(19)
(11)EP 3 054 743 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
26.06.2019 Bulletin 2019/26

(21)Application number: 13897224.5

(22)Date of filing:  08.11.2013
(51)International Patent Classification (IPC): 
H04W 88/08(2009.01)
(86)International application number:
PCT/CN2013/086757
(87)International publication number:
WO 2015/066884 (14.05.2015 Gazette  2015/19)

(54)

SINGLE BOARD, WIRELESS COMMUNICATION SYSTEM AND CALIBRATION METHOD FOR CHANNEL INSIDE/OUTSIDE SINGLE BOARD

EINZELKARTE, DRAHTLOSKOMMUNIKATIONSSYSTEM UND KALIBRIERVERFAHREN FÜR KANÄLE INNERHALB/AUSSERHALB DER EINZELKARTE

CARTE UNIQUE, SYSTÈME DE COMMUNICATION SANS FIL ET PROCÉDÉ D'ÉTALONNAGE POUR UN CANAL DANS UNE CARTE UNIQUE OU HORS DE CELLE-CI


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(43)Date of publication of application:
10.08.2016 Bulletin 2016/32

(73)Proprietor: Huawei Technologies Co., Ltd.
Longgang District Shenzhen, Guangdong 518129 (CN)

(72)Inventors:
  • WANG, Bin
    Shenzhen Guangdong 518129 (CN)
  • ZHAO, Yuqing
    Shenzhen Guangdong 518129 (CN)
  • WEN, Huailin
    Shenzhen Guangdong 518129 (CN)

(74)Representative: Gill Jennings & Every LLP 
The Broadgate Tower 20 Primrose Street
London EC2A 2ES
London EC2A 2ES (GB)


(56)References cited: : 
CN-A- 1 571 549
CN-A- 1 852 275
CN-U- 203 012 704
US-A1- 2012 020 392
CN-A- 1 571 549
CN-U- 203 012 704
US-A1- 2011 103 495
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    TECHNICAL FIELD



    [0001] The present invention relates to the field of wireless communications, and in particular, to a board, a wireless communications system, and a method for channel correction inside or outside a board.

    BACKGROUND



    [0002] The MIMO (Multiple-Input Multiple-Out-put) technology is first put forward by Marconi in 1908. A wireless communications system may use the MIMO technology to receive and send a signal. The MIMO technology comprehensively utilizes information about a wireless channel, such as a coverage area, a spectrum utilization, and a channel capacity. A next-generation wireless broadband mobile communications system uses the MIMO technology, that is, multiple antennas are disposed at an end of a base station, multiple antennas are also disposed at a mobile station, and an MIMO communication link is formed between the base station and the mobile station.

    [0003] At a transmit end or a receive end of an actual MIMO system, transmission from a baseband to an antenna port passes through a related radio frequency circuit, causing inconsistency of amplitudes, phases, and delays between channels of antennas, which severely reduces an actual effect of MIMO transmission. Therefore, in the MIMO system, transmit channel correction and receive channel correction of a device need to be performed. Similarly, in the MIMO system, reciprocity correction of a transmit channel and a receive channel also needs to be performed, that is, difference correction of amplitudes, phases, and delays of the transmit channel and the receive channel. An objective of all the channel correction is to enable amplitudes, phases, and delays of transmit channels, or of receive channels, or of a transmit channel and a receive channel to keep consistent between each other.

    [0004] FIG. 1a is a structural block diagram for existing correction inside a board of a transmit channel and a receive channel. As shown in FIG. 1a, a structure of correction inside a board in the prior art may include: a baseband unit 10, transmitters 12, receivers 13, a directional coupler 14 and a directional coupler 15, a combiner 16, a splitter 17, a correction transceiver 18, a correction calculation unit 19, and a multi-antenna array 11.

    [0005] When a device transmits a service signal, after being processed by the baseband unit 10, the service signal is fed into a corresponding transmitter 12. The transmitter 12 converts a baseband signal into an analog radio frequency signal, and the analog radio frequency signal is transmitted to wireless space by using the multi-antenna array 20. Meanwhile, the directional coupler 15 couples some transmit signals output by the transmitters 12 at each antenna port, and after being combined by the multi-port combiner 16, the transmit signals are fed into the correction transceiver 18 and are forwarded to the correction calculation unit 19 by the correction transceiver 18. In this way, the correction calculation unit 19 can calculate to obtain differences of amplitudes, phases, and delays between transmit channels of the transmitters 12, the differences are finally fed back to the baseband unit 10 by the correction calculation unit 19, and the baseband unit 10 adjusts, according to a feature of the differences calculated by the correction calculation unit 19, an amplitude, a phase, and a delay of each antenna, so as to finally enable amplitudes, phases, and delays of signals transmitted at antenna ports to keep consistent.

    [0006] Similarly, when a device receives a service signal, the multi-antenna array 11 receives a wireless service signal from the wireless space, and a receive channel of a receiver 13 converts a radio frequency analog signal into a normal service baseband signal and sends the normal service baseband signal to the baseband unit 10. Meanwhile, the correction transceiver 18 sends a receiver correction reference signal, the receiver correction reference signal is divided by the multi-port divider 17 into multiple same correction reference signals, then some correction reference signals are coupled by the directional coupler 15 at each antenna port and fed into each receiver 13, and the baseband unit 10 sends the coupled correction reference signals output by receivers 13 to the correction calculation unit 19. The correction calculation unit 19 calculates according to the correction reference signals output by the receivers 13 to obtain differences of amplitudes, phases, and delays between receive channels of the receivers 13, the differences are finally fed back to the baseband unit 10, and the baseband unit adjusts, according to a feature of the differences calculated by the correction calculation unit 19, an amplitude, a phase, and a delay of each receive antenna, so as to finally enable amplitudes, phases, and delays of signals received by the antenna ports to keep consistent after the signals pass through radio frequency channels.

    [0007] It can be known from FIG. 1a that, in the foregoing structure, when transmit channel correction of transmitters is performed inside a board, signals of the transmitters are processed by using a channel on which the directional coupler 14 and the combiner 16 are located; while when receive channel correction of receivers is performed, a receiver correction reference signal of the correction transceiver is processed by using a channel on which the divider 17 and the directional coupler 15 are located. However, in an existing system, accuracy of channel reciprocity correction of a transmitter and a receiver is not high. Reciprocity refers to that, when locations of input and specific output of a network are exchanged, the output is not changed because of this type of location exchange.

    [0008] Prior art document D1 (CN1571549) discloses a method and apparatus for channel correction for a multi-antenna array. For each one of the antennae, one coupler is used both for the transmit channel correction and the receive channel correction; and one combiner-splitter is used both for the transmit channel correction and the receive channel correction.

    [0009] D2 discloses only a system for adjusting a DSP board or multiple DSP boards.

    [0010] D3 (US20120020392A1) discloses a network element for a wireless communication system is locatable to couple at least one base station to an antenna array comprising a plurality of antenna elements. The network element comprises a plurality of independent transceiver circuits coupled to at least one of a plurality of respective antenna elements of the antenna array; and logic arranged to apply at least one complex digital signal to at least one transceiver signal path of a transceiver circuit of the plurality of independent transceiver circuits. A feedback path is arranged to provide feedback of the at least one complex digital signal such that it is capable of facilitating determination of latency mismatch error response between at least two transceiver signal paths. Adjustment means comprises delay logic arranged to receive a complex digital signal and provide a modified representation of the received complex digital signal in response to the latency mismatch error response of the at least two transceiver signal path.

    SUMMARY



    [0011] The object of the invention is solved by the subject-matter of the independent claims. Preferred embodiments are defined in the dependent claims.

    [0012] In view of this, the present invention provides a board, a wireless communications system, and a method for channel correction inside or outside a board, which can improve accuracy of channel reciprocity correction of a transmitter and a receiver.

    [0013] According to an aspect of the present invention, a board is provided, which may include: a baseband unit, multiple transmitters, multiple receivers, a multi-antenna array, a correction transceiver, and a correction calculation unit, where the board further includes: a bidirectional coupler and a combiner-splitter, where
    the bidirectional coupler is separately connected to the multiple transmitters, the multiple receivers and the combiner-splitter, and configured to couple radio frequency signals output by the multiple transmitters and then transmit the coupled radio frequency signals to the combiner-splitter, and to couple receiver correction reference signals obtained by performing division by the combiner-splitter and then send the coupled receiver correction reference signals to the multiple receivers; and
    the combiner-splitter is separately connected to the bidirectional coupler and the correction transceiver, and configured to combine transmitter radio frequency signals coupled by the bidirectional coupler and then transmit the combined transmitter radio frequency signals to the correction transceiver, and to divide a receiver correction reference signal sent by the correction transceiver and then send receiver correction reference signals obtained by performing division to the bidirectional coupler.

    [0014] The board further includes:

    a service data interface, configured to connect the board and a central data processing unit; and

    a cascade port, configured to cascade the board and other boards on the central data processing unit to form a ring-shaped topology.



    [0015] The cascade port includes:

    two cascade ports, separately connected to cascade ports of an upper level board and a lower level board in the ring-shaped topology; and

    the board further includes:
    a switch unit, configured to control connection/disconnection of a path between the combiner-splitter and the correction transceiver; control connection/disconnection of a cascade port, cascaded to the upper level board, of the board, where the cascade port cascaded to the upper level board is configured to send a receiver reference correction signal to the upper level board or to receive a transmitter radio frequency signal from the upper level board; and control connection/disconnection of a cascade port, cascaded to the lower level board, of the board, where the cascade port cascaded to the lower level board is configured to send a transmitter radio frequency signal of the board to the lower level board or to receive a receiver reference correction signal from the lower level board. The board is further configured to calculate according to the coupled transmitter radio frequency signals received from the upper level or lower level board and coupled transmitter radio frequency signals inside the board, an amplitude difference, a phase difference and a delay difference between a transmit channel of the board and a transmit channel of the upper level or lower level board.



    [0016] In a first feasible implementation manner, the two cascade ports are connected to the cascade ports of the upper level board and the lower level board by using a radio frequency cable.

    [0017] According to a second aspect of embodiments of the present invention, a wireless communications system is provided, which may include a central data processing unit and at least one board connected to the central data processing unit, where the board is the board according to any embodiment of the embodiments of the present invention, and the at least one board performs data communication with the central data processing unit by using a service data interface.

    [0018] According to a third aspect of the embodiments of the present invention, a method for channel correction inside a board is provided, which may be applied to the board according to any embodiment of the present invention, where the method may include:

    calculating, by a correction calculation unit, according to coupled transmitter radio frequency signals, an amplitude difference, a phase difference and a delay difference between transmit channels of multiple transmitters inside the board, and sending a calculation result to a baseband unit inside the board to perform transmit channel correction inside the board, where the coupled transmitter radio frequency signal is a signal that arrives at the correction calculation unit after radio frequency signals output by the multiple transmitters of the board are successively coupled by the bidirectional coupler, combined by the combiner-splitter, and forwarded by the correction transceiver;

    calculating, by the correction calculation unit, according to coupled receiver reference correction signals, an amplitude difference, a phase difference and a delay difference between receive channels of multiple receivers inside the board, and sending a calculation result to the baseband unit to perform receive channel correction inside the board, where the coupled receiver reference correction signal is a signal that is output by the multiple receivers after a reference correction signal output by the correction transceiver inside the board is successively divided by the combiner-splitter, and coupled by the bidirectional coupler; and

    when the transmit channel correction and the receive channel correction are completed, calculating, by the correction calculation unit, an amplitude difference, a phase difference and a delay difference between channels of any transmitter and any receiver, and sending a calculation result to the baseband unit to perform channel reciprocity correction of the transmitter and the receiver inside the board.



    [0019] According to a fourth aspect of the embodiments of the present invention, a method for transmit channel correction between boards in a wireless communications system is provided, where the wireless communications system includes a central data processing unit and at least one board connected to the central data processing unit, the board is the board according to any embodiment of the embodiments of the present invention, the board performs data communication with the central data processing unit by using a service data interface, wherein the board further comprises: a service data interface, configured to connect the board and a central data processing unit; and a cascade port, configured to cascade the board and other boards on the central data processing unit to form a ring-shaped topology; wherein the cascade port comprises: two cascade ports, separately connected to cascade ports of an upper level board and a lower level board in the ring-shaped topology; and the board further comprises: a switch unit, configured to control connection/disconnection of a path between the combiner-splitter and the correction transceiver; control connection/disconnection of a cascade port, cascaded to the upper level board, of the board, wherein the cascade port cascaded to the upper level board is configured to send a receiver reference correction signal to the upper level board or to receive a transmitter radio frequency signal from the upper level board; and control connection/disconnection of a cascade port, cascaded to the lower level board, of the board, wherein the cascade port cascaded to the lower level board is configured to send a transmitter radio frequency signal of the board to the lower level board or to receive a receiver reference correction signal from the lower level board, and the method may include:

    performing, by the board, transmit channel correction inside the board;

    receiving, by the board, coupled transmitter radio frequency signals from an upper level or lower level board of the board;

    calculating, by the board according to the coupled transmitter radio frequency signal received from the upper level or lower level board and coupled transmitter radio frequency signals inside the board, an amplitude difference, a phase difference and a delay difference between a transmit channel of the board and a transmit channel of the upper level or lower level board; and

    correcting, by the board, the transmit channel of the board according to a calculation result, so as to enable an amplitude, a phase and a delay of the transmit channel of the board to keep consistent with an amplitude, a phase and a delay of the transmit channel of the upper level or lower level board respectively.



    [0020] The receiving, by the board, coupled transmitter radio frequency signals from an upper level or lower level board of the board includes:
    conducting, by a switch unit inside the board, a path on which a cascade port, cascaded to the upper level or lower level board, of the board is located, and receiving the coupled transmitter radio frequency signal from the upper level or lower level board by using the conducted cascade port.

    [0021] In a first feasible implementation manner, the calculating, by the board according to the coupled transmitter radio frequency signal received from the upper level or lower level board and coupled transmitter radio frequency signals inside the board, an amplitude difference, a phase difference and a delay difference between a transmit channel of the board and a transmit channel of the upper level or lower level board includes:

    receiving, by a correction calculation unit of the board from the cascade port conducted by the switch unit, the coupled transmitter radio frequency signal of the upper level or lower level board by using a correction transceiver of the board; and

    calculating, by the correction calculation unit of the board, the amplitude difference, the phase difference and the delay difference between the transmit channel of the board and the transmit channel of the upper level or lower level board.



    [0022] With reference to the first feasible implementation manner of the fourth aspect, in a second feasible implementation manner, the correcting, by the board, the transmit channel of the board according to a calculation result includes:
    correcting, by a baseband unit of the board, the transmit channel of the board according to the calculation result of the correction calculation unit of the board.

    [0023] With reference to any one of the fourth aspect to the second feasible implementation manner of the third aspect, in a fourth feasible implementation manner, after the correcting, by the board, the transmit channel of the board according to a calculation result, the method further includes:
    sending, by the board, the coupled transmitter radio frequency signals to the upper level or lower level board connected to the board.

    [0024] With reference to the third feasible implementation manner of the fourth aspect, in a fourth feasible implementation manner, the sending, by the board, coupled transmitter radio frequency signals to the upper level or lower level board connected to the board includes:
    conducting, by the switch unit of the board, the path on which the cascade port, cascaded to the upper level or lower level board, of the board is located, and sending the coupled transmitter radio frequency signal of the board to the upper level or lower level board by using the conducted cascade port.

    [0025] According to a fifth aspect of the embodiments of the present invention, a method for receive channel correction between boards in a wireless communications system is provided, where the wireless communications system includes a central data processing unit and at least one board connected to the central data processing unit, the board is the board according to any embodiment of the embodiments of the present invention, the board performs data communication with the central data processing unit by using a service data interface, wherein the board further comprises: a service data interface, configured to connect the board and a central data processing unit; and a cascade port, configured to cascade the board and other boards on the central data processing unit to form a ring-shaped topology; wherein the cascade port comprises: two cascade ports, separately connected to cascade ports of an upper level board and a lower level board in the ring-shaped topology; and the board further comprises: a switch unit, configured to control connection/disconnection of a path between the combiner-splitter and the correction transceiver; control connection/disconnection of a cascade port, cascaded to the upper level board, of the board, wherein the cascade port cascaded to the upper level board is configured to send a receiver reference correction signal to the upper level board or to receive a transmitter radio frequency signal from the upper level board; and control connection/disconnection of a cascade port, cascaded to the lower level board, of the board, wherein the cascade port cascaded to the lower level board is configured to send a transmitter radio frequency signal of the board to the lower level board or to receive a receiver reference correction signal from the lower level board, and the method includes:

    performing, by the board, receiver channel correction inside the board;

    receiving, by the board, a receiver correction reference signal from an upper level or lower level board connected to the board;

    calculating, by the board according to the receiver correction reference signal received from the upper level or lower level board, an amplitude, a phase and a delay of a receive channel of any receiver of the board;

    receiving, by the board from the upper level or lower level board, an amplitude, a phase and a delay, which are based on the receiver correction reference signal, of a receive channel of a receiver of the upper level or lower level board;

    calculating, by the board, an amplitude difference, a phase difference and a delay difference between a receive channel of any receiver of the board and the receive channel of the upper level or lower level board; and

    correcting, by the board, the amplitude, the phase and the delay of the receiver channel of the board according to the calculated differences, so as to keep consistent with the amplitude, the phase and the delay of the receive channel of the receiver of the upper level or lower level board.



    [0026] The receiving, by the board, a receiver correction reference signal from an upper level or lower level board connected to the board includes:
    conducting, by a switch unit inside the board, a path on which a cascade port, cascaded to the upper level or lower level board, of the board is located, and receiving the receiver correction reference signal from the upper level or lower level board by using the conducted cascade port.

    [0027] In a first feasible implementation manner, the calculating, by the board according to the receiver correction reference signal received from the upper level or lower level board, an amplitude, a phase and a delay of a receive channel of any receiver of the board includes:
    calculating, by a correction calculation unit of the board according to coupled receiver correction reference signals received by a baseband unit of the board from any receiver of the board, the amplitude, the phase and the delay of the receiver channel of the board, where the receiver correction reference signals are received from the upper level or lower level board.

    [0028] With reference to the first feasible implementation manner of the fifth aspect, in a second feasible implementation manner, the receiving, by the board from the upper level or lower level board, an amplitude, a phase and a delay, which are based on the receiver correction reference signal, of a receive channel of a receiver of the upper level or lower level board includes:
    receiving, by the board from the upper level or lower level board by using the central data processing unit, the amplitude, the phase and the delay, which are based on the receiver correction reference signal, of the receiver channel of the upper level or lower level board.

    [0029] With reference to the second feasible implementation manner of the fifth aspect, in a third feasible implementation manner, the calculating, by the board, an amplitude difference, a phase difference and a delay difference between a receive channel of any receiver of the board and the receive channel of the upper level or lower level board includes:
    calculating, by the correction calculation unit of the board, the amplitude difference, the phase difference and the delay difference between the receive channel of any receiver of the board and the receive channel of the upper level or lower level board.

    [0030] With reference to the third feasible implementation manner of the fifth aspect, in a fourth feasible implementation manner, the correcting, by the board, the amplitude, the phase and the delay of the receiver channel of the board according to the calculated differences, so as to keep consistent with the amplitude, the phase and the delay of the receive channel of the receiver of the upper level or lower level board includes:
    correcting, by the baseband unit of the board, the amplitude, the phase and the delay of the receiver channel of the board according to the calculated differences, so as to keep consistent with the amplitude, the phase and the delay of the receive channel of the receiver of the upper level or lower level board.

    [0031] With reference to any one of the fifth aspect to the fourth feasible implementation manner of the fifth aspect, in a fifth feasible implementation manner, after the correcting, by the board, the amplitude, the phase and the delay of the receiver channel of the board according to the calculated differences, the method further includes:
    sending, by the board, a receiver correction reference signal to the upper level or lower level board connected to the board.

    [0032] With reference to the fifth feasible implementation manner of the fifth aspect, in a sixth feasible implementation manner, the sending, by the board, a receiver correction reference signal to the upper level or lower level board connected to the board includes:
    conducting, by the switch unit of the board, the path on which the cascade port, cascaded to the upper level or lower level board, of the board is located, and sending the receiver correction reference signal to the upper level or lower level board by using the conducted cascade port.

    [0033] It can be learned from the foregoing descriptions that in some feasible implementation manners of the present invention, one bidirectional coupler and one combiner-splitter are used to couple transmit signals of transmit channels of transmitters and receive signals of receive channels of receivers. Compared with the prior art, the present invention improves reciprocity of two links for receive correction and transmit correction because the two links use same devices, that is, amplitude and phase losses introduced by measurement links of channels of receive correction and transmit correction can offset each other to the greatest degree. That is, in the implementation manners of the present invention, consistency of devices for channel correction of transmit channels of transmitters and receive channels of receivers is ensured, accuracy of channel reciprocity correction of the transmitter and the receiver is improved, and processing efficiency of a system is improved.

    BRIEF DESCRIPTION OF DRAWINGS



    [0034] 

    FIG. 1a is a schematic diagram of structural composition of an existing board;

    FIG. 1b is a schematic diagram of structural composition of an existing wireless communications system;

    FIG. 2 is a schematic diagram of structural composition of an embodiment of a board according to the present invention;

    FIG. 3 is a schematic flowchart of an embodiment of a method for channel correction inside a board according to the present invention;

    FIG. 4 is a schematic diagram of structural composition of an embodiment of a wireless communications system according to the present invention;

    FIG. 5 is a schematic diagram of structural composition of another embodiment of a board according to the present invention;

    FIG. 6 is a schematic flowchart of an embodiment of a method for transmit channel correction between boards according to the present invention;

    FIG. 7 is a schematic flowchart of another embodiment of a method for transmit channel correction between boards according to the present invention;

    FIG. 8 is a schematic flowchart of an embodiment of a method for receive channel correction between boards according to the present invention; and

    FIG. 9 is a schematic flowchart of another embodiment of a method for receive channel correction between boards according to the present invention.


    DESCRIPTION OF EMBODIMENTS



    [0035] The present invention is described in detail below by using specific embodiments.

    [0036] FIG. 2 is a schematic diagram of structural composition of an embodiment of a board according to the present invention. As shown in FIG. 2, the board may include: a baseband unit 20, a multi-antenna array 21, transmitters 22, receivers 23, a bidirectional coupler 24, a combiner-splitter 25, a correction transceiver 26, and a correction calculation unit 27.

    [0037] The baseband unit 20 is separately connected to the transmitters 22, the receivers 23 and the correction calculation unit 27, and is configured to receive a baseband signal from the receiver 23 and send the baseband signal to the transmitter 22, and to receive a receiver correction reference signal from the receiver 23 and forward the receiver correction reference signal to the correction calculation unit 27.

    [0038] The multi-antenna array 21 is separately connected to the transmitters 22 and the receivers 23, and is configured to receive a radio frequency signal from wireless space and forward the radio frequency signal to the receiver 23 that receives the radio frequency signal, and to receive a transmit radio frequency signal from the transmitter 22 and transmit the transmit radio frequency signal to the wireless space.

    [0039] The transmitter 22 is separately connected to the baseband unit 20, the multi-antenna array 21 and the bidirectional coupler 24, and is configured to receive a baseband signal from the baseband unit 20 and convert the baseband signal into a radio frequency signal, and to send the radio frequency signal to the multi-antenna array 21 and the bidirectional coupler 24.

    [0040] The receiver 23 is separately connected to the baseband unit 20, the multi-antenna array 21 and the bidirectional coupler 24, and is configured to receive a radio frequency signal of the wireless space from the multi-antenna array 21 and convert the radio frequency signal into a baseband signal and send the baseband signal to the baseband unit 20, and to receive coupled receiver reference signals from the bidirectional coupler 24 and send the coupled receiver reference signals to the baseband unit 20.

    [0041] The bidirectional coupler 24 is separately connected to the transmitters 22, the receivers 23 and the combiner-splitter 25, and is configured to couple radio frequency signals sent by the transmitters 22 and then send the coupled radio frequency signals to the combiner-splitter 25, and to couple receiver reference correction signals obtained by performing division by the combiner-splitter 25 and then send the coupled receiver reference correction signals to the receivers 23.

    [0042] The combiner-splitter 25 is separately connected to the bidirectional coupler 24 and the correction transceiver 26, and is configured to combine coupled transmitter radio frequency signals sent by the bidirectional coupler 24 and then send the combined transmitter radio frequency signals to the correction transceiver 26, and to divide a receiver correction reference signal sent by the correction transceiver 26 and then send receiver correction reference signals obtained by performing division to the bidirectional coupler 24.

    [0043] The correction transceiver 26 is separately connected to the combiner-splitter 25 and the correction calculation unit 27, and is configured to forward the transmitter radio frequency signals combined by the combiner-splitter 25 to the correction calculation unit 27, and to send a receive correction reference signal to the combiner-splitter 25.

    [0044] The correction calculation unit 27 is separately connected to the correction transceiver 26 and the baseband unit 20, and is configured to calculate, according to the coupled transmitter radio frequency signals forwarded by the correction transceiver 26, an amplitude difference, a phase difference and a delay difference between transmit channels of the multiple transmitters 22, and send a calculation result to the baseband unit 20 to perform transmit channel correction of the transmitters inside the board; and calculate, according to the coupled receiver reference correction signals output by the multiple receivers 23, an amplitude difference, a phase difference and a delay difference between receive channels of the multiple receivers 23, and send a calculation result to the baseband unit 20 to perform receiver channel correction inside the board.

    [0045] Connection described in this application refers to communication connection, including direct or indirect connection.

    [0046] In an architecture of the embodiment shown in FIG. 2, when a device transmits a service signal, after being processed by the baseband unit 20, the service signal is fed into a corresponding transmitter 22. The transmitter 22 converts a baseband signal into an analog radio frequency signal, and the analog radio frequency signal is transmitted to wireless space by using the multi-antenna array 21. Meanwhile, the bidirectional coupler 24 couples some radio frequency signals output by transmitters 22 at each antenna port, and after being combined by the multi-port combiner-splitter 25, the radio frequency signals are fed into the correction transceiver 26 and are forwarded to the correction calculation unit 27 by the correction transceiver 26. In this way, the correction calculation unit 27 can calculate to obtain differences of amplitudes, phases, and delays between transmit channels of the transmitters 22, the differences are finally fed back to the baseband unit 20 by the correction calculation unit 22, and the baseband unit 20 adjusts, according to a feature of the differences calculated by the correction calculation unit 20, an amplitude, a phase, and a delay of each antenna, so as to finally enable amplitudes, phases, and delays of signals transmitted at the antenna ports to keep consistent.

    [0047] Similarly, when the device receives a service signal, the multi-antenna array 21 receives a wireless service signal from the wireless space, a receive channel of the receiver 23 converts a radio frequency analog signal into a normal service baseband signal and sends the normal service baseband signal to the baseband unit 20. Meanwhile, the correction transceiver 26 sends a receiver correction reference signal, the receiver correction reference signal is divided by the multi-port combiner-splitter 25 into multiple same correction reference signals, then some correction reference signals are coupled by the bidirectional coupler 24 at each antenna port and fed into each receiver 23, and the baseband unit 20 sends the coupled correction reference signals output by receivers 23 to the correction calculation unit 27. The correction calculation unit 27 calculates according to the correction reference signals output by the receivers 23 to obtain differences of amplitudes, phases, and delays between receive channels of the receivers 23, the differences are finally fed back to the baseband unit 20, and the baseband unit 20 adjusts, according to a feature of the differences calculated by the correction calculation unit 27, an amplitude, a phase, and a delay of each receive antenna, so as to finally enable amplitudes, phases, and delays of signals received by the antenna ports to keep consistent after the signals pass through radio frequency channels.

    [0048] When the transmit channel correction and the receive channel correction are completed, the correction calculation unit 27 may randomly select a transmit channel of a transmitter and randomly select a receive channel of a receiver, calculate an amplitude difference, a phase difference and a delay difference between the randomly selected channels of the transmitter and the receiver, and send a calculation result to the baseband unit 20 to perform channel reciprocity correction of the transmitter and the receiver inside the board.

    [0049] It can be known by comparing the system shown in FIG. 2 with the system of FIG. 1a that, in the structure shown in FIG. 1, when transmit channel correction of transmitters is performed inside a board, signals of the transmitters are processed by using a channel on which a directional coupler 14 and a combiner 16 are located; while when receive channel correction of receivers is performed, a receiver correction reference signal of a correction transceiver is processed by using a channel on which a splitter 17 and a directional coupler 15 are located. In this way, a result of receive and transmit reciprocity correction in the system shown in FIG. 1a is not accurate. However, in the system shown in FIG. 2, a bidirectional coupler 24 and a combiner-splitter 25 are configured to couple transmit signals of transmit channels of transmitters and receive signals of receive channels of receivers, so that consistency of devices for channel correction of the transmit channels of the transmitters and the receive channels of the receivers is ensured, thereby improving accuracy of channel reciprocity correction of the transmitters and the receivers.

    [0050] Further, as shown in FIG. 3, based on an architecture of the board in FIG. 2, an embodiment of the present invention provides a method for channel correction inside a board. The method may include:

    Step S310: A correction calculation unit calculates, according to coupled transmitter radio frequency signals, an amplitude difference, a phase difference and a delay difference between transmit channels of multiple transmitters inside the board, and sends a calculation result to a baseband unit inside the board to perform transmit channel correction inside the board, where the coupled transmitter radio frequency signals are signals that arrive at the correction calculation unit after radio frequency signals output by the multiple transmitters of the board are successively coupled by a bidirectional coupler, combined by a combiner-splitter, and forwarded by a correction transceiver.

    Step S311: The correction calculation unit calculates, according to coupled receiver reference correction signals, an amplitude difference, a phase difference and a delay difference between receive channels of multiple receivers inside the board, and sends a calculation result to the baseband unit to perform receive channel correction inside the board, where the coupled receiver reference correction signals are signals that are output by the multiple receivers after a reference correction signal output by the correction transceiver inside the board is successively divided by the combiner-splitter, and coupled by the bidirectional coupler.

    Step S312: When the transmit channel correction and the receive channel correction are completed, the correction calculation unit calculates an amplitude difference, a phase difference and a delay difference between channels of any transmitter and any receiver, and sends a calculation result to the baseband unit to perform channel reciprocity correction of the transmitter and the receiver inside the board.



    [0051] It can be known from FIG. 2 and FIG. 3 that, in this embodiment of the present invention, when the board performs transmit channel correction of transmitters and receive channel correction of receivers, a bidirectional operation of the bidirectional coupler and the combiner-splitter in a correction link is used to complete correction in different directions of a same device. Because the bidirectional coupler and the combiner-splitter both work in a bidirectional way, differential losses, phase shifts and delays of the bidirectional coupler and the combiner-splitter are the same in a forward direction and a reverse direction, which therefore may be considered as approximately reciprocal. Therefore, measurement links for performing transmit channel correction and receive channel correction are reciprocal, so that accuracy of channel reciprocity correction of the transmitter and the receiver is ensured or improved.

    [0052] In specific implementation, there may be a case in which a quantity of antennas of one board does not meet a requirement for transmitting and receiving. In this case, a case in which multiple boards simultaneously perform data receiving and transmitting occurs in one device. In this way, transmit correction, receive correction and reciprocity correction need to be performed on receive and transmit channels of antennas for all boards. Referring to FIG. 1b, a wireless communications system that includes multiple boards is provided in the prior art. In the wireless communications system, a board a to a board n are all connected to a common correction transceiver, and transmit channel correction and receive channel correction between the boards are performed by using the common correction transceiver. In this architecture, a large quantity of cable interconnection needs to be performed between the boards and the common correction transceiver, increasing system costs. Therefore, an embodiment of the present invention further provides a wireless communications system. As shown in FIG. 4, a board 1 to a board N-1 in the wireless communications system provided in this embodiment of the present invention form a ring-shaped topology in a cascading manner. Moreover, all boards in the system are all connected to a central data processing unit 41 by using a service data interface, and perform data communication with the central data processing unit 41 by using the service data interface.

    [0053] Further, FIG. 5 is a schematic diagram of structural composition of any board in FIG. 4. As shown in FIG. 5 and FIG. 4, when the board is a board in the wireless communications system, for ease of description, a board 1 is used as an example, and on the basis of the embodiment shown in FIG. 2, an internal structure of the board 1 further includes a cascade port that is configured to cascade the board and other boards on the central data processing unit 41 to form a ring-shaped topology. For ease of description, the board 1 in FIG. 5 includes a cascade port 51 and a cascade port 52, which are configured to connect the board 1 and a cascade port of an upper level board N3 and a cascade port of a lower level board 2 in the ring-shaped topology respectively. In specific implementation, the cascade ports of the board 1 may be connected to the cascade ports of the upper level board N3 and the lower level board 2 by using a radio frequency cable. In addition to this, the board in this embodiment of the present invention further includes a service data interface that is not drawn in FIG. 5, and the service data interface is configured to connect the board 1 and the central data processing unit 41.

    [0054] Further, as shown in FIG. 5, the board in the wireless communications system may further include a switch unit 53, configured to control connection/disconnection of a path between the combiner-splitter 25 and the correction transceiver 26; control connection/disconnection of a cascade port 51, cascaded to the upper level board N3, of the board 1, where the cascade port 51 cascaded to the upper level board N3 is configured to send a receiver reference correction signal to the upper level board N3 or to receive a transmitter radio frequency signal from the upper level board N3; and control connection/disconnection of a cascade port 52, cascaded to the lower level board 2, of the board 1, where the cascade port 52 cascaded to the lower level board 2 is configured to send a transmitter radio frequency signal of the board 1 to the lower level board 2 or to receive a receiver reference correction signal from the lower level board 2. In specific implementation, a control signal of the switch unit 53 may come from inside or outside of the board 1.

    [0055] In FIG. 5, when the switch unit 53 controls the path between the combiner-splitter 25 and the correction transceiver 26 to be conducted, channel correction inside the board can be performed. A correction method for the channel correction is the same as that of FIG. 3, and no further details are provided herein again.

    [0056] Further, as shown in FIG. 6, based on architectures of FIG. 4 and FIG. 5, an embodiment of the present invention provides a method for transmit channel correction between boards, where the method may be applied to transmit channel correction between any board in the wireless communications system in FIG. 4 and an upper level or lower level board of the board. As shown in FIG. 6, the method may include:
    Step S610: The board performs transmit channel correction inside the board.

    [0057] In specific implementation, for a process in which the board performs transmit channel correction inside the board, refer to word descriptions of the embodiment of FIG. 2 and step S310 in FIG. 3, and no further details are provided herein again.

    [0058] Step S611: The board receives coupled transmitter radio frequency signals from an upper level or lower level board of the board.

    [0059] In specific implementation, in step S611, a switch unit inside the board conducts a path on which a cascade port, cascaded to the upper level or lower level board, of the board is located, and receives the coupled transmitter radio frequency signals from the upper level or lower level board by using the conducted cascade port. For example, referring to FIG. 4 and FIG. 5, assuming that the board is a board 1, when the board 1 now needs to perform transmit channel correction with an upper level board N3, in step S611, a switch unit 53 of the board 1 may conduct a cascade port 51, cascaded to the upper level board N3, of the board 1, and receive the coupled transmitter radio frequency signals from the upper level board N3 by using the conducted cascade port 51.

    [0060] Step S612: The board calculates, according to the coupled transmitter radio frequency signals received from the upper level or lower level board and coupled transmitter radio frequency signals inside the board, an amplitude difference, a phase difference and a delay difference between a transmit channel of the board and a transmit channel of the upper level or lower level board.

    [0061] In specific implementation, in step S612, a correction calculation unit of the board receives, from the cascade port conducted by the switch unit, the coupled transmitter radio frequency signals of the upper level or lower level board by using a correction transceiver of the board; and the correction calculation unit of the board calculates the amplitude difference, the phase difference and the delay difference between the transmit channel of the board and the transmit channel of the upper level or lower level board. Still referring to FIG. 4 and FIG. 5, assuming that the board is the board 1, when the board 1 now needs to perform transmit channel correction with the upper level board N3, in step S612, a correction calculation unit 27 of the board 1 receives, from the cascade port 51 conducted by the switch unit 53, the coupled transmitter radio frequency signals of the upper level board N3 by using a correction transceiver 26 of the board 1; and the correction calculation unit 27 of the board 1 calculates the amplitude difference, the phase difference and the delay difference between the transmit channel of the board 1 and the transmit channel of the upper level board N3.

    [0062] Step S613: The board corrects the transmit channel of the board according to a calculation result, so as to enable an amplitude, a phase and a delay of the transmit channel of the board to keep consistent with an amplitude, a phase and a delay of the transmit channel of the upper level or lower level board.

    [0063] In specific implementation, in step S613, a baseband unit of the board corrects the transmit channel of the board according to the calculation result, so as to enable the amplitude, the phase and the delay of the transmit channel of the board to keep consistent with the amplitude, the phase and the delay of the transmit channel of the upper level or lower level board. Still referring to FIG. 4 and FIG. 5, assuming that the board is the board 1, when the board 1 now needs to perform transmit channel correction with the upper level board N3, in step S613, a baseband unit 20 of the board 1 corrects the transmit channel of the board 1 according to a calculation result of the correction calculation unit 27, so as to enable an amplitude, a phase and a delay of the transmit channel of the board 1 to keep consistent with an amplitude, a phase and a delay of the transmit channel of the upper level board N3.

    [0064] It should be noted that only a correction process of transmit channels between two cascaded boards in the ring-shaped architecture in FIG. 4 is described in FIG. 6. In specific implementation, when transmit channels of every two boards are corrected in sequence along a cascade direction of the ring-shaped architecture. In this way, it can be finally ensured that amplitudes, phases and delays of transmit channels of all boards in the entire ring-shaped architecture keep consistent. Specifically, referring to FIG. 7, after step S613, the method further includes:
    Step S614: The board sends the coupled transmitter radio frequency signals to the upper level or lower level board connected to the board.

    [0065] It should be noted that if in step S611, the board receives the coupled transmitter radio frequency signals from the upper level board, in step S614, the coupled transmitter radio frequency signals are sent to the lower level board; while if in step S611, the board receives the coupled transmitter radio frequency signals from the lower level board, in step S614, the coupled transmitter radio frequency signals are transmitted to the upper level board.

    [0066] In specific implementation, in step S614, the switch unit of the board conducts the path on which the cascade port, cascaded to the upper level or lower level board, of the board is located, and sends the coupled transmitter radio frequency signals of the board to the upper level or lower level board by using the conducted cascade port. Still referring to FIG. 4 and FIG. 5, assuming that the board is the board 1, when the board 1 needs to perform transmit channel correction with the upper level board N3 in step S613, in step S614, the switch unit 53 of the board 1 conducts a path on which a cascade port 52, cascaded to a lower level board 2, of the board 1 is located, and transmits the coupled transmitter radio frequency signals to the lower level board 2 by using the conducted cascade port 52.

    [0067] According to the foregoing direction of transmit channel correction, after the boards in FIG. 4 perform correction in sequence according to the following correction direction, it can be ensured that amplitudes, phases and delays of transmit channels of all boards in the entire ring-shaped architecture keep consistent. The correction manner may be: completing transmit channel correction of the board 1 by using a transmit channel of a board N3 as a standard; then, completing transmit channel correction of a board 2 by using a transmit channel of the board 1 as a standard; then, completing transmit channel correction of a board 3 by using a transmit channel of the board 2 as a standard; then, completing transmit channel correction of a board N1 by using a transmit channel of the board 3 as a standard; and then, completing transmit channel correction of a board N2 by using a transmit channel of the board N1 as a standard. Certainly, in specific implementation, a direction of transmit channel correction between boards may start from any board, and examples are not described one by one herein.

    [0068] Further, as shown in FIG. 8, based on architectures of FIG. 4 and FIG. 5, an embodiment of the present invention provides a method for receive channel correction between boards, where the method may be applied to receive channel correction between any board in the wireless communications system in FIG. 4 and an upper level or lower level board of the board. As shown in FIG. 8, the method may include:
    Step S810: The board performs receiver channel correction inside the board.

    [0069] For a process in which the board performs receive channel correction inside the board, refer to word descriptions of the embodiment of FIG. 2 and step S311 in FIG. 3, and no further details are provided herein again.

    [0070] Step S811: The board receives a receiver correction reference signal from an upper level or lower level board connected to the board.

    [0071] In specific implementation, in step S811, a switch unit inside the board conducts a path on which a cascade port, cascaded to the upper level or lower level board, of the board is located, and receives the receiver correction reference signal from the upper level or lower level board by using the conducted cascade port. For example, referring to FIG. 4 and FIG. 5, assuming that the board is a board 1, when the board 1 now needs to perform receive channel correction with an upper level board N3, in step S811, a switch unit 53 of the board 1 may conduct a cascade port 51, cascaded to the upper level board N3, of the board 1, and receive the receiver correction reference signal from the upper level board N3 by using the conducted cascade port 51.

    [0072] Step S812: The board calculates, according to the receiver correction reference signal received from the upper level or lower level board, an amplitude, a phase and a delay of a receive channel of any receiver of the board.

    [0073] In specific implementation, in step S812, a correction calculation unit of the board calculates, according to the receiver correction reference signal, which is received from the upper level or lower level board, received by a baseband unit of the board from any receiver of the board after being coupled, the amplitude, the phase and the delay of the receiver channel of the board. Still referring to FIG. 4 and FIG. 5, assuming that the board is the board 1, in step S612, a correction calculation unit 27 of the board 1 calculates, according to coupled receiver correction reference signals received by a baseband unit 26 of the board 1 from any receiver 23 of the board 1, the amplitude, the phase and the delay of the receiver channel of the board 1, where the receiver correction reference signals are received from the upper level board N3.

    [0074] Step S813: The board receives, from the upper level or lower level board, an amplitude, a phase and a delay, which are based on the receiver correction reference signal, of a receive channel of a receiver of the upper level or lower level board.

    [0075] In specific implementation, in step S813, the board receives, from the upper level or lower level board by using the central data processing unit, the amplitude, the phase and the delay, which are based on the receiver correction reference signal, of the receiver channel of the upper level or lower level board. Still referring to FIG. 4 and FIG. 5, assuming that the board is the board 1, in step S813, the board 1 receives, from the upper level board N3 by using the central data processing unit 41, the amplitude, the phase and the delay, which are based on the receiver reference correction signal of the upper level board N3, of the receiver channel of the upper level board N3.

    [0076] Step S814: The board calculates an amplitude difference, a phase difference and a delay difference between a receive channel of any receiver of the board and the receive channel of the upper level or lower level board.

    [0077] In specific implementation, in step S814, the correction calculation unit of the board calculates the amplitude difference, the phase difference and the delay difference between the receive channel of any receiver of the board and the receive channel of the upper level or lower level board. Still referring to FIG. 4 and FIG. 5, assuming that the board is the board 1, in step S814, the correction calculation unit 27 of the board 1 calculates an amplitude difference, a phase difference and a delay difference, which are calculated based on the receiver correction reference signal of the upper level board N3, between a receive channel of any receiver of the board 1 and the receive channel of the upper level board N3.

    [0078] Step S815: The board corrects the amplitude, the phase and the delay of the receiver channel of the board according to the calculated differences, so as to keep consistent with the amplitude, the phase and the delay of the receive channel of the receiver of the upper level or lower level board.

    [0079] In specific implementation, in step S815, the baseband unit of the board corrects the amplitude, the phase and the delay of the receiver channel of the board according to the calculated differences, so as to keep consistent with the amplitude, the phase and the delay of the receive channel of the receiver of the upper level or lower level board. Still referring to FIG. 4 and FIG. 5, assuming that the board is the board 1, in step S815, the baseband unit 20 of the board 1 corrects the amplitude, the phase and the delay of the receiver channel of the board 1 according to the calculated differences, so as to keep consistent with the amplitude, the phase and the delay of the receive channel of the receiver of the upper level board N3.

    [0080] It should be noted that only a correction process of receive channels between two cascaded boards in the ring-shaped architecture in FIG. 4 is described in FIG. 8. In specific implementation, when receive channels of every two boards are corrected in sequence along a cascade direction of the ring-shaped architecture, in this way, it can be finally ensured that amplitudes, phases and delays of receive channels of all boards in the entire ring-shaped architecture keep consistent. Specifically, referring to FIG. 9, after step S815, the method further includes:
    Step S816: The board sends a receiver correction reference signal to the upper level or lower level board connected to the board.

    [0081] In specific implementation, in step S816, a switch unit of the board conducts a path on which a cascade port, cascaded to the upper level or lower level board, of the board is located, and sends the receiver correction reference signal to the upper level or lower level board by using the conducted cascade port. It should be noted that if in step S811, the board receives coupled receiver correction reference signals from an upper level board, in step S816, the receiver correction reference signal is sent to a lower level board; while if in step S811, the board receives coupled receiver correction reference signals from a lower level board, in step S816, the coupled receiver correction reference signal is transmitted to an upper level board. Still referring to FIG. 4 and FIG. 5, assuming that the board is the board 1, when the board 1 performs receive channel correction with the upper level board N3 in step S815, in step S816, the switch unit 53 of the board 1 conducts a path on which a cascade port 52, cascaded to a lower level board 2, of the board 1 is located, and transmits the coupled receiver correction reference signal to the lower level board 2 by using the conducted cascade port 52.

    [0082] According to the foregoing direction of transmit channel correction, after the boards in FIG. 4 perform correction in sequence according to the following correction direction, it can be ensured that amplitudes, phases and delays of receive channels of all boards in the entire ring-shaped architecture keep consistent. The correction manner may be: completing receive channel correction of the board 1 by using a receive channel of a board N3 as a standard; then, completing receive channel correction of a board 2 by using a receive channel of the board 1 as a standard; then, completing receive channel correction of a board 3 by using a receive channel of the board 2 as a standard; then, completing receive channel correction of a board N1 by using a receive channel of the board 3 as a standard; and then, completing receive channel correction of a board N2 by using a receive channel of the board N1 as a standard. Certainly, in specific implementation, a direction of receive channel correction between boards may start from any board, and examples are not described one by one herein.

    [0083] Similarly, when transmit channel correction and receive channel correction between the boards in FIG. 4 are completed, a transmit channel of a board is randomly selected and a receive channel of another board is randomly selected, an amplitude difference, a phase difference and a delay difference between the transmit channel and the receive channel are calculated, a calculation result is transmitted to a central data processing unit, and the central data processing unit performs reciprocity correction of receive channels and transmit channels of the boards in the system in a unified way.

    [0084] It can be known from FIG. 4 to FIG. 9 that, when the ring-shaped architecture of the embodiments of the present invention is used, at most two cascade ports only need to be led out between boards in a wireless communications system so as to be interconnected to other boards, and a correction signal may be transmitted between the boards by using cascade ports to complete transmit channel correction, receive channel correction and transmit channel and receive channel reciprocity correction between the boards; therefore, a common correction transceiver does not need to be used anymore, and a large quantity of cable connection between the boards and the common correction transceiver is not needed either, thereby greatly reducing costs and volumes of devices. Moreover, a circuit structure of each board is completely the same, so that it is ensured that losses, phase shifts and delays introduced on paths of receive and transmit correction between boards are reciprocal; besides, both receive/receive channels and transmit/transmit channels between two adjacent boards are corrected independently, and alignment is kept, and therefore a result of reciprocity correction between boards performed on such basis is also accurate.

    [0085] In specific implementation, the present invention further provides a computer storage medium. The computer storage medium may store a program. Execution of the program may include some or all steps in the embodiments of the methods provided in the present invention. The foregoing storage medium may include: a magnetic disk, an optical disc, a read-only memory (Read-Only Memory, ROM), or a random access memory (Random Access Memory, RAM).

    [0086] With descriptions of the foregoing embodiments, a person skilled in the art may clearly understand that the present invention may be implemented by hardware, firmware or a combination thereof. When the present invention is implemented by software, the foregoing functions may be stored in a computer-readable medium or transmitted as one or more instructions or code in the computer-readable medium. The computer-readable medium includes a computer storage medium and a communications medium, where the communications medium includes any medium that enables a computer program to be transmitted from one place to another. The storage medium may be any available medium accessible to a computer. The following provides an example but does not impose a limitation: The computer-readable medium may include a RAM, a ROM, an EEPROM, a CD-ROM, or another optical disc storage or disk storage medium, or another magnetic storage device, or any other medium that can carry or store expected program code in a form of an instruction or a data structure and can be accessed by a computer. In addition, any connection/disconnection may be appropriately defined as a computer-readable medium. For example, if software is transmitted from a website, a server or another remote source by using a coaxial cable, an optical fiber/cable, a twisted pair, a digital subscriber line (DSL) or wireless technologies such as infrared ray, radio and microwave, the coaxial cable, optical fiber/cable, twisted pair, DSL or wireless technologies such as infrared ray, radio and microwave are included in fixation of a medium to which they belong. For example, a disk (Disk) and disc (disc) used by the present invention includes a compact disc CD, a laser disc, an optical disc, a digital versatile disc (DVD), a floppy disk and a Blu-ray disc, where the disk generally copies data by a magnetic means, and the disc copies data optically by a laser means. The foregoing combination should also be included in the protection scope of the computer-readable medium.


    Claims

    1. A board (1), comprising: a baseband unit (20), multiple transmitters (22), multiple receivers (23), a multi-antenna array (21), a correction transceiver (26), and a correction calculation unit (27), wherein the board further comprises: a bidirectional coupler (24) and a combiner-splitter (25), wherein
    the bidirectional coupler (24) is separately connected to the multiple transmitters, the multiple receivers and the combiner-splitter, and configured to couple radio frequency signals output by the multiple transmitters and then transmit the coupled radio frequency signals to the combiner-splitter, and to couple receiver correction reference signals obtained by performing division by the combiner-splitter and then send the coupled receiver correction reference signals to the multiple receivers; and
    the combiner-splitter (25) is separately connected to the bidirectional coupler (24) and the correction transceiver, and configured to combine transmitter radio frequency signals coupled by the bidirectional coupler and then transmit the combined transmitter radio frequency signals to the correction transceiver, and to divide a receiver correction reference signal sent by the correction transceiver and then send receiver correction reference signals obtained by performing division to the bidirectional coupler; wherein the board further comprises:

    a service data interface, configured to connect the board and a central data processing unit; and

    a cascade port (51), configured to cascade the board and other boards on the central data processing unit to form a ring-shaped topology;

    wherein the cascade port comprises:

    two cascade ports, separately connected to cascade ports of an upper level board and a lower level board in the ring-shaped topology; and

    the board (1) further comprises:

    a switch unit (53), configured to control connection/disconnection of a path between the combiner-splitter and the correction transceiver; control connection/disconnection of a cascade port, cascaded to the upper level board, of the board, wherein the cascade port cascaded to the upper level board is configured to send a receiver correction reference signal to the upper level board or to receive a transmitter radio frequency signal from the upper level board; and control connection/disconnection of a cascade port (51), cascaded to the lower level board, of the board, wherein the cascade port cascaded to the lower level board is configured to send a transmitter radio frequency signal of the board to the lower level board or to receive a receiver correction reference signal from the lower level board,

    the board being further configured to calculate according to the coupled transmitter radio frequency signals received from the upper level or lower level board and coupled transmitter radio frequency signals inside the board, an amplitude difference, a phase difference and a delay difference between a transmit channel of the board and a transmit channel of the upper level or lower level board; and correct the transmit channel of the board according to a calculation result, so as to enable an amplitude, a phase and a delay of the transmit channel of the board to keep consistent with an amplitude, a phase and a delay of the transmit channel of the upper level or lower level board respectively; and to calculate according to the receiver correction reference signal received from the upper level or lower level board, an amplitude, a phase and a delay of a receive channel of any receiver of the board; and the receive from the upper level or lower level board, an amplitude, a phase and a delay, which are based on the receiver correction reference signal, of a receive channel of a receiver of the upper level or lower level board; and to calculate an amplitude difference, a phase difference and a delay difference between a receive channel of any receiver of the board and the receive channel of the upper level or lower level board; and to correct the amplitude, the phase and the delay of the receive channel of the board according to the calculated differences, so as to keep consistent with the amplitude, the phase and the delay of the receive channel of the receiver of the upper level or lower level board.


     
    2. The board according to claim 1, wherein the two cascade ports are connected to the cascade ports of the upper level board and the lower level board by using a radio frequency cable.
     
    3. A wireless communications system, comprising a central data processing unit (41) and at least one board (1) connected to the central data processing unit, wherein the board is the board according to claim 1 or 2, and the at least one board is configured to perform data communication with the central data processing unit by using a service data interface.
     
    4. A method for transmit channel correction between boards in a wireless communications system, wherein the wireless communications system comprises a central data processing unit (41) and at least one board (1) connected to the central data processing unit, the board is configured to perform data communication with the central data processing unit by using a service data interface, wherein the board further comprises:

    a service data interface, configured to connect the board and a central data processing unit; and

    a cascade port (51), configured to cascade the board and other boards on the central data processing unit to form a ring-shaped topology;

    wherein the cascade port comprises:

    two cascade ports, separately connected to cascade ports of an upper level board and a lower level board in the ring-shaped topology; and

    the board (1) further comprises:
    a switch unit (53), configured to control connection/disconnection of a path between the combiner-splitter and the correction transceiver; control connection/disconnection of a cascade port, cascaded to the upper level board, of the board, wherein the cascade port cascaded to the upper level board is configured to send a receiver correction reference signal to the upper level board or to receive a transmitter radio frequency signal from the upper level board; and control connection/disconnection of a cascade port (51), cascaded to the lower level board, of the board, wherein the cascade port cascaded to the lower level board is configured to send a transmitter radio frequency signal of the board to the lower level board or to receive a receiver correction reference signal from the lower level board, and the method comprises:

    performing, by the board, transmit channel correction inside the board;

    receiving, by the board, coupled transmitter radio frequency signals from an upper level or lower level board of the board;

    calculating, by the board according to the coupled transmitter radio frequency signals received from the upper level or lower level board and coupled transmitter radio frequency signals inside the board, an amplitude difference, a phase difference and a delay difference between a transmit channel of the board and a transmit channel of the upper level or lower level board; and

    correcting, by the board, the transmit channel of the board according to a calculation result, so as to enable an amplitude, a phase and a delay of the transmit channel of the board to keep consistent with an amplitude, a phase and a delay of the transmit channel of the upper level or lower level board respectively;

    wherein

    the receiving, by the board (1), coupled transmitter radio frequency signals from an upper level or lower level board of the board comprises:

    conducting, by a switch unit (53) inside the board, a path on which a cascade port (51), cascaded to the upper level or lower level board, of the board is located, and receiving the coupled transmitter radio frequency signal from the upper level or lower level board by using the conducted cascade port.


     
    5. The method for transmit channel correction between boards according to claim 4, wherein the calculating, by the board according to the coupled transmitter radio frequency signal received from the upper level or lower level board and coupled transmitter radio frequency signals inside the board, an amplitude difference, a phase difference and a delay difference between a transmit channel of the board and a transmit channel of the upper level or lower level board comprises:

    receiving, by a correction calculation unit (27) of the board from the cascade port conducted by the switch unit (53), the coupled transmitter radio frequency signal of the upper level or lower level board by using a correction transceiver of the board; and

    calculating, by the correction calculation unit (27) of the board (1), the amplitude difference, the phase difference and the delay difference between the transmit channel of the board and the transmit channel of the upper level or lower level board.


     
    6. The method for transmit channel correction between boards according to claim 5, wherein the correcting, by the board, the transmit channel of the board according to a calculation result comprises:
    correcting, by a baseband unit (26) of the board, the transmit channel of the board according to the calculation result of the correction calculation unit (27) of the board.
     
    7. The method for transmit channel correction between boards according to any one of claims 4 to 6, after the correcting, by the board, the transmit channel of the board according to a calculation result, further comprising:
    sending, by the board (1), the coupled transmitter radio frequency signals to the upper level or lower level board connected to the board.
     
    8. The method for transmit channel correction between boards according to claim 7, wherein the sending, by the board, coupled transmitter radio frequency signals to the upper level or lower level board connected to the board comprises:
    conducting, by the switch unit (53) of the board, the path on which the cascade port (51), cascaded to the upper level or lower level board, of the board is located, and sending the coupled transmitter radio frequency signal of the board to the upper level or lower level board by using the conducted cascade port.
     
    9. A method for receive channel correction between boards in a wireless communications system, wherein the wireless communications system comprises a central data processing unit (41) and at least one board connected to the central data processing unit, the board is configured to perform data communication with the central data processing unit by using a service data interface, wherein the board further comprises:

    a service data interface, configured to connect the board and a central data processing unit; and

    a cascade port (51), configured to cascade the board and other boards on the central data processing unit to form a ring-shaped topology;

    wherein the cascade port comprises:

    two cascade ports, separately connected to cascade ports of an upper level board and a lower level board in the ring-shaped topology; and

    the board (1) further comprises:
    a switch unit (53), configured to control connection/disconnection of a path between the combiner-splitter and the correction transceiver; control connection/disconnection of a cascade port, cascaded to the upper level board, of the board, wherein the cascade port cascaded to the upper level board is configured to send a receiver correction reference signal to the upper level board or to receive a transmitter radio frequency signal from the upper level board; and control connection/disconnection of a cascade port (51), cascaded to the lower level board, of the board, wherein the cascade port cascaded to the lower level board is configured to send a transmitter radio frequency signal of the board to the lower level board or to receive a receiver correction reference signal from the lower level board, and the method comprises:

    performing, by the board, receive channel correction inside the board;

    receiving, by the board, a receiver correction reference signal from an upper level or lower level board connected to the board;

    calculating, by the board according to the receiver correction reference signal received from the upper level or lower level board, an amplitude, a phase and a delay of a receive channel of any receiver of the board;

    receiving, by the board from the upper level or lower level board, an amplitude, a phase and a delay, which are based on the receiver correction reference signal, of a receive channel of a receiver of the upper level or lower level board;

    calculating, by the board, an amplitude difference, a phase difference and a delay difference between a receive channel of any receiver of the board and the receive channel of the upper level or lower level board; and

    correcting, by the board, the amplitude, the phase and the delay of the receive channel of the board according to the calculated differences, so as to keep consistent with the amplitude, the phase and the delay of the receive channel of the receiver of the upper level or lower level board;

    wherein the receiving, by the board, a receiver correction reference signal from an upper level or lower level board connected to the board comprises:
    conducting, by a switch unit (53) inside the board, a path on which a cascade port (51), cascaded to the upper level or lower level board, of the board is located, and receiving the receiver correction reference signal from the upper level or lower level board by using the conducted cascade port.


     
    10. The method for receive channel correction between boards according to claim 9, the calculating, by the board according to the receiver correction reference signal received from the upper level or lower level board, an amplitude, a phase and a delay of a receive channel of any receiver of the board comprises:
    calculating, by a correction calculation unit (27) of the board according to coupled receiver correction reference signals received by a baseband unit of the board from any receiver of the board, the amplitude, the phase and the delay of the receive channel of the board, wherein the receiver correction reference signals are received from the upper level or lower level board.
     
    11. The method for receive channel correction between boards according to claim 10, wherein the receiving, by the board from the upper level or lower level board, an amplitude, a phase and a delay, which are based on the receiver correction reference signal, of a receive channel of a receiver of the upper level or lower level board comprises:
    receiving, by the board from the upper level or lower level board by using the central data processing unit, the amplitude, the phase and the delay, which are based on the receiver correction reference signal, of the receive channel of the upper level or lower level board.
     
    12. The method for receive channel correction between boards according to claim 11, wherein the calculating, by the board, an amplitude difference, a phase difference and a delay difference between a receive channel of any receiver of the board and the receive channel of the upper level or lower level board comprises:
    calculating, by the correction calculation unit of the board (27), the amplitude difference, the phase difference and the delay difference between the receive channel of any receiver of the board and the receive channel of the upper level or lower level board.
     
    13. The method for receive channel correction between boards according to claim 12, wherein
    the correcting, by the board, the amplitude, the phase and the delay of the receive channel of the board according to the calculated differences, so as to keep consistent with the amplitude, the phase and the delay of the receive channel of the receiver of the upper level or lower level board comprises:
    correcting, by the baseband unit (26) of the board, the amplitude, the phase and the delay of the receive channel of the board according to the calculated differences, so as to keep consistent with the amplitude, the phase and the delay of the receive channel of the receiver of the upper level or lower level board.
     
    14. The method for receive channel correction between boards according to any one of claims 9 to 13, after the correcting, by the board, the amplitude, the phase and the delay of the receive channel of the board according to the calculated differences, further comprising:
    sending, by the board, a receiver correction reference signal to the upper level or lower level board connected to the board.
     


    Ansprüche

    1. Platine (1), umfassend: eine Basisbandeinheit (20), mehrere Sender (22), mehrere Empfänger (23), eine Mehrantennenanordnung (21), einen Korrektur-Sender-Empfänger (26) und eine Korrekturberechnungseinheit (27), wobei die Platine ferner umfasst: einen bidirektionalen Koppler (24) und einen Kombinierer-Splitter (25),
    wobei
    der bidirektionale Koppler (24) separat mit den mehreren Sendern, den mehreren Empfängern und dem Kombinierer-Splitter verbunden ist und zum Koppeln von Hochfrequenzsignalen, die von den mehreren Sendern abgegeben werden, und dann zum Übertragen der gekoppelten Hochfrequenzsignale an den Kombinierer-Splitter und zum Koppeln von Empfängerkorrektur-Referenzsignalen, die durch Durchführen einer Teilung durch den Kombinierer-Splitter erhalten wurden, ausgelegt ist und dann die gekoppelten Empfängerkorrektur-Referenzsignale an die mehreren Empfänger sendet; und
    der Kombinierer-Splitter (25) separat mit dem bidirektionalen Koppler (24) und dem Korrektur-Sender-Empfänger verbunden ist und zum Kombinieren von Sender-Hochfrequenzsignalen, die durch den bidirektionalen Koppler gekoppelt sind, und zum anschließenden Übertragen der kombinierten Sender-Hochfrequenzsignale an den Korrektur-Sender-Empfänger und zum Teilen eines vom Korrektur-Sender-Empfänger gesendeten Empfängerkorrektur-Referenzsignals ausgelegt ist und dann Empfängerkorrektur-Referenzsignale sendet, die durch Teilung an den bidirektionalen Koppler erhalten wurden; wobei die Platine ferner umfasst:

    eine Dienstdatenschnittstelle, die zum Verbinden der Platine und einer zentralen Datenverarbeitungseinheit ausgelegt ist; und

    einen Kaskadenanschluss (51), der zum Kaskadieren der Platine und anderer Platinen auf der zentralen Datenverarbeitungseinheit ausgelegt ist, um eine ringförmige Topologie zu bilden;

    wobei der Kaskadenanschluss umfasst:

    zwei Kaskadenanschlüsse, die getrennt mit den Kaskadenanschlüssen einer oberen und einer unteren Platine in der ringförmigen Topologie verbunden sind; und

    die Platine (1) ferner umfasst:

    eine Schalteinheit (53), die zum Steuern des Verbindens/Trennens eines Pfades zwischen dem Kombinierer-Splitter und dem Korrektur-Sender-Empfänger ausgelegt ist; zum Steuern des Verbindens/Trennens eines auf die obere Platine kaskadierten Kaskadenanschlusses der Platine, wobei der auf die obere Platine kaskadierte Kaskadenanschluss zum Senden eines Empfängerkorrektur-Referenzsignals an die obere Platine oder zum Empfangen eines Sender-Hochfrequenzsignals von der oberen Platine ausgelegt ist; und Steuern des Verbindens/Trennens eines auf die untere Platine kaskadierten Kaskadenanschlusses (51) der Platine, wobei der auf die untere Platine kaskadierte Kaskadenanschluss zum Senden eines Sender-Hochfrequenzsignals der Platine an die untere Platine oder zum Empfangen eines Empfängerkorrektur-Referenzsignals von der unteren Platine ausgelegt ist,

    wobei die Platine ferner zum Berechnen einer Amplitudendifferenz, einer Phasendifferenz und einer Verzögerungsdifferenz zwischen einem Übertragungskanal der Platine und einem Übertragungskanal der oberen oder unteren Platine gemäß den gekoppelten Sender-Hochfrequenzsignalen, die von der oberen oder unteren Platine empfangen werden, ausgelegt ist; und zum Korrigieren des Übertragungskanals der Platine gemäß einem Berechnungsergebnis, um eine Amplitude, eine Phase und eine Verzögerung des Übertragungskanals der Platine zu ermöglichen, um mit einer Amplitude, einer Phase und einer Verzögerung des Übertragungskanals der oberen bzw. unteren Platine in Einklang zu bleiben; und

    gemäß dem von der oberen oder unteren Platine empfangenen Empfängerkorrektur-Referenzsignal eine Amplitude, eine Phase und eine Verzögerung eines Empfangskanals eines beliebigen Empfängers der Platine zu berechnen; und dann Empfangen von der oberen oder unteren Platine eine Amplitude, eine Phase und eine Verzögerung, die auf dem Empfängerkorrektur-Referenzsignal basieren, eines Empfangskanals eines Empfängers der oberen oder unteren Platine; und um eine Amplitudendifferenz, eine Phasendifferenz und eine Verzögerungsdifferenz zwischen einem Empfangskanal eines beliebigen Empfängers der Platine und dem Empfangskanal der oberen oder unteren Platine zu berechnen; und die Amplitude, die Phase und die Verzögerung des Empfangskanals der Platine gemäß den berechneten Differenzen zu korrigieren, um mit der Amplitude, der Phase und der Verzögerung des Empfangskanals des Empfängers der oberen oder unteren Platine in Einklang zu bleiben.


     
    2. Platine nach Anspruch 1, wobei die beiden Kaskadenanschlüsse mit den Kaskadenanschlüssen der oberen Platine und der unteren Platine unter Verwendung eines Hochfrequenzkabels verbunden sind.
     
    3. Drahtloses Kommunikationssystem, umfassend eine zentrale Datenverarbeitungseinheit (41) und mindestens eine mit der zentralen Datenverarbeitungseinheit verbundene Platine (1), wobei die Platine die Platine nach Anspruch 1 oder 2 ist und die mindestens eine Platine zum Durchführen einer Datenkommunikation mit der zentralen Datenverarbeitungseinheit unter Verwendung einer Dienstdatenschnittstelle ausgelegt ist.
     
    4. Verfahren zur Übertragungskanalkorrektur zwischen Platinen in einem drahtlosen Kommunikationssystem, wobei das drahtlose Kommunikationssystem eine zentrale Datenverarbeitungseinheit (41) und mindestens eine mit der zentralen Datenverarbeitungseinheit verbundene Platine (1) umfasst, wobei die Platine zum Durchführen einer Datenkommunikation mit der zentralen Datenverarbeitungseinheit unter Verwendung einer Dienstdatenschnittstelle ausgelegt ist, wobei die Platine ferner umfasst:

    eine Dienstdatenschnittstelle, die zum Verbinden der Platine und einer zentralen Datenverarbeitungseinheit ausgelegt ist; und

    einen Kaskadenanschluss (51), der zum Kaskadieren der Platine und anderer Platinen auf der zentralen Datenverarbeitungseinheit ausgelegt ist, um eine ringförmige Topologie zu bilden;

    wobei der Kaskadenanschluss umfasst:

    zwei Kaskadenanschlüsse, die getrennt mit den Kaskadenanschlüssen einer oberen und einer unteren Platine in der ringförmigen Topologie verbunden sind; und

    die Platine (1) ferner umfasst:
    eine Schalteinheit (53), die zum Steuern des Verbindens/Trennens eines Pfades zwischen dem Kombinierer-Splitter und dem Korrektur-Sender-Empfänger ausgelegt ist; zum Steuern des Verbindens/Trennens eines auf die obere Platine kaskadierten Kaskadenanschlusses der Platine, wobei der auf die obere Platine kaskadierte Kaskadenanschluss zum Senden eines Empfängerkorrektur-Referenzsignals an die obere Platine oder zum Empfangen eines Sender-Hochfrequenzsignals von der oberen Platine ausgelegt ist; und Steuern des Verbindens/Trennens eines auf die untere Platine kaskadierten Kaskadenanschlusses (51) der Platine, wobei der auf die untere Platine kaskadierte Kaskadenanschluss zum Senden eines Sender-Hochfrequenzsignals der Platine an die untere Platine oder zum Empfangen eines Empfängerkorrektur-Referenzsignals von der unteren Platine ausgelegt ist, und das Verfahren umfasst:

    Durchführen einer Sendekanalkorrektur innerhalb der Platine durch die Platine;

    Empfangen von gekoppelten Sender-Hochfrequenzsignalen von einer oberen oder unteren Platine der Platine durch die Platine;

    Berechnen einer Amplitudendifferenz, einer Phasendifferenz und einer Verzögerungsdifferenz zwischen einem Übertragungskanal der Platine und einem Übertragungskanal der oberen oder unteren Platine durch die Platine gemäß den gekoppelten Sender-Hochfrequenzsignalen, die von der oberen oder unteren Platine empfangen werden, und gekoppelten Sender-Hochfrequenzsignalen innerhalb der Platine; und

    Korrigieren des Übertragungskanals der Platine durch die Platine gemäß einem Berechnungsergebnis, um zu ermöglichen, dass eine Amplitude, eine Phase und eine Verzögerung des Übertragungskanals der Platine mit einer Amplitude, einer Phase und einer Verzögerung des Übertragungskanals der oberen bzw. unteren Platine in Einklang zu bleiben;

    wobei:
    das Empfangen von gekoppelten Sender-Hochfrequenzsignalen von einer oberen oder unteren Platine der Platine durch die Platine (1) umfasst:
    Leiten eines Pfades durch eine Schalteinheit (53) innerhalb der Platine, auf dem sich ein auf die obere oder untere Platine kaskadierter Kaskadenanschluss (51) der Platine befindet, und Empfangen des gekoppelten Sender-Hochfrequenzsignals von der oberen oder unteren Platine unter Verwendung des geleiteten Kaskadenanschlusses.


     
    5. Verfahren zur Sendekanalkorrektur zwischen Platinen nach Anspruch 4, wobei das Berechnen einer Amplitudendifferenz, einer Phasendifferenz und einer Verzögerungsdifferenz zwischen einem Sendekanal der Platine und einem Sendekanal der oberen oder unteren Platine durch die Platine gemäß dem gekoppelten Sender-Hochfrequenzsignal, das von der oberen oder unteren Platine und gekoppelten Sender-Hochfrequenzsignalen innerhalb der Platine empfangen wird, umfasst:

    Empfangen des gekoppelten Sender-Hochfrequenzsignals der oberen oder unteren Platine durch eine Korrekturberechnungseinheit (27) der Platine von dem von der Schalteinheit (53) durchgeführten Kaskadenanschluss unter Verwendung eines Korrektursender-Empfängers der Platine; und

    Berechnen der Amplitudendifferenz, der Phasendifferenz und der Verzögerungsdifferenz zwischen dem Sendekanal der Platine und dem Sendekanal der oberen oder unteren Platine durch die Korrekturberechnungseinheit (27) der Platine (1).


     
    6. Verfahren zur Sendekanalkorrektur zwischen Platinen nach Anspruch 5, wobei die Korrektur des Sendekanals der Platine gemäß einem Berechnungsergebnis durch die Platine umfasst:
    Korrigieren des Sendekanals der Platine durch eine Basisbandeinheit (26) der Platine gemäß dem Berechnungsergebnis der Korrekturberechnungseinheit (27) der Platine.
     
    7. Verfahren zur Sendekanalkorrektur zwischen Platinen nach einem der Ansprüche 4 bis 6, nach der Korrektur des Sendekanals der Platine gemäß einem Berechnungsergebnis durch die Platine, ferner umfassend:
    Senden der gekoppelten Sender-Hochfrequenzsignale durch die Platine (1) an die mit der Platine verbundene obere oder untere Platine.
     
    8. Verfahren zur Sendekanalkorrektur zwischen Platinen nach Anspruch 7, wobei das Senden von durch die Platine gekoppelten Sender-Hochfrequenzsignalen an die mit der Platine verbundene obere oder untere Platine umfasst:
    Leiten des Pfades, auf dem sich der Kaskadenanschluss (51), der auf die obere oder untere Platine der Platine kaskadiert ist, der Platine befindet, durch die Schalteinheit (53) der Platine und Senden des gekoppelten Sender-Hochfrequenzsignals der Platine an die obere oder untere Platine unter Verwendung des leitenden Kaskadenanschlusses.
     
    9. Verfahren zur Empfangskanalkorrektur zwischen Platinen in einem drahtlosen Kommunikationssystem, wobei das drahtlose Kommunikationssystem eine zentrale Datenverarbeitungseinheit (41) und mindestens eine mit der zentralen Datenverarbeitungseinheit verbundene Platine umfasst, wobei die Platine zum Durchführen einer Datenkommunikation mit der zentralen Datenverarbeitungseinheit unter Verwendung einer Dienstdatenschnittstelle ausgelegt ist, wobei die Platine ferner umfasst:

    eine Dienstdatenschnittstelle, die zum Verbinden der Platine mit einer zentralen Datenverarbeitungseinheit ausgelegt ist; und

    einen Kaskadenanschluss (51), der zum Kaskadieren der Platine und anderer Platinen auf der zentralen Datenverarbeitungseinheit ausgelegt ist, um eine ringförmige Topologie zu bilden;

    wobei der Kaskadenanschluss umfasst:

    zwei Kaskadenanschlüsse, die getrennt mit den Kaskadenanschlüssen einer oberen und einer unteren Platine in der ringförmigen Topologie verbunden sind; und

    die Platine (1) ferner umfasst:
    eine Schalteinheit (53), die zum Steuern des Verbindens/Trennens eines Pfades zwischen dem Kombinierer-Splitter und dem Korrektur-Sender-Empfänger ausgelegt ist; zum Steuern des Verbindens/Trennens eines auf die obere Platine kaskadierten Kaskadenanschlusses der Platine, wobei der auf die obere Platine kaskadierte Kaskadenanschluss zum Senden eines Empfängerkorrektur-Referenzsignals an die obere Platine oder zum Empfangen eines Sender-Hochfrequenzsignals von der oberen Platine ausgelegt ist; und Steuern des Verbindens/Trennens eines auf die untere Platine kaskadierten Kaskadenanschlusses (51) der Platine, wobei der auf die untere Platine kaskadierte Kaskadenanschluss zum Senden eines Sender-Hochfrequenzsignals der Platine an die untere Platine oder zum Empfangen eines Empfängerkorrektur-Referenzsignals von der unteren Platine ausgelegt ist, und das Verfahren umfasst:

    Durchführen einer Empfängerkanalkorrektur innerhalb der Platine durch die Platine;

    Empfangen eines Empfängerkorrektur-Referenzsignals von einer mit der Platine verbundenen oberen oder unteren Platine durch die Platine;

    Berechnen einer Amplitude, einer Phase und einer Verzögerung eines Empfangskanals eines beliebigen Empfängers der Platine durch die Platine gemäß dem von der Platine für die Empfängerkorrektur empfangenen Referenzsignal der oberen oder unteren Platine;

    Empfangen einer Amplitude, einer Phase und einer Verzögerung eines Empfangskanals eines Empfängers der oberen oder unteren Platine durch die Platine von der oberen oder unteren Platine, die auf dem Referenzsignal der Empfängerkorrektur basieren;

    Berechnen einer Amplitudendifferenz, einer Phasendifferenz und einer Verzögerungsdifferenz zwischen einem Empfangskanal eines beliebigen Empfängers der Platine und dem Empfangskanal der oberen oder unteren Platine durch die Platine; und

    Korrigieren der Amplitude, der Phase und der Verzögerung des Empfangskanals der Platine durch die Platine gemäß den berechneten Differenzen, um mit der Amplitude, der Phase und der Verzögerung des Empfangskanals des Empfängers der oberen oder unteren Platine in Einklang zu bleiben;

    wobei das Empfangen des Empfängerkorrektur-Referenzsignals von einer mit der Platine verbundenen oberen oder unteren Platine durch die Platine umfasst:
    Leiten eines Pfades, auf dem sich ein auf die obere oder untere Platine kaskadierter Kaskadenanschluss (51) der Platine befindet, durch eine Schalteinheit (53) innerhalb der Platine und Empfangen des Empfängerkorrektur-Referenzsignals von der oberen oder unteren Platine unter Verwendung des geleiteten Kaskadenanschlusses.


     
    10. Verfahren zur Empfangskanalkorrektur zwischen Platinen nach Anspruch 9, wobei das Berechnen einer Amplitude, einer Phase und einer Verzögerung eines Empfangskanals eines beliebigen Empfängers der Platine durch die Platine gemäß dem von der oberen oder unteren Platine empfangenen Empfängerkorrektur-Referenzsignal umfasst:
    Berechnen der Amplitude, der Phase und der Verzögerung des Empfangskanals der Platine durch eine Korrekturberechnungseinheit (27) der Platine gemäß gekoppelten Empfängerkorrektur-Referenzsignalen, die von einer Basisbandeinheit der Platine von einem beliebigen Empfänger der Platine empfangen werden, wobei die Empfängerkorrektur-Referenzsignale von der oberen oder unteren Platine empfangen werden.
     
    11. Verfahren zur Empfangskanalkorrektur zwischen Platine nach Anspruch 10, wobei das Empfangen einer Amplitude, einer Phase und einer Verzögerung eines Empfangskanals eines Empfängers der oberen oder unteren Platine durch die Platine von der oberen oder unteren Platine, die auf dem Empfängerkorrekturreferenzsignal basieren, umfasst:
    Empfangen der Amplitude, der Phase und der Verzögerung des Empfangskanals der oberen oder unteren Pegelplatine durch die Platine von der oberen oder unteren Pegelplatine unter Verwendung der zentralen Datenverarbeitungseinheit, die auf dem Referenzsignal der Empfängerkorrektur basieren.
     
    12. Verfahren zur Empfangskanalkorrektur zwischen Platinen nach Anspruch 11, wobei das Berechnen einer Amplitudendifferenz, einer Phasendifferenz und einer Verzögerungsdifferenz zwischen einem Empfangskanal eines beliebigen Empfängers der Platine und dem Empfangskanal der oberen oder unteren Platine durch die Platine umfasst:
    Berechnen der Amplitudendifferenz, der Phasendifferenz und der Verzögerungsdifferenz zwischen dem Empfangskanal eines beliebigen Empfängers der Platine und dem Empfangskanal der oberen oder unteren Platine durch die Korrekturberechnungseinheit der Platine (27).
     
    13. Verfahren zur Empfangskanalkorrektur zwischen Platinen nach Anspruch 12, wobei das Korrigieren der Amplitude, der Phase und der Verzögerung des Empfangskanals der Platine gemäß den berechneten Differenzen durch die Platine, um mit der Amplitude, der Phase und der Verzögerung des Empfangskanals des Empfängers der oberen oder unteren Platine in Einklang zu bleiben, umfasst:
    Korrigieren der Amplitude, der Phase und der Verzögerung des Empfangskanals der Platine gemäß den berechneten Differenzen durch die Basisbandeinheit (26) der Platine, um mit der Amplitude, der Phase und der Verzögerung des Empfangskanals des Empfängers der oberen oder unteren Platine in Einklang zu bleiben.
     
    14. Verfahren zur Empfangskanalkorrektur zwischen Platinen nach einem der Ansprüche 9 bis 13, nachdem durch die Platine die Amplitude, die Phase und die Verzögerung des Empfangskanals der Platine gemäß den berechneten Unterschieden korrigiert wurden, ferner umfassend:
    Senden eines Empfängerkorrektur-Referenzsignals durch die Platine an die mit der Platine verbundene obere oder untere Platine.
     


    Revendications

    1. Carte (1) comprenant : une unité en bande de base (20), de multiples émetteurs (22), de multiples récepteurs (23), un réseau d'antennes multiples (21), un émetteur-récepteur de correction (26) et une unité de calcul de correction (27), dans laquelle la carte comprend en outre : un coupleur bidirectionnel (24) et un combinateur-séparateur (25), dans laquelle
    le coupleur bidirectionnel (24) est connecté séparément aux multiples émetteurs, aux multiples récepteurs et au combinateur-séparateur, et configuré pour coupler les signaux de fréquences radio émis par les multiples émetteurs, puis émettre les signaux de fréquences radio couplés vers le combinateur-séparateur, et pour coupler les signaux de référence de correction de récepteur obtenus en effectuant une division par le combinateur-séparateur, puis envoyer les signaux de référence de correction de récepteur couplés aux multiples récepteurs ; et
    le combinateur-séparateur (25) est connecté séparément au coupleur bidirectionnel (24) et à l'émetteur-récepteur de correction, et configuré pour combiner des signaux de fréquences radio d'émetteur couplés par le coupleur bidirectionnel, puis émettre les signaux de fréquences radio d'émetteur combinés à l'émetteur-récepteur de correction, et pour diviser un signal de référence de correction de récepteur envoyé par l'émetteur-récepteur de correction, puis envoyer des signaux de référence de correction de récepteur obtenus en effectuant une division vers le coupleur bidirectionnel ; dans laquelle la carte comprend en outre :

    une interface de données de service, configurée pour connecter la carte et une unité centrale de traitement de données ; et

    un port en cascade (51), configuré pour monter en cascade la carte et d'autres cartes sur l'unité centrale de traitement de données afin de former une topologie en forme d'anneau ;

    dans laquelle le port en cascade comprend :

    deux ports en cascade, connectés séparément aux ports en cascade d'une carte de niveau supérieur et d'une carte de niveau inférieur dans la topologie en forme d'anneau ; et

    la carte (1) comprend en outre :

    une unité de commutation (53), configurée pour contrôler la connexion/déconnexion d'un chemin entre le combinateur-diviseur et l'émetteur-récepteur de correction ;

    contrôler la connexion/déconnexion d'un port en cascade, monté en cascade à la carte de niveau supérieur, de la carte, dans laquelle le port en cascade monté en cascade à la carte de niveau supérieur est configuré pour envoyer un signal de correction de référence de récepteur à la carte de niveau supérieure ou pour recevoir un signal de fréquences radio d'émetteur à partir de la carte de niveau supérieur ; et contrôler la connexion/déconnexion d'un port en cascade (51), monté en cascade à la carte de niveau inférieur, de la carte, dans laquelle le port en cascade connecté en cascade à la carte de niveau inférieur est configuré pour envoyer un signal de fréquences radio d'émetteur de la carte à la carte de niveau inférieur ou pour recevoir un signal de correction de référence de récepteur de la carte de niveau inférieur,

    la carte étant en outre configurée pour calculer en fonction des signaux de fréquences radio d'émetteur couplés reçus de la carte de niveau supérieur ou inférieur et des signaux de fréquences radio d'émetteur couplés à l'intérieur de la carte, une différence d'amplitude, une différence de phase et une différence de retard entre un canal d'émission de la carte et un canal d'émission de la carte de niveau supérieur ou inférieur ; et corriger le canal d'émission de la carte en fonction d'un résultat de calcul, afin de permettre à une amplitude, une phase et un retard du canal d'émission de la carte de rester cohérents avec une amplitude, une phase et un retard du canal d'émission respectivement de la carte de niveau supérieur ou inférieur ; et calculer, en fonction du signal de référence de correction de récepteur reçu de la carte de niveau supérieur ou inférieur, une amplitude, une phase et un retard d'un canal de réception de tout récepteur de la carte ; et recevoir, de la carte de niveau supérieur ou inférieur, une amplitude, une phase et un retard, basés sur le signal de référence de correction de récepteur, d'un canal de réception d'un récepteur de la carte de niveau supérieur ou inférieur ; et pour calculer une différence d'amplitude, une différence de phase et une différence de retard entre un canal de réception de tout récepteur de la carte et le canal de réception de la carte de niveau supérieur ou inférieur ; et corriger l'amplitude, la phase et le retard du canal récepteur de la carte en fonction des différences calculées, afin de rester cohérent avec l'amplitude, la phase et le retard du canal de réception du récepteur de la carte de niveau supérieur ou de niveau inférieur.


     
    2. Carte selon la revendication 1, dans laquelle les deux ports en cascade sont connectés aux ports en cascade de la carte de niveau supérieur et de la carte de niveau inférieur en utilisant un câble à fréquence radio.
     
    3. Système de communications sans fil, comprenant une unité centrale de traitement de données (41) et au moins une carte (1) connectée à l'unité centrale de traitement de données, dans lequel la carte est la carte selon la revendication 1 ou 2, et la ou les cartes sont configurées pour effectuer une communication de données avec l'unité de traitement de données centrale en utilisant une interface de données de service.
     
    4. Procédé de correction d'un canal d'émission entre cartes dans un système de communications sans fil, dans lequel le système de communications sans fil comprend une unité centrale de traitement de données (41) et au moins une carte (1) connectée à l'unité centrale de traitement de données, la carte est configurée pour effectuer une communication de données avec l'unité centrale de traitement de données en utilisant une interface de données de service, dans lequel la carte comprend en outre :

    une interface de données de service, configurée pour connecter la carte et une unité centrale de traitement de données ; et

    un port en cascade (51), configuré pour monter en cascade la carte et d'autres cartes sur l'unité centrale de traitement de données afin de former une topologie en forme d'anneau ;

    dans lequel le port en cascade comprend :

    deux ports en cascade, connectés séparément aux ports en cascade d'une carte de niveau supérieur et d'une carte de niveau inférieur dans la topologie en forme d'anneau ; et

    la carte (1) comprend en outre :

    une unité de commutation (53), configurée pour contrôler la connexion/déconnexion d'un chemin entre le combinateur-diviseur et l'émetteur-récepteur de correction ;

    contrôler la connexion/déconnexion d'un port en cascade, monté en cascade à la carte de niveau supérieur, de la carte, dans lequel le port en cascade monté en cascade à la carte de niveau supérieur est configuré pour envoyer un signal de correction de référence de récepteur à la carte de niveau supérieure ou pour recevoir un signal de fréquences radio d'émetteur à partir de la carte de niveau supérieur ; et contrôler la connexion/déconnexion d'un port en cascade (51), monté en cascade à la carte de niveau inférieur, de la carte, dans lequel le port en cascade monté en cascade à la carte de niveau inférieur est configuré pour envoyer un signal de fréquences radio d'émetteur de la carte à la carte de niveau inférieur ou pour recevoir un signal de correction de référence de récepteur de la carte de niveau inférieur, et le procédé comprend les étapes consistant à :

    effectuer, par la carte, la correction du canal d'émission à l'intérieur de la carte ;

    recevoir, par la carte, des signaux de fréquences radio d'émetteur couplés provenant d'une carte de niveau supérieur ou inférieur de la carte ;

    calculer, par la carte, en fonction des signaux de fréquences radio d'émetteur couplés reçus de la carte de niveau supérieur ou inférieur et des signaux de fréquences radio d'émetteur couplés à l'intérieur de la carte, une différence d'amplitude, une différence de phase et une différence de retard entre un canal d'émission de la carte et un canal d'émission de la carte de niveau supérieur ou inférieur ; et

    corriger, par la carte, le canal d'émission de la carte en fonction d'un résultat de calcul, afin de permettre à une amplitude, une phase et un retard du canal d'émission de la carte de rester cohérents avec une amplitude, une phase et un retard du canal d'émission respectivement de la carte de niveau supérieur ou inférieur ;

    dans lequel

    la réception, par la carte (1), des signaux de fréquences radio d'émetteur couplés provenant d'une carte de niveau supérieur ou inférieur de la carte comprend les étapes consistant à :
    établir, par une unité de commutation (53) à l'intérieur de la carte, un chemin sur lequel se trouve un port en cascade (51), monté en cascade vers la carte de niveau supérieur ou inférieur, de la carte, et recevoir le signal de fréquences radio d'émetteur couplé de la carte de niveau supérieur ou de niveau inférieur en utilisant le port en cascade établi.


     
    5. Procédé de correction d'un canal d'émission entre cartes selon la revendication 4, dans lequel
    le calcul par la carte, en fonction du signal à fréquence radio d'émetteur couplé reçu de la carte de niveau supérieur ou inférieur et des signaux de fréquences radio d'émetteur couplés à l'intérieur de la carte, une différence d'amplitude, une différence de phase et une différence de retard entre un canal d'émission de la carte et un canal d'émission de la carte de niveau supérieur ou inférieur, comprend :

    recevoir, par une unité de calcul de correction (27) de la carte depuis le port en cascade établi par l'unité de commutation (53), le signal à fréquence radio de l'émetteur couplé de la carte de niveau supérieur ou inférieur en utilisant un émetteur-récepteur de correction de la carte; et

    calculer, par l'unité de calcul de correction (27) de la carte (1), la différence d'amplitude, la différence de phase et la différence de retard entre le canal d'émission de la carte et le canal d'émission de la carte de niveau supérieur ou inférieur.


     
    6. Procédé de correction d'un canal d'émission entre cartes selon la revendication 5, dans lequel la correction, par la carte, du canal d'émission de la carte en fonction d'un résultat de calcul, comprend l'étape consistant à :
    corriger, par une unité en bande de base (26) de la carte, le canal d'émission de la carte en fonction du résultat du calcul de l'unité de calcul de correction (27) de la carte.
     
    7. Procédé de correction d'un canal d'émission entre cartes selon l'une quelconque des revendications 4 à 6, après la correction, par la carte, du canal d'émission de la carte en fonction d'un résultat de calcul, comprenant en outre :
    l'envoi, par la carte (1), des signaux de fréquences radio d'émetteur couplés à la carte de niveau supérieur ou inférieur connectée à la carte.
     
    8. Procédé de correction d'un canal d'émetteur entre cartes selon la revendication 7, dans lequel l'envoi, par la carte, de signaux de fréquences radio d'émetteur couplés à la carte de niveau supérieur ou inférieur connectée à la carte comprend les étapes consistant à :
    établir, par une unité de commutation (53) de la carte, un chemin sur lequel se trouve le port en cascade (51), monté en cascade vers la carte de niveau supérieur ou inférieur, de la carte, et envoyer le signal de fréquences radio de l'émetteur couplé de la carte à la carte de niveau supérieur ou de niveau inférieur en utilisant le port en cascade ainsi établi.
     
    9. Procédé de correction d'un canal de réception entre cartes dans un système de communications sans fil, dans lequel le système de communications sans fil comprend une unité centrale de traitement de données (41) et au moins une carte connectée à l'unité centrale de traitement de données, la carte est configurée pour effectuer une communication de données avec l'unité centrale de traitement de données en utilisant une interface de données de service, dans lequel la carte comprend en outre :

    une interface de données de service, configurée pour connecter la carte et une unité centrale de traitement de données ; et

    un port en cascade (51), configuré pour mettre en cascade la carte et d'autres cartes sur l'unité centrale de traitement de données afin de former une topologie en forme d'anneau ;

    dans lequel le port en cascade comprend :

    deux ports en cascade, connectés séparément aux ports en cascade d'une carte de niveau supérieur et d'une carte de niveau inférieur dans la topologie en forme d'anneau ; et

    la carte (1) comprend en outre : une unité de commutation (53), configurée pour contrôler la connexion/déconnexion d'un chemin entre le combinateur-diviseur et l'émetteur-récepteur de correction ; contrôler la connexion/déconnexion d'un port en cascade, monté en cascade à la carte de niveau supérieur, de la carte, dans lequel le port en cascade monté en cascade à la carte de niveau supérieur est configuré pour envoyer un signal de correction de référence de récepteur à la carte de niveau supérieur ou pour recevoir un signal de fréquences radio d'émetteur à partir de la carte de niveau supérieur ; et contrôler la connexion/déconnexion d'un port en cascade (51), monté en cascade à la carte de niveau inférieur, de la carte, dans lequel le port en cascade monté en cascade à la carte de niveau inférieur est configuré pour envoyer un signal de fréquences radio d'émetteur de la carte à la carte de niveau inférieur ou pour recevoir un signal de correction de référence de récepteur de la carte de niveau inférieur, et le procédé comprend les étapes consistant à :

    effectuer, par la carte, la correction du canal de réception à l'intérieur de la carte ;

    recevoir, par la carte, un signal de référence de correction de récepteur provenant d'une carte de niveau supérieur ou inférieur connectée à la carte ;

    calculer, par la carte, en fonction du signal de référence de correction de récepteur reçu de la carte de niveau supérieur ou inférieur, une amplitude, une phase et un retard d'un canal de réception de tout récepteur de la carte ;

    recevoir, par la carte en provenance de la carte de niveau supérieur ou inférieur, une amplitude, une phase et un retard, basés sur le signal de référence de correction de récepteur, d'un canal de réception d'un récepteur de la carte de niveau supérieur ou inférieur ;

    calculer, par la carte, une différence d'amplitude, une différence de phase et une différence de retard entre un canal de réception de tout récepteur de la carte et le canal de réception de la carte de niveau supérieur ou inférieur ; et

    corriger, par la carte, l'amplitude, la phase et le retard du canal récepteur de la carte en fonction des différences calculées, afin de rester cohérent avec l'amplitude, la phase et le retard du canal de réception du récepteur de la carte de niveau supérieur ou de niveau inférieur ;

    dans lequel la réception, par la carte, d'un signal de référence de correction de récepteur provenant d'une carte de niveau supérieur ou inférieur connectée à la carte comprend les étapes consistant à :
    établir, par une unité de commutation (53) à l'intérieur de la carte, un chemin sur lequel se trouve un port en cascade (51), monté en cascade vers la carte de niveau supérieur ou inférieur, de la carte, et recevoir le signal de référence de correction de récepteur provenant de la carte de niveau supérieur ou de niveau inférieur en utilisant le port en cascade établi.


     
    10. Procédé de correction d'un canal de réception entre cartes selon la revendication 9, dans lequel le calcul, par la carte, en fonction du signal de référence de correction de récepteur reçu de la carte de niveau supérieur ou inférieur, d'une amplitude, d'une phase et d'un retard d'un canal de réception de tout récepteur de la carte comprend les étapes consistant à :
    calculer, par une unité de calcul de correction (27) de la carte en fonction de signaux de référence de correction de récepteur couplés reçus par une unité en bande de base de la carte en provenance de tout récepteur de la carte, l'amplitude, la phase et le retard du canal récepteur de la carte, dans lequel les signaux de référence de correction de récepteur sont reçus de la carte de niveau supérieur ou inférieur.
     
    11. Procédé de correction d'un canal de réception entre cartes selon la revendication 10, dans lequel
    la réception, par la carte en provenance de la carte de niveau supérieur ou inférieur, d'une amplitude, d'une phase et d'un retard, basés sur le signal de référence de correction de récepteur, d'un canal de réception d'un récepteur de la carte de niveau supérieur ou inférieur comprend l'étape consistant à :
    recevoir, par la carte en provenance de la carte de niveau supérieur ou inférieur, à l'aide de l'unité centrale de traitement de données, l'amplitude, la phase et le retard, basés sur le signal de référence de correction de récepteur, du canal récepteur de la carte de niveau supérieur ou inférieur.
     
    12. Procédé de correction d'un canal de réception entre cartes selon la revendication 11, dans lequel
    le calcul, par la carte, d'une différence d'amplitude, d'une différence de phase et d'une différence de retard entre un canal de réception de tout récepteur de la carte et
    le canal de réception de la carte de niveau supérieur ou inférieur comprend l'étape consistant à :
    calculer, par l'unité de calcul de correction (27) de la carte, la différence d'amplitude, la différence de phase et la différence de retard entre le canal de réception de tout récepteur de la carte et le canal de réception de la carte de niveau supérieur ou inférieur.
     
    13. Procédé de correction d'un canal de réception entre cartes selon la revendication 12, dans lequel
    la correction, par la carte, de l'amplitude, de la phase et du retard du canal récepteur de la carte en fonction des différences calculées, de manière à rester cohérent avec l'amplitude, la phase et le retard du canal de réception du récepteur de la carte de niveau supérieur ou inférieur comprend l'étape consistant à :
    corriger, par l'unité en bande de base (26) de la carte, l'amplitude, la phase et le retard du canal récepteur de la carte en fonction des différences calculées, de manière à rester cohérent avec l'amplitude, la phase et le retard du canal de réception du récepteur de la carte de niveau supérieur ou inférieur.
     
    14. Procédé de correction d'un canal de réception entre cartes selon l'une quelconque des revendications 9 à 13, après la correction, par la carte, de l'amplitude, de la phase et du retard du canal récepteur de la carte en fonction des différences calculées, comprenant en outre :
    l'envoi, par la carte, d'un signal de référence de correction de récepteur à la carte de niveau supérieur ou inférieur connectée à la carte.
     




    Drawing
































    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description