(19)
(11)EP 3 050 386 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
16.02.2022 Bulletin 2022/07

(21)Application number: 13894778.3

(22)Date of filing:  27.09.2013
(51)International Patent Classification (IPC): 
H04W 74/04(2009.01)
H04L 5/00(2006.01)
(52)Cooperative Patent Classification (CPC):
H04L 5/0094; H04W 48/12; H04W 76/27; H04L 5/0053
(86)International application number:
PCT/CN2013/084425
(87)International publication number:
WO 2015/042856 (02.04.2015 Gazette  2015/13)

(54)

METHOD FOR DETERMINING START TIME OF A PHYSICAL DOWNLINK CONTROL CHANNEL

VERFAHREN ZUR BESTIMMUNG DER STARTZEIT EINES PHYSISCHEN DOWNLINK-STEUERKANALS

PROCÉDÉ POUR DÉTERMINER L'HEURE DE DÉMARRAGE D'UN CANAL DE COMMANDE DE LIAISON DESCENDANTE PHYSIQUE


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(43)Date of publication of application:
03.08.2016 Bulletin 2016/31

(73)Proprietor: Alcatel Lucent
91620 Nozay (FR)

(72)Inventors:
  • WONG, Shin Horng
    Chippenham Wiltshire SN15 3YB (GB)
  • YE, Sigen
    Whitehouse Station, New Jersey 08889 (US)
  • CHEN, Yu
    Shanghai 201206 (CN)

(74)Representative: Cohausz & Florack 
Patent- & Rechtsanwälte Partnerschaftsgesellschaft mbB Bleichstraße 14
40211 Düsseldorf
40211 Düsseldorf (DE)


(56)References cited: : 
CN-A- 1 992 966
CN-A- 102 740 237
US-A1- 2011 243 111
US-A1- 2013 094 457
CN-A- 101 588 625
US-A1- 2011 038 277
US-A1- 2013 039 284
  
     
    Remarks:
    The file contains technical information submitted after the application was filed and not included in this specification
     
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    Field of the Invention



    [0001] The present application generally relates to communication technology, and more particularly relates to determining the start time of a physical downlink control channel.

    Background of the Invention



    [0002] PDCCH (Physical Downlink Control Channel) or Enhanced PDCCH (EPDCCH) in LTE carries UE-specific scheduling assignments for downlink resource allocation, uplink grants, physical random access channel response, UL power control commands, and common scheduling assignments for signaling messages.

    [0003] Machine Type Communication (MTC) is a work item being studied in 3GPP (3rd Generation Partnership Project), targeting cellular based Machine to Machine communication (M2M). The machine devices may be located in the basement with higher penetration loss than the current cell edge UEs. To support these devices, coverage enhancement techniques are needed.

    [0004] One of the techniques to enhance the coverage is the repetition. At the receiver side, the repetitive control information packets are combined and decoded for better performance.

    [0005] Document US2013/039284 discloses a method for a wireless transmit/receive unit to receive an enhanced physical downlink control channel (E-PDCCH). It discloses that the WTRU may determine the starting and ending OFDM symbols of E-PDCCH region in various manners, such as according to explicit signals (e.g., PCFICH), higher layer signaling, or a specific configuration. It also discloses that the E-PDCCH region or the starting OFDM symbol of the E-PDCCH region may be signaled by RRC in a semi-static manner using broadcast or dedicated signaling.

    Object and Summary of the Invention



    [0006] In order to combine and decode the repetitive physical downlink control channels, the receiver side needs to know the placement of the repetitions.

    [0007] It is an object of the present invention to address the above problems. In particular, it is an object of the present invention to provide a method enabling the UE to determine the start time of the physical downlink control channel for M2M communication in LTEsystems.

    [0008] The present invention is defined in the independent claims, to which the reader is now referred. Preferred features are laid out in the dependent claims.

    [0009] One embodiment of the present invention provides a method comprising: sending, by a base station, a configurable parameter set to a user equipment to be used in determininglocations of a starting sub-frame of a physical downlink control channel that is repeatedly transmitted for the user equipment; and sending to the user equipment, by the base station, the physical downlink control channel scheduled according to the configurable parameter set, wherein the configurable parameter set sent to the user equipment comprises a repetition level, and sub-frame offset information to determine the locations of the starting sub-frame of the physical downlink control channel.

    [0010] One embodiment of the present invention provides a base station configured to perform the method disclosed above.

    [0011] Another embodiment of the present invention provides a method, comprising:
    receiving, by a user equipment, from a base station a parameter set comprising a repetition level, and sub-frame offset information to determine the locations of the starting sub-frame of a physical downlink control channel; calculating, by the user equipment, locations of a starting sub-frame of a physical downlink control channel that is repeatedly transmitted for the user equipment according to the parameter set received; and receiving the physical downlink control channel scheduled according to the parameter set.

    [0012] An embodiment of the present invention provides a user equipment configured to perform this method.

    [0013] Determination of the start time of the (E)PDCCH is useful for power saving from the blind decoding for battery-limited MTC devices. Further, repetitions of (E)PDCCH improves the reliability of the downlink control channel and consequently improves the system capacity.

    Brief Description of the Drawings



    [0014] For a more complete understanding of example embodiments of the present invention, reference is now made to the following descriptions taken in connection with the accompanying drawings in which:

    Fig. 1 shows a procedure of the start time determination of the (E)PDCCH according to one embodiment of the present invention; and

    Fig. 2 shows the transmission the (E)PDCCH with the same repetition level in a sub-frame; and

    Fig. 3 shows the transmission the (E)PDCCH with the different repetition levels in a sub-frame.


    Detailed Description



    [0015] Exemplary aspects of the present invention will be described herein below. More specifically, exemplary aspects of the present are described hereinafter with reference to particular non-limiting examples and to what are presently considered to be conceivable embodiments of the present invention. A person skilled in the art will appreciate that the invention is by no means limited to these examples, and may be more broadly applied. It is to be noted that the following description of the present invention and its embodiments mainly refers to specifications being used as non-limiting examples for certain exemplary network configurations and deployments. Namely, the present invention and its embodiments are mainly described in relation to 3GPP specifications being used as non-limiting examples for certain exemplary network configurations and deployments. In particular, a LTE/LTE-Advanced communication system is used as a non-limiting example for the applicability of thus described exemplary embodiments. As such, the description of exemplary embodiments given herein specifically refers to terminology which is directly related thereto. Such terminology is only used in the context of the presented non-limiting examples, and does naturally not limit the invention in any way. Rather, any other network configuration or system deployment, etc. may also be utilized as long as compliant with the features described herein.

    [0016] Hereinafter, various embodiments and implementations of the present invention and its aspects or embodiments are described using several alternatives. It is generally noted that, according to certain needs and constraints, all of the described alternatives may be provided alone or in any conceivable combination (also including combinations of individual features of the various alternatives).

    [0017] Fig. 1 shows a procedure of the start time determination of the (E)PDCCH according to one embodiment of the present invention.

    [0018] In Fig. 1, the UE 100 is within the coverage of an eNB 200. By measuring and reporting the UL and DL transmissions, the eNB 200 determines the repetition level of the (E)PDCCH.

    [0019] In S301, the eNB 200 transmits the repetition level denoted by a natural number rk in any feasible format of the downlink transmission prior to the (E)PDCCH transmission to the UE 100. The repetition level rk refers a number of repetitions to be used to transmit the same (E)PDCCH to the UE 100. The repetition level rk may be a UE specific value.

    [0020] In S301, the eNB 200 also transmits the gap value denoted by a natural number mk in any feasible format of the downlink transmission prior to the (E)PDCCH transmission to the UE 100. The gap value mk defines the interval between two repetitive transmission occasions of the (E)PDCCH. The gap value mk may be a cell specific value.

    [0021] In S301, the eNB 200 also transmits the offset value denoted by a natural number nk in any feasible format of the downlink transmission prior to the (E)PDCCH transmission to UE 100. The offset value nk defines the timing offset to the 1st sub-frame in a radio frame for the transmission of the (E)PDCCH. The offset value may be a cell specific value.

    [0022] In one embodiment, the eNB 200 also transmits information to derive the sub-frame offset value in any feasible format of the downlink transmission prior to the (E)PDCCH transmission to the UE 100. The sub-frame offset value defines timing offset to the 1st sub-frame of the (E)PDCCH. The sub-frame offset value may be derived from a pseudo random number whose seed may be known by the UE 100 and the eNB 200, or a value calculated based on the Cell Radio Network Temporary Identity (C-RNTI), or a sub-frame number of a radio frame, but not limited to these three approaches. As an example, the eNB 200 may transmit a seed of the pseudo random number to facilitate the UE 100 to derive the sub-frame offset value.

    [0023] Any other parameters which help to determine the start time of the (E)PDCCH may be included in the parameter set in S301 in any feasible format prior to the (E)PDCCH transmission. As one example, the parameter set in S301 is transmitted in broadcasted or dedicated signaling transmission. As one example, the parameter set in S301 is transmitted in RRC (Radio Resource Control) message(s).

    [0024] In addition, the parameter set in S301 to facilitate the UE 100 to determine the start time of the (E)PDCCH can be transmitted in one or several signaling messages which may be transmitted prior to the (E)PDCCH transmission.

    [0025] In S302, the the eNB 200 transmits the (E)PDCCH in the placements derived from the parameter set of the (E)PDCCH transmission in S301.

    [0026] In S303, when the eNB 200 transmits the (E)PDCCH, the start System Frame Number (SFN) of the (E)PDCCH is determined by a function

    where SFNi is the i-th radio frame carrying the (E)PDCCH within the SFN cycle of 4096, rk defines the repetition level of the (E)PDCCH, mk defines a gap value between two repetitive transmission occasions of the (E)PDCCH, n\k defines the timing offset to the 1st radio frame of the (E)PDCCH.

    [0027] In one embodiment, a mod function is used to determine the start SFN which is the argument to satisfy



    [0028] The unit of gap value and offset value in Equation 2 may be one radio frame.

    [0029] In addition to the mod function in Equation 2, the sub-frame number carrying the (E)PDCCH is determined by a sub-frame offset value. The sub-frame offset value may be derived from a pseudo random number whose seed may be known by the UE 100 and the eNB 200, or a value calculated based on the Cell Radio Network Temporary Identity (C-RNTI), or an explicit sub-frame index of a radio frame.

    [0030] In an embodiment, the start SFN and sub-frame determination is combined in one function as

    where SFi is the i-th sub-frame within the SFN cycle which is derived from the SFNj as

    where LSj is the local sub-frame number within SFNj and LSj = 0 to 9. The unit of the gap value m and offset value n in Equation 3 is one sub-frame length.

    [0031] In an embodiment, the eNB 200 configures three repetition levels as 10, 50 and 100 repetitions of (E)PDCCHs. The eNB 200 schedules the (E)PDCCH with a single repetition level in a single sub-frame. The (E)PDCCHs with different repetition levels are scheduled in the consecutive sub-frames as illustrated in Fig. 2. As one example, the (E)PDCCH of the UE(s) with a repetition level of 10 is scheduled in the 1st sub-frame, the (E)PDCCH of the UE(s) with a repetition level of 50 is scheduled in the 2nd to n-th consecutive sub-frame and the (E)PDCCH of the UE(s) with a repetition level of 100 is scheduled in the n+1-th to the m-th consecutive sub-frame(s).

    [0032] In another embodiment, the eNB 200 configures two repetition levels as 50 and 100 repetitions. The eNB schedules the (E)PDCCH of the UE(s) with repetition level of 50 in l-th sub-frame to l+3-th sub-frame. The eNB schedules the (E)PDCCH of the UE(s) with repetition level of 100 in l-th sub-frame to l+5-th sub-frame. The (E)PDCCHs with different repetition levels are scheduled in the same sub-frame as illustrated in Fig. 3. l is determined by the C-RNTI mod 10 as an example, or I is determined by a pseudo random number, or l is determined by a pre-defined number which may be known by the eNB 200 and the UE 100.

    [0033] In S303, upon receiving the parameter set sent by the eNB 200, the UE 100 tests the SFN in equation (2) or (3). Once a SFN meets the condition of the equation (2) or (3), UE 100 attempts to receive the (E)PDCCH from the eNB 200.

    [0034] In S304, the UE 100 may combine the repetitive (E)PDCCHs and decode the (E)PDCCH at latest when the maximum number of repetition is approached.

    [0035] Optionally in S305, the UE 100 may send the feedback information to eNB 200 to confirm/reject the correct reception of the (E)PDCCH. The UE 100 may stop detecting the following repetitive (E)PDCCH(s) if feedback information confirms the correct reception of the (E)PDCCH. The eNB 200 may stop transmitting the (E)PDCCH if the feedback information sent by the UE 100 confirms the correct reception of the (E)PDCCH.

    [0036] Once at least one parameter in the parameter set is reconfigured, the eNB 100 may send the (E)PDCCH in new placements according to the new parameter set in S301. The UE 100 re-calculates the start time of the (E)PDCCH in S303 according to the new parameter set in S301.

    [0037] In one embodiment, a base station such as eNB200 may be configured to perform steps S301 and S302 as well as the scheduling of the (E)PDCCH according to the parameter set in a repetitive form.

    [0038] In another embodiment, a user equipment such UE100 may be configured to perform steps S303 - S305.

    [0039] protection scope of the invention is defined by the accompanying claims. In addition, any of the reference numerals in the claims should not be interpreted as a limitation to the claims. Use of the verb "comprise" and its conjugations does not exclude the presence of elements or steps other than those stated in a claim. The indefinite article "a" or "an" preceding an element or step does not exclude the presence of a plurality of such elements or steps.


    Claims

    1. A method, comprising:

    sending, by a base station (200), a configurable parameter set to a user equipment (100) to be used in determining locations of a starting sub-frame of a physical downlink control channel that is repeatedly transmitted for the user equipment (100); and

    sending to the user equipment (100), by the base station (200), the physical downlink control channel scheduled according to the configurable parameter set, wherein the configurable parameter set sent to the user equipment (100) comprises a repetition level, and sub-frame offset information to determine the locations of the starting sub-frame of the physical downlink control channel.


     
    2. The method according to claim 1, wherein the configurable parameter set sent to the user equipment (100) further comprises a gap value, or a system frame offset value of the physical downlink control channel.
     
    3. The method according to any of claims 1-2, wherein the sub-frame offset information comprises a seed of a pseudo random number, a value related to cell radio network identity, or a sub-frame number within a system frame.
     
    4. The method according to any of claims 1-2, wherein the configurable parameter set is transmitted to the user equipment (100) in physical layer, MAC layer or RRC layer signaling packet(s).
     
    5. The method according to claim 1, further comprises scheduling the physical downlink control channel with a single repetition level or multiple repetition levels in a single sub-frame.
     
    6. The method according to claim 1, further comprises

    receiving, by the base station (200), feedback from the user equipment (100) confirming correct reception of the physical downlink control channel; and

    terminating, by the base station (200), said sending the physical downlink control channel to the user equipment (100).


     
    7. The method according to claim 1, wherein the configurable parameter set sent to the user equipment (100) further comprises a gap value to define an interval between two repetitive transmission occasions of the physical downlink control channel.
     
    8. A method, comprising:

    receiving, by a user equipment (100), from a base station (200) a parameter set comprising a repetition level, and sub-frame offset information to determine the locations of the starting sub-frame of a physical downlink control channel;

    calculating, by the user equipment (100), locations of a starting sub-frame of a physical downlink control channel that is repeatedly transmitted for the user equipment (100) according to the parameter set received; and

    receiving the physical downlink control channel scheduled according to the parameter set.


     
    9. The method according to claim 8, wherein the parameter set is received in physical layer, MAC layer, or RRC layer signaling.
     
    10. The method according to claim 8 or 9, wherein the locations of the starting sub-frame of the physical downlink control channel is determined based on the repetition level, a gap value, and the offset value of the physical downlink control channel.
     
    11. The method according to claim 10, wherein the locations of the starting sub-frame is determined based on a seed of a pseudo random number, or a value related to a cell radio network temporary identity, or a pre-determined sub-frame number within a radio frame designated by the base station (200).
     
    12. The method according to claim 8 or 9, wherein the locations of the starting sub-frame of the physical downlink control channel is determined by a function

    where SFi is the i-th sub-frame number derived from the j-th system frame number SFNj using

    where LSj is a sub-frame number within SFNj, where LSj = 0 to 9.
     
    13. The method according to claim 8 or 9, further comprises combining the physical downlink control channel received in repetition and decoding the combined physical downlink control channel.
     
    14. The method according to claim 8 or 9, further comprises sending feedback information to confirm or reject reception of the physical downlink control channel.
     
    15. The method according to claim 14, wherein when the feedback information indicates correct reception of the physical downlink control channel, the user equipment (100) terminates said receiving the downlink control channel.
     
    16. The method according to claim 8, wherein the parameter set received by the user equipment (100) further comprises a gap value to define an interval between two repetitive transmission occasions of the physical downlink control channel.
     
    17. A base station configured to perform any method of claims 1-7.
     
    18. A user equipment configured to perform any method of claims 8-16.
     


    Ansprüche

    1. Verfahren, umfassend:

    Senden, durch eine Basisstation (200), eines konfigurierbaren Parametersatzes an ein Benutzergerät (100), der bei der Bestimmung von Orten eines Start-Teilrahmens eines physischen Downlink-Steuerkanals, der wiederholt für das Benutzergerät (100) übertragen wird, zu verwenden ist; und

    Senden des physischen Downlink-Steuerkanals, der gemäß dem konfigurierbaren Parametersatz geplant ist, durch die Basisstation (200) an das Benutzergerät (100), wobei der an das Benutzergerät (100) gesendete konfigurierbare Parametersatz einen Wiederholungsgrad und Teilrahmenversatzinformationen umfasst, um die Orte des Start-Teilrahmens des physischen Downlink-Steuerkanals zu bestimmen.


     
    2. Verfahren nach Anspruch 1, wobei der konfigurierbare Parametersatz, der an das Benutzergerät (100) gesendet wird, ferner einen Lückenwert oder einen Systemrahmenversatzwert des physischen Downlink-Steuerkanals umfasst.
     
    3. Verfahren nach einem der Ansprüche 1 bis 2, wobei die Teilrahmenversatzinformation einen Seed einer Pseudozufallszahl, einen Wert, der sich auf eine Zellfunknetz-Identität bezieht, oder eine Teilrahmennummer innerhalb eines Systemrahmens umfasst.
     
    4. Verfahren nach einem der Ansprüche 1 bis 2, wobei der konfigurierbare Parametersatz in Signalisierungspaketen der physikalischen Schicht, der MAC-Schicht oder der RRC-Schicht an das Benutzergerät (100) übertragen wird.
     
    5. Verfahren nach Anspruch 1, ferner umfassend das Planen des physischen Downlink-Steuerkanals mit einem einzigen Wiederholungsgrad oder mehreren Wiederholungsgraden in einem einzigen Teilrahmen.
     
    6. Verfahren nach Anspruch 1, ferner umfassend

    Empfangen einer Rückmeldung von dem Benutzergerät (100) durch die Basisstation (200), die den korrekten Empfang des physischen Downlink-Steuerkanals bestätigt; und

    Terminieren, durch die Basisstation (200), des Sendens des physischen Downlink-Steuerkanals an das Benutzergerät (100).


     
    7. Verfahren nach Anspruch 1, wobei der konfigurierbare Parametersatz, der an das Benutzergerät (100) gesendet wird, ferner einen Lückenwert umfasst, um ein Intervall zwischen zwei sich wiederholenden Übertragungsmöglichkeiten des physischen Downlink-Steuerkanals zu definieren.
     
    8. Verfahren, umfassend:

    Empfangen eines Parametersatzes von einer Basisstation (200) durch ein Benutzergerät (100), der einen Wiederholungsgrad und Teilrahmenversatzinformationen umfasst, um die Orte des Start-Teilrahmens eines physischen Downlink-Steuerkanals zu bestimmen;

    Berechnen, durch das Benutzergerät (100), von Orten eines Start-Teilrahmens eines physischen Downlink-Steuerkanals, der wiederholt für das Benutzergerät (100) gemäß dem empfangenen Parametersatz übertragen wird; und

    Empfangen des physischen Downlink-Steuerkanals, der entsprechend dem Parametersatz geplant ist.


     
    9. Verfahren nach Anspruch 8, wobei der Parametersatz in der Signalisierung der physikalischen Schicht, der MAC-Schicht oder der RRC-Schicht empfangen wird.
     
    10. Verfahren nach Anspruch 8 oder 9, wobei die Orte des Start-Teilrahmens des physischen Downlink-Steuerkanals auf der Grundlage des Wiederholungsgrads, eines Lückenwerts und des Versatzwerts des physischen Downlink-Steuerkanals bestimmt werden.
     
    11. Verfahren nach Anspruch 10, wobei die Orte des Start-Teilrahmens auf der Grundlage eines Seeds einer Pseudozufallszahl oder eines Wertes, der sich auf eine temporäre Zellfunknetz-Identität bezieht, oder einer vorbestimmten Teilrahmennummer innerhalb eines von der Basisstation (200) bezeichneten Funkrahmens bestimmt werden.
     
    12. Verfahren nach Anspruch 8 oder 9, wobei die Orte des Start-Teilrahmens des physischen Downlink-Steuerkanals bestimmt werden durch eine Funktion

    wobei SFi die i-te Teilrahmennummer ist, die von der j-ten Systemrahmennummer SFNj abgeleitet wird unter Verwendung von

    wobei LSj eine Teilrahmennummer innerhalb von SFNj ist, mit LSj = 0 bis 9.
     
    13. Verfahren nach Anspruch 8 oder 9, ferner umfassend ein Kombinieren des in Wiederholung empfangenen physischen Downlink-Steuerkanals und ein Dekodieren des kombinierten physischen Downlink-Steuerkanals.
     
    14. Verfahren nach Anspruch 8 oder 9, ferner umfassend ein Senden von Rückmeldungsinformationen zur Bestätigung oder Ablehnung des Empfangs des physischen Downlink-Steuerkanals.
     
    15. Verfahren nach Anspruch 14, wobei, wenn die Rückmeldungsinformationen den korrekten Empfang des physischen Downlink-Steuerkanals angeben, das Benutzergerät (100) den Empfang des Downlink-Steuerkanals terminiert.
     
    16. Verfahren nach Anspruch 8, wobei der konfigurierbare Parametersatz, der von dem Benutzergerät (100) empfangen wird, ferner einen Lückenwert umfasst, um ein Intervall zwischen zwei sich wiederholenden Übertragungsmöglichkeiten des physischen Downlink-Steuerkanals zu definieren.
     
    17. Basisstation, die konfiguriert istzur Durchführung eines Verfahrens nach einem der Ansprüche 1 bis 7.
     
    18. Benutzergerät, das konfiguriert ist zur Durchführung eines Verfahrens nach einem der Ansprüche 8 bis 16.
     


    Revendications

    1. Procédé, comprenant :

    l'envoi, par une station de base (200), d'un ensemble de paramètres configurables à un équipement utilisateur (100) devant être utilisé dans la détermination d'emplacements d'une sous-trame de départ d'un canal de commande de liaison descendante physique qui est émis de manière répétée pour l'équipement utilisateur (100) ; et

    l'envoi, à l'équipement utilisateur (100), par la station de base (200), du canal de commande de liaison descendante physique ordonnancé selon l'ensemble de paramètres configurables, dans lequel l'ensemble de paramètres configurables envoyé à l'équipement utilisateur (100) comprend un niveau de répétition, et d'informations de décalage de sous-trame pour déterminer les emplacements de la sous-trame de départ du canal de commande de liaison descendante physique.


     
    2. Procédé selon la revendication 1, dans lequel l'ensemble de paramètres configurables envoyé à l'équipement utilisateur (100) comprend en outre une valeur d'intervalle, ou une valeur de décalage de trame système du canal de commande de liaison descendante physique.
     
    3. Procédé selon l'une quelconque des revendications 1 à 2, dans lequel les informations de décalage de sous-trame comprennent une amorce d'un nombre pseudo-aléatoire, une valeur se rapportant à une identité de réseau radio cellulaire, ou un numéro de sous-trame au sein d'une trame système.
     
    4. Procédé selon l'une quelconque des revendications 1 à 2, dans lequel l'ensemble de paramètres configurable est émis vers l'équipement utilisateur (100) dans un ou des paquet(s) de signalisation de couche physique, de couche de commande d'accès au support, MAC, ou de couche de commande de ressources radio, RRC.
     
    5. Procédé selon la revendication 1, qui comprend en outre l'ordonnancement du canal de commande de liaison descendante physique avec un unique niveau de répétition ou de multiples niveaux de répétition dans une unique sous-trame.
     
    6. Procédé selon la revendication 1, qui comprend en outre

    la réception, par la station de base (200), d'une rétroaction provenant de l'équipement utilisateur (100) confirmant une réception correcte du canal de commande de liaison descendante physique ; et

    le fait de mettre fin, par la station de base (200), audit envoi du canal de commande de liaison descendante physique à l'équipement utilisateur (100).


     
    7. Procédé selon la revendication 1, dans lequel l'ensemble de paramètres configurables envoyé à l'équipement utilisateur (100) comprend en outre une valeur d'intervalle pour définir un intervalle entre deux occasions d'émission répétées du canal de commande de liaison descendante physique.
     
    8. Procédé, comprenant :

    la réception, par un équipement utilisateur (100), à partir d'une station de base (200), d'un ensemble de paramètres comprenant un niveau de répétition, et d'informations de décalage de sous-trame pour déterminer les emplacements de la sous-trame de départ d'un canal de commande de liaison descendante physique ;

    le calcul, par l'équipement utilisateur (100), d'emplacements d'une sous-trame de départ d'un canal de commande de liaison descendante physique qui est émis de manière répétée pour l'équipement utilisateur (100) selon l'ensemble de paramètres reçu; et

    la réception du canal de commande de liaison descendante physique ordonnancé selon l'ensemble de paramètres.


     
    9. Procédé selon la revendication 8, dans lequel l'ensemble de paramètres est reçu dans une signalisation de couche physique, de couche MAC ou de couche RRC.
     
    10. Procédé selon la revendication 8 ou 9, dans lequel les emplacements de la sous-trame de départ du canal de commande de liaison descendante physique sont déterminés sur la base du niveau de répétition, d'une valeur d'intervalle, et de la valeur de décalage du canal de commande de liaison descendante physique.
     
    11. Procédé selon la revendication 10, dans lequel les emplacements de la sous-trame de départ sont déterminés sur la base d'une amorce d'un nombre pseudo-aléatoire, ou d'une valeur se rapportant à une identité temporaire de réseau radio cellulaire, ou d'un numéro de sous-trame prédéterminé au sein d'une trame radio désignée par la station de base (200).
     
    12. Procédé selon la revendication 8 ou 9, dans lequel les emplacements de la sous-trame de départ du canal de commande de liaison descendante physique sont déterminés par une fonction

    SFi est le i-ème numéro de sous-trame déduit du j-ième numéro de trame système SFNj en utilisant

    LSj est un numéro de sous-trame au sein de SFNj,LSj = 0 à 9.
     
    13. Procédé selon la revendication 8 ou 9, qui comprend en outre la combinaison du canal de commande de liaison descendante physique reçu de manière répétée et le décodage du canal de commande de liaison descendante physique combiné.
     
    14. Procédé selon la revendication 8 ou 9, qui comprend en outre l'envoi d'informations de rétroaction pour confirmer ou rejeter une réception du canal de commande de liaison descendante physique.
     
    15. Procédé selon la revendication 14, dans lequel lorsque les informations de rétroaction indiquent une réception correcte du canal de commande de liaison descendante physique, l'équipement utilisateur (100) met fin à ladite réception du canal de commande de liaison descendante.
     
    16. Procédé selon la revendication 8, dans lequel l'ensemble de paramètres reçu par l'équipement utilisateur (100) comprend en outre une valeur d'intervalle pour définir un intervalle entre deux occasions d'émission répétées du canal de commande de liaison descendante physique.
     
    17. Station de base configurée pour réaliser un quelconque procédé selon les revendications 1 à 7.
     
    18. Équipement utilisateur configuré pour réaliser un quelconque procédé selon les revendications 8 à 16.
     




    Drawing











    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description