(19)
(11)EP 3 054 889 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
24.06.2020 Bulletin 2020/26

(21)Application number: 14786718.8

(22)Date of filing:  16.09.2014
(51)Int. Cl.: 
A61B 90/00  (2016.01)
A61M 25/01  (2006.01)
A61M 25/09  (2006.01)
A61B 17/00  (2006.01)
(86)International application number:
PCT/IB2014/064538
(87)International publication number:
WO 2015/044832 (02.04.2015 Gazette  2015/13)

(54)

MULTIPURPOSE LUMEN DESIGN FOR OPTICAL SHAPE SENSING

MULTIFUNKTIONALE LUMENGESTALTUNG FÜR OPTISCHE FORMMESSUNG

CONCEPTION DE LUMIÈRE MULTI-USAGE POUR DÉTECTION DE FORMES OPTIQUES


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 30.09.2013 US 201361884161 P

(43)Date of publication of application:
17.08.2016 Bulletin 2016/33

(73)Proprietor: Koninklijke Philips N.V.
5656 AG Eindhoven (NL)

(72)Inventors:
  • FLEXMAN, Molly Lara
    5656 AE Eindhoven (NL)
  • NOONAN, David Paul
    5656 AE Eindhoven (NL)

(74)Representative: Philips Intellectual Property & Standards 
High Tech Campus 5
5656 AE Eindhoven
5656 AE Eindhoven (NL)


(56)References cited: : 
WO-A1-2011/059889
WO-A2-2008/131303
US-A1- 2013 204 124
WO-A1-2014/049519
JP-A- 2009 504 313
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    BACKGROUND:


    Technical Field



    [0001] This disclosure relates to optical shape sensing instruments and more particularly to a lumen for use with shape sensing optical fibers which protects and permits rotation of the optical fibers.

    Description of the Related Art



    [0002] Optical shape sensing (OSS) uses light along a multicore optical fiber for device localization and navigation during surgical intervention. Shape sensing based on fiber optics exploits the inherent backscatter in a conventional optical fiber. The principle involved makes use of distributed strain measurement in the optical fiber using characteristic Rayleigh backscatter or controlled grating patterns.

    [0003] Integrating an optical shape sensing fiber into a medical device can provide localization information for use during navigation inside the body. Many interventional devices have small cross-sectional footprints that limit the amount of space available for including an optical fiber. In addition, the manner in which the fiber is integrated into the device can affect both the performance of the OSS and the device.

    [0004] WO Publication No. 2014/049519; WO Publication No. 2008/131303; U.S. Publication No. 2013/204124; WO Publication No. 2011/059889; and JP Publication No. 2009/504313 disclose systems which concern optical shape sensors In WO2008131303 a catheter with control wires and optical fibers with Bragg gratings is disclosed. The optical fibers run in dedicated lumina of the catheter, while the control wires are contained in other dedicated lumina.

    SUMMARY



    [0005] The invention is defined in claim 1 with preferred embodiments being described in the dependent claims.

    [0006] A shape sensing system includes a shape sensing enabled instrument as defined above and a console that is configured to receive optical signals from the one or more optical fibers and interpret the optical signals to determine a shape of the instrument.

    [0007] These and other objects, features and advantages of the present disclosure will become apparent from the following detailed description of illustrative embodiments thereof, which is to be read in connection with the accompanying drawings.

    BRIEF DESCRIPTION OF DRAWINGS



    [0008] This disclosure will present in detail the following description of preferred embodiments with reference to the following figures wherein:

    FIG. 1 is a block/flow diagram showing a shape sensing system which employs a mechanical member for receiving a fiber lumen or channel therein;

    FIG. 2 is a cross-sectional view of a shape sensing enabled guide wire having a fiber lumen in a support member in accordance with one embodiment;

    FIG. 3 is a cross-sectional view of a shape sensing enabled catheter having a fiber lumen in a hollow support member in accordance with another embodiment;

    FIG. 4 is a cross-sectional view of a shape sensing enabled catheter having a fiber lumen in a hollow pull wire member in accordance with another embodiment; and

    FIG. 5 is a block/flow diagram showing a method for sensing a shape in a shape sensing enabled instrument in accordance with an illustrative embodiment.


    DETAILED DESCRIPTION OF EMBODIMENTS



    [0009] In accordance with the present principles, an optical fiber carrying lumen is configured to improve shape sensing performance by dampening vibrations from an external environment, providing a smooth, continuous and pinch-free lumen, and permitting the fiber to slide freely within the lumen. Shape sensing performance can also be improved by decoupling torque of the device from the twisting of the fiber.

    [0010] In accordance with the present principles, a multi-purpose lumen design is employed for interventional devices that resolve at least three challenges in fiber integration. These include limited cross-sectional area available in the device, protection and isolation of the fiber from the external environment, and decoupling of external torqueing from fiber twist.

    [0011] Limited cross-sectional area is available inside many interventional devices. A significant challenge is presented to create an optimal lumen for a fiber given the limited space available in the cross-sectional footprint of interventional devices. For example, fiber dimensions are on the order of hundreds of microns on an outer diameter. In many cases, interventional devices include a guide-wire channel, one or multiple support rods, structural braiding and pull wires (in the case of actuated devices) within a small cross-sectional area (e.g., about 2.1 mm in the case of a 6 French catheter). Present embodiments overcome this space limitation by configuring existing features of medical devices to create a lumen for the optical shape sensing fiber. In some cases, the optical shape sensing performance improves with a larger diameter lumen.

    [0012] Protection and isolation from the external environment are needed in an OSS, which employs a calculation of strain along a multicore optical fiber to reconstruct the shape along the fiber. As such, the shape stability and reconstruction accuracy are susceptible to changes in tension, twist, vibration, and pinching. Integrating this technology into interventional devices used in a dynamic environment, such as that of vascular navigation, can cause significant degradation of OSS performance due to at least the following effects: 1) longitudinal stick-slip behavior (tension) due to friction between the shape sensing fiber and the lumen wall during curvature induced path length changes; and 2) rotational stick-slip due to friction between the fiber and the lumen wall during torqueing of the device; 3) pinching of the fiber due to ovalization of the lumen due to bending of the device to accommodate the anatomy; 4) vibration due to wall scraping of the tip of the device, clinician handling of the instrument, blood flow around the device, heart beat motion, etc.

    [0013] The lumen that includes the optical fiber within the device needs to be carefully designed to reduce the negative effects of vibration, pinching, twisting and friction on the fiber. An optimal lumen for the optical shape sensing fiber preferably includes a large lumen diameter; a structured lumen cross-section for reduction of lumen ovalization during bending, vibration dampening effects and a continuous lumen with no transitions or pinch points.

    [0014] With regard to decoupling of twist, the accuracy of the optical shape sensing position degrades with increased twist along the length of the sensor. Since torqueing of medical instruments is common in many procedures, there is considerable value in designing devices to decouple or reduce the torqueing of the device from twisting of the sensors. With careful selection of the lumen position and properties, it is possible to decouple the instrument torqueing from the twisting of the fiber.

    [0015] It should be understood that the present invention will be described in terms of medical instruments; however, the teachings of the present invention are much broader and are applicable to any fiber optic instruments. In some embodiments, the present principles are employed in tracking or analyzing complex biological or mechanical systems. In particular, the present principles are applicable to internal tracking procedures of biological systems, procedures in all areas of the body such as the lungs, gastro-intestinal tract, excretory organs, blood vessels, etc. The elements depicted in the FIGS. may be implemented in various combinations of hardware and software and provide functions which may be combined in a single element or multiple elements.

    [0016] The functions of the various elements shown in the FIGS. can be provided through the use of dedicated hardware as well as hardware capable of executing software in association with appropriate software. When provided by a processor, the functions can be provided by a single dedicated processor, by a single shared processor, or by a plurality of individual processors, some of which can be shared. Moreover, explicit use of the term "processor" or "controller" should not be construed to refer exclusively to hardware capable of executing software, and can implicitly include, without limitation, digital signal processor ("DSP") hardware, read-only memory ("ROM") for storing software, random access memory ("RAM"), non-volatile storage, etc.

    [0017] Moreover, all statements herein reciting principles, aspects, and embodiments of the invention, as well as specific examples thereof, are intended to encompass both structural and functional equivalents thereof. Additionally, it is intended that such equivalents include both currently known equivalents as well as equivalents developed in the future (i.e., any elements developed that perform the same function, regardless of structure). Thus, for example, it will be appreciated by those skilled in the art that the block diagrams presented herein represent conceptual views of illustrative system components and/or circuitry embodying the principles of the invention. Similarly, it will be appreciated that any flow charts, flow diagrams and the like represent various processes which may be substantially represented in computer readable storage media and so executed by a computer or processor, whether or not such computer or processor is explicitly shown.

    [0018] Furthermore, embodiments of the present invention may make use of a computer program product accessible from a computer-usable or computer-readable storage medium providing program code for use by or in connection with a computer or any instruction execution system. For the purposes of this description, a computer-usable or computer readable storage medium can be any apparatus that may include, store, communicate, propagate, or transport the program for use by or in connection with the instruction execution system, apparatus, or device. The medium can be an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system (or apparatus or device) or a propagation medium. Examples of a computer-readable medium include a semiconductor or solid state memory, magnetic tape, a removable computer diskette, a random access memory (RAM), a read-only memory (ROM), a rigid magnetic disk and an optical disk. Current examples of optical disks include compact disk - read only memory (CD-ROM), compact disk - read/write (CD-R/W), Blu-Ray™ and DVD.

    [0019] Referring now to the drawings in which like numerals represent the same or similar elements and initially to FIG. 1, a system 100 for using shape sensing enabled devices is illustratively shown in accordance with one embodiment. System 100 may include a workstation or console 112 from which a procedure is supervised and/or managed.

    [0020] Workstation 112 preferably includes one or more processors 114 and memory 116 for storing programs and applications. Memory 116 may store an optical sensing module 115 configured to interpret optical feedback signals from a shape sensing device or system 104. Optical sensing module 115 is configured to use/interpret the optical signal feedback (and any other feedback, e.g., electromagnetic (EM) tracking) to reconstruct deformations, deflections and other changes associated with a medical device or optical shape sensing enabled device 102 and/or its surrounding region. The medical device 102 may include a catheter, a guidewire, a probe, an endoscope, a robot, an electrode, a filter device, a balloon device, or other medical component, etc.

    [0021] The present principles reconfigure existing structures in the medical device 102 to integrate a fiber for optical shape sensing. Specifically, placing the optical sensor inside of the support rods or pull wires within a device not only optimizes the use of the available cross section, but can also provide a suitable lumen for the fiber that will dampen vibration, have structural support to prevent ovalization and pinching of the fiber, and can provide more room for the fiber (thereby increasing the diameter for the lumen including the optical sensor). In some cases the fiber can be rotationally isolated from external torqueing through a multi-purpose design of the lumen.

    [0022] The shape sensing enabled instrument 104 includes a flexible longitudinal body 103 including an outer surface which encapsulates interior features. The interior features include an optical fiber lumen 105 configured to receive one or more optical fibers for optical shape sensing, and a mechanical member 107 forming a hollow extending longitudinally down the body. The mechanical member 107 is configured to receive the optical fiber lumen therein to permit rotation of an optical fiber and to protect the optical fiber.

    [0023] The shape sensing system 104 on device 102 includes one or more optical fibers 126 which are coupled to the device 102 in a set pattern or patterns. The optical fibers 126 connect to the workstation 112 through cabling 127. The cabling 127 may include fiber optics, electrical connections, other instrumentation, etc., as needed.

    [0024] Shape sensing system 104 with fiber optics may be based on fiber optic Bragg grating sensors. A fiber optic Bragg grating (FBG) is a short segment of optical fiber that reflects particular wavelengths of light and transmits others. This is achieved by adding a periodic variation of the refractive index in the fiber core, which generates a wavelength-specific dielectric mirror. A fiber Bragg grating can therefore be used as an inline optical filter to block certain wavelengths, or as a wavelength-specific reflector.

    [0025] A fundamental principle behind the operation of a fiber Bragg grating is Fresnel reflection at each of the interfaces where the refractive index is changing. For some wavelengths, the reflected light of the various periods is in phase so that constructive interference exists for reflection and, consequently, destructive interference for transmission. The Bragg wavelength is sensitive to strain as well as to temperature. This means that Bragg gratings can be used as sensing elements in fiber optical sensors. In an FBG sensor, the measurand (e.g., strain) causes a shift in the Bragg wavelength.

    [0026] One advantage of this technique is that various sensor elements can be distributed over the length of a fiber. Incorporating three or more cores with various sensors (gauges) along the length of a fiber that is embedded in a structure permits a three dimensional form of such a structure to be precisely determined, typically with better than 1 mm accuracy. Along the length of the fiber, at various positions, a multitude of FBG sensors can be located (e.g., 3 or more fiber sensing cores). From the strain measurement of each FBG, the curvature of the structure can be inferred at that position. From the multitude of measured positions, the total three-dimensional form is determined.

    [0027] As an alternative to fiber-optic Bragg gratings, the inherent backscatter in conventional optical fiber can be exploited. One such approach is to use Rayleigh scatter in standard single-mode communications fiber. Rayleigh scatter occurs as a result of random fluctuations of the index of refraction in the fiber core. These random fluctuations can be modeled as a Bragg grating with a random variation of amplitude and phase along the grating length. By using this effect in three or more cores running within a single length of multi-core fiber, the 3D shape and dynamics of the surface of interest can be followed.

    [0028] In one embodiment, workstation 112 receives feedback from the shape sensing device 104, and position data as to the location, position/rotation (shape) of the sensing device 104 is provided within a volume 131 (e.g., a patient). An image of the shape sensing device 104 within the space or volume 131 can be displayed on a display device 118. Workstation 112 includes the display 118 for viewing internal images of a subject (patient) or volume 131 and may include the image as an overlay or other rendering of the sensing device 104. Display 118 may also permit a user to interact with the workstation 112 and its components and functions, or any other element within the system 100. This is further facilitated by an interface 120 which may include a keyboard, mouse, a joystick, a haptic device, or any other peripheral or control to permit user feedback from and interaction with the workstation 112.

    [0029] FIGS. 2, 3 and 4 show cross-sectional views of different instruments 104 taken, e.g., at section line A-A. The FIGS. 2, 3 and 4 show some illustrative dimensions provided for comparison. The instruments and devices described herein should not be construed as being limited by these dimensions.

    [0030] Referring to FIG. 2, a cross-sectional view of a guide wire 150 with an optical fiber channel 152 and a guide wire support rod 154 is illustratively shown in accordance with one embodiment. An optical shape sensing fiber can be included in the optical fiber channel 152 of the guide wire 150, which is located inside the support rod 154 within the guide wire 150. In such a device, the purpose of the support rod 154 is to transmit torque applied by an operator from a proximal end to a distal tip of the guide wire 150. Instead of providing a separate lumen for each component of the device, the support rod 154 can be employed as the lumen for the optical fiber. Many advantages are achieved with such a design.

    [0031] For example, the design provides more space for both the support rod 154 and the optical fiber channel or lumen 152. Also, the fiber in the fiber channel 152 is now encased within a hollow rod of the support rod 154, which may include, eg., NiTi, a steel alloy, or similar material. The support rod 154 provides a protective environment that can resist pinching and kinking. With some design considerations, this rod 154 can also be made to dampen vibration and can be fabricated to minimize friction on its inner surface. Such considerations may include the addition of coatings on the inner diameter of the support rod 154. These coatings may include Teflon™, PTFE, MDX, Pebax™, or other substances to reduce friction. The support rod 154 or mechanical member may include at least one of strands, braids, dampening materials, etc. configured to provide vibration-dampening features. The support rod 154 or mechanical member may be vibrationally damped by being coiled, braided, made from materials with dampening properties, etc.

    [0032] Another benefit of the multi-purposed design is that the optical fiber now lies along a center of the device 150 (neutral axis), which means that there will be minimal path length changes along the fiber during bending of the device (thereby reducing the amount of motion, friction, and strain that the fiber experiences during bending). In addition, since the fiber lies within the torqueing element of the device and along a central axis, it is rotationally free to slide in the lumen of the support rod 154 and will be isolated from external torqueing, unlike the case where the fiber is off-axis where torqueing of the device will necessarily cause the fiber to twist as it is offset from the axis of rotation.

    [0033] One embodiment may be implemented with only the support rod 154 and the lumen 152 for the optical fiber. In another embodiment, a covering 156 (e.g., a Pebax™ covering) may be employed over the support rod 154.

    [0034] Referring to FIG. 3, another example shows, in cross-section, an optical fiber channel or lumen 212 for an optical shape sensing fiber within a support rod 214 of a catheter 210. The catheter 210 includes a working channel 218 employed for passing tools or instruments therethrough. Instead of providing a separate lumen for each component of the device, the support rod 214 can also be employed as the lumen 212 for the optical fiber. Advantages of this design include the following. The design provides more space for both the support rod 214 and the optical fiber channel 212. In addition, the fiber is now encased within a hollow rod (support rod 214), which may include, e.g., NiTi, a steel alloy, or similar materials. The hollow support rod 214 provides an optimal environment that can resist pinching and kinking. The support rod 214 can also be made to dampen vibration and can be fabricated to minimize friction on its inner surface (e.g., by adding a coating or coatings in the inner diameter of the support rod 214).

    [0035] With some design considerations, the support rod 214 can also be made to dampen vibration and can be fabricated to minimize friction on its inner surface. Such considerations may include the addition of coatings on the inner diameter of the support rod 214. These coatings may include Teflon™, PTFE, MDX, Pebax™, or other substances to reduce friction The support rod 214 or mechanical member may include at least one of strands, braids, dampening materials, etc. configured to provide vibration-dampening features. The support rod 214 or mechanical member may be vibrationally damped by being coiled, braided, made from materials with dampening properties, etc.

    [0036] An added benefit of the multi-purpose design of FIG. 3 is that the optical fiber now lies largely along the torqueing central axis of the device, so that it is now possible to decouple the torqueing of the device from twisting of the optical fiber. This is relevant because the accumulation of twist in the shape sensing fiber can cause degradation in performance. A covering or filler material 216 (e.g., Pebax™) may be employed over the support rod 214 and to form the working channel 218.

    [0037] Referring to FIG. 4, an example of a lumen or fiber channel 312 for the optical shape sensing fiber is included within a pull wire 320 of a catheter 310. Instead of providing a separate channel for each component of the device 310, the pull wire 320 can also be used as the lumen 312 for the optical fiber. The advantages to this design include providing more space for both the pull wire 320 and the optical fiber channel 312 then would have been available for each feature employed separately. Within the pull wire 320, the fiber is now encased within a hollow metal (or other material) lumen, which provides an optimal environment that can resist pinching and kinking. The pull wire 320 can also be made to dampen vibration and can be fabricated to minimize friction on its inner surface.

    [0038] With some design considerations, the pull wire 320 can also be made to dampen vibration and can be fabricated to minimize friction on its inner surface. Such considerations may include the addition of coatings on the inner diameter of the pull wire 320. These coatings may include Teflon™, PTFE, MDX, Pebax™, or other substances to reduce friction. The pull wire 320 or mechanical member may include at least one of strands, braids, dampening materials, etc configured to provide vibration-dampening features. The pull wire 320 or mechanical member may be vibrationally damped by being coiled, braided, made from materials with dampening properties, etc.

    [0039] In another embodiment, a catheter 310 may utilize one or more hollow pull-wires to actuate the catheter 310 in more than one degree of freedom. A support rod 314 and a working channel 318 may also be included. A covering or filler material 322 (e.g., Pebax™) may be employed over the pull wire 320 and to form the working channel 318.

    [0040] In accordance with other embodiments, a catheter conductive element such as a wire, a lead, a core of an electrophysiology (EP) ablation catheter, etc. may be employed as a hollow rod similar to the embodiments above wherein the optical fiber is included within the conductive element of the catheter. It should be understood that the present embodiments are not limited to a single sensing fiber. Multiple sensing fibers can be included within multiple pull wires or channels within the instrument, or multiple fibers may be included within a single pull wire or channel within the instrument. The multiple sensing fibers may be used for sensing shape, strain, temperature, flow, etc.

    [0041] The present principles apply to any integration of optical shape sensing sensors into medical devices including manual catheters, actuated catheters (both manual and robotic), guide wires, stylets, endoscopes and bronchoscopes, ultrasound probes, etc. or any other guided devices (medical or non-medical).

    [0042] Referring to FIG. 5, a method for sensing a shape in a shape sensing enabled instrument is illustratively shown. In block 402, a shape sensing enabled instrument is provided. The shape sensing enabled instrument includes a flexible longitudinal body having an outer surface which encapsulates interior features, the interior features including an optical fiber lumen configured to receive one or more optical fibers for optical shapes sensing and a mechanical member forming a hollow extending longitudinally down the body, the mechanical member configured to receive the optical fiber lumen therein to permit rotation of an optical fiber and to protect the optical fiber. In block 404, optical signals are received from the one or more optical fibers. In block 406, the optical signals are interpreted to determine a shape of the instrument.

    [0043] In interpreting the appended claims, it should be understood that:
    1. a) the word "comprising" does not exclude the presence of other elements or acts than those listed in a given claim;
    2. b) the word "a" or "an" preceding an element does not exclude the presence of a plurality of such elements;
    3. c) any reference signs in the claims do not limit their scope;
    4. d) several "means" may be represented by the same item or hardware or software implemented structure or function; and
    5. e) no specific sequence of acts is intended to be required unless specifically indicated.


    [0044] Having described preferred embodiments for multipurpose lumen designs for optical shape sensing (which are intended to be illustrative and not limiting), it is noted that modifications and variations can be made by persons skilled in the art in light of the above teachings. It is therefore to be understood that changes may be made in the particular embodiments of the disclosure disclosed which are within the scope of the embodiments disclosed herein as outlined by the appended claims. Having thus described the details and particularity required by the patent laws, what is claimed and desired protected by Letters Patent is set forth in the appended claims.


    Claims

    1. A shape sensing enabled instrument (150, 210, 310) comprising:

    a flexible longitudinal body (103) including an outer surface which encapsulates an optical fiber lumen (152, 212, 312) in which one or more optical fibers for optical shape sensing are received;

    wherein the lumen is formed by a hollow support rod (154, 214) or a pull wire (320) respectively extending longitudinally down the inside of the body, the hollow support rod or pull wire being configured to permit rotation and translation of the one or more optical fibers within the lumen and to protect the one or more optical fibers including resisting pinching and kinking thereof.


     
    2. The instrument as recited in claim 1, wherein the flexible longitudinal body (103) is a guide wire and the hollow support rod is a support member of the guide wire.
     
    3. The instrument as recited in claim 2, wherein the guide wire and hollow support rod share a common longitudinal axis.
     
    4. The instrument as recited in claim 1, wherein the flexible longitudinal body (103) is a catheter and the hollow support rod is a support member of the catheter.
     
    5. The instrument as recited in claim 4, wherein the catheter includes a working channel (218) and the hollow support rod includes an off-center support member of the catheter.
     
    6. The instrument as recited in claim 1, wherein the flexible longitudinal body (103) includes a catheter and the hollow support rod is a hollow pull wire of the catheter.
     
    7. The instrument as recited in claim 1, wherein the hollow support rod includes an internal coating to reduce friction of the optical fiber in the lumen and to reduce vibrations in the optical fiber.
     
    8. The instrument as recited in claim 1, wherein the hollow support rod includes at least one of strands, braids and dampening materials configured to provide vibration-dampening features.
     
    9. A shape sensing system, comprising:
    a shape sensing enabled instrument (102) as recited in claim 1 and a console (112) configured to receive optical signals from the one or more optical fibers and interpret the optical signals to determine a shape of the instrument.
     
    10. The system as recited in claim 9, wherein the flexible longitudinal body (103) is a guide wire and the hollow support rod is a support member of the guide wire.
     
    11. The system as recited in claim 10, wherein the guide wire and the hollow support rod share a common longitudinal axis.
     
    12. The system as recited in claim 9, wherein the flexible longitudinal body (103) is a catheter and the pull wire is a hollow pull wire of the catheter.
     
    13. The system as recited in claim 12, wherein the catheter includes a working channel (218) and the pull wire is an off-center pull wire of the catheter.
     
    14. The system as recited in claim 9, wherein the hollow support rod includes an internal coating to reduce friction of an optical fiber in the lumen and to reduce vibrations in the optical fiber.
     
    15. The instrument as recited in claim 9, wherein the hollow support rod includes at least one of strands, braids and dampening materials configured to provide vibration-dampening features.
     


    Ansprüche

    1. Formmessungsfähiges Instrument (150, 210, 310), umfassend:

    einen flexiblen Längskörper (103) mit einer Außenfläche, die ein optisches Faserlumen (152, 212, 312) einkapselt, in dem eine oder mehrere optische Fasern zur optischen Formmessung empfangen werden;

    wobei das Lumen durch eine hohle Stützstange (154, 214) oder einen Zugdraht (320) gebildet ist, die sich jeweils in Längsrichtung entlang der Innenseite des Körpers erstrecken, wobei die hohle Stützstange oder der Zugdraht so konfiguriert sind, dass sie eine Drehung und Verschiebung der einen oder mehreren optischen Fasern innerhalb des Lumens ermöglichen und die eine oder mehreren optischen Fasern schützen, einschließlich des Widerstandes gegen Einklemmen und Knicken derselben.


     
    2. Instrument nach Anspruch 1, wobei der flexible Längskörper (103) ein Führungsdraht ist und die hohle Stützstange ein Stützelement des Führungsdrahtes ist.
     
    3. Instrument nach Anspruch 2, wobei der Führungsdraht und die hohle Stützstange eine gemeinsame Längsachse teilen.
     
    4. Instrument nach Anspruch 1, wobei der flexible Längskörper (103) ein Katheter ist und der hohle Stützstab ein Stützelement des Katheters ist.
     
    5. Instrument nach Anspruch 4, wobei der Katheter einen Arbeitskanal (218) enthält, und der hohle Stützstab ein außermittiges Stützelement des Katheters enthält.
     
    6. Instrument nach Anspruch 1, wobei der flexible Längskörper (103) einen Katheter enthält und der hohle Stützstab ein hohler Zugdraht des Katheters ist.
     
    7. Instrument nach Anspruch 1, wobei der hohle Stützstab eine innere Beschichtung aufweist, um die Reibung der optischen Faser in dem Lumen zu verringern, und die Vibrationen in der optischen Faser zu verringern.
     
    8. Instrument nach Anspruch 1, wobei die hohle Stützstange mindestens einen von Strängen, Geflechten und Dämpfungsmaterialien enthält, die konfiguriert sind, um vibrationsdämpfende Merkmale bereitzustellen.
     
    9. Formmessungssystem, umfassend:
    ein formmessungsfähiges Instrument (102) nach Anspruch 1 und eine Konsole (112), die konfiguriert ist, um optische Signale von der einen oder den mehreren optischen Fasern zu empfangen und die optischen Signale zu interpretieren, um eine Form des Instruments zu bestimmen.
     
    10. System nach Anspruch 9, wobei der flexible Längskörper (103) ein Führungsdraht ist und die hohle Stützstange ein Stützelement des Führungsdrahtes ist.
     
    11. System nach Anspruch 10, wobei der Führungsdraht und die hohle Stützstange eine gemeinsame Längsachse teilen.
     
    12. System nach Anspruch 9, wobei der flexible Längskörper (103) ein Katheter ist und der Zugdraht ein hohler Zugdraht des Katheters ist.
     
    13. System nach Anspruch 12, wobei der Katheter einen Arbeitskanal (218) enthält und der Zugdraht ein außermittiger Zugdraht des Katheters ist.
     
    14. System nach Anspruch 9, wobei der hohle Stützstab eine innere Beschichtung aufweist, um die Reibung einer optischen Faser in dem Lumen zu verringern, und die Vibrationen in der optischen Faser zu verringern.
     
    15. Instrument nach Anspruch 9, wobei die hohle Stützstange mindestens einen von Strängen, Geflechten und Dämpfungsmaterialien enthält, die konfiguriert sind, um vibrationsdämpfende Merkmale bereitzustellen.
     


    Revendications

    1. Instrument activé par détection de forme (150, 210, 310) comprenant:

    un corps longitudinal flexible (103) comprenant une surface extérieure qui encapsule un lumen pour fibre optique (152, 212, 312) où une ou plusieurs fibres optiques pour la détection optique de forme sont reçues;

    où le lumen est formé par une tige de support creuse (154, 214) ou un fil de traction (320) s'étendant respectivement longitudinalement vers le bas à l'intérieur du corps, la tige de support creuse ou le fil de traction étant configurés pour permettre la rotation et la translation d'une ou plusieurs fibres optiques à l'intérieur du lumen et pour protéger la ou les plusieurs fibres optiques, y compris le résister au pincement et à l'entortillement de celles-ci.


     
    2. Instrument selon la revendication 1, dans lequel le corps longitudinal flexible (103) est un fil de guidage et la tige de support creuse est un élément de support du fil de guidage.
     
    3. Instrument selon la revendication 2, dans lequel le fil de guidage et la tige de support creuse partagent un axe longitudinal commun.
     
    4. Instrument selon la revendication 1, dans lequel le corps longitudinal flexible (103) est un cathéter et la tige de support creuse est un élément de support du cathéter.
     
    5. Instrument selon la revendication 4, dans lequel le cathéter comprend un canal de travail (218) et la tige de support creuse comprend un élément de support décentré du cathéter.
     
    6. Instrument selon la revendication 1, dans lequel le corps longitudinal flexible (103) comprend un cathéter et la tige de support creuse est un fil de traction creux du cathéter.
     
    7. Instrument selon la revendication 1, dans lequel la tige de support creuse comprend un revêtement interne pour réduire le frottement de la fibre optique dans la lumière et pour réduire les vibrations dans la fibre optique.
     
    8. Instrument selon la revendication 1, dans lequel la tige de support creuse comprend au moins un parmi des brins, des tresses et des matériaux d'amortissement configurés pour fournir des caractéristiques d'amortissement des vibrations.
     
    9. Système de détection de forme, comprenant:
    un instrument activé par détection de forme (102) selon la revendication 1 et une console (112) configurée pour recevoir des signaux optiques de la ou des fibres optiques et interpréter les signaux optiques pour déterminer une forme de l'instrument.
     
    10. Système selon la revendication 9, dans lequel le corps longitudinal flexible (103) est un fil de guidage et la tige de support creuse est un élément de support du fil de guidage.
     
    11. Système selon la revendication 10, dans lequel le fil de guidage et la tige de support creuse partagent un axe longitudinal commun.
     
    12. Système selon la revendication 9, dans lequel le corps longitudinal flexible (103) est un cathéter et le fil de traction est un fil de traction creux du cathéter.
     
    13. Système selon la revendication 12, dans lequel le cathéter comprend un canal de travail (218) et le fil de traction est un fil de traction décentré du cathéter.
     
    14. Système selon la revendication 9, dans lequel la tige de support creuse comprend un revêtement interne pour réduire le frottement d'une fibre optique dans le lumen et pour réduire les vibrations dans la fibre optique.
     
    15. Instrument selon la revendication 9, dans lequel la tige de support creuse comprend au moins un parmi des brins, des tresses et des matériaux d'amortissement configurés pour fournir des caractéristiques d'amortissement des vibrations.
     




    Drawing












    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description