(11)EP 3 051 390 B1


(45)Mention of the grant of the patent:
13.05.2020 Bulletin 2020/20

(21)Application number: 16152263.6

(22)Date of filing:  21.01.2016
(51)Int. Cl.: 
G06F 3/0354  (2013.01)
G06F 3/0487  (2013.01)
G06F 3/03  (2006.01)
G06F 3/0362  (2013.01)
G06F 3/01  (2006.01)
H03K 17/96  (2006.01)





(84)Designated Contracting States:

(30)Priority: 30.01.2015 US 201514611014

(43)Date of publication of application:
03.08.2016 Bulletin 2016/31

(73)Proprietor: Logitech Europe S.A.
1015 Lausanne (CH)

  • Perret-Gentil, Arnaud
    1015 LAUSANNE (CH)
  • Bonanno, Daniel
    1015 LAUSANNE (CH)
  • Cerisier, Patrick Edouard Jean
    1015 LAUSANNE (CH)
  • Luttrell, Darragh
    1015 LAUSANNE (CH)
  • Ramond, Nicolas
    1015 LAUSANNE (CH)
  • Jirousek, Jaroslav
    1015 LAUSANNE (CH)

(74)Representative: Diehl & Partner GbR 
Patentanwälte Erika-Mann-Strasse 9
80636 München
80636 München (DE)

(56)References cited: : 
US-A- 5 872 528
US-A1- 2004 174 336
US-A1- 2013 257 729
US-A1- 2002 067 334
US-A1- 2011 025 311
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).



    [0001] The present invention relates to input devices with a rotational element, such as a thumbwheel on a mouse.

    [0002] Mice have been designed with various scrolling wheels on top, and sometime have a thumb wheel on the side. One example is Logitech Pat. 8,686,944, which shows a thumb wheel used for zoom and other features. The thumb wheel can be pressed for a button activation. Other embodiments of a thumbwheel are described in Logitech Pub. 20070188455, which also describes the prior art below.

    [0003] A switch or dial on the side of a mouse that can be activated by a thumb has been described in many different designs. U.S. Pat. No. 4,891,632 shows a track ball that can be manipulated by a user's thumb. Microsoft U.S. Pat. No. 5,473,344 shows a thumb wheel which is an elongated roller that can be depressed by pivoting around one end for a clicking switch. U.S. Pat. No. 5,712,725 shows a mouse with a side, thumb actuated rotational transducer for controlling microscope focus. The transducer generates a pulse train proportional to the rotational angle.

    [0004] Primax U.S. Pat. No. 5,771,038 shows a number of different thumb actuated switches for the side of a mouse, including a ball, a microstick and a dial. The dial using two tuning disks with variable capacitance. Primax U.S. Pat. No. 5,917,473 shows a mouse with a side, thumb actuated dial which encodes using electrical brushes. The dial can be depressed for a click switch function. IBM U.S. Pat. No. 6,115,029 shows a side thumb dial on a mouse.

    [0005] Alps U.S. Pat. No. 6,525,713 shows, as prior art, a mouse with an automatic return sliding switch between the buttons on the top of a mouse. This patent goes on to show a jog/shuttle switch on the front and side of a mouse. These switches are wheels, located on top of each other, with a jog switch providing continuous pulses in accordance with rotation of the jog dial, while a shuttle switch provides pulses corresponding to the rotational angle and direction.

    [0006] Armstrong U.S. Pat. No. 6,198,473 shows forward and backward pressure sensitive buttons on the side of a mouse in FIG. 32, with varied speeds of video frame rates depending on the amount of pressure applied. Primax U.S. Pat. No. 5,883,619 shows a rounded control button which can be tilted in x-y directions to produce scrolling. The '619 patent also shows a bidirectional thumb button on the side of a mouse for controlling zoom.

    [0007] Logitech Pat. 7,623,116, "Roller with Multiple Force Sense Levels," shows a roller which can pivot with two levels of force activating two stage buttons or pressure sensitive buttons. Logitech U.S. Pat. No. 6,879,316 shows a scroll wheel with pressure sensitive buttons on either side for activating continuous scrolling.

    [0008] Proximity detection in a mouse, such as to awaken a mouse from sleep mode when a user's hand approaches, is shown in Logitech Pat. 6,859,196.

    [0009] Smart phones and tablets use touch screens with a variety of gestures used for input controls. There have been attempts to incorporate gesture capability on other input devices. For example, Logitech Pub. No. 20130120259 describes a solid state touch sensor for a user's thumb on a mouse, enabling gesture detection.
    WO 2007/121777 A1 discloses an actuation device for actuating a software regulator displayed on a graphical processing apparatus. The actuation device comprises a main body being movable in a two-dimensional manner by a user, wherein a position signal indicative of an actual two-dimensional position of the main body is transmittable from the actuation device to the graphical processing apparatus to display a cursor on a corresponding position on the graphical processing apparatus, and a regulator unit arranged on the main body and adapted such that upon touching the regulator unit by the user, a touch signal is transmittable from the actuation device to the graphical processing apparatus to bring the graphical processing apparatus in an operation state in which subsequent actuation of the regulator unit by the user actuates the software regulator.
    A multichannel coder is described in US 5,872,528. The multichannel coder comprises a knob coupled with a code wheel associated with a means for detecting the angular position and, possibly, the direction of rotation of the wheel. It comprises, on the one hand, a channel selection means incorporated into the knob, and, on the other hand, a means enabling the association, with the information provided by the detection means, of information relating to the channel that has been selected on the aforesaid selection means.
    A physical input device comprising a manually movable object positioned in front of the viewing surface of a graphic display device is disclosed by WO 2014/047674 A1. A magnet is attached to said movable object, and a magnetic sensor is positioned behind said graphic display device so that changes in the orientation of said magnet relative to said sensor are detected by said sensor.

    [0010] A challenge with implementing a mechanical thumb roller on the side of a mouse is fitting the needed components in the available space. There are advantages to a mechanical thumb wheel, and there are different advantages to a touch sensor (gesture detection).


    [0011] The above object is solved by the combination of features of independent claim 1. Preferred embodiments are defined in the dependent claims. Embodiments that do not fall within the scope of the claims do not describe part of the invention.

    [0012] The present invention provides an input device with a mechanical rotational element and an associated touch sensor. The combination of rotation of the rotational element, and touch and lift off detected by the touch sensor, can be used to generate gestures. The touch sensor can also be used for an activation, or button press, function, eliminating the need for the rotational element to be mechanically depressible in addition to being rotatable.

    [0013] In one embodiment, a mechanical wheel design with a touch sensor allows it to be placed in the constrained space for a thumbwheel on a user input device, such as a mouse. The design uniquely combines wheel touch detection with high resolution (< 1°) angular sensor in a very compact form factor.

    [0014] In one embodiment, the invention reproduces a multi-finger touch experience using a mechanical horizontal wheel. It brings an advanced touch user experience into basic controls. On top of standard horizontal scroll, it enables computer controls like smooth back & forward or smooth application page control.

    [0015] In one embodiment, a thumbwheel uses a magnetometer to detect rotation of the thumbwheel. The thumbwheel has an internal, disk shaped magnet with radial north and south poles, to allow detection of radial position. A small magnet allows close placement of the magnetometer, providing enough signal without saturation. Near the outer surface of the thumbwheel is a cylindrical floating electrode for capacitive touch detection. The floating electrode is covered with a rubber grip, which acts as an insulator. The electrode is capacitively coupled to an electrode on a printed circuit board (PCB). This eliminates the need for a wire connection and enables the touch detector to be mounted in the rotating thumbwheel itself. Thus use of a touch sensor eliminates the need to depress the thumbwheel for a "click" activation.



    FIG. 1 is an exploded view of a thumbwheel according to an embodiment of the invention.

    FIG. 2 is a diagram of the assembled thumbwheel of FIG. 1.

    FIG. 3 is an exploded view of a mounting module for the thumbwheel of FIG. 1, according to one embodiment of the invention.

    FIG. 4 is a diagram illustrating the assembly of the connected electrode of FIG. 3 on the bearing of FIG. 3.

    FIG. 5 is a diagram of the backside of the PCB of the mounting module of FIG. 3, according to one embodiment of the invention.

    FIG. 6 is a diagram of an assembled thumbwheel of FIG. 1 and mounting module of FIG. 3, according to one embodiment of the invention.

    FIG. 7 is a perspective view of a mouse including the thumbwheel of FIG. 1, according to one embodiment of the invention.


    [0017] FIG. 1 is an exploded view of a thumbwheel 100 according to an embodiment of the invention. The thumbwheel has a right body portion 102 and a left body portion 104. Axles 122 and 124 extend from body portions 104 and 102. Body portions 102 and 104 can be made of plastic. A disk shaped magnet 106 is mounted into an opening 108 in right body 102. A copper floating electrode 110 is placed over interior portions 112 and 114 of right body 102 and left body 104, respectively. A cosmetic ring 116 is pushed on over the center of copper electrode 110, followed by rubber grips 118 and 120 on either side.

    [0018] FIG. 2 shows the assembled thumbwheel 100 of the embodiment of FIG. 1. In one embodiment, the disk shaped magnet 106 is 3 mm in diameter and 1 mm thick. It has radial north and south poles. Electrode 110 is copper in one embodiment. Alternately, it could be aluminum or another material. In one embodiment, the electrode is a phosphorus-copper alloy. Phosphorus is added to make the copper stronger, so that it will hold its position after forming. The material of this electrode, and the connected electrode described below, on the wheel should be paramagnetic in order to not perturb the magnetic field used for angular position detection. The same applies to any coating or paint on the wheel or other structures. Such a coating or paint, on the plastic parts or otherwise, should be a patent with no metal filings.

    [0019] FIG. 3 is an exploded view of a mounting module for the thumbwheel of FIG. 1, according to one embodiment of the invention. Thumbwheel 100 is mounted on a bearing 302. Axles 122 and 124 (not visible) snap into arms 304 and 306 of bearing 302. A bearing grease is applied to the axles and/or the holes in arms 304 and 306. The grease has sufficient viscosity to dampen the movement of the roller, to avoid small, unintended movements of the thumbwheel when a user's thumb is simply resting on the thumbwheel. In addition, debouncing firmware or software can additionally be used to limit such unintended movements, similar to that used for finger scrolling wheels.

    [0020] A connected electrode 308 is attached to the backside of bearing 302, as shown in more detail in FIG. 4. A PCB 310 attaches to the back of bearing 302. The PCB includes a magnetometer 312 for sensing the angular position of the magnet and thumbwheel 100. The position of magnetometer 312 is close to the magnet 106 and thumbwheel 100, yet sufficiently far to intersect the magnetic field at a proper distance from the magnet to allow optimum detection. A plastic portion of bearing 302 covers magnetometer 312 when assembled, to shield it from any electrostatic discharge (esd). A thumb module housing 314 will hold the combined assembly of the thumbwheel 100, bearing 302 and PCB 310, while itself being attached to the mouse or other input device.

    [0021] For the position of magnetometer 312 as shown in the embodiment of FIG. 3, the magnet used has an axial polarization. This ensures that the magnetometer is positioned within a portion of the magnetic field of the magnet which provides maximum magnetic field intensity and variation of the magnetic field as the thumbwheel is rotated.

    [0022] A pair of switches 316 and 318 are mounted on PCB 310 used for separate back and forward buttons on a mouse. Not shown, but LEDs or other light sources can be provided to give feedback to the user when the user's thumb is detected to touch the thumbwheel, or to lift off.

    [0023] FIG. 4 is a diagram illustrating the assembly of the connected electrode of FIG. 3 on the bearing of FIG. 3. Connected electrode 308 can be made of copper, or alternately aluminum or another material. In one embodiment, connected electrode 308 is mounted in bearing 302 as shown, then soldered onto PCB 310.

    [0024] FIG. 5 is a diagram of the backside of the PCB of the mounting module of FIG. 3, according to one embodiment of the invention. A touch detection integrated circuit 502 is connected to solder placed through an opening 504 to connect to connected electrode 308 on the opposite side of the PCB. Through holes in the PCB also connect the circuitry on the backside to the magnetometer 312 on the opposite side of the PCB.

    [0025] FIG. 6 is a diagram of an assembled thumbwheel of FIG. 1 and mounting module of FIG. 3, according to one embodiment of the invention. The thumbwheel 100, bearing 302 and PCB 310 are mounted on module housing 314 using a screw 602. Screw 604 attaches PCB 310 to housing 314.

    [0026] FIG. 7 is a perspective view of a mouse 700 including the thumbwheel of FIG. 1, according to one embodiment of the invention. Mouse 700 also includes a finger-activated scrolling wheel 702 and buttons 704 and 706. The thumbwheel 100 has a much small diameter than finger wheel 702, since the most comfortable use of a thumb provides less movement than a finger. The smaller diameter allows a larger movement with a small movement of the thumb.

    [0027] In operation, floating electrode 110 acts as a bridge to connected, sensing electrode 308 to provide an indication of a user touch or proximity to the thumbwheel. The control signal generated by the touch sensor could be generated in hardware, firmware or software. The signal could provide an activation upon the finger being lifted off the thumbwheel, placed on the thumbwheel, or both. The control signals can be the same touch control signals used on a touch surface of a smartphone or table, with the obvious limitation that movements would not be detected for a single electrode embodiment (such as a swipe or fingers squeezing together or moving apart.


    [0028] For each input device, such as a mouse, the particular magnet field of magnet 106 may vary, as well as the receptive characteristics of magnetometer 312. Accordingly, each device can be calibrated using a test station. The test station has a motor that engages the wheel, and a probe which measures the magnetometer output. The maximum and minimum values along each axis of the electromagnetic field, as detected, are recorded and mapped to the rotational location of the thumbwheel. The mapped values can be used as a look-up table to indicate the amount of rotation, or can be used as a correction factor for a magnetometer output.


    [0029] Any number of gestures can be implemented. For a basic operation, the building blocks for gestures are thumb ON, thumb OFF, tap, double tap and rotation (scroll/zoom). In one embodiment, the building blocks can be mapped to different gestures, taking into account that the finger scroll wheel 702 provides the ability to generate other gestures. For example, the rotation of the thumbwheel can be mapped to a two finger movement (e.g., scroll), while movement of the finger wheel is mapped to a single finger scroll.

    [0030] In one embodiment, a double tap on the thumbwheel is used to change the function of the thumbwheel. For example, it can change from horizontal scrolling to zoom (with the finger wheel being used for vertical scrolling).

    [0031] In one embodiment, the lifting of the thumb off the thumbwheel is detected, and used to stop the movement on a display. In another embodiment, if the velocity of the thumbwheel is above a predetermined threshold, the thumb lifting off does not stop the movement, but the movement continues for a period of time.

    [0032] In one embodiment, maintaining a button press (such as left/right button) and rotating the wheel will change a function (such as a modifier key on a keyboard). In one example, for a wheel on a keyboard, a back/forward command is sent by default when the wheel is rotated, and a left click + wheel rotation sends a horizontal scroll event.

    [0033] In one embodiment, a freewheel movement can be emulated by using the capacitive touch sensor. As soon as the finger is removed from the wheel, the speed (starting speed) is recorded and a decay rate is applied until the speed is null. The decay rate and the starting speed can be adjustable by the user.

    Alternate embodiments

    [0034] Various alternate examples are possible. However, only examples falling within the scope of the invention as set forth in the appended claims are considered to be embodiments of the invention.

    [0035] For example, instead of a magnetometer, other rotational sensors could be used in combination with the touch sensor. For example, hall sensors, optical sensors or mechanical sensors (e.g., high resolution mechanical variable resistor sensors) could be used.

    [0036] In another example, the floating sensor could be replaced with a fixed electrode positioned at the edges of the thumbwheel, such that the user's thumb can turn the wheel, while portions of the users thumb lightly contact, or are sufficient close, to the fixed electrode so as to provide touch detection. In such an example, the touch sensor could be resistive or capacitive.

    [0037] In alternate embodiments, a small swipe action could be detected by using multiple ring electrodes, instead of a single, cylindrical floating electrode, along with multiple connected electrodes to detect which ring is being primarily touched, to indicate a direction of movement.

    [0038] In another example, the input device is a trackball. Alternately, the input device can be a joystick, gamepad, remote control, keyboard, touchpad, or any other input device. In alternate embodiments, the wheel is located where it can be activated by a finger rather than a thumb.

    [0039] In other embodiments, the wheel could be replaced with a ball or any other rotational element. The touch sensor could be any type of touch sensor, including optical, pressure, capacitive or other touch sensors. The rotational element and touch sensor can be mounted at any location on a consumer electronic device such as mouse (top, side, side bottom), keyboard or presenter.


    1. An input device, comprising:

    a housing;

    at least one input element (100, 316, 318, 702, 704, 706) for providing a computer input from the input device (700);

    a mechanical rotational element (100) partially protruding from the housing such that portions of the surface of the mechanical rotational element contacted by the user are rotated to positions inside the housing inaccessible to the user's touch during a portion of the rotation of the mechanical rotational element;

    a magnetic rotational sensor (106, 312) for indicating rotational movement of the mechanical rotational element, the magnetic rotational sensor having a first sensor element (106) mounted in the mechanical rotational element and a first detection element (312) mounted in the housing of the input device proximate the rotational element; and

    a capacitive touch sensor (110, 308) for indicating one of touch and proximity of a portion of a user's hand to the rotational element, the capacitive touch sensor having a capacitive sensor element (110) mounted in the mechanical rotational element and a capacitive detection element (308) mounted in the housing of the input device outside and proximate the mechanical rotational element,

    wherein the capacitive sensor element comprises a floating electrode (110) mounted inside the mechanical rotational element;

    wherein the capacitive detection element comprises a bridge electrode (308) mounted outside and adjacent without touching the mechanical rotational element; and

    a detection circuit (502) connected to the bridge electrode.

    2. The input device of claim 1,
    wherein said first sensor element comprises a magnet (106) internally mounted in the rotational element (100); and
    wherein the first detection element comprises a magnetometer (312) mounted near the rotational element (100).
    3. The input device of claim 2, wherein the rotational element (100) is a wheel and the magnet (106) is disk shaped with radial north and south poles, providing an axial polarization.
    4. The input device of claim 3, wherein the magnetometer (312) is mounted further from an axis of the wheel than a periphery of the wheel, offset from the wheel (100), to one side and farther inside the input device (700) than the wheel.
    5. The input device of claim 1, wherein:

    the rotational element (100) is a wheel; and

    the floating electrode (110) is a cylindrical electrode mounted near an exterior surface of the wheel;

    further comprising an insulator (116, 118, 120) mounted on the wheel to cover the cylindrical electrode.

    6. The input device of claim 5, further comprising a bearing module (302) for supporting the wheel (100); and
    wherein the bridge electrode (308) contains a flat, rectangular portion mounted directly behind the wheel, on a side of the bearing module opposite the wheel.
    7. The input device of claim 5 or 6, wherein the insulator is a rubber grip (118, 120) with an uneven outer surface for gripping by a user.
    8. The input device of one of the preceding claims, wherein the mechanical rotational element comprises a thumbwheel (100) and the input device is a mouse (700).
    9. The input device of one of the preceding claims, further comprising a processing module for generating gesture commands responsive to signals from the magnetic rotational and the capacitive touch sensor.
    10. The input device of claim 9, wherein the gesture commands include a horizontal scrolling gesture and a double tap gesture to change mode.
    11. The input device of claim 10, wherein the change mode acts to change between a horizontal scrolling mode and a zoom mode.
    12. The input device of one of claims 9 to 11, wherein the processing module is coupled to the first detection element (312) and the capacitive detection element (308), and configured to generate a horizontal scrolling gesture command in response to a signal from the rotational element and to stop generating the horizontal scrolling gesture command in response to a signal from the capacitive detection element indicating the absence of the user's touch or proximity to the mechanical rotational element, such that continued movement of the rotational element in the absence of the user's touch does not cause generation of the horizontal scrolling gesture command.


    1. Eingabevorrichtung, umfassend:

    ein Gehäuse;

    mindestens ein Eingabeelement (100, 316, 318, 702, 704, 706) zum Bereitstellen einer Computereingabe durch die Eingabevorrichtung (700);

    ein mechanisches Rotationselement (100), das teilweise aus dem Gehäuse herausragt, so dass Abschnitte der Oberfläche des mechanischen Rotationselements, die von einem Benutzer kontaktiert werden, in Positionen innerhalb des Gehäuses gedreht werden, die für den Benutzer während eines Abschnitts der Drehung des mechanischen Rotationselements nicht zugänglich sind;

    einen magnetischen Rotationssensor (106, 312) zum Angeben einer Drehbewegung des mechanischen Rotationselements, wobei der magnetische Rotationssensor ein erstes Sensorelement (106), das in dem mechanischen Rotationselement montiert ist, und ein erstes Detektionselement (312), das in dem Gehäuse der Eingabevorrichtung in der Nähe des Rotationselements montiert ist, aufweist; und

    einen kapazitiven Berührungssensor (110, 308) zum Anzeigen einer Berührung oder Nähe eines Teils einer Hand eines Benutzers bezogen auf das Rotationselement, wobei der kapazitive Berührungssensor ein kapazitives Sensorelement (110), das in dem mechanischen Rotationselement montiert ist, und ein kapazitives Detektionselement (308), das in dem Gehäuse der Eingabevorrichtung außerhalb und in der Nähe des mechanischen Rotationselements montiert ist, aufweist,

    wobei das kapazitive Sensorelement eine Floating Elektrode (110) umfasst, die innerhalb des mechanischen Rotationselements montiert ist;

    wobei das kapazitive Detektionselement eine Brückenelektrode (308) umfasst, die außerhalb und benachbart, ohne das mechanische Rotationselement zu berühren, montiert ist; und

    eine Detektionsschaltung (502), die mit der Brückenelektrode verbunden ist.

    2. Eingabevorrichtung nach Anspruch 1,
    wobei das erste Sensorelement einen Magneten (106) umfasst, der intern in dem Rotationselement (100) montiert ist; und
    wobei das erste Detektionselement ein Magnetometer (312) umfasst, das in der Nähe des Rotationselements (100) montiert ist.
    3. Eingabevorrichtung nach Anspruch 2, wobei das Rotationselement (100) ein Rad ist und der Magnet (106) scheibenförmig mit radialen Nord- und Südpolen ist, die eine axiale Polarisierung bereitstellen.
    4. Eingabevorrichtung nach Anspruch 3, wobei das Magnetometer (312) weiter als ein Umfang des Rades von einer Achse des Rades entfernt, zu einer Seite des Rades (100) versetzt, und weiter innerhalb der Eingabevorrichtung (700) als das Rad montiert ist.
    5. Eingabevorrichtung nach Anspruch 1, wobei:

    das Rotationselement (100) ein Rad ist; und

    die Floating Elektrode (110) eine zylindrische Elektrode ist, die in der Nähe einer Außenfläche des Rades montiert ist;

    ferner umfassend einen Isolator (116, 118, 120), der auf dem Rad montiert ist, um die zylindrische Elektrode abzudecken.

    6. Eingabevorrichtung nach Anspruch 5,
    ferner umfassend ein Lagermodul (302) zum Tragen des Rades (100); und
    wobei die Brückenelektrode (308) einen flachen, rechteckigen Abschnitt aufweist, der direkt hinter dem Rad auf einer dem Rad gegenüberliegenden Seite des Lagermoduls montiert ist.
    7. Eingabevorrichtung nach Anspruch 5 oder 6, wobei der Isolator ein Gummigriff (118, 120) mit einer unebenen Außenfläche zum Greifen durch einen Benutzer ist.
    8. Eingabevorrichtung nach einem der vorangehenden Ansprüche, wobei das mechanische Rotationselement ein Daumenrad (100) umfasst und die Eingabevorrichtung eine Maus (700) ist.
    9. Eingabevorrichtung nach einem der vorangehenden Ansprüche, ferner umfassend ein Verarbeitungsmodul zum Erzeugen von Gestenbefehlen, die auf Signalen des magnetischen Rotationssensors und des kapazitiven Tastsensors beruhen.
    10. Eingabevorrichtung nach Anspruch 9, wobei die Gestenbefehle eine Horizontales-Scrollen-Geste und eine Doppeltipp-Geste zum Ändern eines Modus beinhalten.
    11. Eingabevorrichtung nach Anspruch 10, wobei die Änderung des Modus bewirkt, dass zwischen einem Horizontales-Scrollen-Modus und einem Zoom-Modus gewechselt wird.
    12. Eingabevorrichtung nach einem der Ansprüche 9 bis 11, wobei das Verarbeitungsmodul mit dem ersten Detektionselement (312) und dem kapazitiven Detektionselement (308) verbunden und dazu ausgebildet ist, als Reaktion auf ein Signal des Rotationselements einen Horizontales-Scrollen-Geste-Befehl zu erzeugen und die Erzeugung des Horizontales-Scrollen-Geste-Befehls als Reaktion auf ein Signal des kapazitiven Detektionselements, welches die Abwesenheit der Berührung oder der Nähe des Benutzers bezogen auf das mechanische Rotationselement anzeigt, zu stoppen, so dass eine fortgesetzte Bewegung des Rotationselements in Abwesenheit der Berührung des Benutzers nicht zur Erzeugung des Horizontales-Scrollen-Geste-Befehls führt.


    1. Dispositif d'entrée comprenant :

    un boîtier ;

    au moins un élément d'entrée (100, 316, 318, 702, 704, 706) pour fournir une entrée informatique depuis le dispositif d'entrée (700) ;

    un élément rotatif mécanique (100) dépassant partiellement du boîtier de telle sorte que des parties de la surface de l'élément rotatif mécanique touchées par l'utilisateur sont tournées jusqu'à des positions à l'intérieur du boîtier qui sont inaccessibles au toucher de l'utilisateur pendant une partie de la rotation de l'élément rotatif mécanique ;

    un capteur rotatif magnétique (106, 312) pour indiquer un mouvement rotatif de l'élément rotatif mécanique, le capteur rotatif magnétique ayant un premier élément de capteur (106) monté dans l'élément rotatif mécanique et un premier élément de détection (312) monté dans le boîtier du dispositif d'entrée près de l'élément rotatif ; et

    un capteur de toucher capacitif (110, 308) pour indiquer le toucher ou la proximité d'une partie de la main de l'utilisateur par rapport à l'élément rotatif, le capteur de toucher capacitif ayant un élément capteur capacitif (110) monté dans l'élément rotatif mécanique et un élément de détection capacitif (308) monté dans le boîtier du dispositif d'entrée à l'extérieur de l'élément rotatif mécanique et près de celui-ci,

    dans lequel l'élément capteur capacitif comprend une électrode flottante (110) montée à l'intérieur de l'élément rotatif mécanique ;

    dans lequel l'élément de détection capacitif comprend une électrode en pont (308) montée à l'extérieur et adjacente sans toucher l'élément rotatif mécanique ; et un circuit de détection (502) connecté à l'électrode en pont.

    2. Dispositif d'entrée de la revendication 1, dans lequel ledit premier élément capteur comprend un aimant (106) à montage interne dans l'élément rotatif (100) ; et
    dans lequel le premier élément de détection comprend un magnétomètre (312) monté près de l'élément rotatif (100).
    3. Dispositif d'entrée de la revendication 2, dans lequel l'élément rotatif (100) est une molette et l'aimant (106) est en forme de disque avec des pôles radiaux nord et sud, offrant une polarisation axiale.
    4. Dispositif d'entrée de la revendication 3, dans lequel le magnétomètre (312) est monté plus loin d'un axe de la molette qu'une périphérie de la molette, en étant décalé par rapport à la molette (100), vers un côté, et plus vers l'intérieur du dispositif d'entrée (700) que la molette.
    5. Dispositif d'entrée de la revendication 1, dans lequel :

    l'élément rotatif (100) est une molette ; et

    l'électrode flottante (110) est une électrode cylindrique montée près d'une surface extérieure de la molette ;

    comprenant également un isolant (116, 118, 120) monté sur la molette pour couvrir l'électrode cylindrique.

    6. Dispositif d'entrée de la revendication 5, comprenant également un module porteur (302) pour supporter la molette (100) ; et
    dans lequel l'électrode en pont (308) contient une partie rectangulaire plate montée directement derrière la molette, sur un côté du module porteur opposé à la molette.
    7. Dispositif d'entrée de la revendication 5 ou 6, dans lequel l'isolant est une structure/un élément de préhension en caoutchouc (118, 120) avec une surface extérieure irrégulière pour une préhension par un utilisateur.
    8. Dispositif d'entrée de l'une des revendications précédentes, dans lequel l'élément rotatif mécanique comprend une molette (100), et le dispositif d'entrée est une souris (700).
    9. Dispositif d'entrée de l'une des revendications précédentes, comprenant également un module de traitement pour générer des commandes gestuelles sensibles à des signaux provenant du capteur rotatif magnétique et du capteur de toucher capacitif.
    10. Dispositif d'entrée de la revendication 9, dans lequel les commandes gestuelles incluent un geste de défilement horizontal et un geste de double clic pour un mode de changement.
    11. Dispositif d'entrée de la revendication 10, dans lequel le mode de changement agit pour un changement entre un mode de défilement horizontal et un mode de zoom.
    12. Dispositif d'entrée de l'une des revendications 9 à 11, dans lequel le mode de traitement est couplé au premier élément de détection (312) et à l'élément de détection capacitif (308), et configuré pour générer une commande gestuelle de défilement horizontal en réponse à un signal provenant de l'élément rotatif et pour arrêter de générer la commande gestuelle de défilement horizontal en réponse à un signal provenant de l'élément de détection capacitif indiquant l'absence de toucher ou de proximité de l'utilisateur par rapport à l'élément rotatif mécanique, de sorte qu'un mouvement continu de l'élément rotatif en l'absence de toucher de l'utilisateur ne provoque pas de production de commande gestuelle de défilement horizontal.



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description