(19)
(11)EP 3 050 824 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
09.10.2019 Bulletin 2019/41

(21)Application number: 15152835.3

(22)Date of filing:  28.01.2015
(51)International Patent Classification (IPC): 
B65G 1/04(2006.01)

(54)

Robot for transporting storage bins

Roboter zum Transport von Lagerbehältern

Robot de transport de bacs de stockage


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(43)Date of publication of application:
03.08.2016 Bulletin 2016/31

(73)Proprietor: Autostore Technology AS
5578 Nedre Vats (NO)

(72)Inventor:
  • Hognaland, Ingvar
    N-5578 Nedre Vats (NO)

(74)Representative: Onsagers AS 
P.O. Box 1813 Vika
0123 Oslo
0123 Oslo (NO)


(56)References cited: : 
EP-A1- 2 562 072
WO-A2-2014/205523
US-A1- 2011 259 658
US-A1- 2014 015 382
WO-A1-2014/090684
US-A- 5 180 344
US-A1- 2013 099 554
US-A1- 2014 035 347
  
  • Parker-Hannifin Corporation: "Parker-Hannifin Corporation", Netwise Manufacturing Industry Company Reports, 1 January 2011 (2011-01-01), XP055545417, Boca Raton Retrieved from the Internet: URL:http://www.exoticautomation.com/wp-con tent/uploads/2017/01/Parker-Gearhead-and-G earmotors-Catalog.pdf [retrieved on 2019-01-21]
  
Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


Description

Technical Field:



[0001] The present invention relates to a remotely operated vehicle, or robot, for picking up storage bins from a storage system as defined in the preamble of claim 1 and a storage system for storage of bins.

Background and prior art:



[0002] A remotely operated vehicle for picking up storage bins from a storage system is known. A detailed description of a relevant prior art storage system is presented in WO 98/49075, and details of a prior art vehicle being suitable for such a storage system is disclosed in detail in Norwegian patent NO317366. Such prior art storage systems comprise a three dimensional storage grid containing storage bins that are stacked on top of each other up to a certain height. The storage grid is normally constructed as aluminium columns interconnected by top rails, onto which a plurality of remotely operated vehicles, or robots, are arranged to move laterally. Each vehicle is equipped with a lift for picking up, carrying, and placing bins that are stored in the storage grid, and a rechargeable battery in order to supply electrical power to a vehicle incorporated motor. The vehicle typically communicates with a control system via a wireless link and is recharged at a charging station when needed, typically at night.

[0003] An example of a prior art storage system is illustrated in figure 1. The storage system 3 includes a plurality of vehicles or robots 1 configured to move in X and Y directions (see Cartesian coordinate system 100) on dedicated supporting rails 13, and to receive a storage bin 2 from a storage column within a bin storing grid 15. The prior art storage system 3 may also include a dedicated bin lift device 50, the latter being arranged to receive a storage bin 2 from a vehicle 1 at the top level of the storage system 3 and to convey the storage bin 2 down in a vertical direction to a delivery station, or port 60.

[0004] However, with this known system each vehicle is covering a cross section of the underlying storage system that corresponds to two storage columns, thereby limiting the maximum number of simultaneously operating vehicles.

[0005] It is thus an object of the present invention to provide a vehicle and a storage system that allows a significant increase in the number of simultaneously operating vehicles during successful handling of storage bins.

Summary of the invention:



[0006] The present invention is set forth and characterized in the main claim, while the dependent claims describe other characteristics of the invention.

[0007] In particular, the invention concerns a remotely operated vehicle suitable for picking up storage bins from an underlying storage system, comprising a vehicle lifting device for lifting the storage bin from the underlying storage system, a first vehicle rolling means comprising a first rolling set and a second rolling set, for example four wheels or two belts, arranged at opposite facing side walls of a vehicle body, allowing movement of the vehicle along a first direction (X) on the underlying storage system during use, and a second vehicle rolling means comprising a first rolling set and a second rolling set, for example four wheels or two belts, arranged at opposite facing side walls of the vehicle body, allowing movement of the vehicle along a second direction (Y) on the underlying storage system during use, the second direction (Y) being perpendicular to the first direction (X). The first and second rolling sets may be wheels, belts or chain tracks. However, these rolling sets may include any mechanisms or combination of mechanisms that enables movement of the vehicle forward and/or backwards on the underlying storage system.

[0008] The vehicle further comprises a first driving means situated at or at least partly within the first vehicle rolling means and being suitable for providing rolling set specific driving force to the vehicle in the first direction (X) and a second driving means situated at or at least partly within the second vehicle rolling means and being suitable for providing rolling set specific driving force to the vehicle in the second direction (Y). During use, at least one of the first and second vehicle rolling means are in contact with the underlying storage system.

[0009] In an advantageous embodiment at least one of the driving means comprises an electric motor using permanent magnets such as a brushless electric DC (direct current) motor.

[0010] According to the invention at least one of the first and second driving means comprises rotor magnets arranged at the inner surface of the outer periphery of their/its respective vehicle rolling means.

[0011] In another advantageous embodiment the at least one of the first driving means and the second driving means comprises a stator arranged at least partly, preferably fully, within the same rotational plane as the vehicle rolling means and at least partly, preferably fully, within the vehicle body. Rotational plane signifies in this embodiment the plane extending perpendicular from the rotational axis of the vehicle rolling means.

[0012] In another advantageous embodiment the vehicle comprises means suitable for measuring (at least indirectly) electromotive force (emf) of at least one of the vehicle rolling means, the means being in signal communication with one of the stator and the rotor, thereby allowing rolling set specific velocity registration of the vehicle during operation. For example, a back-emf measurement circuit may be installed in signal communication with the vehicle rolling means. A hall sensor may be used as an alternative or in combination.

[0013] In another advantageous embodiment the vehicle comprises a rotary encoder (at least indirectly) connected to at least one of the first and second vehicle rolling means, thereby allowing angular position feedback during operation. Such rotary encoders is suitable for conversion of the angular motion of the vehicle rolling means to an analog or digital code. The rotary encoders (or shaft decoders) may be of type absolute rotary encoder and/or absolute multi-turn encoder. Said absolute rotary encoder may be at least one of a mechanical encoder, an optical encoder, a magnetic encoder and a capacitive encoder. Furthermore, the absolute multi-turn encoder may be at least one of a battery-powered multi-turn encoder, a geared multi-turn encoder, and a self-powered multi-turn encoder.

[0014] In another advantageous embodiment the rotary encoder is a rotary encoder disk arranged within the outer periphery of the at least one of the first and second vehicle rolling means, preferably between the outer periphery and the rotor magnets.

[0015] In another advantageous embodiment the vehicle further comprises means suitable for measuring acceleration of at least one of the first and second vehicle rolling means, them means being in signal communication with the stator. Such a means comprises preferably one or more piezoelectric sensors, for example an accelerometer from PCB™ Piezotronics. One or more inductive sensors may be used as an alternative to piezoelectric sensor(s), or in combination with piezoelectric sensor(s).

[0016] In another advantageous embodiment each rolling sets comprises at least two wheels, and the vehicle further comprises motor control electronics arranged within the volume between two of the wheels of each rolling set. Said motor control electronics are in this embodiment configured to supply electric power to the first and second vehicle rolling means, and may preferably also transmit communication signals.

[0017] In another advantageous embodiment the first vehicle rolling means comprises four X-wheels having their direction of revolution in the first direction and the second vehicle rolling means comprises four Y-wheels having their direction of revolution in the second direction, wherein each of the X-wheels and each of the Y-wheels is drivingly connected to the first driving means and the second driving means, respectively. Each of the wheels comprises preferably a plurality of rotor magnets (for example in the form of a rotor magnet disc) arranged within the inner surface of the wheels outer periphery and a plurality of stators (for example in the form of a stator disc) arranged at least partly, for example fully, within the vehicle body, preferably at the same or nearly the same height has the location of the wheels rotational axis. The height is in this document referring to the distance from the topmost point of the underlying storage system during use. Said stators include both windings and yoke, and the stator field windings are following the outer periphery of the wheels.

[0018] In another advantageous embodiment at least part of, and preferably all of, the driving means is arranged within the wheels outer periphery.

[0019] For example, when four belts are applied in order to drive the inventive vehicle in the X and Y-directions, a total of four motors may be installed in operative engagement with each of the four belts, thereby achieving the desired rolling set specific driving force. Likewise, when eight wheels are applied in order to drive the vehicle in the X- and Y-directions, a total of eight motors may be installed in operative engagement with each of the eight wheels, thereby achieving the desired rolling set specific driving force.

[0020] In invention also concerns a storage system suitable for storage of bins. The storage system comprises a bin storing structure comprising a plurality of storage columns, where each storage columns is arranged to accommodate a vertical stack of storage bins and a remotely operated vehicle in accordance with any of the above mentioned embodiments.

[0021] In the following description, specific details are introduced to provide a thorough understanding of embodiments of the claimed vehicle and storage system. One skilled in the relevant art, however, will recognize that these embodiments can be practiced without one or more of the specific details, or with other components, systems, etc. In other instances, well-known structures or operations are not shown, or are not described in detail, to avoid obscuring aspects of the disclosed embodiments.

Brief description of the drawings:



[0022] 

Fig. 1 is a perspective view of a prior art storage system comprising a grid and a plurality of remotely operated vehicles / robots;

Fig. 2 is a perspective view seen from above of a remotely operated vehicle according to one embodiment of the invention;

Fig. 3 is a perspective view of the vehicle in fig. 2, seen from below;

Fig. 4 is a cross-sectional view of the vehicle in fig. 2 and 3 seen along one principal orientation of the vehicle;

Fig. 5 is a perspective view of the storage system seen from above in accordance with one embodiment of the invention, where the inventive vehicles are shown arranged directly above five neighbouring storage columns;

Fig. 6 A and B are cross-sectional view of the storage system in fig. 5 showing the inventive vehicles above neighbouring columns along the two principal orientations of the vehicles;

Fig. 7 is a perspective view of a rolling set constituting part of the vehicle in accordance with one embodiment of the invention;

Fig. 8 A and B are perspective views of a wheel constituting part of the vehicle in accordance with one embodiment of the invention; and

Fig. 9 A, B and C illustrate the rolling set in fig. 7 having one of the wheels removed, where fig. 9 A and B are cross-sectional views of the rolling set seen along each of the principal orientations of the vehicle and fig. 9 C is a perspective side view of the part of the rolling set of which the wheel has been removed.


Detailed description of the invention



[0023] All relative terms used to describe the inventive vehicle (hereinafter referred to as the robot) such as upper, lower, lateral, vertical, X-direction, Y-direction, Z-direction, etc, shall be interpreted using the above mentioned prior art storage system (fig. 1) as reference system. For the sake of clarity the X, Y and Z-directions are illustrated by a Cartesian coordinate system 100 in figs. 1-7 and 9.

[0024] Fig. 2 and 3 give perspective views in two different angles of a robot 1 comprising a rectangular vehicle body or framework 4 displaying a cavity centrally arranged there within, a top lid 72 covering the top part of the body 4, a first vehicle rolling means 10 comprising four X-wheels 101-104 for movement in the X-direction on the supporting rails 13 of the underlying bin storing grid 15 and a second vehicle rolling means 11 comprising four Y-wheels for movement in the Y-direction on the supporting rails 13 of the underlying bin storing grid 15, in which both the first and second rolling means 10,11 are mounted at the exterior walls of the body 4. The size of the cavity within the robot 1 (fig. 3) is adapted to contain at least the main part constituting the largest storage bin 2 intended to be picked up by the robot 1, most preferably the entire bin. The operation of picking up storage bins 2 is performed by a lifting device 7 shown in a retracted position at the top end of the cavity of fig. 3.

[0025] Fig. 4 shows a cross section of the robot 1 when observed along the X-direction.

[0026] Figures 5 and 6 show part of the storage system 3 in which the robots 1 are arranged in various neighbouring positions on top of the bin storing grid 15. In four of the five positions, the robot 1 is arranged directly above the grid's 15 storage columns. As most apparent in fig. 6 A and B, which shows the storage system 3 of fig. 5 in a cross-sectional view along Y-direction and X-direction, respectively, the robots 1 are dimensioned so that the maximum cross sectional area along the X-Y plane occupies not more than the cross sectional area of the corresponding (underlying) storage column. Hence, two or more robots 1 may be operated simultaneously above neighbouring columns of the grid 15, liberating more space compared to prior art systems.

[0027] One side of the first vehicle rolling means 10 is illustrated in fig. 7 in a perspective side view. The rolling means 10 comprises in this particular embodiment of the invention two wheels 101,102 with outer rims / edges 9 situated near the corners of the vehicle body 4 along the X-direction. A cover plate 25 constituting part of the vehicle body 4 is arranged between the two wheels 101,102.

[0028] Further details of one of these wheels 101,102 are provided in fig. 8 A and B, showing the outer side and the inner side, respectively. In fig. 8B a rotary encoder 23 of type optical rotary quadrature encoder has been arranged within the inner radial surface of the outer rim 9. Other types of encoders may be used such as magnetic encoders, linear encoders, voltage based analog encoders, etc. A rotor 5, in fig. 8B shown as a set of permanent magnets 5, is arranged inside the circumference set up by the rotary encoder 23, i.e. closer to the rotational axis of the wheel 101.

[0029] The corresponding stator 19 is seen in fig. 9 in the form of electrical windings 19a wrapped around yokes 19b. However, a skilled person will understand that the stator 19 and rotor 5 may (in other embodiments of the invention) be configured with stator magnets and rotor yokes / windings, respectively.

[0030] Figures 9 B and C also illustrate an arrangement where means for measuring acceleration 24 is connected in signal communication with the stators 19 of each wheel 101,102, for example by use of piezoelectric sensors. Fig. 9 A is a cross section of part of the first vehicle rolling means 10 seen along the X-direction, illustrating stator 19 being enclosed by the outer rim 9.

[0031] All components and their interactions / configurations may be valid also for the second vehicle rolling means 11.

[0032] The fact that the driving means 5,19 are arranged near or within the rolling means 10,11 of the robot 1 contribute to liberate space on the storage system during operation, thereby allowing a more compact design of the robot 1 compared to prior art robots.

[0033] All operations of the robot 1 are controlled by wireless communication means and remote control units. This includes one or more of control of the robot movement. control of the vehicle lifting device 7, measurements of robot positions, measurements of robot velocities and measurements of robot accelerations.

[0034] In the preceding description, various aspects of the vehicle and the storage system according to the invention have been described with reference to illustrative embodiments. For purposes of explanation, systems and configurations were set forth in order to provide a thorough understanding of the system and its workings. However, this description is not intended to be construed in a limiting sense.

List of reference numerals:



[0035] 
1
Remotely operated vehicle / robot
2
Storage bin
3
Storage system
4
Vehicle body / framework
5
Rotor / permanent magnets
7
Lifting device
9
Outer rim / outer periphery of rolling means
10
First vehicle rolling means / first set of wheels
11
Second vehicle rolling means / second set of wheels
13
Supporting rail
15
Bin storing grid
19
Stator
19a
Windings
19b
Yoke
23
Rotary encoder
24
Means for measuring acceleration / piezoelectric sensor
25
Cover plate
50
Bin lift device
60
Delivery station / port
72
Top lid
100
Cartesian coordination system
101
First X-wheel
101
Second X-wheel
102
Third X-wheel
103
Fourth X-wheel
111
First Y-wheel
112
Second Y-wheel
113
Third Y-wheel
114
Fourth Y-wheel



Claims

1. A remotely operated vehicle (1) for picking up storage bins (2) from an underlying storage system (3), comprising
a vehicle lifting device (7) for lifting the storage bin (2) from the underlying storage system (3),
a first vehicle rolling means (10) comprising a first rolling set (101-102) and a second rolling set (103-104) arranged at opposite facing side walls of a vehicle body (4), allowing movement of the vehicle (1) along a first direction (X) on the underlying storage system (3) during use, and
a second vehicle rolling means (11) comprising a first rolling set (111-112) and a second rolling set (113-114) arranged at opposite facing side walls of the vehicle body (4), allowing movement of the vehicle (1) along a second direction (Y) on the underlying storage system (3) during use, the second direction (Y) being perpendicular to the first direction (X),
characterized in that the vehicle (1) further comprises
a first driving means (5,19) situated at or at least partly within the first vehicle rolling means (10) for providing rolling set specific driving force to the vehicle (1) in the first direction (X) and
a second driving means (5,19) situated at or at least partly within the second vehicle rolling means (11) for providing rolling set specific driving force to the vehicle (1) in the second direction (Y) and
at least one of the first and second driving means (5,19) comprises rotor magnets (5) arranged at the inner surface of the outer periphery (9) of the vehicle rolling means (10,11) and a stator (19) enclosed by the outer periphery (9).
 
2. The vehicle (1) in accordance with claim 1, characterized in that at least one of the driving means (5,19) comprises an electric motor (5,19) using permanent magnets (5).
 
3. The vehicle (1) in accordance with claim 1 or 2, characterized in that the at least one of the first driving means (5,19) and the second driving means (5,19) comprises a stator (19) arranged at least partly within the same rotational plane as the vehicle rolling means (10,11) and at least partly within the vehicle body (4).
 
4. The vehicle (1) in accordance with any of the preceding claims, characterized in that
at least one of the first and second driving means (5,19) comprises an electric motor (5,19) comprising a rotor (5) and a stator (19) and that
the vehicle (1) further comprises
means for measuring back electromotive force (24), the means (24) being in signal communication with one of the stator (19) and the rotor (5), allowing rolling set specific velocity registration of the vehicle (1) during operation.
 
5. The vehicle (1) in accordance with any of the preceding claims, characterized in that the vehicle (1) comprises a rotary encoder (23) connected to at least one of the first and second vehicle rolling means (10,11), allowing angular position feedback during operation.
 
6. The vehicle (1) in accordance with claim 5, characterized in that the rotary encoder (23) is of type optical encoders.
 
7. The vehicle (1) in accordance with claim 5 or 6, characterized in that the rotary encoder (23) is a rotary encoder disk arranged within the outer periphery (9) of the at least one of the first and second vehicle rolling means (10,11).
 
8. The vehicle (1) in accordance with any of the preceding claims, characterized in that
at least one of the first and second driving means (5,19) comprises an electric motor (5,19) comprising a rotor (5) and a stator (19) and that
the vehicle (1) further comprises means (24) for measuring acceleration of at least one of the first and second vehicle rolling means (10,11), the means (24) being in signal communication with the stator (19).
 
9. The vehicle (1) in accordance with claim 8, characterized in that the means (24) for measuring acceleration comprises at least one of a piezoelectric sensor and an inductive sensor.
 
10. The vehicle (1) in accordance with any of the preceding claims, characterized in that,
each rolling sets comprises at least two wheels (101-104,111-114) and
the vehicle (1) further comprises motor control electronics arranged within the volume between two of the wheels of each rolling set (101-104,111-114),
which motor control electronics are configured to supply electric power to the first and second vehicle rolling means (10,11).
 
11. The vehicle (1) in accordance with any of the preceding claims, characterized in that
the first vehicle rolling means (10) comprises four X-wheels (101-104) having their direction of revolution in the first direction and
the second vehicle rolling means (11) comprises four Y-wheels (111-114) having their direction of revolution in the second direction,
wherein each of the X-wheels and each of the Y-wheels is drivingly connected to the first driving means (5,19) and the second driving means (5,19), respectively.
 
12. The vehicle (1) in accordance with claim 11, characterized in that each of the wheels (101-104,111-114) has a plurality of rotor magnets (5) arranged within the inner radial surface of the wheels outer periphery (9) and a plurality of stator field windings (19a) arranged at least partly within the vehicle body (4).
 
13. The vehicle (1) in accordance with claim 12, characterized in that the stator field windings (19a) are following the outer periphery (9) of the wheels (101-104,111-114).
 
14. The vehicle assembly (1) in accordance with any of claims 11-13, characterized in that, for each wheel (101-104,111-114), at least part of the driving means (5,19) is arranged within the wheels outer periphery (9).
 
15. A storage system (3) for storage of bins (2), characterized by comprising

- a bin storing structure (15) comprising a plurality of storage columns, wherein
each storage columns (8,8a,8b) is arranged to accommodate a vertical stack of storage bins (2), and

- a remotely operated vehicle (1) in accordance with any of claims 1-15 arranged on top of the bin storing structure (15).


 


Ansprüche

1. Ferngesteuertes Fahrzeug (1) zum Aufnehmen von Lagerbehältern (2) aus einem darunter liegenden Lagersystem (3), umfassend
eine Fahrzeug-Hebevorrichtung (7) zum Anheben des Lagerbehälters (2) aus dem darunter liegenden Lagersystem (3),
ein erstes Fahrzeug-Rollmittel (10), das einen ersten Rollsatz (101-102) und einen zweiten Rollsatz (103-104) umfasst, die an gegenüberliegenden Seitenwänden eines Fahrzeugkörpers (4) angeordnet sind, wodurch während der Verwendung eine Bewegung des Fahrzeugs (1) entlang einer ersten Richtung (X) auf dem darunter liegenden Lagersystem (3) ermöglicht wird, und
ein zweites Fahrzeug-Rollmittel (11), das einen ersten Rollsatz (111-112) und einen zweiten Rollsatz (113-114) umfasst, die an gegenüberliegenden Seitenwänden des Fahrzeugkörpers (4) angeordnet sind, wodurch während der Verwendung eine Bewegung des Fahrzeugs (1) entlang einer zweiten Richtung (Y) auf dem darunter liegenden Lagersystem (3) ermöglicht wird, wobei die zweite Richtung (Y) senkrecht zur ersten Richtung (X) verläuft,
dadurch gekennzeichnet, dass das Fahrzeug (1) ferner umfasst:
ein erstes Antriebsmittel (5, 19), das sich am oder zumindest teilweise im Innern des ersten Fahrzeug-Rollmittel(s) (10) befindet, um dem Fahrzeug (1) in der ersten Richtung (X) eine rollsatzspezifische Antriebskraft zu liefern, und
ein zweites Antriebsmittel (5, 19), das sich am oder zumindest teilweise im Innern des zweiten Fahrzeug-Rollmittel(s) (11) befindet, um dem Fahrzeug (1) in der zweiten Richtung (Y) eine rollsatzspezifische Antriebskraft zu liefern, und
wenigstens eines der ersten und zweiten Antriebsmittel (5, 19) Rotormagnete (5), die an der Innenfläche der äußeren Peripherie (9) der Fahrzeug-Rollmittel (10, 11) angeordnet sind, und einen Stator (19) umfasst, der von der äußeren Peripherie (9) umschlossen wird.
 
2. Fahrzeug (1) nach Anspruch 1, dadurch gekennzeichnet, dass wenigstens eines der Antriebsmittel (5, 19) einen Elektromotor (5, 19) umfasst, der Permanentmagneten (5) verwendet.
 
3. Fahrzeug (1) nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das wenigstens eine der ersten Antriebsmittel (5, 19) und der zweiten Antriebsmittel (5, 19) einen Stator (19) umfasst, der zumindest teilweise in derselben Drehebene wie das Fahrzeug-Rollmittel (10, 11) und zumindest teilweise im Innern des Fahrzeugkörpers (4) angeordnet ist.
 
4. Fahrzeug (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass
wenigstens eines der ersten und zweiten Antriebsmittel (5, 19) einen Elektromotor (5, 19) umfasst, der einen Rotor (5) und einen Stator (19) umfasst, und dass
das Fahrzeug (1) ferner umfasst:
Mittel zum Zurückmessen der elektromotorischen Kraft (24), wobei die Mittel (24) in Signalverbindung mit einem von dem Stator (19) und dem Rotor (5) stehen, wodurch eine rollsatzspezifische Geschwindigkeitserfassung des Fahrzeugs (1) während des Betriebs ermöglicht wird.
 
5. Fahrzeug (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Fahrzeug (1) einen Drehgeber (23) umfasst, der mit wenigstens einem der ersten und zweiten Fahrzeug-Rollmittel (10, 11) verbunden ist, wodurch eine Rückmeldung der Winkelposition während des Betriebs ermöglicht wird.
 
6. Fahrzeug (1) nach Anspruch 5, dadurch gekennzeichnet, dass der Drehgeber (23) vom Typ der optischen Drehgeber ist.
 
7. Fahrzeug (1) nach Anspruch 5 oder 6, dadurch gekennzeichnet, dass der Drehgeber (23) eine Drehgeberscheibe ist, die innerhalb der äußeren Peripherie (9) des wenigstens einen der ersten und zweiten Fahrzeug-Rollmittel (10, 11) angeordnet ist.
 
8. Fahrzeug (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass
wenigstens eines der ersten und zweiten Antriebsmittel (5, 19) einen Elektromotor (5, 19) umfasst, der einen Rotor (5) und einem Stator (19) umfasst, und dass
das Fahrzeug (1) ferner Mittel (24) zum Messen der Beschleunigung von wenigstens einem der ersten und zweiten Fahrzeug-Rollmittel (10, 11) umfasst, wobei die Mittel (24) in Signalverbindung mit dem Stator (19) stehen.
 
9. Fahrzeug (1) nach Anspruch 8, dadurch gekennzeichnet, dass das Mittel (24) zum Messen der Beschleunigung wenigstens einen von einem piezoelektrischen Sensor und einem induktiven Sensor umfasst.
 
10. Fahrzeug (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass
jeder Rollsatz wenigstens zwei Räder (101-104, 111-114) umfasst und
das Fahrzeug (1) ferner eine Motorsteuerelektronik umfasst, die innerhalb des Volumens zwischen zwei der Räder jedes Rollsatzes (101-104, 111-114) angeordnet ist,
wobei die Motorsteuerelektronik dafür konfiguriert ist, die ersten und zweiten Fahrzeug-Rollmittel (10, 11) mit elektrischer Energie zu versorgen.
 
11. Fahrzeug (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass
das erste Fahrzeug-Rollmittel (10) vier X-Räder (101-104) mit ihrer Drehrichtung in die erste Richtung umfasst und
das zweite Fahrzeug-Rollmittel (11) vier Y-Räder (111-114) mit ihrer Drehrichtung in die zweite Richtung umfasst,
wobei jedes der X-Räder und jedes der Y-Räder mit dem ersten Antriebsmittel (5, 19) bzw. dem zweiten Antriebsmittel (5, 19) antriebsverbunden ist.
 
12. Fahrzeug (1) nach Anspruch 11, dadurch gekennzeichnet, dass jedes der Räder (101-104, 111-114) eine Vielzahl von Rotormagneten (5) aufweist, die innerhalb der inneren Radialfläche der äußeren Peripherie (9) der Räder angeordnet sind, sowie eine Vielzahl von Statorfeldwicklungen (19a), die zumindest teilweise im Innern des Fahrzeugkörpers (4) angeordnet sind.
 
13. Fahrzeug (1) nach Anspruch 12, dadurch gekennzeichnet, dass die Statorfeldwicklungen (19a) der äußeren Peripherie (9) der Räder (101-104, 111-114) folgen.
 
14. Fahrzeuganordnung (1) nach einem der Ansprüche 11-13, dadurch gekennzeichnet, dass für jedes Rad (101-104, 111-114) wenigstens ein Teil der Antriebsmittel (5, 19) innerhalb der äußeren Peripherie (9) des Rades angeordnet ist.
 
15. Lagersystem (3) zur Lagerung von Behältern (2), dadurch gekennzeichnet, dass es umfasst:

- eine Behälterlagerstruktur (15), die eine Vielzahl von Lagersäulen umfasst, wobei
jede Lagersäule (8, 8a, 8b) dafür angeordnet ist, einen vertikalen Stapel von Lagerbehältern (2) aufzunehmen, und

- ein ferngesteuertes Fahrzeug (1) nach einem der Ansprüche 1-15, das auf der Oberseite der Behälterlagerstruktur (15) angeordnet ist.


 


Revendications

1. Véhicule télécommandé (1) pour prélever des bacs de stockage (2) d'un système de stockage sous-jacent (3), comprenant :

un dispositif de levage de véhicule (7) pour lever le bac de stockage (2) du système de stockage sous-jacent (3),

un premier moyen de roulement de véhicule (10) comprenant un premier ensemble de roulement (101-102) et un second ensemble de roulement (103-104) agencés au niveau des parois latérales en vis-à-vis opposées d'un corps de véhicule (4), permettant le déplacement du véhicule (1) le long d'une première direction (X) sur le système de stockage sous-jacent (3) pendant l'utilisation, et

un second moyen de roulement de véhicule (11) comprenant un premier ensemble de roulement (111-112) et un second ensemble de roulement (113-114) agencés au niveau des parois latérales en vis-à-vis opposées du corps de véhicule (4), permettant le déplacement du véhicule (1) le long d'une seconde direction (Y) sur le système de stockage sous-jacent (3) pendant l'utilisation, la seconde direction (Y) étant perpendiculaire à la première direction (X),

caractérisé en ce que le véhicule (1) comprend en outre :

un premier moyen d'entraînement (5, 19) situé au niveau de ou au moins partiellement à l'intérieur du premier moyen de roulement de véhicule (10) pour fournir une force d'entraînement spécifique d'ensemble de roulement au véhicule (1) dans la première direction (X), et

un second moyen d'entraînement (5, 19) situé au niveau de ou au moins partiellement à l'intérieur du second moyen de roulement de véhicule (11) pour fournir la force d'entraînement spécifique d'ensemble de roulement au véhicule (1) dans la seconde direction (Y), et

au moins l'un parmi les premier et second moyens d'entraînement (5, 19) comprend des aimants de rotor (5) agencés au niveau de la surface interne de la périphérie externe (9) du moyen de roulement de véhicule (10, 11) et un stator (19) enfermé par la périphérie externe (9).


 
2. Véhicule (1) selon la revendication 1, caractérisé en ce qu'au moins l'un des moyens d'entraînement (5, 19) comprend un moteur électrique (5, 19) utilisant des aimants permanents (5).
 
3. Véhicule (1) selon la revendication 1 ou 2, caractérisé en ce que le au moins un parmi le premier moyen d'entraînement (5, 19) et le second moyen d'entraînement (5, 19) comprend un stator (19) agencé au moins partiellement dans le même plan de rotation que le moyen de roulement de véhicule (10, 11) et au moins partiellement dans le corps de véhicule (4).
 
4. Véhicule (1) selon l'une quelconque des revendications précédentes, caractérisé en ce que :
au moins l'un des premier et second moyens d'entraînement (5, 19) comprend un moteur électrique (5, 19) comprenant un rotor (5) et un stator (19) et en ce que le véhicule (1) comprenant en outre :
des moyens pour mesurer la force électromotrice arrière (24), le moyen (24) étant en communication de signal avec l'un parmi le stator (19) et le rotor (5), permettant l'enregistrement de vitesse spécifique d'ensemble de roulement du véhicule (1) pendant le fonctionnement.
 
5. Véhicule (1) selon l'une quelconque des revendications précédentes, caractérisé en ce que le véhicule (1) comprend un encodeur rotatif (23) raccordé à au moins l'un parmi les premier et second moyens de roulement de véhicule (10, 11), permettant la rétroaction de position angulaire pendant le fonctionnement.
 
6. Véhicule (1) selon la revendication 5, caractérisé en ce que l'encodeur rotatif (23) est du type des encodeurs optiques.
 
7. Véhicule (1) selon la revendication 5 ou 6, caractérisé en ce que l'encodeur rotatif (23) est un disque d'encodeur rotatif agencé dans la périphérie externe (9) d'au moins l'un parmi les premier et second moyens de roulement de véhicule (10, 11).
 
8. Véhicule (1) selon l'une quelconque des revendications précédentes, caractérisé en ce que :
au moins l'un parmi les premier et second moyens d'entraînement (5, 19) comprend un moteur électrique (5, 19) comprenant un rotor (5) et un stator (19), et en ce que :
le véhicule (1) comprend en outre un moyen (24) pour mesurer l'accélération d'au moins l'un parmi les premier et second moyens de roulement de véhicule (10, 11), le moyen (24) étant en communication de signal avec le stator (19).
 
9. Véhicule (1) selon la revendication 8, caractérisé en ce que le moyen (24) pour mesurer l'accélération comprend au moins l'un parmi un capteur piézoélectrique et un capteur inductif.
 
10. Véhicule (1) selon l'une quelconque des revendications précédentes, caractérisé en ce que :

chaque ensemble de roulement comprend au moins deux roues (101-104, 111-114), et

le véhicule (1) comprend en outre l'électronique de commande de moteur agencée dans le volume entre deux des roues de chaque ensemble de roulement (101-104, 111-114),

laquelle électronique de commande de moteur est configurée pour fournir l'énergie électrique aux premier et second moyens de roulement de véhicule (10, 11).


 
11. Véhicule (1) selon l'une quelconque des revendications précédentes, caractérisé en ce que :

le premier moyen de roulement de véhicule (10) comprend quatre roues X (101-104) ayant leur direction de révolution dans la première direction, et

le second moyen de roulement de véhicule (11) comprend quatre roues Y (111-114) ayant leur direction de révolution dans la seconde direction,

dans lequel chacune des roues X et chacune des roues Y est raccordée, par entraînement, au premier moyen d'entraînement (5, 19) et au second moyen d'entraînement (5, 19) respectivement.


 
12. Véhicule (1) selon la revendication 11, caractérisé en ce que chacune de roues (101-104, 111-114) a une pluralité d'aimants de rotor (5) agencés dans la surface radiale interne de la périphérie externe (9) des roues et une pluralité d'enroulements de champ de stator (19a) agencés au moins partiellement dans le corps de véhicule (4).
 
13. Véhicule (1) selon la revendication 12, caractérisé en ce que les enroulements de champ de stator (19a) suivent la périphérie externe (9) des roues (101-104, 111-114).
 
14. Ensemble de véhicule (1) selon l'une quelconque des revendications 11 à 13, caractérisé en ce que, pour chaque roue (101-104, 111-114), au moins une partie du moyen d'entraînement (5, 19) est agencée dans la périphérie externe (9) des roues.
 
15. Système de stockage (3) pour stocker des bacs (2), caractérisé en ce qu'il comprend :
une structure de stockage de bacs (15) comprenant une pluralité de colonnes de stockage, dans lequel :

chaque colonne de stockage (8, 8a, 8b) est agencée pour loger un empilement vertical de bacs de stockage (2), et

un véhicule télécommandé (1) selon l'une quelconque des revendications 1 à 15, agencé sur le dessus de la structure de stockage de bacs (15).


 




Drawing
































Cited references

REFERENCES CITED IN THE DESCRIPTION



This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description