(19)
(11)EP 3 057 756 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
27.11.2019 Bulletin 2019/48

(21)Application number: 14879144.5

(22)Date of filing:  14.10.2014
(51)International Patent Classification (IPC): 
B29C 45/02(2006.01)
B29C 45/76(2006.01)
B29C 45/73(2006.01)
(86)International application number:
PCT/US2014/060406
(87)International publication number:
WO 2015/108579 (23.07.2015 Gazette  2015/29)

(54)

ASSEMBLY AND METHOD FOR TRANSFER MOLDING

ANORDNUNG UND VERFAHREN FÜR SPRITZPRESSEN

ENSEMBLE ET PROCÉDÉ DE MOULAGE PAR TRANSFERT


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 14.10.2013 US 201361890542 P

(43)Date of publication of application:
24.08.2016 Bulletin 2016/34

(73)Proprietor: United Technologies Corporation
Farmington, CT 06032 (US)

(72)Inventor:
  • JARMON, David C.
    Kensington, Connecticut 06037 (US)

(74)Representative: Dehns 
St. Bride's House 10 Salisbury Square
London EC4Y 8JD
London EC4Y 8JD (GB)


(56)References cited: : 
EP-A1- 1 950 021
JP-A- H0 326 518
JP-A- 2012 199 346
US-A- 2 556 795
US-A- 2 835 158
US-A- 5 366 368
US-A- 6 071 457
DE-A1- 19 742 159
JP-A- 2009 190 400
US-A- 2 161 804
US-A- 2 790 995
US-A- 4 932 431
US-A- 5 534 842
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    STATEMENT REGARDING GOVERNMENT SUPPORT



    [0001] This invention was made with government support under Contract No. N-00019-12-D-0002 awarded by the United States Navy. The government has certain rights in this invention.

    BACKGROUND



    [0002] Ceramic material, glass material and other high temperature-resistance materials can provide desirable properties for use in relatively severe operating environments, such as in gas turbine engines. Often, such materials are used in ceramic matrix composites, such as fiber-reinforced silicon carbide composites. Such composites are typically fabricated using techniques such as polymer impregnation and pyrolysis (PIP), chemical vapor deposition (CVD), and chemical vapor infiltration (CVI). Ceramic matrix composites also include fiber reinforced glass and glass-ceramic composites. Such composites are typically formed by hot pressing.

    [0003] Another known technique for forming composites is transfer molding. In a typical transfer molding process, a fiber preform is provided into a die, and a softened glass or glass/ceramic material is impregnated into the preform using a hydraulically driven ram.

    [0004] EP 1,950,021 discloses heating and melting a thermoplastic resin, and then casting the melted thermoplastic resin into a cavity of a mold by use of a load part.

    [0005] DE 197,42,159 discloses injecting a molten glass material into the hollow zone of a mould under pressure of a mould press unit.

    [0006] US 2,835,158 discloses a fusible member arranged to melt away under the application of heat, enabling a press ram to be broken loose and drawn down towards a die bed.

    SUMMARY



    [0007] One exemplary embodiment of this disclosure relates to a transfer molding assembly. The assembly includes a die having a molding cavity interconnected with a reservoir. The assembly further includes a heater operable to heat the die, and a load plate configured to move under its own weight to transfer material from the reservoir into the molding cavity. The assembly further includes a control rod, and an injection ram configured to translate along the reservoir under the weight of the load plate. The control rod supports the load plate above the injection ram before the heater softens the control rod.

    [0008] In a further embodiment of any of the above, the material softens as the material is heated by the heater, and wherein the softened material is transferred into molding cavity under the weight of the load plate.

    [0009] In a further embodiment of any of the above, the material is rigid before the heater heats the material, the rigid material resisting movement of the load plate under its own weight.

    [0010] In a further embodiment of any of the above, the material received in the reservoir is a first material, and wherein the control rod is made of a second material different than the first material.

    [0011] In a further embodiment of any of the above, the heater is configured to heat the first material to a transfer molding point before the second material reaches the transfer molding point.

    [0012] In a further embodiment of any of the above, the heater is configured to heat the first material to a transfer molding point before the second material reaches a working point.

    [0013] In a further embodiment of any of the above, the heater is configured to heat the first material to a transfer molding point before the second material reaches a softening point.

    [0014] In a further embodiment of any of the above, the first material and the second material are glass-based materials.

    [0015] In a further embodiment of any of the above, the first material has a lower viscosity than the second material at a first temperature.

    [0016] In a further embodiment of any of the above, the reservoir is located above, relative to a direction of gravity, the cavity.

    [0017] In a further embodiment of any of the above, the assembly includes a controller, the heater including a chamber having a plurality of heating elements, the heating elements in communication with the controller and configured to generate heat in the heater.

    [0018] In a further embodiment of any of the above, the load plate is configured to move solely under its own weight to transfer material from the reservoir into the molding cavity.

    [0019] Another exemplary embodiment of this disclosure relates to a method of transfer molding. The method includes heating a first material such that the material softens and is injected into a preform under the weight of a load plate. The method further includes supporting the load plate with a control rod, and releasing at least a portion of the weight of the load plate in response to the first material reaching a predefined temperature, wherein the control rod is made of a second material configured to soften at a higher temperature than the first material.

    [0020] In a further embodiment of any of the above, the first material and the second material are glass-based materials.

    [0021] In a further embodiment of any of the above, the first material has a viscosity at or below 102.6 poises at a temperature of about 1500 °C, and wherein the second material has a viscosity above 102.6 poises at a temperature of about 1500 °C.

    [0022] In a further embodiment of any of the above, the second material has a viscosity of about 107.6 poises at a temperature of about 1500 °C.

    [0023] The embodiments, examples and alternatives of the preceding paragraphs, the claims, or the following description and drawings, including any of their various aspects or respective individual features, may be taken independently or in any combination. Features described in connection with one embodiment are applicable to all embodiments, unless such features are incompatible.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0024] The drawings can be briefly described as follows:

    Figure 1 illustrates an example transfer molding assembly.

    Figure 2 graphically illustrates the relationship between viscosity and temperature for two example materials.

    Figure 3 illustrates an example transfer molding assembly in accordance with embodiments.


    DETAILED DESCRIPTION



    [0025] Figure 1 schematically illustrates an example assembly 20 that can be used in conjunction with a method for processing a process-environment-sensitive material (hereafter "material"), which is a material that is formed into a desired article geometry at high temperatures in a controlled environment, such as under vacuum and/or inert cover gas (e.g., argon). Such materials require high temperatures to enable formation and consolidation into the desired geometry and a controlled environment to manage reactions that can undesirably alter the chemistry of the material.

    [0026] In non-limiting examples, the material can be a ceramic-based material, a glass-based material or a combination of a ceramic/glass-based material. One example includes silicon carbide fiber reinforced ceramic-glass matrix materials. The ceramic-glass matrix can be lithium-aluminosilicate with boron or barium magnesium aluminosilicate, for example. The fibers can include one or more interface layers, such as carbon or boron nitride layers. These and other process-environment-sensitive materials can be rapidly processed into an article using the assembly 20.

    [0027] In the illustrated example, the article being formed is an annular engine component. Example annular components include turbine rings, rub strips, seals, acoustic tiles, combustor liners, shrouds, heat shields, etc. It should be understood that this disclosure is not limited to annular articles, and extends to articles having other shapes.

    [0028] In this example, the assembly 20 provides a transfer molding assembly. The assembly 20 includes a chamber 24 and a plurality of heaters 26, 28 provided therein. It should be noted that although two heaters 26, 28 are illustrated, there may be any number of heaters, including only one heater. The heaters 26, 28 are configured to provide heat H, which raises the temperature within the chamber 24. While only one chamber 24 is illustrated, the assembly 20 could include additional chambers.

    [0029] The chamber 24 is connected, through a port 30, to a gas environment control device 32, which is in turn in communication with a vacuum pump 34 and/or a pressurized gas source 36. The gas environment control device 32 is controlled by command of a controller 38, which is configured to control evacuation of, and process gas flow into, the chamber 24. Thus, for a given process having a predefined controlled gas environment, the controller 38 can purge the interior of the chamber 24 of air, evacuate the interior to a desired pressure and/or provide an inert process cover gas to a desired pressure.

    [0030] The assembly 20 further includes a support plate 40 located within the chamber 24, which may be supported by a plurality of legs 42. A die 44 is provided on the support plate 40. In this example, the die 44 includes a molding cavity 46 and a reservoir 50 above, relative to the direction of gravity G, the molding cavity 46. The molding cavity 46 is in fluid communication with the reservoir 50, as will be appreciated from the below.

    [0031] In Figure 1, a fiber preform 48 is provided in the molding cavity 46, and a material 52 is placed in the reservoir 50. An injection ram 54 is provided above the material 52. The injection ram 54 is shaped to correspond to the shape of the reservoir 50, and to travel within the reservoir in the direction of gravity G. The injection ram 54 in one example is sealed against the side walls of the reservoir 50 to prevent the material 52 from escaping during injection. Optionally, there may be an exit port at the bottom of the reservoir 50, or at the bottom of the molding cavity 46, for directing excess material 52 away from the preform 48.

    [0032] A load plate 56 is provided above the injection ram 54, and is in direct contact with the injection ram 54 in this example. The load plate 56 may be rigidly attached to the injection ram 54 in some examples. In other examples, however, the load plate 56 is moveable relative to the injection ram 54. The weight and/or size of the load plate 56 can be adjusted depending on the properties associated with the particular material being worked upon.

    [0033] Before heat is applied to the die 44, the material 52 may be a plurality of rigid glass cutlets. These rigid cutlets resist the weight W of the load plate 56. In order to inject the material 52 into the preform 48, the controller 38 activates the heaters 26, 28 to increase the temperature within the chamber 24. In response, the temperature of the material 52 rises, which decreases the viscosity of the material 52, and the material 52 softens.

    [0034] The softened material 52 is injected into the fiber preform 48 under at least a component of the gravitational weight W of the load plate 56, via movement of the injection ram 54 in the downward direction. The load plate 56 is unforced by a mechanical actuator (such as that commonly associated with a hot press assembly). In other words, the softened material 52 is injected solely under the weight of the load plate 56. After injection, the preform 48 and the material 52 provide are allowed to cool, and may undergo further processing, as needed, to prepare the article for use.

    [0035] The chamber 24 provides a controlled gas environment for the application of heat, which could otherwise cause undesired reactions in the material (e.g., the preform 48, or the material 52) or degrade the die 44 or other structures of the chamber 24, particularly if the die 44 is made of graphite.

    [0036] While the assembly illustrated in Figure 1 may be effective, the material 52 may be prematurely injected into the preform 48 depending on a number of factors, including the composition and properties of the material 52. In particular, in some instances, the weight W of the load plate 56 may urge the glass 52 into the preform 48 before the material 52 has been heated to viscosity to avoid or limit damaging the preform 48. Thus, the force of the flow into the preform 48 could alter the fiber orientations of the preform 48, or even physically damage the fibers.

    [0037] The relationship between viscosity and temperature for an example material M1 is illustrated in Figure 2. In one example, the material M1 is used as the material 52 in Figure 1, and as the material 152 in Figure 3. The material M1 in one example is a glass-based material, which is initially in the form of glass cutlets. The material M1 experiences softening at a temperature of about 750 °C (about 1382 °F), wherein the material M1 has a viscosity V1 of about 107.6 poises (about 580 reyn). This point is illustrated in Figure 2 as the "Softening Point," which is associated with a viscosity at which uniform fibers (e.g., 0.55 - 0.75 mm [about 0.02 - 0.03 inches] in diameter and 23.5 mm [about 0.93 in] long) in a material (e.g., such as silicate fibers) elongate under their own weight at a rate of 1 mm (about 0.04 inches) per minute.

    [0038] As the temperature of the material M1 continues to rise, the material M1 achieves a working point viscosity V2 of about 104 poises (about 0.15 reyn), at temperature T2 of about 1100 °C (about 2010 °F). The "Working Point" illustrated in Figure 2 corresponds to a viscosity level where a material is soft enough for hot working.

    [0039] Finally, the material M1 reaches a viscosity of 102.6 poises (about 0.006 reyn) at V3, at which point the material M1 is in a substantially fluid state such that it is acceptable for glass transfer molding. The viscosity V3 is reached at about 1500°C in this example, and is referenced as a "Transfer Molding Point." Any viscosity at or below V3 is acceptable for transfer molding. It should be understood that the illustrated material M1 is only one example material, and materials having other characteristics come within the scope of this disclosure.

    [0040] Figure 3 illustrates another example assembly 120 according to this disclosure. To the extent not otherwise described or shown, the reference numerals in Figure 3 correspond to the reference numerals of Figure 1, with like parts having reference numerals preappended with a "1."

    [0041] In the assembly 120 of Figure 3, a plurality of control rods 158, 160 are configured to delay a force transfer from the load plate 156 to the material 152. In particular, the control rods 158, 160 support the load plate 156 above the injection ram 154 before the material 152 is heated. That is, before heating, there is an initial clearance C between an upper surface 154U of the injection ram 154 and a lower surface 156L of the load plate 156.

    [0042] In one example, the control rods 158, 160 are made of a material M2, illustrated in Figure 2, and the material 152 is made of the material M1. With reference to Figure 2, the material M2 of the travel control rods 158, 160 is initially rigid, and does not reach the softening point viscosity V1 until temperature T3, which is the temperature for preparing the material M1 of the material 152 for transfer molding at the viscosity V3.

    [0043] At a minimum, the material M2 is selected such that it has a viscosity greater than V3 at temperature T3. In another example, the material M2 has a viscosity of about V2 at temperature T3. In still another example, the material M2 is rigid and has a viscosity above the softening point viscosity V1 at temperature T3.

    [0044] At any rate, in the example of Figure 3, the weight W of the load plate 156 does not transfer to the injection ram 154 until a point at which the material 152 has reached an acceptable transfer molding viscosity V3.

    [0045] In one example, the first material M1 is a Corning Glass Works (CGW) 7070 glass, and the second material M2 is CGW 7913 glass. This disclosure is not limited to these two particular glass types, however, and it should be understood that other materials come within the scope of this disclosure.

    [0046] In either of the example assemblies 20, 120, the expenses typically associated with transfer molding, such as purchasing a relatively expensive hot press (including the corresponding hydraulics, etc.), are eliminated. The transfer molding assembly and method discussed herein allow for passive injection by the weight of the load plate 56, rather than active injection by way of a hydraulic actuator. Accordingly, this disclosure can be relatively easily incorporated into a chamber (e.g., a furnace) which is relatively more available, and less expensive than a hot press, which in turn reduces manufacturing costs, etc.

    [0047] Although the different examples have the specific components shown in the illustrations, embodiments of this disclosure are not limited to those particular combinations. It is possible to use some of the components or features from one of the examples in combination with features or components from another one of the examples. Further, it should be understood that terms such as "above," "downward," etc., are used herein for purposes of explanation, and should not otherwise be considered limiting. Also, as used herein, the term "about" is not a boundaryless limitation on the corresponding quantities, but instead imparts a range consistent with the way the term "about" is used by those skilled in this art.

    [0048] One of ordinary skill in this art would understand that the above-described embodiments are exemplary and non-limiting. That is, modifications of this disclosure would come within the scope of the claims. Accordingly, the following claims should be studied to determine their true scope and content.


    Claims

    1. A transfer molding assembly (120), comprising:

    a die (144) including a molding cavity (146) interconnected with a reservoir (150);

    a heater (126, 128) operable to heat the die (144);

    a load plate (156) configured to move under its own weight to transfer material from the reservoir (150) into the molding cavity (146); and

    said assembly including a control rod (158, 160), and including an injection ram (154) configured to translate along the reservoir under the weight of the load plate (156), the control rod (158, 160) configured to support the load plate (156) above the injection ram (154) before the heater (126, 128) softens the control rod (158, 160).


     
    2. The assembly as recited in claim 1, wherein the material softens as the material is heated by the heater, and wherein the softened material is transferred into molding cavity under the weight of the load plate, and
    wherein the material is rigid before the heater heats the material, the rigid material
    resisting movement of the load plate under its own weight.
     
    3. The assembly as recited in claim 1, wherein the material received in the reservoir is a first material, and wherein the control rod is made of a second material different than the first material.
     
    4. The assembly as recited in claim 3, wherein the heater is configured to heat the first material to a transfer molding point before the second material reaches the transfer molding point, and preferably wherein the heater is configured to heat the first material to a transfer molding point before the second material reaches a working point, and more preferably wherein the heater is configured to heat the first material to a transfer molding point before the second material reaches a softening point.
     
    5. The assembly as recited in claim 3, wherein the first material and the second material are glass-based materials.
     
    6. The assembly as recited in claim 3, wherein the first material has a lower viscosity than the second material at a first temperature.
     
    7. The assembly as recited in any preceding claim, wherein the reservoir is located above, relative to a direction of gravity, the cavity.
     
    8. The assembly as recited in any preceding claim, including a controller, the heater including a chamber having a plurality of heating elements, the heating elements in communication with the controller and configured to generate heat in the heater.
     
    9. The assembly as recited in any preceding claim, wherein the load plate is configured to move solely under its own weight to transfer material from the reservoir into the molding cavity.
     
    10. A method of transfer molding using the assembly of claim 1, the method comprising:

    heating a first material such that the material softens and is injected into a preform under the weight of a load plate; and

    including supporting the load plate with a control rod, and releasing at least a portion of the weight of the load plate in response to the first material reaching a predefined temperature, wherein the control rod is made of a second material configured to soften at a higher temperature than the first material.


     
    11. The method as recited in claim 10, wherein the first material and the second material are glass-based materials.
     
    12. The method as recited in claim 10, wherein the first material has a viscosity at or below 102.6 poises at a temperature of about 1500 °C, and wherein the second material has a viscosity above 102.6 poises at a temperature of about 1500 °C, and preferably
    wherein, at a temperature of about 1500 °C, the second material has a viscosity of about 107.6 poises.
     


    Ansprüche

    1. Anordnung (120) für Spritzpressen, umfassend:

    eine Matrize (144), die einen Presshohlraum (146) beinhaltet, der mit einem Speicherbehälter (150) verbunden ist;

    eine Heizvorrichtung (126, 128), die bedienbar ist, um die Matrize (144) zu erwärmen;

    eine Ladeplatte (156), die konfiguriert ist, um sich unter ihrem eigenen Gewicht zu bewegen, um Material aus dem Speicherbehälter (150) in den Presshohlraum (146) zu übertragen; und

    wobei die Anordnung eine Steuerstange (158, 160) beinhaltet und einen Spritzkolben (154) beinhaltet, der konfiguriert ist, um sich entlang des Speicherbehälters unter dem Gewicht der Ladeplatte (156) zu verschieben, wobei die Steuerstange (158, 160) konfiguriert ist, um die Ladeplatte (156) über dem Spritzkolben (154) zu stützen, bevor die Heizvorrichtung (126, 128) die Steuerstange (158, 160) erweicht.


     
    2. Anordnung nach Anspruch 1, wobei das Material erweicht, wenn das Material durch die Heizvorrichtung erwärmt wird, und wobei das erweichte Material unter dem Gewicht der Ladeplatte in den Presshohlraum übertragen wird, und
    wobei das Material steif ist, bevor die Heizvorrichtung das Material erwärmt, wobei das steife Material Bewegung der Ladeplatte unter ihrem eigenen Gewicht widersteht.
     
    3. Anordnung nach Anspruch 1, wobei das in dem Speicherbehälter aufgenommene Material ein erstes Material ist und wobei die Steuerstange aus einem zweiten Material hergestellt ist, das sich von dem ersten Material unterscheidet.
     
    4. Anordnung nach Anspruch 3, wobei die Heizvorrichtung konfiguriert ist, um das erste Material auf einen Spritzpresspunkt zu erwärmen, bevor das zweite Material den Spritzpresspunkt erreicht, und wobei die Heizvorrichtung bevorzugt konfiguriert ist, um das erste Material auf einen Spritzpresspunkt zu erwärmen, bevor das zweite Material einen Arbeitspunkt erreicht, und wobei die Heizvorrichtung bevorzugter konfiguriert ist, um das erste Material auf einen Spritzpresspunkt zu erwärmen, bevor das zweite Material einen Erweichpunkt erreicht.
     
    5. Anordnung nach Anspruch 3, wobei das erste Material und das zweite Material glasbasierte Materialien sind.
     
    6. Anordnung nach Anspruch 3, wobei das erste Material bei einer ersten Temperatur eine geringere Viskosität als das zweite Material aufweist.
     
    7. Anordnung nach einem vorhergehenden Anspruch, wobei sich der Speicherbehälter relativ zu einer Schwerkraftrichtung über dem Hohlraum befindet.
     
    8. Anordnung nach einem vorhergehenden Anspruch, beinhaltend eine Steuerung, wobei die Heizvorrichtung eine Kammer beinhaltet, die eine Vielzahl von Heizelementen aufweist, wobei die Heizelemente in Kommunikation mit der Steuerung stehen und konfiguriert sind, um Wärme in der Heizvorrichtung zu erzeugen.
     
    9. Anordnung nach einem vorhergehenden Anspruch, wobei die Lastplatte konfiguriert ist, um sich nur unter ihrem eigenen Gewicht zu bewegen, um Material aus dem Speicherbehälter in den Presshohlraum zu übertragen.
     
    10. Verfahren für Spritzpressen unter Verwendung der Anordnung nach Anspruch 1, wobei das Verfahren Folgendes umfasst:

    Erwärmen eines ersten Materials, sodass das Material erweicht und unter dem Gewicht einer Ladeplatte in eine Vorform eingespritzt wird; und

    beinhaltend das Stützen der Ladeplatte mit einer Steuerstange und das Lösen von zumindest einem Teil des Gewichts der Ladeplatte als Reaktion darauf, dass das erste Material eine vordefinierte Temperatur erreicht, wobei die Steuerstange aus einem zweiten Material hergestellt ist, das konfiguriert ist, um bei einer höheren Temperatur zu erweichen als das erste Material.


     
    11. Verfahren nach Anspruch 10, wobei das erste Material und das zweite Material glasbasierte Materialien sind.
     
    12. Verfahren nach Anspruch 10, wobei das erste Material bei einer Temperatur von ungefähr 1500 °C eine Viskosität bei oder unter 102,6 Poise aufweist und wobei das zweite Material bei einer Temperatur von ungefähr 1500 °C eine Viskosität über 102,6 Poise aufweist, und
    wobei das zweite Material bei einer Temperatur von ungefähr 1500 °C bevorzugt eine Viskosität von ungefähr 107,6 Poise aufweist.
     


    Revendications

    1. Ensemble de moulage par transfert (120) comprenant :

    une matrice (144) comportant une cavité de moulage (146) interconnectée avec un réservoir (150) ;

    un dispositif de chauffage (126, 128) pouvant fonctionner pour chauffer la matrice (144) ;

    une plaque de charge (156) conçue pour se déplacer sous son propre poids afin de transférer le matériau du réservoir (150) dans la cavité de moulage (146) ; et

    ledit ensemble comportant une tige de commande (158, 160) et comportant un piston d'injection (154) conçu pour translater le long du réservoir sous le poids de la plaque de charge (156), la tige de commande (158, 160) étant conçue pour supporter la plaque de charge (156) au-dessus du piston d'injection (154) avant que le dispositif de chauffage (126, 128) ne ramollisse la tige de commande (158, 160).


     
    2. Ensemble selon la revendication 1, dans lequel le matériau se ramollit lorsque le matériau est chauffé par le dispositif de chauffage, et dans lequel le matériau ramolli est transféré dans une cavité de moulage sous le poids de la plaque de charge, et
    dans lequel le matériau est rigide avant que le dispositif de chauffage ne chauffe le matériau, le matériau rigide résistant au mouvement de la plaque de charge sous son propre poids.
     
    3. Ensemble selon la revendication 1, dans lequel le matériau reçu dans le réservoir est un premier matériau, et dans lequel la tige de commande est constituée d'un second matériau différent du premier matériau.
     
    4. Ensemble selon la revendication 3, dans lequel le dispositif de chauffage est conçu pour chauffer le premier matériau jusqu'à un point de moulage par transfert avant que le second matériau n'atteigne le point de moulage par transfert, et de préférence dans lequel le dispositif de chauffage est conçu pour chauffer le premier matériau jusqu'à un point de moulage par transfert avant que le second matériau n'atteigne un point de travail, et plus préférablement dans lequel le dispositif de chauffage est conçu pour chauffer le premier matériau jusqu'à un point de moulage par transfert avant que le second matériau n'atteigne un point de ramollissement.
     
    5. Ensemble selon la revendication 3, dans lequel le premier matériau et le second matériau sont des matériaux à base de verre.
     
    6. Ensemble selon la revendication 3, dans lequel le premier matériau a une viscosité inférieure à celle du second matériau à une première température.
     
    7. Ensemble selon une quelconque revendication précédente, dans lequel le réservoir est situé au-dessus, par rapport à une direction de gravité, de la cavité.
     
    8. Ensemble selon une quelconque revendication précédente, comportant un dispositif de commande, le dispositif de chauffage comportant une chambre ayant une pluralité d'éléments chauffants, les éléments chauffants étant en communication avec le dispositif de commande et conçus pour générer de la chaleur dans le dispositif de chauffage.
     
    9. Ensemble selon une quelconque revendication précédente, dans lequel la plaque de charge est conçue pour se déplacer uniquement sous son propre poids afin de transférer le matériau du réservoir dans la cavité de moulage.
     
    10. Procédé de moulage par transfert utilisant l'ensemble selon la revendication 1, le procédé comprenant :

    le chauffage d'un premier matériau de sorte que le matériau se ramollisse et soit injecté dans une préforme sous le poids d'une plaque de charge ; et

    comportant le support de la plaque de charge avec une tige de commande, et le relâchement d'au moins une partie du poids de la plaque de charge en réponse au fait que le premier matériau atteint une température prédéfinie, dans lequel la tige de commande est constituée d'un second matériau conçu pour se ramollir à une température plus élevée que celle du premier matériau.


     
    11. Procédé selon la revendication 10, dans lequel le premier matériau et le second matériau sont des matériaux à base de verre.
     
    12. Procédé selon la revendication 10, dans lequel le premier matériau a une viscosité égale ou inférieure à 102,6 poises à une température d'environ 1 500 °C et dans lequel le second matériau a une viscosité supérieure à 102,6 poises à une température d'environ 1 500 °C, et de préférence dans lequel, à une température d'environ 1 500 °C, le second matériau a une viscosité d'environ 107,6 poises.
     




    Drawing











    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description