateral thoracic region or the limb leads. In addition, placing the lower or inferior pole (ECG electrode) of the electrode patch 15 over (or near) the Xiphoid process facilitates sensing of ventricular activity and provides superior recordation of the QRS interval.

[0021] The monitor recorder 14 of the extended wear electrocardiography and physiological sensor monitor 12 senses and records the patient's ECG data into an onboard memory. Over time, disposable electrode patches 15 will require replacement and ensuring that the level of quality of ECG recording and patient service remains constant over an extended period of time is dependent upon the monitoring equipment, particularly the replacement electrode patches 15, being up to a known standard. FIGURE 3 is a functional block diagram showing a system 120 for providing a self-authenticating electrocardiography monitoring circuit in accordance with one embodiment. Self-authentication allows quality and safety expectations to be maintained. The monitor recorder 14 is a reusable component that can be fitted during patient monitoring into a non-conductive receptacle provided on the electrode patch 15, as further described infra with reference to FIGURE 4, and later removed for offloading of stored ECG data or to receive revised programming. The monitor recorder 14 executes an authentication protocol as part of a power up sequence, as further described infra with reference to FIGURE 11. Following completion of ECG monitoring, the monitor recorder 14 can be connected to a download station 125, which could be a programmer or other device that permits the retrieval of stored ECG monitoring data, execution of diagnostics on or programming of the monitor recorder 14, or performance of other functions. The monitor recorder 14 has a set of electrical contacts (not shown) that enable the monitor recorder 14 to physically interface to a set of terminals 128 on a paired receptacle 127 of the download station 125. In turn, the download station 125 executes a communications or offload program 126 ("Offload") or similar program that interacts with the monitor recorder 14 via the physical interface to retrieve the stored ECG monitoring data. The download station 125 could be a server, personal computer, tablet or handheld computer, smart mobile device, or purpose-built programmer designed specific to the task of interfacing with a monitor recorder 14. Still other forms of download station 125 are possible.

[0022] Upon retrieving stored ECG monitoring data from a monitor recorder 14, middleware first operates on the retrieved data to adjust the ECG waveform, as necessary, and to convert the retrieved data into a format suitable for use by third party post-monitoring analysis software. The formatted data can then be retrieved from the download station 125 over a hard link 135 using a control program 137 ("Ctl") or analogous application executing on a personal computer 136 or other connectable computing device, via a communications link (not shown), whether wired or wireless, or by physical transfer of storage media (not shown). The personal computer 136 or other connectable device may also execute middleware that converts ECG data and other information into a format suitable for use by a third-party post-monitoring analysis program, as further described infra with reference to FIGURE 13. Note that formatted data stored on the personal computer 136 would have to be maintained and safeguarded in the same manner as electronic medical records (EMRs) 134 in the secure database 124, as further discussed infra. In a further embodiment, the download station 125 is able to directly interface with other devices over a computer communications network 121, which could be some combination of a local area network and a wide area network, including the Internet, over a wired or wireless connection.

[0023] A client-server model could be used to employ a server 122 to remotely interface with the download station 125 over the network 121 and retrieve the formatted data or other information. The server 122 executes a patient management program 123 ("Mgt") or similar application that stores the retrieved formatted data and other information in a secure database 124 cataloged in that patient's EMRs 134. In addition, the patient management program 123 could manage a subscription service that authorizes a monitor recorder 14 to operate for a set period of time or under pre-defined operational parameters and privileges, such as described in infra with reference to FIGURE 13.

[0024] The patient management program 123, or other trusted application, also maintains and safeguards the secure database 124 to limit access to patient EMRs 134 to only authorized parties for appropriate medical or other uses, such as mandated by state or federal law, such as under the Health Insurance Portability and Accountability Act (HIPAA) or per the European Union's Data Protection Directive. For example, a physician may seek to review and evaluate his patient's ECG monitoring data, as securely stored in the secure database 124. The physician would execute an application program 130 ("Pgm"), such as a post-monitoring ECG analysis program, on a personal computer 129 or other connectable computing device, and, through the application 130, coordinate access to his patient's EMRs 134 with the patient management program 123. Other schemes and safeguards to protect and maintain the integrity of patient EMRs 134 are possible.

[0025] During use, the electrode patch 15 is first adhesed to the skin along the sternal midline 16 (or immediately to either side of the sternum 13). A monitor recorder 14 is then snapped into place on the electrode patch 15 to initiate ECG monitoring. FIGURE 4 is a perspective view showing an extended wear electrode patch 15 with a monitor recorder 14 in accordance with one embodiment inserted. The body of the electrode patch 15 is preferably constructed using a flexible backing 20 formed as an elongated strip 21 of wrap knit or similar stretchable material with a narrow longitudinal mid-section 23 evenly tapering inward from both sides. A pair of cut-outs 22 between the distal and proximal ends of the electrode patch 15 create a narrow longitudinal midsection 23 or "isthmus" and defines an elongated "hourglass"-like shape, when viewed from above.

[0026] The electrode patch 15 incorporates features that significantly improve wearability, performance, and patient comfort throughout an extended monitoring period. During wear, the electrode patch 15 is susceptible to pushing, pulling, and torqueing movements, including compressional and torsional forces when the patient bends forward, and tensile and torsional forces when the patient leans backwards. To counter these stress forces, the electrode patch 15 incorporates strain and crimp reliefs, such as described in commonly-assigned U.S. Patent application, entitled "Extended Wear Electrocardiography Patch," Serial No. 14/080,717, filed November 14, 2013, pending. In addition, the cut-outs 22 and longitudinal midsection 23 help minimize interference with and discomfort to breast tissue, particularly in women (and gynecomastic men). The cut-outs 22 and longitudinal midsection 23 further allow better conformity of the electrode patch 15 to sternal bowing and to the narrow isthmus of flat skin that can occur along the bottom of the intermammary cleft between the breasts, especially in buxom women. The cut-outs 22 and longitudinal midsection 23 help the electrode patch 15 fit nicely between a pair of female breasts in the intermammary cleft. Still other shapes, cut-outs and conformities to the electrode patch 15 are possible.

[0027] The monitor recorder 14 removably and reusably snaps into an electrically non-conductive receptacle 25 during use. The monitor recorder 14 contains electronic circuitry for recording and storing the patient's electrocardiography as sensed via a pair of ECG electrodes provided on the electrode patch 15, such as described in commonly-assigned U.S. Patent application, entitled "Extended Wear Ambulatory Electrocardiography and Physiological Sensor Monitor," Serial No. 14/080,725, filed November 14, 2013, pending. The non-conductive receptacle 25 is provided on the top surface of the flexible backing 20 with a retention catch 26 and tension clip 27 molded into the non-conductive receptacle 25 to conformably receive and securely hold the monitor recorder 14 in place.

[0028] The monitor recorder 14 includes a sealed housing that snaps into place in the non-conductive receptacle 25. FIGURE 5 is a perspective view showing the monitor recorder 14 of FIGURE 4. The sealed housing 50 of the monitor recorder 14 intentionally has a rounded isosceles trapezoidal-like shape 52, when viewed from above, such as described in commonly-assigned U.S. Design Patent application, entitled "Electrocardiography Monitor," Serial No. 29/472,046, filed November 7, 2013, pending. The edges 51 along the top and bottom surfaces are rounded for patient comfort. The sealed housing 50 is approximately 47 mm long, 23 mm wide at the widest point, and 7 mm high, excluding a patient-operable tactile-feedback button 55. The sealed housing 50 can be molded out of polycarbonate, ABS, or an alloy of those two materials. The button 55 is waterproof and the button's top outer surface is molded silicon rubber or similar soft pliable material. A retention detent 53 and tension detent 54 are molded along the edges of the top surface of the housing 50 to respectively engage the retention catch 26 and the tension clip 27 molded into non-conductive receptacle 25. Other shapes, features, and conformities of the sealed housing 50 are possible.

[0029] The electrode patch 15 is intended to be disposable. The monitor recorder 14, however, is reusable and can be transferred to successive electrode patches 15 to ensure continuity of monitoring. The placement of the wearable monitor 12 in a location at the sternal midline 16 (or immediately to either side of the sternum 13) benefits long-term extended wear by removing the requirement that ECG electrodes be continually placed in the same spots on the skin throughout the monitoring period. Instead, the patient is free to place an electrode patch 15 anywhere within the general region of the sternum 13.

[0030] As a result, at any point during ECG monitoring, the patient's skin is able to recover from the wearing of an electrode patch 15, which increases patient comfort and satisfaction, while the monitor recorder 14 ensures ECG monitoring continuity with minimal effort. A monitor recorder 14 is merely unsnapped from a worn out electrode patch 15, the worn out electrode patch 15 is removed from the skin, a new electrode patch 15 is adhered to the skin, possibly in a new spot immediately adjacent to the earlier location, and the same monitor recorder 14 is snapped into the new electrode patch 15 to reinitiate and continue the ECG monitoring.

[0031] During use, the electrode patch 15 is first adhered to the skin in the sternal region. FIGURE 6 is a perspective view showing the extended wear electrode patch 15 of FIGURE 4 without a monitor recorder 14 inserted. A flexible circuit 32 is adhered to each end of the flexible backing 20. A distal circuit trace 33 and a proximal circuit trace (not shown) electrically couple ECG electrodes (not shown) to a pair of electrical pads 34. The electrical pads 34 are provided within a moisture-resistant seal 35 formed on the bottom surface of the non-conductive receptacle 25. When the monitor recorder 14 is securely received into the non-conductive receptacle 25, that is, snapped into place, the electrical pads 34 interface to electrical contacts (not shown) protruding from the bottom surface of the monitor recorder 14, and the moisture-resistant seal 35 enables the monitor recorder 14 to be worn at all times, even during bathing or other activities that could expose the monitor recorder 14 to moisture.

[0032] In addition, a battery compartment 36 is formed on the bottom surface of the non-conductive receptacle 25, and a pair of battery leads (not shown) electrically interface the battery to another pair of the electrical pads 34. The battery contained within the battery compartment 35 can be replaceable, rechargeable or disposable.

[0033] The monitor recorder 14 draws power externally from the battery provided in the non-conductive receptacle 25, thereby uniquely obviating the need for the monitor recorder 14 to carry a dedicated power source. FIGURE 7 is a bottom plan view of the monitor recorder 14 of FIGURE 4. A cavity 58 is formed on the bottom surface of the sealed housing 50 to accommodate the upward projection of the battery compartment 36 from the bottom surface of the non-conductive receptacle 25, when the monitor recorder 14 is secured in place on the non-conductive receptacle 25. A set of electrical contacts 56 protrude from the bottom surface of the sealed housing 50 and are arranged in alignment with the electrical pads 34 provided on the bottom surface of the non-conductive receptacle 25 to establish electrical connections between the electrode patch 15 and the monitor recorder 14. In addition, a seal coupling 57 circumferentially surrounds the set of electrical contacts 56 and securely mates with the moisture-resistant seal 35 formed on the bottom surface of the non-conductive receptacle 25.

[0034] The placement of the flexible backing 20 on the sternal midline 16 (or immediately to either side of the sternum 13) also helps to minimize the side-to-side movement of the wearable monitor 12 in the left- and right-handed directions during wear. To counter the dislodgment of the flexible backing 20 due to compressional and torsional forces, a layer of non-irritating adhesive, such as hydrocolloid, is provided at least partially on the underside, or contact, surface of the flexible backing 20, but only on the distal end 30 and the proximal end 31. As a result, the underside, or contact surface of the longitudinal midsection 23 does not have an adhesive layer and remains free to move relative to the skin. Thus, the longitudinal midsection 23 forms a crimp relief that respectively facilitates compression and twisting of the flexible backing 20 in response to compressional and torsional forces. Other forms of flexible backing crimp reliefs are possible.

[0035] Unlike the flexible backing 20, the flexible circuit 32 is only able to bend and cannot stretch in a planar direction. The flexible circuit 32 can be provided either above or below the flexible backing 20. FIGURE 8 is a top view showing the flexible circuit 32 of the extended wear electrode patch 15 of FIGURE 4 when mounted above the flexible backing 20. A distal ECG electrode 38 and proximal ECG electrode 39 are respectively coupled to the distal and proximal ends of the flexible circuit 32. A strain relief 40 is defined in the flexible circuit 32 at a location that is partially underneath the battery compartment 36 when the flexible circuit 32 is affixed to the flexible backing 20. The strain relief 40 is laterally extendable to counter dislodgment of the ECG electrodes 38, 39 due to tensile and torsional forces. A pair of strain relief cutouts 41 partially extend transversely from each opposite side of the flexible circuit 32 and continue longitudinally towards each other to define in 'S'-shaped pattern, when viewed from above. The strain relief respectively facilitates longitudinal extension and twisting of the flexible circuit 32 in response to tensile and torsional forces. Other forms of circuit board strain relief are possible.

[0036] ECG monitoring and other functions performed by the monitor recorder 14 are provided through a micro controlled architecture. FIGURE 9 is a functional block diagram showing the component architecture of the circuitry 60 of the monitor recorder 14 of FIGURE 4. The circuitry 60 is externally powered through a battery provided in the non-conductive receptacle 25 (shown in FIGURE 6). Both power and raw ECG signals, which originate in the pair of ECG electrodes 38, 39 (shown in FIGURE 8) on the distal and proximal ends of the electrode patch 15, are received through an external connector 65 that mates with a corresponding physical connector on the electrode patch 15. The external connector 65 includes the set of electrical contacts 56 that protrude from the bottom surface of the sealed housing 50 and which physically and electrically interface with the set of pads 34 provided on the bottom surface of the non-conductive receptacle 25. The external connector includes electrical contacts 56 for data download, microcontroller communications, power, analog inputs, and a peripheral expansion port. The arrangement of the pins on the electrical connector 65 of the monitor recorder 14 and the device into which the monitor recorder 14 is attached, whether an electrode patch 15 or download station (not shown), follow the same electrical pin assignment convention to facilitate interoperability. The external connector 65 also serves as a physical interface to a download station that permits the retrieval of stored ECG monitoring data, communication with the monitor recorder 14, and performance of other functions.

[0037] Operation of the circuitry 60 of the monitor recorder 14 is managed by a microcontroller 61. The micro-controller 61 includes a program memory unit containing internal flash memory that is readable and writeable. The internal flash memory can also be programmed externally. The micro-controller 61 draws power externally from the battery provided on the electrode patch 15 via a pair of the electrical contacts 56. The microcontroller 61 connects to the ECG front end circuit 63 that measures raw cutaneous electrical signals and generates an analog ECG signal representative of the electrical activity of the patient's heart over time.

[0038] The circuitry 60 of the monitor recorder 14 also includes a flash memory 62, which the micro-controller 61 uses for storing ECG monitoring data and other physiology and information. The flash memory 62 also draws power externally from the battery provided on the electrode patch 15 via a pair of the electrical contacts 56. Data is stored in a serial flash memory circuit, which supports read, erase and program operations over a communications bus. The flash memory 62 enables the microcontroller 61 to store digitized ECG data. The communications bus further enables the flash memory 62 to be directly accessed externally over the external connector 65 when the monitor recorder 14 is interfaced to a download station.

[0039] The circuitry 60 of the monitor recorder 14 further includes an actigraphy sensor 64 implemented as a 3-axis accelerometer. The accelerometer may be configured to generate interrupt signals to the microcontroller 61 by independent initial wake up and free fall events, as well as by device position. In addition, the actigraphy provided by the accelerometer can be used during post-monitoring analysis to correct the orientation of the monitor recorder 14 if, for instance, the monitor recorder 14 has been inadvertently installed upside down, that is, with the monitor recorder 14 oriented on the electrode patch 15 towards the patient's feet, as well as for other event occurrence analyses.

[0040] The microcontroller 61 includes an expansion port that also utilizes the communications bus. External devices, separately drawing power externally from the battery provided on the electrode patch 15 or other source, can interface to the microcontroller 61 over the expansion port in half duplex mode. For instance, an external physiology sensor can be provided as part of the circuitry 60 of the monitor recorder 14, or can be provided on the electrode patch 15 with communication with the micro-controller 61 provided over one of the electrical contacts 56. The physiology sensor can include a SpO2 sensor, blood pressure sensor, temperature sensor, respiratory rate sensor, glucose sensor, airflow sensor, volumetric pressure sensing, or other types of sensor or telemetric input sources. For instance, the integration of an airflow sensor is described in commonly-assigned U.S. Patent Application, entitled "Self-Contained Personal Air Flow Sensing Monitor," Serial No. 14/082,102, filed November 15, 2013, pending. In a further embodiment, a wireless interface for interfacing with other wearable (or implantable) physiology monitors, as well as data offload and programming, can be provided as part of the circuitry 60 of the monitor recorder 14, or can be provided on the electrode patch 15 with communication with the micro-controller 61 provided over one of the electrical contacts 56, such as described in commonly-assigned U.S. Patent application, entitled "Remote Interfacing of Extended Wear Electrocardiography and Physiological Sensor Monitor," Serial No. 14/082,071, filed November 15, 2013, pending.

[0041] Finally, the circuitry 60 of the monitor recorder 14 includes patient-interfaceable components, including a tactile feedback button 66, which a patient can press to mark events or to perform other functions, and a buzzer 67, such as a speaker, magnetic resonator or piezoelectric buzzer. The buzzer 67 can be used by the microcontroller 61 to output feedback to a patient such as to confirm power up and initiation of ECG monitoring. Still other components as part of the circuitry 60 of the monitor recorder 14 are possible.

[0042] While the monitor recorder 14 operates under micro control, most of the electrical components of the electrode patch 15 operate passively. FIGURE 10 is a functional block diagram showing the circuitry 70 of the extended wear electrode patch 15 of FIGURE 4. The circuitry 70 of the electrode patch 15 is electrically coupled with the circuitry 60 of the monitor recorder 14 through an external connector 74. The external connector 74 is terminated through the set of pads 34 provided on the bottom of the non-conductive receptacle 25, which electrically mate to corresponding electrical contacts 56 protruding from the bottom surface of the sealed housing 50 to electrically interface the monitor recorder 14 to the electrode patch 15.

[0043] The circuitry 70 of the electrode patch 15 performs three primary functions. First, a battery 71 is provided in a battery compartment formed on the bottom surface of the non-conductive receptacle 25. The battery 71 is electrically interfaced to the circuitry 60 of the monitor recorder 14 as a source of external power. The unique provisioning of the battery 71 on the electrode patch 15 provides several advantages. First, the locating of the battery 71 physically on the electrode patch 15 lowers the center of gravity of the overall wearable monitor 12 and thereby helps to minimize shear forces and the effects of movements of the patient and clothing. Moreover, the housing 50 of the monitor recorder 14 is sealed against moisture and providing power externally avoids having to either periodically open the housing 50 for the battery replacement, which also creates the potential for moisture intrusion and human error, or to recharge the battery, which can potentially take the monitor recorder 14 offline for hours at a time. In addition, the electrode patch 15 is intended to be disposable, while the monitor recorder 14 is a reusable component. Each time that the electrode patch 15 is replaced, a fresh battery is provided for the use of the monitor recorder 14, which enhances ECG monitoring performance quality and duration of use. Finally, the architecture of the monitor recorder 14 is open, in that other physiology sensors or components can be added by virtue of the expansion port of the microcontroller 61. Requiring those additional sensors or components to draw power from a source external to the monitor recorder 14 keeps power considerations independent of the monitor recorder 14. Thus, a battery of higher capacity could be introduced when needed to support the additional sensors or components without effecting the monitor recorders circuitry 60.

[0044] Second, the pair of ECG electrodes 38, 39 respectively provided on the distal and proximal ends of the flexible circuit 32 are electrically coupled to the set of pads 34 provided on the bottom of the non-conductive receptacle 25 by way of their respective circuit traces 33, 37. The signal ECG electrode 39 includes a protection circuit 72, which is an inline resistor that protects the patient from excessive leakage current.

[0045] Last, in a further embodiment, the circuitry 70 of the electrode patch 15 includes a cryptographic circuit 73 to authenticate an electrode patch 15 for use with a monitor recorder 14. The cryptographic circuit 73 includes a device capable of secure authentication and validation. The cryptographic device 73 ensures that only genuine, non-expired, safe, and authenticated electrode patches 15 are permitted to provide monitoring data to a monitor recorder 14.

[0046] The monitor recorder 14 continuously monitors the patient's heart rate and physiology. FIGURE 11 is a flow diagram showing a monitor recorder-implemented method 100 for monitoring ECG data for use in the monitor recorder 14 of FIGURE 4. Initially, upon being connected to the set of pads 34 provided with the non-conductive receptacle 25 when the monitor recorder 14 is snapped into place, the microcontroller 61 executes a power up sequence (step 101) and performs self-authentication of the electrode patch 15 (step 102). During the power up sequence, the voltage of the battery 71 is checked, the state of the flash memory 62 is confirmed, both in terms of operability check and available capacity, and microcontroller operation is diagnostically confirmed.

[0047] Self-authentication is performed between the microcontroller 61 and the electrode patch 15 each time that the monitor recorder 14 is inserted into an electrode patch 15 (or other accessory) to ensure patient safety. An authenticated patch will conform to product quality standards, as well as applicable federal regulatory quality requirements and international standards, such as ISO 13485, IEC 60601-2-47 and IEC 60601-1. Quality assurance, through self-authentication, is crucial, as electrode patches 15 and other accessories may be authorized, but may not necessarily be manufactured, by the entity ultimately responsible for quality standards compliance. Self-authentication mitigates the risk of incorrect device output due to non-compliant accessories.

[0048] In one embodiment, the micro-controller 61 contains a private key or a precomputed digest, of which the electrode patch 15 (or other accessory) will have a copy. To authenticate an electrode patch 15 (or other accessory), the micro-controller 61 will challenge the electrode patch 15 (or other accessory) using a code hashed with the private key or precomputed digest. If the electrode patch 15 (or other accessory) responds correctly, the micro-controller 61 will continue with normal program execution. Otherwise, the monitor recorder 14 will signal an error condition, such as chirping the buzzer 67 to notify the patient. Failing self-authentication, other actions could also be taken.

[0049] According to the invention, an electrode patch 15 (or other accessory) can be set to operate for only a certain period of time. Upon authentication, the monitor recorder 14 will run with that electrode patch 15 (or other accessory) until the electrode patch 15 (or other accessory) is depleted. If the electrode patch 15 (or other accessory) is detected to be expired during self-authentication, the monitor recorder 14 will fail to operate or signal an error condition. To cause an electrode patch 15 (or other accessory) to expire after a certain amount of time has elapsed, the micro-controller 61 periodically writes into the read-only memory (ROM) of the cryptographic circuit 73. After the data in the ROM written by the micro-controller 61 has reached a certain fullness, the micro-controller 61 will turn off to ensure that an expired electrode patch 15 (or other accessory) does not create an unsafe condition, such as an incorrect output. Still other forms of authentication and device expiration are possible.

[0050] Following satisfactory completion of the power up sequence, an iterative processing loop (steps 103-110) is continually executed by the microcontroller 61. During each iteration (step 103) of the processing loop, the ECG frontend 63 (shown in FIGURE 9) continually senses the cutaneous ECG electrical signals (step 104) via the ECG electrodes 38, 29 and is optimized to maintain the integrity of the P-wave. A sample of the ECG signal is read (step 105) by the microcontroller 61 by sampling the analog ECG signal output front end 63. FIGURE 12 is a graph showing, by way of example, a typical ECG waveform 110. The x-axis represents time in approximate units of tenths of a second. The y-axis represents cutaneous electrical signal strength in approximate units of millivolts. The P-wave 111 has a smooth, normally upward, that is, positive, waveform that indicates atrial depolarization. The QRS complex usually begins with the downward deflection of a Q wave 112, followed by a larger upward deflection of an R-wave 113, and terminated with a downward waveform of the S wave 114, collectively representative of ventricular depolarization. The T wave 115 is normally a modest upward waveform, representative of ventricular depolarization, while the U wave 116, often not directly observable, indicates the recovery period of the Purkinje conduction fibers.

[0051] Sampling of the R-to-R interval enables heart rate information derivation. For instance, the R-to-R interval represents the ventricular rate and rhythm, while the P-to-P interval represents the atrial rate and rhythm. Importantly, the PR interval is indicative of atrioventricular (AV) conduction time and abnormalities in the PR interval can reveal underlying heart disorders, thus representing another reason why the P-wave quality achievable by the extended wear ambulatory electrocardiography and physiological sensor monitor described herein is medically unique and important. The long-term observation of these ECG indicia, as provided through extended wear of the wearable monitor 12, provides valuable insights to the patient's cardiac function and overall well-being.

[0052] Each sampled ECG signal, in quantized and digitized form, is temporarily staged in buffer (step 106), pending compression preparatory to storage in the flash memory 62 (step 107). Following compression, the compressed ECG digitized sample is again buffered (step 108), then written to the flash memory 62 (step 109) using the communications bus. Processing continues (step 110), so long as the monitoring recorder 14 remains connected to the electrode patch 15 (and storage space remains available in the flash memory 62), after which the processing loop is exited and execution terminates. Still other operations and steps are possible.

[0053] The patient management program 123 could manage a subscription service that authorizes a monitor recorder 14 to operate for a set period of time or under pre-defined operational parameters and privileges. FIGURE 13 is a flow diagram showing a method 150 for providing a self-authenticating electrocardiography monitoring circuit in accordance with one embodiment. The method 150 can be implemented in software and execution of the software can be performed on a download station 125, which could be a programmer or other device, or a computer system, including a server 122 or personal computer 129, such as further described supra with reference to FIGURE 3, as a series of process or method modules or steps.

[0054] For convenience, the method 150 will be described in the context of being performed by a personal computer 136 or other connectable computing device (shown in FIGURE 3) as middleware that converts ECG data and other information into a format suitable for use by a third-party post-monitoring analysis program. Execution of the method 150 by a computer system would be analogous mutatis mutandis.

[0055] Initially, the download station 125 is connected to the monitor recorder 14 (step 151), such as by physically interfacing to a set of terminals 128 on a paired receptacle 127 or by wireless connection, if available. The data stored on the monitor recorder 14, including ECG and physiological monitoring data, other recorded data, and other information are retrieved (step 152) over a hard link 135 using a control program 137 ("Ctl") or analogous application executing on a personal computer 136 or other connectable computing device.

[0056] The data retrieved from the monitor recorder 14 is in a proprietary storage format and each datum of recorded ECG monitoring data, as well as any other physiological data or other information, must be converted, so that the data can be used by a third-party post-monitoring analysis program. Each datum of ECG monitoring data is converted by the middleware (steps 153-159) in an iterative processing loop. During each iteration (step 153), the ECG datum is read (step 154) and, if necessary, the gain of the ECG signal is adjusted (step 155) to compensate, for instance, for relocation or replacement of the electrode patch 15 during the monitoring period.

[0057] In addition, depending upon the configuration of the wearable monitor 12, other physiological data (or other information), including patient events, such as a fall, peak activity level, detection of patient activity levels and states, sedentary detection and so on, may be recorded along with the ECG monitoring data. For instance, actigraphy data may have been sampled by the actigraphy sensor 64 based on a sensed event occurrence, such as a sudden change in orientation due to the patient taking a fall. In response, the monitor recorder 14 will embed the actigraphy data samples into the stream of data, including ECG monitoring data that is recorded to the flash memory 62 by the micro-controller 61. Post-monitoring, the actigraphy data is temporally matched to the ECG data to provide the proper physiological context to the sensed event occurrence. As a result, the three-axis actigraphy signal is turned into an actionable event occurrence that is provided, through conversion by the middleware, to third party post-monitoring analysis programs, along with the ECG recordings contemporaneous to the event occurrence. Other types of processing of the other physiological data (or other information) are possible.

[0058] Thus, during execution of the middleware, any other physiological data (or other information) that has been embedded into the recorded ECG monitoring data is read (step 156) and time-correlated to the time frame of the ECG signals that occurred at the time that the other physiological data (or other information) was noted (step 157). Finally, the ECG datum, signal gain adjusted, if appropriate, and other physiological data, if applicable and as time-correlated, are stored in a format suitable to the backend software (step 158) used in post-monitoring analysis.


Claims

1. An extended wear electrocardiography and physiological sensor monitor (12), comprising:

a disposable extended wear electrode patch (15), comprising:

a flexible backing (20) formed of an elongated strip (21) of stretchable material with a narrow longitudinal midsection (23) and, on each end (30, 31), a contact surface at least partially coated with an adhesive dressing;

a pair of electrocardiographic electrodes (38, 39) conductively exposed on the contact surface of each end (30, 31) of the elongated strip (21), respectively;

a non-conductive receptacle (25) adhered to an outward-facing surface of the elongated strip (21) and comprising at least four electrical pads (34);

a flexible circuit (32) affixed on each end of the elongated strip (21) and comprising a pair of circuit traces (33, 37) electrically coupled to the pair of the electrocardiographic electrodes (38, 39) and a pair of the electrical pads (34), at least one of the circuit traces (33, 37) adapted to extend along the narrow longitudinal midsection (23) to serve as the strain relief; and

a battery electrically interfaced to a pair of electrical pads on the non-conductive receptacle;

a cryptographic circuit (73) electrically coupled to another pair of the electrical pads; and

a reusable electrocardiography monitor (14) having a sealed housing (50) adapted to be removably secured into the non-conductive receptacle (25) and comprising:

a micro-controller (61) operable to execute under micro programmable control and configured to perform authentication with the extended wear electrode patch comprising:

when the monitor is secured in the non-conductive receptacle, perform authentication of the disposable extended wear electrode patch;

upon authentication determine that the extended wear electrode patch is depleted, comprising:

periodically write data into a read-only memory provided in the cryptographic circuit on the disposable extended wear electrode patch;

measure an amount of the data written into the read-only memory;

determine an expiration of the disposable extended wear electrode patch once the amount of data written into the read-only memory reaches a predetermined threshold; and

automatically turn off the micro-controller when the data written into the read-only memory has reached a predetermined threshold;

an electrocardiographic front end circuit (63) electrically interfaced with the micro-controller and operable to sense electrocardiographic signals through the electrocardiographic electrodes (38, 39) via the pair of the electrical pads (34); and

a flash memory (62) electrically interfaced with the micro-controller (61) and operable to store samples of the electrocardiographic signals.


 
2. An electrocardiography and physiological sensor monitor (12) according to Claim 1, wherein at least one of:

the electrocardiographic front end circuit (63) is configured to sense P-wave (111) signals in the electrocardiographic signals;

the disposable extended wear electrode patch (15) is disposed for being adhered to a patient's chest with the narrow longitudinal midsection (23) oriented centrally, in the midline (16), along the sternum (13) with one of the electrocardiographic electrodes (38) overlying a region of the lower sternum and another of the electrocardiographic electrodes (39) in a region of the manubrium; and

orientation of the monitor (12) is compensated if installed upside down.


 
3. An electrocardiography monitor and physiological sensor monitor (12) according to Claim 1, wherein at least one of:

the micro-controller (61) is operable to draw power from the battery (71) via the pair of the electrical pads (34);

the flash memory (62) is operable to draw power from the battery (71) via the pair of the electrical pads (34); and

the capacity of the battery (71) is selected to support additional electrical components without affecting operation of the reusable electrocardiography monitor (12).


 
4. An electrocardiography and physiological sensor monitor according to Claim 1, further comprising:

one of the electrocardiographic electrodes (38) on the disposable extended wear electrode patch (15) being disposed for being adhered to a region overlying the lower sternum on a patient's chest; and

an other of the electrocardiographic electrodes (39) on the disposable extended wear electrode patch (15) being disposed for being adhered to a region near the manubrium on the patient's chest oriented centrally, in the midline (16), along the sternum (13) upwards from the one electrocardiographic electrode (38).


 
5. An electrocardiography and physiological sensor monitor (12) according to Claim 1, further comprising:

an expansion bus (68) operatively interconnected to the micro-controller (61) and electrically coupled to at least one of the electrical pads (34);

a physiology sensor comprised within the disposable extended wear electrode patch (15) and operable to sense physiology and to draw power from the battery (71) via the battery leads, the physiology sensor electrically interfaced with the micro-controller (61) over the expansion bus (68) and selected from the group comprising an SpO2 sensor, a blood pressure sensor, a temperature sensor, a respiratory rate sensor, a glucose sensor, an air flow sensor, and a volumetric pressure sensor; and

the flash memory (62) further operable through the expansion bus (68) to store samples of the physiology sensed by the physiology sensor.


 
6. An electrocardiography and physiological sensor monitor (12) according to Claim 1, further comprising:

an expansion bus (68) operatively interconnected to the micro-controller (61);

a physiology sensor comprised within the reusable electrocardiography monitor (14) and operable to sense physiology and to draw power from the battery (71) via a pair of the electrical pads (34), the physiology sensor electrically interfaced with the micro-controller over the expansion bus (68) and selected from the group comprising an SpO2 sensor, a blood pressure sensor, a temperature sensor, a respiratory rate sensor, a glucose sensor, an air flow sensor, and a volumetric pressure sensor; and

the flash memory (62) further operable through the expansion bus (68) to store samples of the physiology sensed by the physiology sensor.


 
7. An electrocardiography and physiological sensor monitor (12) according to Claim 1, further comprising:

an actigraphy sensor (64) comprised within the reusable electrocardiography monitor (14) and operable to detect movement, the actigraphy sensor (64) electrically interfaced with the micro-controller (61); and

the flash memory (62) further operable to store samples of the movement detected by the actigraphy sensor.


 
8. An electrocardiography and physiological sensor monitor (12) according to Claim 1, further comprising at least one of:

a feedback output component (66) comprised in the reusable electrocardiography monitor (14) and electrically interfaced with the micro-controller (61); and

a feedback input component (55, 66) comprised in the reusable electrocardiography monitor (61) and externally wearer-operable from outside the sealed housing (50), the feedback input (55, 66) further electrically interfaced with the micro-controller (61).


 
9. An electrocardiography and physiological sensor monitor (12) according to Claim 1, wherein the electrocardiographic front end circuit (63) is configured to sense P-wave (111) signals in the electrocardiographic signals.
 
10. An electrocardiography and physiological sensor monitor (12) according to Claim 1, further comprising:

a download station (125) comprising:

a non-conductive receptacle (127) adapted to removably receive the monitor recorder; and

a download station controller operable to interface with the micro-controller (61) of the reusable electrocardiography monitor (14);

a computer system (136) operatively coupled to the download station controller and centrally accessible over a data communications network (121) and operable to request the micro-controller (61) to issue a challenge to the cryptographic circuit (73) to which the cryptographic circuit is operable to provide a response; and

a server computer system centrally accessible over the data communications network (121) and operable to interface with the computer system (136) to receive the challenge from and to authorize additional functionality in the reusable electrocardiography monitor.


 
11. An electrocardiography and physiological sensor monitor (12) according to Claim 10, further comprising:
a user interface provided by a computer system centrally accessible over the data communications network (121) through which a patient (10, 11) can select the additional functionality in the reusable electrocardiography monitor (14).
 
12. An electrocardiography and physiological sensor monitor (12) according to Claim 11, further comprising:

a subscription service implemented by a server (122) that controls the purchasing of the additional functionality in the reusable electrocardiography monitor (14) by the patient (10, 11).


 
13. An electrocardiography and physiological sensor monitor (12) according to Claim 1, further comprising at least one of:

a feedback output component (66) comprised in the reusable electrocardiography monitor (14) and electrically interfaced with the micro-controller (61); and

a feedback input component (55, 66) comprised in the reusable electrocardiography monitor (14) and externally wearer-operable from outside the sealed housing (50), the feedback input (55, 66) further electrically interfaced with the micro-controller (61).


 


Ansprüche

1. Länger tragbarer Elektrokardiografie- und physiologischer Sensormonitor (12), umfassend:

ein länger tragbares Einweg-Elektrodenpflaster (15), umfassend:

einen flexiblen Träger (20), der aus einem verlängerten Streifen (21) von dehnbarem Material mit einem engen länglichen Mittelabschnitt (23) und an jedem Ende (30, 31) einer Kontaktfläche gebildet ist, die zumindest teilweise mit einem Klebeverband beschichtet ist;

ein Paar von Elektrokardiografieelektroden (38, 39), die jeweils leitend auf der Kontaktfläche jedes Endes (30, 31) des verlängerten Streifens (21) freigesetzt sind;

eine nicht leitende Aufnahme (25), die an eine nach außen zeigende Oberfläche des verlängerten Streifens (21) geklebt ist und mindestens vier elektrische Anschlussfelder (34) umfasst;

einen flexiblen Schaltkreis (32), der an jedem Ende des verlängerten Streifens (21) befestigt ist und ein Paar von Schaltkreisspuren (33, 37) umfasst, das elektrisch an das Paar der Elektrokardiografieelektroden (38, 39) und ein Paar der elektrischen Anschlussfelder (34) gekoppelt ist, wobei mindestens eine der Schaltkreisspuren (33, 37) ausgelegt sind, sodass sie entlang des engen länglichen Mittelabschnitts (23) verlaufen, um als Zugentlastung zu dienen; und

eine Batterie, die elektrisch an ein Paar von elektrischen Anschlussfeldern auf der nicht leitenden Aufnahme angeschlossen ist;

einen Kryptografieschaltkreis (73), der elektrisch an ein anderes Paar der elektrischen Anschlussfelder gekoppelt ist; und einen wiederverwendbaren Elektrokardiografiemonitor (14) mit einem abgedichteten Gehäuse (50), das ausgelegt ist, entfernbar in die nicht leitende Aufnahme (25) gesichert zu sein, und der umfasst:
einen Mikrocontroller (61), der betreibbar ist, unter mikroprogrammierbarer Steuerung zu arbeiten, und ausgelegt ist, eine Authentifizierung mit dem länger tragbaren Elektrodenpflaster durchzuführen, umfassend:

wenn der Monitor in der nicht leitenden Aufnahme gesichert ist, Durchführen einer Authentifizierung des länger tragbaren Einweg-Elektrodenpflasters;

Ermitteln nach der Authentifizierung, dass das länger tragbare Einweg-Elektrodenpflaster aufgebraucht ist, umfassend: periodisches Schreiben von Daten in einen schreibgeschützten Speicher, der im Kryptografieschaltkreis auf dem länger tragbaren Einweg-Elektrodenpflaster vorgesehen ist;

Messen einer Menge der in den schreibgeschützten Speicher geschriebenen Daten;

Ermitteln eines Ablaufs des länger tragbaren Einweg-Elektrodenpflasters, sobald die Menge der in den schreibgeschützten Speicher geschriebenen Daten einen vorbestimmten Schwellenwert erreicht; und

automatisches Abschalten des Mikrocontrollers, wenn die in den schreibgeschützten Speicher geschriebenen Daten einen vorbestimmten Schwellenwert erreicht haben;

einen Elektrokardiografie-Front-End-Schaltkreis (63), der elektrisch an den Mikrocontroller angeschlossen ist und betreibbar ist, um Elektrokardiografiesignale durch die Elektrokardiografieelektroden (38, 39) über das Paar der elektrischen Anschlussfelder (34) zu erfassen; und

einen Flashspeicher (62), der elektrisch an den Mikrocontroller (61) angeschlossen ist und betreibbar it, um Abtastwerte der Elektrokardiografiesignale zu speichern.


 
2. Elektrokardiografie- und physiologischer Sensormonitor (12) nach Anspruch 1, wobei mindestens eines gilt von:

der Elektrokardiografie-Front-End-Schaltkreis (63) ausgelegt ist, P-Wellen-Signale (111) in den Elektrokardiografiesignalen zu erfassen;

das länger tragbare Einweg-Elektrodenpflaster (15) angeordnet ist, an eine Brust eines Patienten mit dem engen länglichen Mittelabschnitt (23) mittig ausgerichtet geklebt zu werden, in der Mittellinie (16) entlang des Sternums (13), wobei eine der Elektrokardiografieelektroden (38) auf einem Bereich des unteren Sternums und eine andere der Elektrokardiografieelektroden (39) auf einem Bereich des Manubriums aufliegt; und

eine Ausrichtung des Monitors (12) kompensiert wird, wenn er auf dem Kopf stehend aufgestellt ist.


 
3. Elektrokardiografiemonitor und physiologischer Sensormonitor (12) nach Anspruch 1, wobei mindestens eines gilt von:

der Mikrocontroller (61) betreibbar ist, um Energie aus der Batterie (71) über das Paar der elektrischen Anschlussfelder (34) zu beziehen;

der Flashspeicher (62) betreibbar ist, um Energie aus der Batterie (71) über das Paar der elektrischen Anschlussfelder (34) zu beziehen; und

die Kapazität der Batterie (71) ausgewählt ist, um zusätzliche elektrische Komponenten zu unterstützen, ohne einen Betrieb des wiederverwendbaren Elektrokardiografiemonitors (12) zu beeinflussen.


 
4. Elektrokardiografie- und physiologischer Sensormonitor nach Anspruch 1, ferner umfassend:

dass eine der Elektrokardiografieelektroden (38) auf dem länger tragbaren Einweg-Elektrodenpflaster (15) angeordnet ist, um an einen Bereich geklebt zu werden, der über dem unteren Sternum auf der Brust eines Patienten liegt; und

dass eine andere der Elektrokardiografieelektroden (39) auf dem länger tragbaren Einweg-Elektrodenpflaster (15) angeordnet ist, um an einen Bereich in der Nähe des Manubriums auf der Brust des Patienten, zentral auf der Mittellinie (16) entlang des Sternums (13) ausgerichtet über der einen Elektrokardiografieelektrode (38) geklebt zu werden.


 
5. Elektrokardiografie- und physiologischer Sensormonitor (12) nach Anspruch 1, ferner umfassend:

einen Erweiterungsbus (68), der mit dem Mikrocontroller (61) wirkverbunden ist und elektrisch an mindestens eines der elektrischen Anschlussfelder (34) gekoppelt ist;

einen physiologischen Sensor, der im Inneren des länger tragbaren Einweg-Elektrodenpflasters (15) enthalten ist und betreibbar ist, um Physiologie zu erfassen und über die Batteriekabel Energie von der Batterie (71) zu beziehen, wobei der physiologische Sensor elektrisch über den Erweiterungsbus (68) an den Mikrocontroller (61) angeschlossen ist und aus der Gruppe ausgewählt ist, die einen SpO2-Sensor, einen Blutdrucksensor, einen Temperatursensor, einen Atmungsratensensor, einen Blutzuckersensor, einen Luftströmungssensor und einen volumetrischen Drucksensor umfasst; und

der Flashspeicher (62) ferner über den Erweiterungsbus (68) betreibbar ist, um Abtastwerte der vom physiologischen Sensor erfassten Physiologie zu speichern.


 
6. Elektrokardiografie- und physiologischer Sensormonitor (12) nach Anspruch 1, ferner umfassend:

einen Erweiterungsbus (68), der mit dem Mikrocontroller (61) wirkverbunden ist;

einen physiologischen Sensor, der im Inneren des wiederverwendbaren Elektrokardiografiemonitors (14) enthalten ist und betreibbar ist, um Physiologie zu erfassen und über ein Par der elektrischen Anschlussfelder (34) Energie von der Batterie (71) zu beziehen, wobei der physiologische Sensor elektrisch über den Erweiterungsbus (68) an den Mikrocontroller angeschlossen ist und aus der Gruppe ausgewählt ist, die einen SpO2-Sensor, einen Blutdrucksensor, einen Temperatursensor, einen Atmungsratensensor, einen Blutzuckersensor, einen Luftströmungssensor und einen volumetrischen Drucksensor umfasst; und

der Flashspeicher (62) ferner über den Erweiterungsbus (68) betreibbar ist, um Abtastwerte der vom physiologischen Sensor erfassten Physiologie zu speichern.


 
7. Elektrokardiografie- und physiologischer Sensormonitor (12) nach Anspruch 1, ferner umfassend:

einen Aktigrafiesensor (64), der im Inneren des wiederverwendbaren Elektrokardiografiemonitors (14) enthalten ist und betreibbar ist, um Bewegung zu erkennen, wobei der Aktigrafiesensor (64) elektrisch an den Mikrocontroller (61) angeschlossen ist; und

den Flashspeicher (62), der ferner betreibbar ist, um Abtastwerte der vom Aktigrafiesensor erfassten Bewegung zu speichern.


 
8. Elektrokardiografie- und physiologischer Sensormonitor (12) nach Anspruch 1, der mindestens eines umfasst von:

einer Rückmeldungsausgabekomponente (66), die im wiederverwendbaren Elektrokardiografiemonitor (14) enthalten ist und elektrisch an den Mikrocontroller (61) angeschlossen ist; und

einer Rückmeldungseingabekomponente (55, 66), die im wiederverwendbaren Elektrokardiografiemonitor (61) enthalten ist und extern vom Träger von außerhalb des abgedichteten Gehäuses (50) betreibbar ist, wobei die Rückmeldungseingabe (55, 66) ferner elektrisch an den Mikrocontroller (61) angeschlossen ist.


 
9. Elektrokardiografie- und physiologischer Sensormonitor (12) nach Anspruch 1, wobei der Elektrokardiografie-Front-End-Schaltkreis (63) ausgelegt ist, P-Wellen-Signale (111) in den Elektrokardiografiesignalen zu erfassen.
 
10. Elektrokardiografie- und physiologischer Sensormonitor (12) nach Anspruch 1, ferner umfassend:

eine Herunterladestation (125), umfassend:
eine nicht leitende Aufnahme (127), die ausgelegt ist, den Monitorrecorder entfernbar aufzunehmen; und

eine Herunterladestationssteuerung, die betreibbar ist, an den Mikrocontroller (61) des wiederverwendbaren Elektrokardiografiemonitors (14) anzuschließen;

ein Computersystem (136), das an die Herunterladestationssteuerung wirkgekoppelt ist und das zentral über ein Datenkommunikationsnetzwerk (121) zugänglich ist und betreibbar ist, um vom Mikrocontroller (61) anzufordern, eine Herausforderung an den Kryptografieschaltkreis (73) auszugeben, für die der Kryptografieschaltkreis betreibbar ist, eine Antwort bereitzustellen; und

ein Servercomputersystem, das zentral über das Datenkommunikationsnetzwerk (121) zugänglich ist und betreibbar ist, um an das Computersystem (136) anzuschließen, um die Herausforderung vom wiederverwendbaren Elektrokardiografiemonitor zu empfangen und zusätzliche Funktionalität in diesem zu autorisieren.


 
11. Elektrokardiografie- und physiologischer Sensormonitor (12) nach Anspruch 10, ferner umfassend:
eine Benutzerschnittstelle, die von einem Computersystem bereitgestellt wird und zentral über das Datenkommunikationsnetzwerk (121) zugänglich ist, durch die ein Patient (10, 11) die zusätzliche Funktionalität im wiederverwendbaren Elektrokardiografiemonitor (14) auswählen kann.
 
12. Elektrokardiografie- und physiologischer Sensormonitor (12) nach Anspruch 11, ferner umfassend:
einen Abonnementdienst, der durch einen Server (122) implementiert ist, der den Einkauf der zusätzlichen Funktionalität im wiederverwendbaren Elektrokardiografiemonitor (14) durch den Patienten (10, 11) steuert.
 
13. Elektrokardiografie- und physiologischer Sensormonitor (12) nach Anspruch 1, der mindestens eines umfasst von:

einer Rückmeldungsausgabekomponente (66), die im wiederverwendbaren Elektrokardiografiemonitor (14) enthalten ist und elektrisch an den Mikrocontroller (61) angeschlossen ist; und

einer Rückmeldungseingabekomponente (55, 66), die im wiederverwendbaren Elektrokardiografiemonitor (14) enthalten ist und extern vom Träger von außerhalb des abgedichteten Gehäuses (50) betreibbar ist, wobei die Rückmeldungseingabe (55, 66) ferner elektrisch an den Mikrocontroller (61) angeschlossen ist.


 


Revendications

1. Moniteur capteur électrocardiographique et physiologique à port prolongé (12), comprenant :

un timbre d'électrode à port prolongé jetable (15), comprenant :

un support flexible (20) formé d'une bande allongée (21) en matériau extensible présentant une section médiane longitudinale étroite (23) et, à chaque extrémité (30, 31), une surface de contact au moins partiellement recouverte d'un pansement adhésif ;

une paire d'électrodes d'électrocardiographie (38, 39) exposées de manière conductrice sur la surface de contact de chaque extrémité (30, 31) de la bande allongée (21), respectivement ;

un réceptacle non conducteur (25) collé sur une surface tournée vers l'extérieur de la bande allongée (21) et comprenant au moins quatre plots électriques (34) ;

un circuit flexible (32) fixé à chaque extrémité de la bande allongée (21) et comprenant une paire de traces de circuit (33, 37) couplées électriquement à la paire d'électrodes d'électrocardiographie (38, 39) et une paire de plots électriques (34), au moins une des traces de circuit (33, 37) étant conçue pour s'étendre le long de la section médiane longitudinale étroite (23) pour servir de réducteur de tension ; et

une batterie reliée électriquement à une paire de plots électriques sur le réceptacle non conducteur ;

un circuit cryptographique (73) couplé électriquement à une autre paire des plots électriques ; et

un moniteur électrocardiographique réutilisable (14) présentant un boîtier scellé (50) conçu pour être fixé de manière amovible dans le réceptacle non conducteur (25) et comprenant :

un microcontrôleur (61) pouvant être exécuté par une commande micro-programmable et configuré pour effectuer une authentification avec le timbre d'électrode à port prolongé comprenant :

lorsque le moniteur est fixé dans le réceptacle non conducteur, l'exécution de l'authentification du timbre d'électrode à port prolongé jetable ;

lors de l'authentification, la détermination que le timbre d'électrode à port prolongé est épuisé, comprenant :

l'écriture périodique de données dans une mémoire morte prévue dans le circuit cryptographique sur le timbre d'électrode à port prolongé jetable ;

la mesure d'une quantité des données écrites dans la mémoire morte ;

la détermination d'une expiration du timbre d'électrode à port prolongé jetable une fois que la quantité de données écrites dans la mémoire morte a atteint un seuil prédéterminé ; et

l'extinction automatique du microcontrôleur lorsque les données écrites dans la mémoire morte ont atteint un seuil prédéterminé ;

un circuit frontal électrocardiographique (63) relié électriquement au microcontrôleur et permettant de détecter des signaux électrocardiographiques à travers les électrodes d'électrocardiographie (38, 39) par l'intermédiaire de la paire des plots électriques (34) ; et

une mémoire flash (62) reliée électriquement au microcontrôleur (61) et permettant de stocker des échantillons des signaux électrocardiographiques.


 
2. Moniteur capteur électrocardiographique et physiologique (12) selon la revendication 1, dans lequel au moins l'un parmi :

le circuit frontal électrocardiographique (63) est configuré pour détecter des signaux d'onde P (111) dans les signaux électrocardiographiques ;

le timbre d'électrode à port prolongé jetable (15) est disposé pour être collé sur la poitrine d'un patient avec la section médiane longitudinale étroite (23) orientée de manière centrale, dans la ligne médiane (16), le long du sternum (13) avec l'une des électrodes d'électrocardiographie (38) recouvrant une région de la partie inférieure du sternum et une autre des électrodes d'électrocardiographie (39) dans une région du manubrium ; et

l'orientation du moniteur (12) est compensée s'il est installé à l'envers.


 
3. Moniteur électrocardiographique et moniteur capteur physiologique (12) selon la revendication 1, dans lequel au moins l'un parmi :

le microcontrôleur (61) permet de puiser de l'énergie électrique dans la batterie (71) par l'intermédiaire de la paire des plots électriques (34) ;

la mémoire flash (62) permet de puiser de l'énergie électrique dans la batterie (71) par l'intermédiaire de la paire des plots électriques (34) ; et

la capacité de la batterie (71) est choisie pour supporter des composants électriques supplémentaires sans affecter le fonctionnement du moniteur électrocardiographique réutilisable (12) .


 
4. Moniteur capteur électrocardiographique et physiologique selon la revendication 1, comprenant en outre :

une des électrodes d'électrocardiographie (38) sur le timbre d'électrode à port prolongé jetable (15) disposé pour être collé sur une région recouvrant la partie inférieure du sternum sur la poitrine d'un patient ; et

une autre des électrodes d'électrocardiographie (39) sur le timbre d'électrode à port prolongé jetable (15) disposé pour être collé sur une région proche du manubrium sur la poitrine du patient orienté de manière centrale, dans la ligne médiane (16), le long du sternum (13) vers le haut à partir de l'électrode électrocardiographique (38).


 
5. Moniteur capteur électrocardiographique et physiologique (12) selon la revendication 1, comprenant en outre :

un bus d'extension (68) relié fonctionnellement au microcontrôleur (61) et couplé électriquement à au moins l'un des plots électriques (34) ;

un capteur physiologique compris dans le timbre d'électrode à port prolongé jetable (15) et permettant de détecter la physiologie et de puiser de l'énergie électrique dans la batterie (71) par l'intermédiaire des câbles de batterie, le capteur physiologique étant relié électriquement au microcontrôleur (61) sur le bus d'extension (68) et choisi dans le groupe comprenant un capteur de SpO2, un capteur de pression artérielle, un capteur de température, un capteur de fréquence respiratoire, un capteur de glucose, un capteur de débit d'air et un capteur de pression volumétrique ; et

la mémoire flash (62) permettant en outre, par l'intermédiaire du bus d'extension (68), de stocker des échantillons de la physiologie détectée par le capteur physiologique.


 
6. Moniteur capteur électrocardiographique et physiologique (12) selon la revendication 1, comprenant en outre :

un bus d'extension (68) relié fonctionnellement au microcontrôleur (61) ;

un capteur physiologique compris dans le moniteur électrocardiographique réutilisable (14) et permettant de détecter la physiologie et de puiser de l'énergie électrique dans la batterie (71) par l'intermédiaire d'une paire des plots électriques (34), le capteur physiologique étant relié électriquement au microcontrôleur sur le bus d'extension (68) et choisi dans le groupe comprenant un capteur de SpO2, un capteur de pression artérielle, un capteur de température, un capteur de fréquence respiratoire, un capteur de glucose, un capteur de débit d'air et un capteur de pression volumétrique ; et

la mémoire flash (62) permettant en outre, par l'intermédiaire du bus d'extension (68), de stocker des échantillons de la physiologie détectée par le capteur physiologique.


 
7. Moniteur capteur électrocardiographique et physiologique (12) selon la revendication 1, comprenant en outre :

un capteur d'actigraphie (64) compris dans le moniteur électrocardiographique réutilisable (14) et permettant de détecter un mouvement, le capteur d'actigraphie (64) étant relié électriquement au microcontrôleur (61) ; et

la mémoire flash (62) permettant en outre de stocker des échantillons du mouvement détecté par le capteur d'actigraphie.


 
8. Moniteur capteur électrocardiographique et physiologique (12) selon la revendication 1, comprenant en outre au moins l'un parmi :

un composant de sortie de rétroaction (66) compris dans le moniteur électrocardiographique réutilisable (14) et relié électriquement au microcontrôleur (61) ; et

un composant d'entrée de rétroaction (55, 66) compris dans le moniteur électrocardiographique réutilisable (61) et pouvant être actionné par le porteur depuis l'extérieur du boîtier scellé (50), l'entrée de rétroaction (55, 66) étant en outre reliée électriquement au microcontrôleur (61).


 
9. Moniteur capteur électrocardiographique et physiologique (12) selon la revendication 1, dans lequel le circuit frontal électrocardiographique (63) est configuré pour détecter des signaux d'onde P (111) dans les signaux électrocardiographiques.
 
10. Moniteur capteur électrocardiographique et physiologique (12) selon la revendication 1, comprenant en outre :

une station de téléchargement (125) comprenant :

un réceptacle non conducteur (127) conçu pour recevoir de manière amovible l'enregistreur de moniteur ; et

un dispositif de commande de station de téléchargement pouvant établir une interface avec le microcontrôleur (61) du moniteur électrocardiographique réutilisable (14) ;

un système informatique (136) couplé fonctionnellement au dispositif de commande de station de téléchargement et accessible de manière centrale sur un réseau de communication de données (121) et permettant de demander au microcontrôleur (61) d'émettre une demande d'accès au circuit cryptographique (73) à laquelle le circuit cryptographique peut fournir une réponse ; et

un système informatique serveur accessible de manière centrale sur le réseau de communication de données (121) et pouvant établir une interface avec le système informatique (136) afin de recevoir la demande d'accès du moniteur électrocardiographique réutilisable et d'autoriser une fonctionnalité supplémentaire dans ce dernier.


 
11. Moniteur capteur électrocardiographique et physiologique (12) selon la revendication 10, comprenant en outre :
une interface utilisateur fournie par un système informatique accessible de manière centrale sur le réseau de communication de données (121) par l'intermédiaire de laquelle un patient (10, 11) peut choisir la fonctionnalité supplémentaire dans le moniteur électrocardiographique réutilisable (14).
 
12. Moniteur capteur électrocardiographique et physiologique (12) selon la revendication 11, comprenant en outre :
un service d'abonnement mis en Ĺ“uvre par un serveur (122) qui commande l'achat par le patient (10, 11) de la fonctionnalité supplémentaire dans le moniteur électrocardiographique réutilisable (14).
 
13. Moniteur capteur électrocardiographique et physiologique (12) selon la revendication 1, comprenant en outre au moins l'un parmi :

un composant de sortie de rétroaction (66) compris dans le moniteur électrocardiographique réutilisable (14) et relié électriquement au microcontrôleur (61) ; et

un composant d'entrée de rétroaction (55, 66) compris dans le moniteur électrocardiographique réutilisable (14) et pouvant être actionné par le porteur depuis l'extérieur du boîtier scellé (50), l'entrée de rétroaction (55, 66) étant en outre reliée électriquement au microcontrôleur (61).


 




Drawing



























REFERENCES CITED IN THE DESCRIPTION



This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description




Non-patent literature cited in the description