(19)
(11)EP 3 060 764 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
26.06.2019 Bulletin 2019/26

(21)Application number: 14855765.5

(22)Date of filing:  17.10.2014
(51)International Patent Classification (IPC): 
F01D 25/12(2006.01)
F01D 5/18(2006.01)
F01D 9/02(2006.01)
(86)International application number:
PCT/US2014/061050
(87)International publication number:
WO 2015/061152 (30.04.2015 Gazette  2015/17)

(54)

INCIDENT TOLERANT TURBINE VANE COOLING

FEHLERTOLERANTE TURBINENSCHAUFELKÜHLUNG

REFROIDISSEMENT D'AILETTE DE TURBINE TOLÉRANT À INCIDENT


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 21.10.2013 US 201361893379 P

(43)Date of publication of application:
31.08.2016 Bulletin 2016/35

(73)Proprietor: United Technologies Corporation
Farmington, CT 06032 (US)

(72)Inventors:
  • SLAVENS, Thomas, N.
    Vernon, CT 06066 (US)
  • DEVORE, Matthew, A.
    Cromwell, CT 06416 (US)

(74)Representative: Dehns 
St. Brides House 10 Salisbury Square
London EC4Y 8JD
London EC4Y 8JD (GB)


(56)References cited: : 
EP-A2- 0 392 664
US-A- 4 861 228
US-A- 6 142 730
US-A1- 2011 123 351
US-B1- 7 497 655
EP-A2- 1 452 690
US-A- 5 207 556
US-A1- 2004 009 066
US-A1- 2012 093 632
US-B1- 8 043 057
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    BACKGROUND



    [0001] A gas turbine engine typically includes a fan section, a compressor section, a combustor section and a turbine section. Air entering the compressor section is compressed and delivered into the combustion section where it is mixed with fuel and ignited to generate a high-energy exhaust gas flow. The high-energy exhaust gas flow expands through the turbine section to drive the compressor and the fan section.

    [0002] Turbine section operating temperatures are typically beyond the capabilities of component materials. Due to the high temperatures, air is extracted from other parts of the engine and used to cool components within the gas path. The increased engine operating temperatures provide for increased operating efficiencies.

    [0003] Additional engine efficiencies are realized with variable compressor and turbine vanes that provide for variation in the flow of gas flow to improve fuel efficiency during operation. A stagnation point on a leading edge of a vane changes with movement of the vane about a pivot axis. The high temperatures encountered within the turbine section can cause unbalanced temperatures as the stagnation point shifts during operation. The unbalanced temperatures can lead to undesired decreases in engine efficiencies and vane operation.

    [0004] Turbine engine manufacturers continue to seek further improvements to engine performance including improvements to thermal, transfer and propulsive efficiencies.

    [0005] EP 0 392 664 discloses a turbine vane assembly having the features of preamble of claim 1. Other prior art assemblies are disclosed in EP 1 452 690 A2, US 2011/0123351 A1, US 8,043,057 B1 and US 5,207,556.

    SUMMARY



    [0006] According to a first aspect of the current invention, there is provided a turbine vane assembly for a gas turbine engine as set forth in claim 1.

    [0007] An embodiment of the foregoing turbine vane assembly, includes a first separator between the impingement baffle and the inner surface of the forward chamber separating the leading edge cavity from the pressure side cavity and a second separator between the impingement baffle and the inner surface of the forward chamber separating the leading edge chamber from the suction side cavity.

    [0008] In a further embodiment of any of the foregoing turbine vane assemblies, the first separator and the second separator extend radially between a root and tip of the airfoil.

    [0009] In a further embodiment of any of the foregoing turbine vane assemblies, the forward impingement baffle includes a plurality of impingement openings for directing cooling airflow against the inner surface of the forward chamber.

    [0010] In a further embodiment of any of the foregoing turbine vane assemblies, includes cooling holes for communicating cooling airflow along an outer surface of the airfoil.

    [0011] The invention also provides a turbine section of a gas turbine engine as set forth in claim 6.

    [0012] The invention also provides a gas turbine engine as set forth in claim 7.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0013] 

    Figure 1 is a schematic view of an example gas turbine engine.

    Figure 2 is a cross-sectional view of a turbine section of the example gas turbine engine.

    Figure 3 is a perspective view of an example variable vane within the turbine section.

    Figure 4 is a side view of the example rotatable vane assembly.

    Figure 5 is a perspective view of a leading edge of the example vane assembly.

    Figure 6A is a schematic view of an airfoil and stagnation point with the vane orientated for a positive incidence.

    Figure 6B is a schematic view of the example vane assembly orientated in a normal or neutral incidence.

    Figure 6C is a schematic view of the vane assembly in a negative incidence.

    Figure 7 is a cross-sectional view of an interior portion of the example airfoil.


    DETAILED DESCRIPTION



    [0014] Figure 1 schematically illustrates a gas turbine engine 10. The example gas turbine engine 10 is a two-spool turbofan that generally incorporates a fan section 12, a compressor section 14, a combustor section 16 and a turbine section 18. Alternative engines might include an augmentor section 20 among other systems or features.

    [0015] The fan section 12 drives air along a bypass flow path 28 in a bypass duct 26. A compressor section 12 drives air along a core flow path C into a combustor section 16 where fuel is mixed with the compressed air and ignited to produce a high energy exhaust gas flow. The high energy exhaust gas flow expands through the turbine section 18 to drive the fan section 12 and the compressor section 14. Although depicted as a two-spool turbofan gas turbine engine in the disclosed non-limiting embodiment, it should be understood that the concepts described herein are not limited to use with two-spool turbofans as the teachings may be applied to other types of turbine engines including three-spool architectures.

    [0016] In this example, the gas turbine engine 10 includes a liner 24 that surrounds a core engine portion including the compressor section 14, combustor 16 and turbine section 18. The duct 26 is disposed radially outside of the liner 24 to define the bypass flow path 28. Air flow is divided between the core engine where it is compressed and mixed with fuel and ignited to generate the high energy combustion gases and air flow that is bypassed through the bypass passage to increase engine overall efficiency.

    [0017] The example turbine section 18 includes rotors 30 that support turbine blades that convert the high energy gas flow to shaft power that, in turn, drives the fan section 12 and the compressor section 14. In this example, stator vanes 32 are disposed between the rotating turbine vanes 30 and are variable to adjust the rate of high energy gas flow through the turbine section 18.

    [0018] The example gas turbine engine 10 is a variable cycle engine that includes a variable vane assembly 36 for adjusting operation of the engine to optimize efficiency based on current operating conditions. The variable vane assembly 36 includes airfoils 38 that are rotatable about an axis B transverse to the engine longitudinal axis A through a predetermined centroid of each individual airfoil. Adjustment and rotation about the axis B of each of the stator vanes 32 varies gas flow rate to further optimize engine performance between a high powered condition and partial power requirements, such as may be utilized during cruise operation.

    [0019] Referring to Figure 2, the example turbine section includes a rotor 30 that supports a plurality of turbine blades 34. A fixed vane 60 is provided along with a variable vane assembly 36. The variable vane assembly 36 includes an airfoil 38 that is rotatable about the axis B. The variable vane assembly 36 receives cooling air flow 44 from an inner chamber 42 and an outer chamber 40. The air flow is required as the high energy gases 46 are of a temperature that exceed the material performance capabilities. Accordingly, cooling air 44 is provided to the variable vane assembly 36 to maintain and cool the airfoil 38 during operation.

    [0020] The example variable vane assembly 36 includes a mechanical link 52 that is attached to an actuator 54. The actuator 54 is controlled to change an angle or angle of incidence of the airfoil 38 relative to the incoming high energy gas flow 46.

    [0021] The example vane assembly 36 is supported within a static structure that includes an inner housing 50 and an outer housing 48. The inner housing 50 defines an inner cooling air chamber 42 and the outer housing 48 partially defines an outer cooling air chamber 40. The cooling air chambers 40 and 42 receive cooling air from other parts of the engine. In this example, cooling air is drawn from the compressor section 14 and directed through the cooling air chambers 40 and 42 to the example vane assembly 36.

    [0022] Referring to Figures 3, 4 and 5 with continued reference to Figure 2, the example variable vane assembly 36 includes the airfoil 38. The airfoil 38 includes a leading edge 66, a trailing edge 68, a pressure side 70 and a suction side 72. The airfoil 38 extends from a root 76 to a radially outer tip 74.

    [0023] The airfoil 38 is supported for rotation by an outer bearing spindle 56 and an inner bearing spindle 58 that are supported within the corresponding outer housing 48 and inner housing 50. The outer bearing spindle 56 includes an opening 62 through which cooling air 44 may flow into internal chambers of the airfoil 38. The inner bearing spindle 58 includes an opening 64 through which cooling air 44 may also be directed into internal chambers of the airfoil 38. The outer bearing spindle 56 and the inner bearing spindle 58 facilitate rotation of the airfoil 38 within the gas flow path.

    [0024] The example airfoil 38 includes a plurality of cooling air openings 108 that communicate air to an external surface of the airfoil 38 to generate a film cooling air flow along the surface that protects against the extreme temperatures encountered in the gas flow path.

    [0025] An internal rib 86 extends from the root 76 toward the tip 74 to direct cooling airflow toward the leading edge 66 and trailing edge 68 of the airfoil 38. The rib 86 is disposed within the airfoil to direct cooling airflow and begins at a point forward of the inner bearing spindle 58 and terminates at the tip end at a point aft of the outer bearing spindle 56. Airflow through the opening 64 within the lower bearing spindle 58 is directed aft toward the trailing edge 68 by the internal rib 86. Airflow through the opening 62 in the outer bearing spindle 56 is directed toward the leading edge 66 of the airfoil 38. The rib 86 provides a division between a forward chamber 80 and an aft chamber 82 (Best shown in Figure 7).

    [0026] Referring to Figures 6A, 6B, and 6C, because the variable vane 36 is rotatable relative to the direction of the high energy gas flow 46, a stagnation point 84 will also vary and move between the suction side 72 and the pressure side 70. The stagnation point 84 is the point on the airfoil 38 where hot working fluid velocity is substantially zero, and is typically the point along the turbine airfoil with the highest thermal loading. Heat load into the vane is a function of both the external temperature and fluid-boundary layer conditions. In a fixed vane assembly, the stagnation point 84 will be maintained in one position relative to the gas flow. However, in this instance, as the variable vane 36 rotates relative to the direction of the high energy gas flow 46, the stagnation point 84 moves between the leading edge 66 to one of the suction sides 72 and the pressure side 70 depending on the rotational position of the vane assembly 36. Accordingly, the point along the airfoil 38 with the greatest heat loading moves along the airfoil with movement of the variable vane assembly 36.

    [0027] In a neutral incident orientation (Figure 6B), the mechanical leading edge 66, which is at the confluence of the suction-side and pressure-side of the airfoil angled to the front of the engine, is disposed substantially in alignment with the incoming hot gas flow 46, the stagnation point 84 will be within or substantially near this mechanical leading edge 66. Rotation of the airfoil 38 toward a positive incidence orientation (Figure 6A) causes the hot gas flow 46 to impact the pressure side 70. The stagnation point 84 is therefore located at position on the pressure side 70. Rotation of the airfoil 38 towards a negative incidence (Figure 6C) moves the stagnation point 84 from the leading edge 66 to the suction side 72.

    [0028] Because the stagnation point 84 moves along the airfoil surface between the leading edge, suction side 72 and pressure side 70 the hot spot also varies in position on the airfoil 38 in which temperatures on the airfoil surface may reach a maximum condition. Moreover, movement of the stagnation point due to rotation of the vane assembly 36 may also create an adverse pressure upon the airfoil 38 that could cause ingestion of hot gases through the cooling air openings due to redistribution of internal cooling flows toward the lowest external pressure locations. The example airfoil 38 includes features to compensate for the movement of the stagnation point 84.

    [0029] Referring to Figure 7, the example airfoil 38 includes a forward chamber 80 and an aft chamber 82. Each of the forward and aft chambers 80, 82 include an impingement baffle. A forward impingement baffle 88 is disposed within the forward chamber 80 and includes a plurality of impingement openings 106. An aft impingement baffle 90 is disposed within the aft chamber 82. Cooling air flow directed through the impingement openings 106 against an inner surface 98 of the airfoil wall 78. This impingement of air flow on the inner surface 98 provides a first cooling function of the airfoil 38 by cooling the airfoil wall 78. That impingement air flow is then directed through cooling air openings 108 defined within airfoil to generate a film cooling flow 110 along the outer surface 100 of the airfoil 38. The cooling film air flow 110 insulates the outer surface 100 of the airfoil 38 against the extreme temperatures encountered by the high energy exhaust gas flow 46.

    [0030] Because the stagnation point 84 moves in a manner corresponding with rotation of the variable vane assembly 36, the required cooling air flow 44 can be negatively impacted if the space between the forward impingement baffle 88 and the inner surface 98 of the airfoil wall 78 was simply a continuous cavity.

    [0031] Accordingly, a post-impingement cavity 95 is split into a leading edge cavity, pressure side cavity and a suction side cavity defined between an inner surface of the forward chamber and an outer surface of the forward impingement baffle.

    [0032] In this example, a first separator 102 is provided between a leading edge cavity 92 and a suction side cavity 96. A second separator 104 is provided between the leading edge cavity 92 and a pressure side cavity 94. The separators 102,104 isolate each of the cavities 92, 94 and 96 such cooling airflow within one cavity 92, 94 and 96 is not rebalanced or negatively affected at extreme angles to prevent ingestion of the high energy exhaust gases through the cooling air openings 108.

    [0033] Each of the separators 102, 104 extends from the root 76 to the blade tip 74of the airfoil such that the corresponding leading edge cavity, suction side cavity 94 and pressure side cavity 96 run the entire radial length of the airfoil 38.

    [0034] The example trifurcated leading edge cavities are set up such that as the vane articulates from a positive incidence to a negative incidence that the differences in pressure between the pressure side and the suction side do not generate inflow of hot combustion gases into the interior portions of the airfoil 38. Accordingly, the example airfoil includes features that combat the drawback of a rotating vane to prevent a backflow of hot gas into the example cooling chambers.

    [0035] Although an example embodiment has been disclosed, a worker of ordinary skill in this art would recognize that certain modifications would come within the scope of this disclosure. For that reason, the following claims should be studied to determine the scope and content of this disclosure.


    Claims

    1. A turbine vane assembly (36) for a gas turbine engine (10) comprising:

    an airfoil (38) including a pressure side (70) and a suction side (72) that extend from a leading edge (66) toward a trailing edge (68), wherein the airfoil (38) is rotatable about an axis transverse to an engine longitudinal axis;

    a forward chamber (80) within the airfoil (38) and in communication with a cooling air source;

    a forward impingement baffle (88) defining a pre-impingement cavity within the forward chamber (80); and

    a leading edge cavity (92), pressure side cavity (94) and a suction side cavity (96) defined between an inner surface (98) of the forward chamber (80) and an outer surface of the forward impingement baffle (88); characterised by further comprising:
    an aft chamber (82) including an aft impingement baffle and a radial separator (86) dividing the forward chamber (80) from the aft chamber (82), an outer pivot boss (56) and an inner pivot boss (58) for supporting rotation of the airfoil (38) about the axis, wherein an outer cooling feed opening (62) extends through the outer pivot boss (56) and an inner cooling feed opening (64) extends through the inner pivot boss (58) and wherein the radial separator (86) is configured to direct airflow through outer cooling feed opening (62) toward one of the forward chamber (80) and aft chamber (82) and airflow through the inner cooling feed opening (64) toward the other of the forward and aft chambers (80,82).


     
    2. The turbine vane assembly (36) as recited in claim 1, including a first separator (104) between the impingement baffle (88) and the inner surface (98) of the forward chamber (80) separating the leading edge cavity (92) from the pressure side cavity (94) and a second separator (102) between the impingement baffle (88) and the inner surface (98) of the forward chamber (80) separating the leading edge cavity (92) from the suction side cavity (96).
     
    3. The turbine vane assembly (18) as recited in claim 2, wherein the first separator (104) and the second separator (102) extend radially between a root (76) and tip (74) of the airfoil (38).
     
    4. The turbine vane assembly (36) as recited in any preceding claim, wherein the forward impingement baffle (88) includes a plurality of impingement openings (106) for directing cooling airflow against the inner surface (98) of the forward chamber (80).
     
    5. The turbine vane assembly (36) as recited in claim 4, including cooling holes (108) for communicating cooling airflow (140) along an outer surface (100) of the airfoil (38).
     
    6. A turbine section (18) of a gas turbine engine (10) comprising;
    at least one rotor (30) supporting rotation of a plurality of blades (34) about an engine rotational axis; and
    at least one turbine vane assembly (36) as recited in any preceding claim, wherein the airfoil (38) is the airfoil (38) of a variable vane rotatable about an axis transverse to the engine rotational axis for varying a direction of airflow.
     
    7. A gas turbine engine comprising:

    a compressor section (14);

    a combustor (16) in fluid communication with the compressor section (14); and

    a turbine section (18) in fluid communication with the combustor (16); the turbine section (18) being a turbine section (18), as recited in claim 6.


     


    Ansprüche

    1. Turbinenschaufelbaugruppe (36) für ein Gasturbinentriebwerk (10), umfassend:

    ein Schaufelblatt (38), das eine Druckseite (70) und eine Saugseite (72) beinhaltet, die sich von einer Vorderkante (66) zu einer Hinterkante (68) erstrecken, wobei das Schaufelblatt (38) um eine Achse drehbar ist, die quer zu einer Längsachse des Triebwerks verläuft;

    eine vordere Kammer (80) innerhalb des Schaufelblatts (38) und in Kommunikation mit einer Kühlluftquelle;

    ein vorderes Prallblech (88), das einen Voraufprallhohlraum innerhalb der vorderen Kammer (80) definiert; und

    einen Vorderkantenhohlraum (92), einen Druckseitenhohlraum (94) und einen Saugseitenhohlraum (96), die zwischen einer Innenfläche (98) der vorderen Kammer (80) und einer Außenfläche des vorderen Prallblechs (88) definiert sind; dadurch gekennzeichnet, dass die Baugruppe außerdem Folgendes umfasst:
    eine hintere Kammer (82), die ein hinteres Prallblech und eine radiale Trennvorrichtung (86), welche die vordere Kammer (80) von der hinteren Kammer (82) abteilt, eine äußere Schwenknabe (56) und eine innere Schwenknabe (58) zur Unterstützung der Drehung des Schaufelblatts (38) um die Achse beinhaltet, wobei sich eine äußere Kühlzuführöffnung (62) durch die äußere Schwenknabe (56) erstreckt und sich eine innere Kühlzuführöffnung (64) durch die innere Schwenknabe (58) erstreckt und wobei die radiale Trennvorrichtung (86) dazu konfiguriert ist, Luftströmung durch die äußere Kühlzuführöffnung (62) zu einer der vorderen Kammer (80) und der hinteren Kammer (82) und Luftströmung durch die innere Kühlzuführöffnung (64) zur anderen der vorderen und der hinteren Kammer (80, 82) zu lenken.


     
    2. Turbinenschaufelbaugruppe (36) nach Anspruch 1, beinhaltend eine erste Trennvorrichtung (104) zwischen dem Prallblech (88) und der Innenfläche (98) der vorderen Kammer (80), die den Vorderkantenhohlraum (92) vom Druckseitenhohlraum (94) trennt, und eine zweite Trennvorrichtung (102) zwischen dem Prallblech (88) und der Innenseite (98) der vorderen Kammer (80), die den Vorderkantenhohlraum (92) vom Saugseitenhohlraum (96) trennt.
     
    3. Turbinenschaufelbaugruppe (18) nach Anspruch 2, wobei sich die erste Trennvorrichtung (104) und die zweite Trennvorrichtung (102) radial zwischen einem Fuß (76) und einer Spitze (74) des Schaufelblatts (38) erstrecken.
     
    4. Turbinenschaufelbaugruppe (36) nach einem der vorhergehenden Ansprüche, wobei das vordere Prallblech (88) eine Vielzahl von Prallöffnungen (106) zum Lenken von Kühlluftströmung gegen die Innenfläche (98) der vorderen Kammer (80) beinhaltet.
     
    5. Turbinenschaufelbaugruppe (36) nach Anspruch 4, beinhaltend Kühllöcher (108) zum Leiten von Kühlluftströmung (140) entlang einer Außenfläche (100) des Schaufelblatts (38).
     
    6. Turbinenabschnitt (18) eines Gasturbinentriebwerks (10), umfassend:

    mindestens einen Rotor (30), der eine Drehung einer Vielzahl von Schaufeln (34) um eine Drehachse des Triebwerks unterstützt; und

    mindestens eine Turbinenschaufelbaugruppe (36) nach einem der vorhergehenden Ansprüche, wobei das Schaufelblatt (38) das Schaufelblatt (38) einer verstellbaren Schaufel ist, die um eine Achse drehbar ist, die quer zur Drehachse des Triebwerks verläuft, um eine Luftströmungsrichtung zu variieren.


     
    7. Gasturbinentriebwerk, umfassend:

    einen Verdichterabschnitt (14);

    eine Brennkammer (16) in Fluidkommunikation mit dem Verdichterabschnitt (14); und

    einen Turbinenabschnitt (18) in Fluidkommunikation mit der Brennkammer (16); wobei es sich bei dem Turbinenabschnitt (18) um einen Turbinenabschnitt (18) nach Anspruch 6 handelt.


     


    Revendications

    1. Ensemble ailette de turbine (36) pour un moteur à turbine à gaz (10) comprenant :

    une surface portante (38) incluant un côté pression (70) et un côté aspiration (72) qui s'étendent depuis un bord d'attaque (66) vers un bord de fuite (68), dans lequel la surface portante (38) peut tourner autour d'un axe transversal à un axe longitudinal du moteur ;

    une chambre avant (80) au sein de la surface portante (38) et en communication avec une source d'air de refroidissement ;

    une chicane à empiétement avant (88) définissant une cavité de pré-empiètement au sein de la chambre avant (80) ; et

    une cavité de bord d'attaque (92), une cavité côté pression (94) et une cavité côté aspiration (96) définies entre une surface interne (98) de la chambre avant (80) et une surface externe de la chicane à empiétement avant (88) ;

    caractérisé en ce qu'il comprend en outre :
    une chambre arrière (82) incluant une chicane à empiétement arrière et un séparateur radial (86) divisant la chambre avant (80) de la chambre arrière (82), un bossage pivot externe (56) et un bossage pivot interne (58) destiné à supporter en rotation de la surface portante (38) autour de l'axe, dans lequel une ouverture d'alimentation de refroidissement externe (62) s'étend à travers le bossage pivot externe (56) et une ouverture d'alimentation de refroidissement interne (64) s'étend à travers le bossage pivot interne (58) et dans lequel le séparateur radial (86) est configuré pour diriger un écoulement d'air à travers l'ouverture d'alimentation de refroidissement externe (62) vers l'une de la chambre avant (80) et de la chambre arrière (82) et un écoulement d'air à travers l'ouverture d'alimentation de refroidissement interne (64) vers l'autre des chambres avant et arrière (80, 82).


     
    2. Ensemble ailette de turbine (36) selon la revendication 1, incluant un premier séparateur (104) entre la chicane à empiétement (88) et la surface interne (98) de la chambre avant (80) séparant la cavité de bord d'attaque (92) de la cavité côté pression (94) et un second séparateur (102) entre la chicane à empiétement (88) et la surface interne (98) de la chambre avant (80) séparant la cavité de bord d'attaque (92) de la cavité côté aspiration (96).
     
    3. Ensemble ailette de turbine (18) selon la revendication 2, dans lequel le premier séparateur (104) et le second séparateur (102) s'étendent radialement entre un pied (76) et un bout (74) de la surface portante (38).
     
    4. Ensemble ailette de turbine (36) selon une quelconque revendication précédente, dans lequel la chicane à empiètement avant (88) inclut une pluralité d'ouvertures d'empiètement (106) destinées à diriger un écoulement d'air de refroidissement contre la surface interne (98) de la chambre avant (80).
     
    5. Ensemble ailette de turbine (36) selon la revendication 4, incluant des trous de refroidissement (108) destinés à faire communiquer un écoulement d'air de refroidissement (140) le long d'une surface externe (100) de la surface portante (38).
     
    6. Section de turbine (18) d'un moteur à turbine à gaz (10) comprenant :

    au moins un rotor (30) supportant une rotation d'une pluralité de pales (34) autour d'un axe de rotation du moteur ; et

    au moins un ensemble ailette de turbine (36) selon une quelconque revendication précédente, dans laquelle la surface portante (38) est la surface portante (38) d'une ailette variable pouvant tourner autour d'un axe transversal à l'axe de rotation du moteur en vue de faire varier une direction d'écoulement d'air.


     
    7. Moteur à turbine à gaz comprenant :

    une section de compresseur (14) ;

    une chambre de combustion (16) en communication fluidique avec la section de compresseur (14) ; et

    une section de turbine (18) en communication fluidique avec la chambre de combustion (16) ; la section de turbine (18) étant une section de turbine (18), telle que précisée dans la revendication 6.


     




    Drawing























    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description