(19)
(11)EP 3 062 077 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
26.06.2019 Bulletin 2019/26

(21)Application number: 16150932.8

(22)Date of filing:  12.01.2016
(51)International Patent Classification (IPC): 
G01K 7/42(2006.01)
H05K 1/02(2006.01)
H04M 17/02(2006.01)

(54)

MULTI-SENSOR ASSEMBLY

MEHRFACHSENSORANORDNUNG

ENSEMBLE À CAPTEURS MULTIPLES


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 24.02.2015 US 201514630050

(43)Date of publication of application:
31.08.2016 Bulletin 2016/35

(73)Proprietor: NXP B.V.
5656 AG Eindhoven (NL)

(72)Inventors:
  • Zivkovic, Zoran
    Redhill, Surrey RH1 1SH (GB)
  • Phan Le, Kim
    Redhill, Surrey RH1 1SH (GB)
  • Suy, Hilco
    Redhill, Surrey RH1 1SH (GB)

(74)Representative: Miles, John Richard 
NXP SEMICONDUCTORS Intellectual Property Group Abbey House 25 Clarendon Road
Redhill, Surrey RH1 1QZ
Redhill, Surrey RH1 1QZ (GB)


(56)References cited: : 
EP-A1- 2 802 128
US-A- 4 741 476
US-A1- 2006 087 820
US-A1- 2013 099 008
DE-A1-102013 212 066
US-A1- 2002 080 852
US-A1- 2011 119 018
US-A1- 2014 376 591
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description


    [0001] Various example embodiments of systems, methods, apparatuses, devices and articles of manufacture for a multi-sensor assembly are now discussed.

    [0002] Temperature sensors are used within a number of devices, such as smartphones, for measuring the ambient temperature outside of the device. However, raw temperature sensor readings often do not give correct ambient temperature. Instead the temperature sensor might be placed on a printed circuit board (PCB) next to some heat sources (e.g. a processor generating heat). Thus the raw temperature reading is a combination of the ambient temperature and the heat generated by a variety of heat sources.

    [0003] Many dynamically changing heat sources (e.g. active components such as microprocessors) are present inside the phone, significantly elevating the temperature at the sensor compared to the true ambient temperature. In many applications it is of interest to measure the ambient temperature and remove the influence of these other heat sources.

    [0004] Such sensors are based on integrated transistors/diodes embedded in a silicon die within an IC package. The IC is firmly mounted on a PCB, and together with thousands of other components, housed inside the device. Such a system can have a large thermal time constant of about half an hour or more.

    [0005] Algorithms using a combination of information on the heating behaviors of the heat sources and the readings of multiple temperature sensors on various places inside the phone are used in an attempt to remove the influences of the large thermal mass of the system and heat dissipated by these heat sources and estimate the ambient temperature.

    [0006] The multiple temperature sensors may be dedicated components, or may be included in another more complex component (e.g. in a processor, a battery, a display, etc.). Data from various temperature sensors are gathered to a processing point, usually the central processor, where the algorithm is deployed to estimate the ambient temperature. Such an approach depends on the accuracy and calibration of these other sensors.

    [0007] However, the algorithm is more accurate if a sufficient number of temperature sensors exist within the device and sensors are well spaced and accurate. Thus the algorithm works better when the design and layout of the temperatures sensors within the device are fairly well known.

    [0008] US2014376591 A1 discloses a module for integration into a mobile terminal, in order to estimate the ambient temperature, including: a first device for measuring a first temperature in the first region; a second device for measuring a second temperature in a second region; and an evaluation device configured to ascertain a temperature difference between the first temperature in the first region and the second temperature in the second region, in order to estimate the ambient temperature. US2011119018 A1, US4741476 A, EP2802128 A1 and US2013099008 A1 also disclose ambient temperature estimation systems based on the same principle.

    SUMMARY



    [0009] According to a first aspect of the present disclosure there is provided the multi-sensor assembly of claim 1.

    [0010] According to a further aspect of the present disclosure there is provided the method of claim 10.

    [0011] The Figures and Detailed Description that follow exemplify various example embodiments.

    [0012] Various example embodiments may be more completely understood in consideration of the following Detailed Description in connection with the accompanying Drawings, in which:

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0013] 

    Figure 1 is a first example multi-sensor assembly.

    Figure 2 is a second example multi-sensor assembly.

    Figure 3 is a third example multi-sensor assembly.

    Figure 4 is a fourth example multi-sensor assembly, according to the claimed invention.

    Figure 5 is an example thermal model of an example multi-sensor assembly.

    Figure 6 is an example method of manufacturing an example multi-sensor assembly.


    DETAILED DESCRIPTION



    [0014] Design principles are described herein where a set of temperature sensors are placed within a single multi-sensor assembly and their readings are combined and used to remove the influence of a set of heat sources. The sensors are isolated and can have different thermal/heat capacities to react differently to temperature and heat sources.

    [0015] In one example embodiment, the sensors are placed along at least one thermal path from a set of heat sources to an ambient environment. Thermal isolation placed between the temperature sensors and differences in the temperature sensor's heat capacity enable ambient temperature to be measured in response to both static and dynamically changing heat source driven temperature variations.

    [0016] In another example embodiment, the temperature sensors are placed in separate chips put into a so called "multi-chip assembly". The chips can be placed for example on top of each other and isolated by an isolating layer in-between. The chip sizes might be significantly different to increase the difference in heat capacity.

    [0017] The set of temperature sensors can also use different temperature sensing principles. For example the band-gap sensors can be placed deep inside the silicon and close to heat paths and internal and external heat sources. Resistive wire based sensors can be designed on top of the chip in close contact with the air. The wire sensor can be thermally isolated from the rest of the silicon using isolating layer or making the wire free hanging.

    [0018] The multiple sensors will react differently to heat sources and ambient temperature and their changes due to thermal resistance and heat capacity differences. From the differences in the measurements the ambient temperature can be extracted and influence of other sources removed. The accuracy of the solution will mainly depend on the relative accuracy of the differences between the sensors.

    [0019] An algorithm for extracting the ambient temperature can be implemented in the same chip as dedicated processing or on microcontroller.

    [0020] The multi-sensor assembly described herein is independent of other sensors external to the single assembly. Accuracy, calibration and an algorithm can be provided within the single multi-sensor assembly and thereby provide repeatable temperature output values regardless of the application. Ambient temperature estimates can be improved since additional thermal gradient information is obtained locally within the single assembly. Power consumption can be reduced by adding local processing to extract the ambient information only when needed since the information is available locally. The multi-sensor assembly makes its placement easier and the overall system simpler, since the information to estimate the temperature is contained in the single device.

    [0021] Figure 1 is a first example multi-sensor assembly 100. The multi-sensor assembly 100 includes a first temperature sensor 106, having a first thermal profile, mounted in a first circuit 104 (e.g. a silicon die, semiconductor chip, etc.). An adhesive layer 102 bonds the first circuit 104 to an optional substrate (e.g. a heat-sink) which is then bonded to a lead-frame 114.

    [0022] A second temperature sensor 110, having a second thermal profile, different from the first thermal profile, is mounted in a second circuit 108 (e.g. a silicon die, semiconductor chip, etc.). An isolation layer 112 (e.g. adhesive glue) bonds the second circuit 108 to the first circuit 104. In one example the first and second temperature sensors 106, 110 are mounted on a lead-frame 114.

    [0023] Bond-wires 116 electrically connect the first and second circuits 104, 108 to the lead-frame 114, all of which is then surrounded by an encapsulant 118 (e.g. molding compound). The multi-sensor assembly 100 can then be mounted to a circuit board 120 (e.g. PCB).

    [0024] In one example embodiment, the temperature sensors 106, 100 can be stacked on top of each other as shown in Figure 1, however, in an alternate embodiment according to the claimed invention the temperature sensors 106, 100 are placed side-by-side, as is presented in other Figures.

    [0025] The first and second temperature sensors 106, 110 include a first heat source 122 heat path 124 input coupled to an ambient environment (i.e. the first heat source 122), and a second heat source 126 heat path 128 input coupled to the second heat source 126 through the lead-frame. The second heat path 128, in one example, transmits thermal energy from the second heat source 126 through the circuit board 120 and electrical connection traces on the circuit board 120 to the assembly 100. For the purposes of this discussion, the first heat source 122 can be either at a higher or lower temperature than the second heat source 126.

    [0026] A sensor's, device's or material's thermal profile is herein defined to include the sensor's, device's or material's ability to absorb, release and conduct heat. The first and second temperature sensor's 106, 110 thermal profiles are designed such that temperature differences between the two heat sources 122, 126 results in a measurable temperature difference between the two sensors 106, 110.

    [0027] For example, if each temperature sensor 106, 110 has a 0.2K (Kelvin) temperature measurement resolution (which is common detection accuracy for modern CMOS sensors), then the individual thermal profiles of the sensors 106, 110 must result in a temperature difference between the sensors 106, 110 of something greater than 0.2K. Such sensors 106, 110 may, for example, be with the help of algorithms able to translate such a greater than 0.2K temperature difference to a 10K difference between the heat sources 122, 126.

    [0028] The greater a difference between the first and second temperature sensor's 106, 110 thermal profile, then the greater the accuracy of the ambient temperature calculation, even if the sensor's 106, 110 resolution stays the same. For example, according to the claimed invention the thermal profile of the first temperature sensor 106 differs from the thermal profile of the second temperature sensor 110 by at least 2-to-1 (i.e. 2:1 ratio). Many other thermal profile difference ratios are also possible.

    [0029] The first and second temperature sensor's 106, 110 thermal profiles can be differentiated in a variety of ways, such as by differentiating their: thermal resistances, heat capacity, thermal time constants, thermal characteristics, temperature differences over time, or temperature differences across the circuits 104, 108 or the assembly 100.

    [0030] Differences in thermal resistance between the first and second temperature sensors 106, 110, such as toward the ambient and the local/PCB heat sources, can be achieved in a variety of ways, which are now discussed.

    [0031] One way adds an isolation layer 112, having a thermal profile, between the second temperature sensor 110 and the second heat source 126 but not between the second temperature sensor 110 and the first heat source 122. In this example, the first temperature sensor 106 is not so isolated. In an additional example, the thermal profiles of the temperature sensors with respect to a heat source or to common ambient are kept as different as possible, such as adding isolation between 110 and 126, but not between 106 and 126.

    [0032] The isolation layer 112 also acts as a glue layer between the first and second circuits 104, 108 holding the first and second temperature sensors 106, 110. A thickness of the isolation layer 112 should be sufficiently large to have a thermal resistance between the sensors 106, 110 which is substantially greater than a thickness of an adhesive layer 102 between the first temperature sensor 106 and the lead-frame 114. In an alternate example, the isolation layer 112 can be made of a different material which increases thermal resistance so that the isolation layer's 112 thickness does not need to be increased.

    [0033] For example, a non-conducting glue, such as used in IC packaging technology, having a thickness over 35µm for the isolation layer 112 could work if the adhesive layer 102 has a thickness in the range of 10 to 30 µm. An isolation layer 112 at least double that of the adhesive layer 102 would work as well.

    [0034] Another way to increase thermal resistance differentiation between the temperature sensors 106, 110 is by stacking the first and second circuits 104, 108. A first side of the isolation layer is coupled to a top of the first temperature sensor and the second temperature sensor is coupled to a second side of the isolation layer, thereby forming a stacked first and second temperature sensor configuration.

    [0035] Heat capacity differentiation between the temperature sensors 106, 110 can be achieved by designing the first and second circuits 104, 108 (in which the temperature sensors 106, 110 are held) to have substantially different sizes/masses. For circuits 104, 108 which are silicon wafers, a first silicon die having either an area or thickness at least two times greater than a second silicon die would work.

    [0036] Logical circuits and/or a computer processor (not shown) could be included either within the multi-sensor assembly 100 or electrically interface with the multi-sensor assembly 100. The logical circuits and/or a computer processor would receive output signals from the temperature sensors 106, 110 and algorithmically estimate the ambient temperature (i.e. the temperature of the first heat source 122) by filtering the second heat source 126 heat path 128 input from the first heat source 122 heat path 124 input. This is discussed in more detail below.

    [0037] The multi-sensor assembly 100 in another embodiment further includes a second isolation layer (not shown) and a third temperature sensor (not shown) having a third thermal profile. A first side of the second isolation layer would be coupled to a top of the second temperature sensor 110 and the third temperature sensor would be coupled to a second side of the second isolation layer, thereby forming a triple-stacked first, second and third temperature sensor configuration. Such additional thermally differentiated temperature sensors would further increase an accuracy of an ambient temperature measurement.

    [0038] Figure 2 is a second example multi-sensor assembly 200. In addition to most of the elements introduced in Figure 1, the second multi-sensor assembly 200 includes an encapsulant 202 having an opening 204 exposing the second temperature sensor 110 to the first heat source 122 (e.g. an ambient environment).

    [0039] The opening 204 permits the second temperature sensor 110 to be in direct contact with the first heat source 122 (e.g. an ambient environment, such as the air). Thus the opening 204 in the assembly 200 encapsulant 202 increases a thermal contact between the second temperature sensor 110 and the first heat path 124 from the first heat source 122 (e.g. the ambient environment). Such direct contact improve an accuracy of the estimated ambient temperature measurement by increasing thermal profile differentiation between the first temperature sensor 106 and the second temperature sensor 110.

    [0040] Figure 3 is a third example multi-sensor assembly 300. In addition to some of the elements introduced in Figure 1, the third multi-sensor assembly 300 further includes a second temperature sensor which is a resistive wire sensor 302 and an encapsulant 304 with an opening 306. The third example assembly 300 presents an embodiment wherein the first and second temperature sensors (e.g. prior 106, 110) use different sensing principles.

    [0041] In this third example assembly 300, the first temperature sensor 106 includes a band-gap temperature sensor and the second temperature sensor includes a resistive-wire temperature sensor 302. The first temperature sensor 106 can be a standard band-gap temperature sensor inside the first circuit 104 (e.g. a silicon die). This sensor 106 will be more influenced by the second heat source 126 on the PCB 120.

    [0042] The second temperature sensor (i.e. the resistive wire sensor 302) can be fabricated on top of the first circuit 104. This sensor 302 in one example is isolated from the die using a thermally isolating layer (not shown) in between the sensor 302 and the die. However Figure 3 shows an example where the sensor 302 is fabricated to be free hanging and isolated by a small amount of gas (e.g. air) or vacuum in between the sensor 302 and the first circuit 104. The resistive wire sensor 302 can be exposed to an ambient environment through the opening 306 in the assembly's 300 encapsulant/molding compound 304. The resistive wire sensor 302 will be less influenced by the other heat sources (e.g. such as the second heat source 126) on the PCB 120 and more by the ambient environment (i.e. the first heat source 122). In this way, the first and second sensors (e.g. prior 106, 110) can be further differentiated, thereby improving an accuracy of the estimated ambient temperature measurement.

    [0043] Figure 4 is a fourth example multi-sensor assembly 400 according to the claimed invention. In addition to some of the elements introduced in Figure 1, the fourth assembly 400 further includes a second circuit 404, second temperature sensor 406, an isolation layer 408, an encapsulant 410, a first heat path 412, a second heat path 414, a first lead-frame 416 and a second lead-frame 418. The fourth example assembly 400 presents a side-by-side temperature sensor configuration on two separated lead-frames 416, 418 but within a single multi-chip assembly 400.

    [0044] In this example, one side of the isolation layer 408 is coupled to the second lead-frame 418, while the second temperature sensor 406 in the second circuit 404 is coupled to the other side of the isolation layer 408. One side of an adhesive layer 102 is coupled to the first lead-frame 416, and the first temperature sensor 106 in the first circuit 104 is coupled to the other side of the adhesive layer 102, thereby forming a side-by-side first and second temperature sensor 106, 406 configuration. In one example, a thickness of the isolation layer 408 is at least twice that of a thickness of the adhesive layer 102. While the first and second lead-frames 416, 418 could be combined into a single lead-frame 114, this would lessen the differentiation between the sensors 106, 406.

    [0045] The greater differentiation in the sensors' 106, 406 thermal profile, then the more accurate the estimated ambient (i.e. first heat source 122) temperature. Following are some example embodiments for accomplishing this. According to the claimed invention, thermal differentiation between the temperature sensors 106, 406 can be further increased if the first and second circuits 104, 404 have significantly different heat capacities (e.g. different sizes/areas and/or thicknesses), which influences their thermal mass and dynamic temperature response.

    [0046] In another example, the thermal differentiation between the sensors 106, 406 can be further increased by orienting the assembly 400 within the PCB 120 such that the first temperature sensor 106, having a least thermal isolation, is closest to the second heat source 126. Also, if the encapsulant 410 is modified to create an opening (not shown) above the second temperature sensor 406, then the sensor 406 can be exposed directly to the first heat source 122 (e.g. ambient air). This would further increase the thermal contact of the second temperature sensor 406 with the first heat source 122 and thereby further differentiate the thermal behavior between the sensors 106, 406.

    [0047] Figure 5 is an example thermal model 500 of an example multi-sensor assembly 502. Equations for extracting an ambient temperature (Ta) 504 from a first temperature sensor 506, generating a first temperature output value (T1) 508, and a second temperature sensor 510, generating a second temperature output value (T2) 512, are now discussed.

    [0048] The readings of the two sensors 506, 510 can be combined to remove the influence of an additional heat source 514 and estimate the ambient temperature 504. Principles for such extraction and base algorithm are described next.

    [0049] When the multi-sensor assembly 502 is in equilibrium the thermal model 500 can be approximated by the following equations:





    [0050] Where K1_2, K2_a K1_a are lumped thermal conductance values of the system and P is the thermal power of the heat source 514. The temperature readings 508, 512 of the temperature sensors 506, 510 are: T1 and T2. The unknown ambient temperature 504 to be estimated is denoted by Ta.

    [0051] One possible solution to estimate the ambient temperature 504 is:



    [0052] As can be seen from the above equation, measured small local difference in temperature (T2-T1) can be used to remove large influence of other heat sources. Total error of the corrected ambient measurement is a combination of two errors: the absolute error of the first temperature sensor 506 and the relative error between the first and second temperature sensors 506, 510 which is multiplied by the factor that depends on the thermal conductivities. Accurate factory calibration of a difference between the first and second temperature sensors 506, 510 reduces the error of the ambient temperature 504 estimation.

    [0053] In case of dynamic temperature changes the temperature gradients and thermal capacities of the components are taken into account and similar solutions can be derived.

    [0054] Figure 6 is an example method 600 of manufacturing an example multi-sensor assembly. The order in which the method is discussed does not limit the order in which other example embodiments implement the method. Additionally, in some embodiments the instructions are implemented concurrently.

    [0055] A first example method begins in 602, by fabricating a first temperature sensor, having a first thermal profile. Next, in 604, fabricating a second temperature sensor, having a second thermal profile different from the first thermal profile. Then in 606, forming a first heat source 122 heat path 124 between an ambient environment and the first and second temperature sensors. In 608, forming a second heat source 126 heat path 128 between the lead-frame 114 and the first and second temperature sensors. Then in 610, including the first and second sensors and set of lead-frames in a single multi-sensor assembly.

    [0056] The elements in method just discussed can be augmented or replaced with one or more of the following additional method elements, presented in no particular order.

    [0057] In 612, adding an isolation layer in the second heat source 126 heat path 128 between the lead-frame 114 and the second temperature sensor. In 614, coupling a first side of the isolation layer to a top of the first temperature sensor; and coupling the second temperature sensor to a second side of the isolation layer, thereby forming a stacked first and second temperature sensor configuration. In 616,coupling a first side of the isolation layer to a first location on the lead-frame 114; coupling the second temperature sensor to a second side of the isolation layer; coupling a first side of an adhesive layer to a second location on the lead-frame 114; and coupling the first temperature sensor to a second side of the adhesive layer, thereby forming a side-by-side first and second temperature sensor configuration according to the claimed invention. Then in 618, wherein the first temperature sensor is mounted to a first lead-frame and the second temperature sensor is mounted to a second lead-frame, separate from the first lead-frame.


    Claims

    1. A multi-sensor assembly (400), comprising:

    a first temperature sensor (106), having a first thermal profile, the first temperature sensor mounted in a first circuit (104) and coupled to one side of an adhesive layer (102), the other side of the adhesive layer coupled to a first lead frame (416);

    a second temperature sensor (406), having a second thermal profile different from the first thermal profile, the second temperature sensor mounted in a second circuit (404) and coupled to one side of an isolation layer (408), the other side of the isolation layer coupled to a second lead frame (418), thereby forming a side-by-side first and second temperature sensor configuration;

    wherein the first and second temperature sensors (106, 406) include a first heat path (124) input coupled to an ambient environment (122), and a second heat path (412, 414) input coupled to a second heat source (126) through the lead-frames (416, 418);

    wherein the second temperature sensor (406) is coupled to the second heat path (412, 414) input through the isolation layer (408);

    wherein the first temperature sensor (106) is not coupled to the second heat path (412, 414) input through the isolation layer (408); and

    wherein the first and second temperature sensors (106, 406) are not coupled to the first heat path (124) input through the isolation layer (408);

    wherein:

    a thermal resistance of the isolation layer (408) is greater than that of a thermal resistance of the adhesive layer (102); and

    the first circuit (104) has a different area or thickness and resulting heat capacity than the second circuit (404),

    such that the thermal profile of the first temperature sensor (106) differs from the thermal profile of the second temperature sensor (406) by at least a ratio of 2-to-1; and

    wherein the first and second temperature sensors (106, 406) and first and second lead-frames (416, 418) are included in a single multi-sensor assembly (400).


     
    2. The assembly (400) of claim 1 wherein the first circuit (104) is a first silicon die and the second circuit (404) is a second silicon die.
     
    3. The assembly (400) of claim 1 wherein the first silicon die has either an area or a thickness at least two times greater than the second silicon die.
     
    4. The assembly (400) of any preceding claim:

    wherein the first thermal profile includes a first thermal resistance;

    wherein the second thermal profile includes a second thermal resistance; and

    wherein the first thermal resistance is different from the second thermal resistance.


     
    5. The assembly (400) of any of claims 1 to 3:

    wherein the first thermal profile includes a first heat capacity;

    wherein the second thermal profile includes a second heat capacity; and

    wherein the first heat capacity is different from the second heat capacity.


     
    6. The assembly (400) of any preceding claim:

    wherein a thickness of the isolation layer (408) is greater than that of a thickness of the adhesive layer (102), and /or

    wherein a thickness of the isolation layer (408) is at least 50µm.


     
    7. The assembly (400) of any preceding claim:
    wherein the first temperature sensor (106) includes a band-gap temperature sensor and the second temperature sensor (406) includes a resistive-wire temperature sensor.
     
    8. The assembly (400) of any preceding claim:

    wherein the multi-sensor assembly (400) is substantially surrounded by an encapsulant (410), and/or

    wherein the encapsulant (410) includes an opening exposing the second temperature sensor (406).


     
    9. The assembly of any preceding claim:
    further comprising a processor coupled to the first and second temperature sensors (106, 406) and configured to filter the second heat path input (412, 414) from the first heat path input (124).
     
    10. A method of manufacture, for a multi-sensor assembly (400), comprising:

    fabricating a first temperature sensor (106), having a first thermal profile, the first temperature sensor mounted in a first circuit (104) and coupled to one side of an adhesive layer (102), the other side of the adhesive layer coupled to a first lead frame (416);

    fabricating a second temperature sensor (406), having a second thermal profile different from the first thermal profile, the second temperature sensor mounted in a second circuit (404) and coupled to one side of an isolation layer (408), the other side of the isolation layer coupled to a second lead frame (418), thereby forming a side-by-side first and second temperature sensor configuration;

    forming a first heat path (124) between an ambient environment and the first and second temperature sensors (106, 406);

    forming a second heat path (412, 414) between the lead-frames (416, 418) and the first and second temperature sensors (106, 406); and

    including the first and second temperature sensors (106, 406) and the first and second lead-frames (416, 418) in a single multi-sensor assembly (400);

    wherein the second temperature sensor (406) is coupled to the second heat path (412, 414) input through the isolation layer (408);

    wherein the first temperature sensor (106) is not coupled to the second heat path (412, 414) input through the isolation layer (408); and

    wherein the first and second temperature sensors (106, 406) are not coupled to the first heat path (124) input through the isolation layer (408);

    wherein:

    a thermal resistance of the isolation layer (408) is greater than that of a thermal resistance of the adhesive layer (102); and

    the first circuit (104) has a different area or thickness and resulting heat capacity than the second circuit (404),

    such that the thermal profile of the first temperature sensor (106) differs from the thermal profile of the second temperature sensor (406) by at least a ratio of 2-to-1.


     


    Ansprüche

    1. Eine Multisensor Anordnung (400), aufweisend:

    einen ersten Temperatursensor (106), welcher ein erstes thermisches Profil hat, wobei der erste Temperatursensor montiert ist in einem ersten Schaltkreis (104) und gekoppelt ist zu einer Seite von einer Klebeschicht (102),
    wobei die andere Seite von der Klebeschicht gekoppelt ist zu einem ersten Leadframe (416);

    einen zweiten Temperatursensor (406), welcher ein zweites thermisches Profil hat, das verschieden ist zu dem ersten thermischen Profil,
    wobei der zweite Temperatursensor montiert ist in einem zweiten Schaltkreis (404) und gekoppelt ist zu einer Seite von einer Isolationsschicht (408),
    wobei die andere Seite der Isolationsschicht gekoppelt ist zu einem zweiten Leadframe (418), um damit zu Formen eine Nebeneinander von erstem und zweitem Temperatursensor Konfiguration;
    wobei der erste und der zweite Temperatursensor (106, 406) umfasst einen ersten Wärmepfad (124) Eingang, welcher gekoppelt ist zu einer umgebenden Umgebung (122), und einen zweiten Wärmepfad (412, 414) Eingang, welcher gekoppelt ist zu einer zweiten Wärmequelle (126) durch die Leadframes (416, 418);
    wobei der zweite Temperatursensor (406) gekoppelt ist zu dem zweiten Wärmepfad (412, 414) Eingang durch die Isolationsschicht (408);
    wobei der erste Temperatursensor (106) nicht gekoppelt ist zu dem zweiten Wärmepfad (412, 414) Eingang durch die Isolationsschicht (408); und
    wobei der erste und der zweite Temperatursensor (106, 406) nicht gekoppelt sind zu dem ersten Wärmepfad (124) Eingang durch die Isolationsschicht (408);

    wobei:

    ein thermischer Widerstand von der Isolationsschicht (408) größer ist als ein thermischer Widerstand von der Klebeschicht (102); und

    der erste Schaltkreis (104) eine verschiedene Fläche oder Dicke und eine resultierende Wärmekapazität hat als der zweite Schaltkreis (404),
    sodass das thermische Profil von dem ersten Temperatursensor (106) abweicht von dem thermischen Profil von dem zweiten Temperatursensor (406) durch zumindest ein Verhältnis von Zwei-zu-Eins; und
    wobei der erste und der zweite Temperatursensor (106, 406) und der erste und der zweite Leadframe (416, 418) umfasst sind in einer einzelnen Multisensor Anordnung (400).


     
    2. Die Anordnung (400) gemäß Anspruch 1,
    wobei der erste Schaltkreis (104) ein erster Silizium Die ist und der zweite Schaltkreis (404) ein zweiter Silizium Die ist.
     
    3. Die Anordnung (400) gemäß Anspruch 1,
    wobei der erste Silizium Die entweder eine Fläche oder eine Dicke hat, welche zumindest zweimal größer ist als der zweite Silizium Die.
     
    4. Die Anordnung (400) gemäß irgendeinem vorherigen Anspruch:

    wobei das erste thermische Profil umfasst zumindest einen ersten thermischen Widerstand;

    wobei das zweite thermische Profil umfasst einen zweiten thermischen Widerstand; und

    wobei der erste thermische Widerstand verschieden ist von dem zweiten thermischen Widerstand.


     
    5. Die Anordnung (400) gemäß irgendeinem der Ansprüche 1 bis 3:

    wobei das erste thermische Profil umfasst eine erste Wärmekapazität;

    wobei das zweite thermische Profil umfasst eine zweite Wärmekapazität; und

    wobei die erste Wärmekapazität verschieden ist von der zweiten Wärmekapazität.


     
    6. Die Anordnung (400) gemäß irgendeinem vorherigen Anspruch:

    wobei eine Dicke von der Isolationssicht (408) größer ist als eine Dicke von der Klebeschicht (102), und/oder

    wobei eine Dicke von der Isolationsschicht (408) zumindest 50 µm ist.


     
    7. Die Anordnung (400) gemäß irgendeinem vorherigen Anspruch:
    wobei der erste Temperatursensor (106) umfasst einen Bandlücken Temperatursensor und der zweite Temperatursensor (406) umfasst einen resistiven Draht Temperatursensor.
     
    8. Die Anordnung (400) gemäß irgendeinem vorherigen Anspruch:

    wobei die Multisensor Anordnung (400) im Wesentlichen umgeben ist von einem Verkapselungsstoff (410), und/oder

    wobei der Verkapselungsstoff (410) umfasst eine Öffnung, welche freilegt den zweiten Temperatursensor (406).


     
    9. Die Anordnung (400) gemäß irgendeinem vorherigen Anspruch: ferner aufweisend
    einen Prozessor, welcher gekoppelt ist zu dem ersten und dem zweiten Temperatursensor (106, 406) und konfiguriert ist zum Filtern des zweiten Wärmepfad Eingangs (412, 414) von dem ersten Wärmepfad Eingang (124).
     
    10. Ein Verfahren zum Herstellen von einer Multisensor Anordnung (400), das Verfahren aufweisend:

    Fabrizieren von einem ersten Temperatursensor (106), welcher ein erstes thermisches Profil hat,
    wobei der erste Temperatursensor montiert ist in einem ersten Schaltkreis (104) und gekoppelt ist zu einer Seite von einer Klebeschicht (102),
    wobei die andere Seite der Klebeschicht gekoppelt ist zu einem ersten Leadframe (416);

    Fabrizieren von einem zweiten Temperatursensor (406), welcher ein zweites thermisches Profil hat, das verschieden ist von dem ersten thermischen Profil,
    wobei der zweite Temperatursensor befestigt ist in einem zweiten Schaltkreis (404) und gekoppelt ist zu einer Seite von einer Isolationsschicht (408),
    wobei die andere Seite von der Isolationsschicht gekoppelt ist zu einem zweiten Leadframe (418), um damit zu Formen eine Nebeneinander von erstem und zweitem Temperatursensor Konfiguration;

    Formen eines ersten Wärmepfades (124) zwischen einer umgebenden Umgebung und dem ersten und dem zweiten Temperatursensor (106, 406);

    Formen eines zweiten Wärmepfades (412, 414) zwischen den Leadframes (416, 418) und dem ersten und dem zweiten Temperatursensor (106, 406); und

    Aufnehmen von dem ersten und dem zweiten Temperatursensor (106, 406) und von dem ersten und dem zweiten Leadframe (416, 418) in eine einzelne Multisensor Anordnung (400);
    wobei der zweite Temperatursensor (406) gekoppelt ist zu dem zweiten Wärmepfad (412, 414) Eingang durch die Isolationsschicht (408);
    wobei der erste Temperatursensor (106) nicht gekoppelt ist zu dem zweiten Wärmepfad (412, 414) Eingang durch die Isolationsschicht (408); und
    wobei der erste und der zweite Temperatursensor (106, 406) nicht gekoppelt sind zu dem ersten Wärmepfad (124) Eingang durch die Isolationsschicht (408);

    wobei:

    ein thermischer Widerstand von der Isolationsschicht (408) größer ist als ein thermischer Widerstand von der Klebeschicht (102); und

    der erste Schaltkreis (104) eine verschiedene Fläche oder Dicke und eine resultierende Wärmekapazität hat als der zweite Schaltkreis (404),
    sodass das thermische Profil von dem ersten Temperatursensor (106) abweicht von dem thermischen Profil von dem zweiten Temperatursensor (406) durch zumindest ein Verhältnis von Zwei-zu-Eins.


     


    Revendications

    1. Ensemble à capteurs multiples (400), comprenant :

    un premier capteur de température (106), ayant un premier profil thermique, ce premier capteur de température étant monté dans un premier circuit (104) et étant couplé à un côté d'une couche adhésive (102), l'autre côté de cette couche adhésive étant couplé à une première grille de connexion (416) ;

    un deuxième capteur de température (406), ayant un deuxième profil thermique différent du premier profil thermique, ce deuxième capteur de température étant monté dans un deuxième circuit (404) et étant couplé à un côté d'une couche d'isolation (408), l'autre côté de cette couche d'isolation étant couplé à une deuxième grille de connexion (418), formant ainsi une configuration côte à côte de premier et de deuxième capteur ;

    le premier et le deuxième capteur de température (106, 406) comprenant une entrée de premier chemin thermique (124) couplée à un environnement ambiant (122), et une entrée de deuxième chemin thermique (412, 414) couplée à une deuxième source de chaleur (126) par l'intermédiaire des grilles de connexion (416, 418) ;

    le deuxième capteur de température (406) étant couplé à l'entrée du deuxième chemin thermique (412, 414) par l'intermédiaire de la couche d'isolation (408) ;

    le premier capteur de température (106) n'étant pas couplé à l'entrée du deuxième chemin thermique (412, 414) par l'intermédiaire de la couche d'isolation (408) ; et

    la premier et le deuxième capteur de température (106, 406) n'étant pas couplés à l'entrée du premier chemin thermique (124) par l'intermédiaire de la couche d'isolation (408) ;

    dans lequel :

    une résistance thermique de la couche d'isolation (408) est plus grande que celle d'une résistance thermique de la couche adhésive (102) ; et

    le premier circuit (104) a une surface ou une épaisseur et une capacité thermique en résultant différentes du deuxième circuit (404),

    de manière à ce que le profil thermique du premier capteur de température (106) diffère du profil thermique du deuxième capteur de température (406) d'au moins un rapport de 2 à 1 ; et

    dans lequel le premier et le deuxième capteur de température (106, 406) et la première et la deuxième grille de connexion (416, 418) sont3 inclues dans un seul ensemble à capteurs multiples (400).


     
    2. Ensemble (400) selon la revendication 1, dans lequel le premier circuit (104) est une première puce de silicium et le deuxième circuit (404) est une deuxième puce de silicium.
     
    3. Ensemble (400) selon la revendication 1, dans lequel la première puce de silicium a soit une surface, soit une épaisseur au moins deux fois plus grande que la deuxième puce de silicium.
     
    4. Ensemble (400) selon l'une quelconque des revendications précédentes :

    dans lequel le premier profil thermique comprend une première résistance thermique ;

    dans lequel le deuxième profil thermique comprend une deuxième résistance thermique ; et

    dans lequel la première résistance thermique est différente de la deuxième résistance thermique.


     
    5. Ensemble (400) selon l'une quelconque des revendications 1 à 3 :

    dans lequel le premier profil thermique comprend une première capacité thermique ;

    dans lequel le deuxième profil thermique comprend une deuxième capacité thermique ; et

    dans lequel la première capacité thermique est différente de la deuxième capacité thermique.


     
    6. Ensemble (400) selon l'une quelconque des revendications précédentes :

    dans lequel une épaisseur de la couche d'isolation (408) est plus grande que celle d'une épaisseur de la couche adhésive (102), et/ou

    dans lequel l'épaisseur de la couche d'isolation (408) est au moins 50pm.


     
    7. Ensemble (400) selon l'une quelconque des revendications précédentes :
    dans lequel le premier capteur de température (106) comprend un capteur de température à bande interdite et le deuxième capteur de température (406) comprend un capteur de température à fil résistif.
     
    8. Ensemble (400) selon l'une quelconque des revendications précédentes :

    cet ensemble à capteurs multiples (400) étant entouré essentiellement par un agent d'encapsulation (410), et/ou

    cet agent d'encapsulation (410) comprenant une ouverture exposant le deuxième capteur de température (406) .


     
    9. Ensemble selon l'une quelconque des revendications précédentes :
    comprenant en outre un processeur couplé au premier et au deuxième capteur de température (106, 406) et configuré de façon à filtrer l'entrée du deuxième chemin thermique (412, 414) depuis l'entrée du premier chemin thermique (124).
     
    10. Procédé de fabrication, pour un ensemble à plusieurs capteurs (400), comprenant :

    l'élaboration d'un premier capteur de température (106), ayant un premier profil thermique, ce premier capteur de température étant monté dans un premier circuit (104) et étant couplé à un côté d'une couche adhésive (102), l'autre côté de cette couche adhésive étant couplé à une première grille de connexion (416) ;

    l'élaboration d'un deuxième capteur de température (406), ayant un deuxième profil thermique différent du premier profil thermique, ce deuxième capteur de température étant monté dans un deuxième circuit (404) et étant couplé à un côté d'une couche d'isolation (408), l'autre côté de cette couche d'isolation étant couplé à une deuxième grille de connexion (418), formant ainsi une configuration côte à côte de premier et de deuxième capteur ;

    la formation d'un premier chemin thermique (124) entre un environnement ambiant et le premier et le deuxième capteur thermique (106, 406) ;

    la formation d'un deuxième chemin thermique (412, 414) entre les grilles de connexion (416, 418) et les premier et deuxième capteurs de température (106, 406) ; et

    l'inclusion du premier et du deuxième capteur de température (106, 406) et de la première et de la deuxième grille de connexion (416, 418) dans un seul ensemble à capteurs multiples (400) ;

    le deuxième capteur de température (406) étant couplé à l'entrée du deuxième chemin thermique (412, 414) par l'intermédiaire de la couche d'isolation (408) ;

    le premier capteur de température (106) n'étant pas couplé à l'entrée du deuxième chemin thermique (412, 414) par l'intermédiaire de la couche d'isolation (408) ; et

    le premier et le deuxième capteur de température (106, 406) n'étant pas couplés à l'entrée du premier chemin thermique (124) par l'intermédiaire de la couche d'isolation (408) ;
    une résistance thermique de la couche d'isolation (408) étant plus grande que celle d'une résistance thermique de la couche adhésive (102) ; et
    le premier circuit (104) ayant une surface ou une épaisseur et une capacité thermique en résultant différentes du deuxième circuit (404),

    de manière à ce que le profil thermique du premier capteur de température (106) diffère du profil thermique du deuxième capteur de température (406) d'au moins un rapport de 2 à 1.


     




    Drawing























    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description