(19)
(11)EP 3 062 571 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
22.07.2020 Bulletin 2020/30

(21)Application number: 14855207.8

(22)Date of filing:  17.06.2014
(51)International Patent Classification (IPC): 
H04W 56/00(2009.01)
H04L 27/26(2006.01)
H04W 52/22(2009.01)
H04J 11/00(2006.01)
H04W 52/36(2009.01)
(86)International application number:
PCT/CN2014/080091
(87)International publication number:
WO 2015/058539 (30.04.2015 Gazette  2015/17)

(54)

METHOD AND APPARATUS FOR REALIZING PRIMARY SYNCHRONIZATION SIGNAL IN TIME DOMAIN AND COMPUTER STORAGE MEDIUM

VERFAHREN UND VORRICHTUNG ZUR REALISIERUNG EINES PRIMÄREN SYNCHRONISATIONSSIGNALS IN EINEM ZEITBEREICH UND COMPUTERSPEICHERMEDIUM

PROCÉDÉ ET APPAREIL POUR RÉALISER UN SIGNAL DE SYNCHRONISATION PRIMAIRE DANS LE DOMAINE TEMPOREL, ET SUPPORT DE STOCKAGE INFORMATIQUE


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 23.10.2013 CN 201310505097

(43)Date of publication of application:
31.08.2016 Bulletin 2016/35

(73)Proprietor: ZTE Corporation
Shenzhen, Guangdong 518057 (CN)

(72)Inventors:
  • LI, Bin
    Shenzhen Guangdong 518057 (CN)
  • ZHANG, Caihong
    Shenzhen Guangdong 518057 (CN)

(74)Representative: Lavoix 
Bayerstrasse 83
80335 München
80335 München (DE)


(56)References cited: : 
CN-A- 101 651 650
CN-A- 102 421 114
CN-A- 102 202 026
US-A1- 2011 007 704
  
  • WEN XU ET AL: "Robust Synchronization for 3GPP LTE System", GLOBECOM 2010, 2010 IEEE GLOBAL TELECOMMUNICATIONS CONFERENCE, IEEE, PISCATAWAY, NJ, USA, 6 December 2010 (2010-12-06), pages 1-5, XP031846564, ISBN: 978-1-4244-5636-9
  
Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


Description

TECHNICAL FIELD



[0001] The disclosure relates to a downlink physical layer processing technology and in particular to a method and an apparatus for implementing a Primary Synchronization Signal (PSS) in the time domain and a computer storage medium.

BACKGROUND



[0002] In the wireless communications, a wireless communication system based on a Fourth Generation (4G) protocol standard-Long Term Evolution (LTE) is applied more and more widely. An LTE protocol standard absorbs and adopts good proposals from numerous mainstream wireless communication equipment manufacturers, and thus the LTE protocol standard may be considered as a set of the good proposals. As a basis of an LTE system design, the LTE protocol defines each aspect of an LTE system in more detail, certainly including LTE downlink physical layer processing. In particular, generation and mapping rules of an LTE PSS are described in the LTE protocol standard in detail.

[0003] For description about the PSS physical layer processing, the LTE protocol mainly includes description about a PSS generation rule and a PSS mapping rule in the LTE.

[0004] Specifically, the LTE physical layer protocol makes a definition shown in formula (1) for the PSS generation rule:

where a value range of

is {0,1,2}, a value of u is 25 when a value of

is 0, the value of u is 29 when the value of

is 1, and the value of u is 34 when the value of

is 2.

[0005] In formula (1), du(n) corresponds to a PSS sequence. It can be known from the value range of n that n corresponds to 62 Resource Element (RE) sampling points. According to a value of u, it can be known that a value of the PSS sequence is only related to

and the value range of

is {0, 1, 2}. As can be seen from the above, there are three different PSS sequences according to three different values of

respectively, and each sequence corresponds to 62 RE sampling points.

[0006] The LTE physical layer protocol makes a definition shown in formula (2) for the PSS mapping rule:



[0007] For frame structure type 1, a PSS is mapped onto the last Orthogonal Frequency Division Multiplexing (OFDM) symbols in timeslot 0 and timeslot 10. For frame structure type 2, the PSS is mapped onto the third OFDM symbols in subframe 1 and subframe 6. The following RE sampling points

are configured to reserve REs and not transmit the PSS, that is, a mapping value of the REs is "0".

[0008] The LTE physical layer protocol makes the definitions about the PSS on the basis of implementation of the PSS in the frequency domain, and with reference to the abovementioned definitions, a flow of implementing the PSS in the frequency domain, as shown in Fig. 1, includes Step 101 of: frequency domain processing including PSS generation and power control and RE mapping, specifically mapping of the PSS and mapping of other signals and channels; Step 102 of: frequency/time domain conversion, specifically Inverse Fast Fourier Transform (IFFT); and Step 103 of: time domain processing, specifically sequent caching of the IFFT.

[0009] If a PSS is implemented in the frequency domain according to the definitions of the LTE physical layer protocol, since RE mapping in the frequency domain is a process of mapping RE sampling points in series, certain time overhead may be generated during RE mapping in the frequency domain, and thus the time consumed by LTE downlink physical layer processing may further be prolonged. Therefore, how to improve processing efficiency of an LTE downlink physical layer link becomes a problem urgent to be solved.

[0010] The document "Robust Synchronization for 3GPP LTE System," by WEN XU ET AL, (GLOBECOM 2010, 2010 IEEE GLOBAL TELECOMMUNICATIONS CONFERENCE, IEEE, PISCATAWAY, NJ, USA, 6 December 2010) addresses problems related to time and frequency synchronization as well as blind cyclic prefix type identification in 3GPP LTE system. Thus, simplified practical algorithms for estimating time and frequency offset as well as blind CP length are described and a robust hierarchical scheme is proposed.

SUMMARY



[0011] In order to solve the existing technical problem, the embodiments of the disclosure provide a method and an apparatus for implementing a PSS in the time domain and a computer storage medium, which can improve processing efficiency of an LTE downlink physical layer link on the premise of ensuring completing all of the PSS related functions.

[0012] The technical solutions of the embodiments of the disclosure are implemented as follows.

[0013] The embodiments of the disclosure provide a method for implementing a PSS in the time domain, wherein PSS time domain sequences with different sampling rates and different

configurations are pre-stored, where a value of

is selected from {0,1,2}, and the method further includes that:

a PSS time domain power weighting related parameter is obtained according to a PSS power control related parameter, a cell related parameter and timing information;

power weighting processing is performed on the pre-stored PSS time domain sequences with different sampling rates and different

configurations to obtain weighted PSS time domain sequences according to the pre-stored PSS time domain sequences with different sampling rates and different

configurations and the PSS time domain power weighting related parameter; and

addition operation is performed on the weighted PSS time domain sequences and time domain data of signals and channels except the PSS to obtain processed time domain data.



[0014] Preferably, the step that the PSS time domain sequences with different sampling rates and different

configurations may be implemented as follows:
PSS frequency domain sequences with different

configurations are obtained in advance, and IFFT processing on the PSS frequency domain sequences is performed in different sampling rates to obtain and store the PSS time domain sequences with different sampling rates and different

configurations.

[0015] Preferably, the PSS frequency domain sequences with different

configurations are obtained in advance, wherein a PSS generation formula in an LTE physical layer protocol meets the following expression:

where a value of u is 25 when a value of

is 0, the value of u is 29 when the value of

is 1, and the value of u is 34 when the value of

is 2; or,
the PSS frequency domain sequences are obtained by adopting a PSS frequency domain sequence generation formula which does not exclude a direct current component corresponding to a zero frequency, wherein the PSS frequency domain sequence generation formula which does not exclude the direct current component corresponding to the zero frequency meets the following expression:

where the value of u is 25 when the value of

is 0, the value of u is 29 when the value of

is 1, and the value of u is 34 when the value of

is 2.

[0016] Preferably, the PSS time domain power weighting related parameter may include: cell reference signal power, power offset of the PSS relative to a cell reference signal, a time domain cell broadcasting weight or a Cyclic Delay Diversity (CDD) weight and a time domain Antenna Calibration (AC) related weight.

[0017] The embodiment of the disclosure further provides an apparatus for implementing a PSS in the time domain, which may include a power weighting module and at least one PSS time domain data processing module, wherein
the power weighting module may be configured to obtain a PSS time domain power weighting related parameter according to a PSS power control related parameter, a cell related parameter and timing information, and send the PSS time domain power weighting related parameter to the at least one PSS time domain data processing module; and
the at least one PSS time domain data processing module may be configured to pre-store PSS time domain sequences with different sampling rates and different

configurations, perform power weighting processing on the PSS time domain sequences to obtain weighted PSS time domain sequences according to the pre-stored PSS time domain sequences with different sampling rates and different

configurations and the PSS time domain power weighting related parameter, and perform addition operation on the weighted PSS time domain sequences and time domain data of signals and channels except the PSS to obtain processed time domain data, where a value of

is selected from {0,1,2}.

[0018] Preferably, the apparatus may further include an n-path IFFT processing module and a data caching module, wherein
the n-path IFFT processing module may be configured to obtain the time domain data of the other signals and channels except the PSS, and send the time domain data of the other signals to the at least one PSS time domain data processing module; and
the data caching module may be configured to receive the processed time domain data sent by the at least one PSS time domain data processing module, and cache the processed time domain data by taking a symbol as a unit.

[0019] Preferably, the data caching module may be a Random Access Memory (RAM).

[0020] Preferably, the PSS time domain power weighting related parameter may include: cell reference signal power, power offset of the PSS relative to a cell reference signal, a time domain cell broadcasting weight or a CDD weight and a time domain AC related weight.

[0021] The embodiment of the disclosure further provides a computer storage medium having computer-executable instructions stored therein, wherein the computer-executable instructions are configured to execute the method for implementing the PSS in the time domain in the embodiment of the disclosure.

[0022] According to the method and apparatus for implementing the PSS in the time domain provided by the embodiment of the disclosure, the PSS time domain sequences with different sampling rates and different

configurations are pre-stored; the PSS time domain power weighting related parameter is obtained according to the PSS power control related parameter, the cell related parameter and the timing information; power weighting processing is performed on the PSS time domain sequences to obtain the weighted PSS time domain sequences according to the pre-stored PSS time domain sequences with different sampling rates and different

configurations; and addition operation is performed on the weighted PSS time domain sequences and the time domain data of the other signals and channels except the PSS to obtain the processed time domain data. In such a manner, frequency/time domain conversion of a symbol which finishes frequency domain RE mapping of the PSS and mapping of the other signals and channels may be implemented by IFFT processing to further obtain time domain data corresponding to the symbol; and RE mapping and IFFT processing are performed on the PSS and the data of the other signals and channels except the PSS to obtain two sets of time domain data respectively, addition operation is performed on the two obtained sets of time domain data respectively, and the two approaches for implementing RE mapping and frequency/time domain conversion of a specified symbol are equivalent. Therefore, the embodiments of the disclosure avoid time overhead generated by frequency domain PSS RE mapping on the premise of ensuring realizing all of the PSS related functions, and further remarkably improve processing efficiency of an LTE downlink physical layer link.

BRIEF DESCRIPTION OF THE DRAWINGS



[0023] 

Fig. 1 is a block diagram illustrating implementation of a PSS in the frequency domain;

Fig. 2 is a flowchart showing a basic method for implementing a PSS in the time domain according to an embodiment of the disclosure;

Fig. 3 is an equivalent block diagram illustrating implementation of a PSS in the frequency/time domains according to an embodiment of the disclosure;

Fig. 4 is a flowchart showing a method for implementing a PSS in the time domain according to an embodiment of the disclosure; and

Fig. 5 is a structure diagram illustrating an apparatus for implementing a PSS in the time domain according to an embodiment of the disclosure.


DETAILED DESCRIPTION



[0024] A basic idea of the embodiments of the disclosure is that: PSS time domain sequences with different sampling rates and different

configurations are pre-stored; a PSS time domain power weighting related parameter is obtained according to a PSS power control related parameter, a cell related parameter and timing information; power weighting processing is performed on the PSS time domain sequences to obtain weighted PSS time domain sequences according to the pre-stored PSS time domain sequences with different sampling rates and different

configurations and the PSS time domain power weighting related parameter; and addition operation is performed on the weighted PSS time domain sequences and time domain data of other signals and channels except the PSS to obtain processed time domain data.

[0025] Herein, the PSS time domain power weighting related parameter includes: cell reference signal power, power offset of the PSS relative to a cell reference signal, a time domain cell broadcasting weight or a CDD weight and a time domain AC related weight.

[0026] The disclosure will be further described below with reference to the drawings and specific embodiments in detail.

[0027] Fig. 2 is a flowchart showing a basic method for implementing a PSS in the time domain according to an embodiment of the disclosure. As shown in Fig. 2, a flow of the basic method for implementing the PSS in the time domain according to the embodiment of the disclosure includes the following steps.

[0028] At Step 301, a PSS time domain power weighting related parameter is obtained according to a PSS power control related parameter, a cell related parameter and timing information.

[0029] Here, before the PSS time domain power weighting related parameter is obtained according to the PSS power control related parameter, the cell related parameter and the timing information, the method further includes that:
PSS time domain sequences with different sampling rates and different

configurations are pre-stored.

[0030] Here, the step that the PSS time domain sequences with different sampling rates and different

configurations specifically includes that:
PSS frequency domain sequences with different

configurations are obtained in advance, and IFFT processing on the PSS frequency domain sequences is performed with different sampling rates to further obtain the PSS time domain sequences with different sampling rates and different

configurations.

[0031] Here, IFFT processing on the PSS frequency domain sequences may be performed with different sampling rates by using a conventional art, and thus it will not be elaborated.

[0032] The step that the PSS frequency domain sequences with different

configurations are obtained in advance is specifically implemented as follows:
the PSS frequency domain sequences are obtained by adopting a PSS generation formula of an LTE physical layer protocol, wherein the PSS generation formula of the LTE physical layer protocol meets the following expression:

where a value range of

is {0,1,2}, a value of u is 25 when a value of

is 0, the value of u is 29 when the value of

is 1, and the value of u is 34 when the value of

is 2.

[0033] Alternatively, the PSS frequency domain sequences are obtained by adopting a PSS frequency domain sequence generation formula which does not exclude a direct current component corresponding to a zero frequency, wherein the PSS frequency domain sequence generation formula which does not exclude the direct current component corresponding to the zero frequency meets the following expression:

where the value range of

is {0,1,2}, the value of u is 25 when the value of

is 0, the value of u is 29 when the value of

is 1, and the value of u is 34 when the value of

is 2.

[0034] Here, since a PSS sequence generation rule of the LTE physical layer protocol does not include the direct current component corresponding to the zero frequency of an LTE frequency spectrum, i.e. the following sampling point:



[0035] It is confirmed by algorithm simulation that influence of addition of the direct current component corresponding to the zero frequency to the PSS frequency domain sequences on performance of the PSS is slight and almost negligible, so that the corresponding PSS sequence generation formula may also be optimized into formula:

n = 0,1,2,...,31,...,62 when the direct current component corresponding to the zero frequency is added, that is, when a sampling point under the condition of n=31 is added into the PSS generation formula of the LTE physical layer protocol.

[0036] At Step 302, power weighting processing is performed on the PSS time domain sequences to obtain weighted PSS time domain sequences according to the pre-stored PSS time domain sequences with different sampling rates and different

configurations and the PSS time domain power weighting related parameter.

[0037] Here, the PSS time domain power weighting related parameter includes: cell reference signal power, power offset of the PSS relative to a cell reference signal, a time domain cell broadcasting weight or a CDD weight and a time domain AC related weight.

[0038] The step that power weighting processing is performed on the PSS time domain sequences to obtain the weighted PSS time domain sequences according to the pre-stored PSS time domain sequences with different sampling rates and different

configurations and the PSS time domain power weighting related parameter specifically includes that:
complex multiplication operation is performed on the pre-stored PSS time domain sequences with different sampling rates and different

configurations and the PSS time domain power weighting related parameter to implement power weighting processing of the PSS time domain sequences to further obtain a power weighted PSS time domain sequence with a current cell configuration.

[0039] At Step 303, addition operation is performed on the weighted PSS time domain sequences and time domain data of other signals and channels except the PSS.

[0040] Here, before addition operation is performed on the weighted PSS time domain sequences and the time domain data of the other signal and channel except the PSS, the method further includes that: mapping and IFFT are performed on the other signals and channels except the PSS in the downlink of LTE to obtain the time domain data of the other signals and channels except the PSS.

[0041] The step that addition operation is performed on the weighted PSS time domain sequences and the time domain data of the other signals and channels except the PSS specifically includes that:
complex addition operation is performed on power weighted PSS time domain data and the time domain data of the other signals and channels except the PSS on a symbol with a PSS mapping requirement to obtain processed time domain data.

[0042] In the embodiments of the disclosure, the two approaches for implementing RE mapping and frequency/time domain conversion on a specified symbol are equivalent. Fig. 3 is an equivalent block diagram illustrating implementation of a PSS in the frequency/time domains according to an embodiment of the disclosure. As shown in Fig. 3, it is indicated that process 1 of implementing a PSS in the frequency domain in the conventional art is equivalent to process 2 of implementing the PSS in the frequency domain in the embodiments of the disclosure. However, the embodiments of the disclosure avoid time overhead generated by frequency domain PSS RE mapping on the premise of ensuring realizing all of PSS related functions, and further remarkably improve processing efficiency of an LTE downlink physical layer link.

[0043] The embodiments of the disclosure further provide a computer storage medium having computer-executable instructions stored therein, wherein the computer-executable instructions are configured to execute the method for implementing the PSS in the time domain according to the embodiments of the disclosure.

[0044] Fig. 4 is a flowchart showing a method for implementing a PSS in the time domain according to an embodiment of the disclosure. As shown in Fig. 4, a flow of the method for implementing the PSS in the time domain includes the following steps.

[0045] At Step 401, PSS time domain sequences with different sampling rates and different

configurations are pre-stored.

[0046] Here, the step that the PSS time domain sequences with different sampling rates and different

configurations are pre-stored specifically includes that:
PSS frequency domain sequences with different

configurations are obtained in advance, and IFFT processing with different sampling rates is performed on the PSS frequency domain sequences to further obtain the PSS time domain sequences with different sampling rates and different

configurations.

[0047] Here, the step that the PSS time domain sequences with different

configurations are obtained in advance specifically includes that:
the PSS frequency domain sequences are obtained by adopting a PSS generation formula of an LTE physical layer protocol, wherein the PSS generation formula of the LTE physical layer protocol meets the following expression:

where a value range of

is {0,1,2}, a value of u is 25 when a value of

is 0, the value of u is 29 when the value of

is 1, and the value of u is 34 when the value of

is 2.

[0048] Alternatively, the PSS frequency domain sequences are obtained by adopting a PSS frequency domain sequence generation formula which does not exclude a direct current component corresponding to a zero frequency, wherein the PSS frequency domain sequence generation formula which does not exclude the direct current component corresponding to the zero frequency meets the following expression:

where the value range of

is {0,1,2}, the value of u is 25 when the value of

is 0, the value of u is 29 when the value of

is 1, and the value of u is 34 when the value of

is 2.

[0049] Here, since a PSS sequence generation rule of the LTE physical layer protocol does not include the direct current component corresponding to the zero frequency of an LTE frequency spectrum, i.e. the following sampling point:



[0050] It is confirmed by algorithm simulation that influence of addition of the direct current component corresponding to the zero frequency to the PSS frequency domain sequences on performance of the PSS is slight and almost negligible, so that when the direct current component corresponding to the zero frequency is added, that is, when a sampling point under the condition of n=31 is added into the PSS generation formula of the LTE physical layer protocol, the corresponding PSS sequence generation formula may also be optimized into formula:



[0051] At Step 402, a PSS time domain power weighting related parameter is obtained according to a PSS power control related parameter, a cell related parameter and timing information.

[0052] Here, the PSS time domain power weighting related parameter includes: cell reference signal power, power offset of the PSS relative to a cell reference signal, a time domain cell broadcasting weight or a CDD weight and a time domain AC related weight.

[0053] At Step 403, power weighting processing is performed on the PSS time domain sequences to obtain weighted PSS time domain sequences according to the pre-stored PSS time domain sequences with different sampling rates and different

configurations and the PSS time domain power weighting related parameter.

[0054] Here, the step that power weighting processing is performed on the PSS time domain sequences to obtain the weighted PSS time domain sequences according to the pre-stored PSS time domain sequences with different sampling rates and different

configurations and the PSS time domain power weighting related parameter specifically includes that:
complex multiplication operation is performed on the pre-stored PSS time domain sequences with different sampling rates and different

configurations and the PSS time domain power weighting related parameter to implement power weighting processing of the PSS time domain sequences to further obtain a power weighted PSS time domain sequence with a current cell configuration.

[0055] At Step 404, mapping and IFFT processing is performed on the other signals and channels except the PSS in the downlink of LTE to obtain time domain data of the other signals and channels except the PSS.

[0056] At Step 405, addition operation is performed on the weighted PSS time domain sequences and the time domain data of the other signals and channels except the PSS.

[0057] Here, the step that addition operation is performed on the weighted PSS time domain sequences and the time domain data of the other signals and channels except the PSS specifically includes that:
complex addition operation is performed on power weighted PSS time domain data and the time domain data of the other signals and channels except the PSS on a symbol with a PSS mapping requirement to obtain processed time domain data.

[0058] The embodiments of the disclosure further provide a computer storage medium having computer-executable instructions stored therein, wherein the computer-executable instructions are configured to execute the method for implementing the PSS in the time domain according to the embodiments of the disclosure.

[0059] Fig. 5 is a structure diagram illustrating an apparatus for implementing a PSS in the time domain according to an embodiment of the disclosure. As shown in Fig. 5, the apparatus for implementing the PSS in the time domain includes: a power weighting module 51 and at least one PSS time domain data processing module. In the embodiment, there are three PSS time domain data processing modules, specifically including: a first PSS time domain data processing module 52, a second PSS time domain data processing module 53 and a third PSS time domain data processing module 54.

[0060] The power weighting module 51 is configured to obtain a PSS time domain power weighting related parameter according to a PSS power control related parameter, a cell related parameter and timing information, and send the PSS time domain power weighting related parameter to the first PSS time domain data processing module 52, the second PSS time domain data processing module 53 and the third PSS time domain data processing module 54.

[0061] Here, the PSS time domain power weighting related parameter includes: cell reference signal power, power offset of the PSS relative to a cell reference signal, a time domain cell broadcasting weight or a CDD weight and a time domain AC related weight.

[0062] All of the first PSS time domain data processing module 52, the second PSS time domain data processing module 53 and the third PSS time domain data processing module 54 are configured to pre-store PSS time domain sequences with different sampling rates and different

configurations, perform power weighting processing on the PSS time domain sequences to obtain weighted PSS time domain sequences according to the pre-stored PSS time domain sequences with different sampling rates and different

configurations and the PSS time domain power weighting related parameter, and sum up the weighted PSS time domain sequences and time domain data of other signals and channels except the PSS to obtain processed time domain data.

[0063] Preferably, the apparatus for implementing the PSS in the time domain further includes an n-path IFFT processing module and a data caching module 56. Specifically, the n-path IFFT processing module in the embodiment is a three-path IFFT processing module 55.

[0064] The three-path IFFT processing module 55 is configured to obtain the time domain data of the other signals and channels except the PSS, and send the time domain data of the other signals other than the PSS to the first PSS time domain data processing module 53, the second PSS time domain data processing module 54 and the third PSS time domain data processing module 55.

[0065] The data caching module 56 is configured to receive the processed time domain data sent by the PSS time domain data processing module, and cache the processed time domain data by taking a symbol as a unit.

[0066] Here, the first PSS time domain data processing module 52, the second PSS time domain data processing module 53 and the third PSS time domain data processing module 54 correspond to 3 channels 0, 1 and 2 of the three-path IFFT processing module 55 respectively.

[0067] Here, the data caching module 56 may be a RAM.

[0068] During a practical application, the apparatus for implementing the PSS in the time domain in an LTE system may include at least one PSS time domain data processing module, the PSS time domain data processing modules have the same functions. There are only three PSS time domain data processing modules shown in the embodiment of the disclosure.

[0069] Correspondingly, the 3-path IFFT processing module may be an n-path IFFT processing module during a practical application, wherein n is the number of channels, n≥ 1 and n is a positive integer; and a value of n is the same as the number of the PSS time domain data processing modules of the apparatus for implementing the PSS in the time domain in the LTE system.

[0070] In the embodiment of the disclosure, functions of each of the processing modules in the apparatus for implementing the PSS in the time domain in the LTE system may be realized by a program running on a processor, and may also be realized by a specific logic circuit, for example, a Central Processing Unit (CPU), Micro Processing Unit (MPU), Digital Signal Processor (DSP) or Field-Programmable Gate Array (FPGA) in an Evolved Node B (eNodeB) where the apparatus for implementing the PSS in the time domain in the LTE system is located. The data caching module may also be implemented by various memories or storage media.

[0071] Those skilled in the art should know that the embodiments of the disclosure may be provided as a method, a system or a computer program product. Therefore, the disclosure may adopt pure hardware, pure software and combination thereof. Moreover, the disclosure may adopt a computer program product implemented on one or more computer-available storage media (including, but not limited to, a disk memory and an optical memory) including computer-available program codes.

[0072] The disclosure is described with reference to flowcharts and/or block diagrams of the method, equipment (system) and computer program product according to the embodiment of the disclosure. It should be understood that each flow and/or block in the flowcharts and/or the block diagrams and combinations of the flows and/or blocks in the flowcharts and/or the block diagrams may be implemented by computer program instructions. These computer program instructions may be provided for a universal computer, a dedicated computer, an embedded processor or a processor of other programmable data processing equipment to generate a machine, so that an apparatus for realizing a function specified in one flow or more flows in the flowcharts and/or one block or more blocks in the block diagrams is generated by the instructions executed through the computer or the processor of the other programmable data processing equipment.

[0073] These computer program instructions may also be stored in a computer-readable memory capable of guiding the computer or the other programmable data processing equipment to work in a specific manner, so that a product including an instruction apparatus may be generated by the instructions stored in the computer-readable memory, the instruction apparatus realizing the function specified in one flow or many flows in the flowcharts and/or one block or many blocks in the block diagrams.

[0074] These computer program instructions may further be loaded onto the computer or the other programmable data processing equipment, so that a series of operating steps are executed on the computer or the other programmable data processing equipment to generate processing implemented by the computer, and steps for realizing the function specified in one flow or many flows in the flowcharts and/or one block or many blocks in the block diagrams are provided by the instructions executed on the computer or the other programmable data processing equipment.

INDUSTRIAL APPLICABILITY



[0075] According to the embodiments of the disclosure, frequency/time domain conversion of a symbol which completes frequency domain RE mapping of the PSS and mapping of the other signals and channels may be implemented by IFFT processing to further obtain time domain data corresponding to the symbol; and RE mapping and IFFT processing are performed on the PSS and the data of the other signals and channels except the PSS to obtain two sets of time domain data respectively. Therefore, the embodiments of the disclosure avoid time overhead generated by frequency domain PSS RE mapping on the premise of ensuring realizing all of PSS related functions, and further remarkably improves processing efficiency of an LTE downlink physical layer link.


Claims

1. A method for implementing a Primary Synchronization Signal, PSS, in a time domain, pre-storing (401) PSS time domain sequences with different sampling rates and different

configurations, where a value of

is selected from {0,1,2},
wherein the method further comprises:

obtaining (301, 402) a PSS time domain power weighting related parameter according to a PSS power control related parameter, a cell related parameter and timing information;

performing (302, 403) power weighting processing on the pre-stored PSS time domain sequences with different sampling rates and different

configurations to obtain weighted PSS time domain sequences according to the pre-stored PSS time domain sequences with different sampling rates and different

configurations and the PSS time domain power weighting related parameter; and

performing (303, 405) addition operation on the weighted PSS time domain sequences and time domain data of signals and channels except the PSS to obtain processed time domain data.


 
2. The method according to claim 1, wherein the step of pre-storing the PSS time domain sequences with different sampling rates and different

configurations comprises:
obtaining PSS frequency domain sequences with different

configurations in advance, and performing Inverse Fast Fourier Transform, IFFT, processing with different sampling rates on the PSS frequency domain sequences to obtain and store the PSS time domain sequences with different sampling rates and different

configurations.
 
3. The method according to claim 2, wherein the step of obtaining the PSS frequency domain sequences with different

configurations in advance comprises:

obtaining the PSS frequency domain sequences by using a PSS generation formula in a Long Term Evolution, LTE, physical layer protocol, wherein the PSS generation formula in the LTE physical layer protocol meets the following expression:

where a value of u is 25 when a value of

is 0, the value of u is 29 when the value of

is 1, and the value of u is 34 when the value of

is 2; or,

obtaining the PSS frequency domain sequences by using a PSS frequency domain sequence generation formula which does not exclude a direct current component corresponding to a zero frequency, wherein the PSS frequency domain sequence generation formula which does not exclude the direct current component corresponding to the zero frequency meets the following expression:

where the value of u is 25 when the value of

is 0, the value of u is 29 when the value of

is 1, and the value of u is 34 when the value of

is 2.


 
4. The method according to claim 1 or 2, wherein the PSS time domain power weighting related parameter comprises: cell reference signal power, power offset of the PSS relative to a cell reference signal, a time domain cell broadcasting weight or a Cyclic Delay Diversity, CDD, weight and a time domain Antenna Calibration, AC, related weight.
 
5. An apparatus for implementing a Primary Synchronization Signal, PSS, in a time domain, comprising: a power weighting module (51) and at least one PSS time domain data processing module (52, 53, 54), wherein
the power weighting module (51) is configured to obtain a PSS time domain power weighting related parameter according to a PSS power control related parameter, a cell related parameter and timing information, and send the PSS time domain power weighting related parameter to the at least one PSS time domain data processing module; and
the at least one PSS time domain data processing module (52, 53, 54) is configured to pre-store PSS time domain sequences with different sampling rates and different

configurations, perform power weighting processing on the PSS time domain sequences to obtain weighted PSS time domain sequences according to the pre-stored PSS time domain sequences with different sampling rates and different

configurations and the PSS time domain power weighting related parameter, and perform addition operation on the weighted PSS time domain sequences and time domain data of signals and channels except the PSS to obtain processed time domain data, where a value of

is selected from {0,1,2},.
 
6. The apparatus according to claim 5, further comprising an n-path Inverse Fast Fourier Transform, IFFT, processing module (55) and a data caching module (56), wherein
the n-path IFFT processing module (55) is configured to obtain the time domain data of the signals and channels except the PSS, and send the time domain data of the signals to the at least one PSS time domain data processing module; and
the data caching module (56) is configured to receive the processed time domain data sent by the at least one PSS time domain data processing module, and cache the processed time domain data by taking a symbol as a unit.
 
7. The apparatus according to claim 6, wherein the data caching module (56) is a Random Access Memory, RAM.
 
8. The apparatus according to claim 5 or 6, wherein the PSS time domain power weighting related parameter comprises: cell reference signal power, power offset of the PSS relative to a cell reference signal, a time domain cell broadcasting weight or a Cyclic Delay Diversity, CDD, weight and a time domain Antenna Calibration, CA, related weight.
 
9. A computer storage medium having computer-executable instructions stored therein, wherein the computer-executable instructions are configured to execute the method for implementing the Primary Synchronization Signal, PSS, in the time domain according to any one of claims 1 to 4.
 


Ansprüche

1. Verfahren zum Implementieren eines primären Synchronisationssignals (PSS) in einem Zeitbereich, Vorspeichern (401) von PSS-Zeitbereichssequenzen mit unterschiedlichen Abtastraten und unterschiedlichen

-Konfigurationen, wobei ein Wert von

aus {0, 1, 2} ausgewählt wird, wobei das Verfahren ferner Folgendes umfasst:

Erzielen (301, 402) eines Parameters in Bezug auf eine PSS-Zeitbereich-Leistungsgewichtung gemäß einem Parameter in Bezug auf eine PSS-Leistungssteuerung, einem Parameter in Bezug auf eine Zelle und Zeitplanungsinformationen,

Durchführen (302, 403) einer Leistungsgewichtungsverarbeitung an den vorgespeicherten PSS-Zeitbereichssequenzen mit unterschiedlichen Abtastraten und unterschiedlichen

-Konfigurationen, um gewichtete PSS-Zeitbereichssequenzen gemäß den vorgespeicherten PSS-Zeitbereichssequenzen mit unterschiedlichen Abtastraten und unterschiedlichen

-Konfigurationen und dem Parameter in Bezug auf eine PSS-Zeitbereich-Leistungsgewichtung zu erzielen, und

Durchführen (303, 405) einer Additionsoperation an den gewichteten PSS-Zeitbereichssequenzen und Zeitbereichsdaten von Signalen und Kanälen mit Ausnahme das PSS, um verarbeitete Zeitbereichsdaten zu erzielen.


 
2. Verfahren nach Anspruch 1, wobei der Schritt des Vorspeicherns der PSS-Zeitbereichssequenzen mit unterschiedlichen Abtastraten und unterschiedlichen

- Konfigurationen Folgendes umfasst:
Erzielen von PSS-Frequenzbereichssequenzen mit unterschiedlichen

- Konfigurationen im Vorhinein und Durchführen einer inversen schnellen FourierTransformation (IFFT), Verarbeiten mit unterschiedlichen Abtastraten an den PSS-Frequenzbereichssequenzen, um die PSS-Frequenzbereichssequenzen mit unterschiedlichen Abtastraten und unterschiedlichen

-Konfigurationen zu erzielen und zu speichern.
 
3. Verfahren nach Anspruch 2, wobei der Schritt des Erzielens von PSS-Frequenzbereichssequenzen mit unterschiedlichen

-Konfigurationen im Vorhinein Folgendes umfasst:

Erzielen der PSS-Frequenzbereichssequenzen durch Anwenden einer PSS-Erzeugungsformel in einem LTE-, Long-Term-Evolution-, Bitübertragungsschichtprotokoll, wobei die PSS-Erzeugungsformel in dem LTE-Bitübertragungsprotokoll den folgenden Ausdruck erfüllt:

wobei ein Wert von u 25 ist, wenn ein Wert von

0 ist, der Wert von u 29 ist, wenn ein Wert von

1 ist, und der Wert von u 34 ist, wenn ein Wert von

2 ist, oder

Erzielen der PSS-Frequenzbereichssequenzen durch Verwenden einer PSS-Frequenzbereichssequenzerzeugungsformel, die eine Gleichstromkomponente, die einer Nullfrequenz entspricht, nicht ausschließt, wobei die PSS-Frequenzbereichssequenzerzeugungsformel, die die Gleichstromkomponente, die einer Nullfrequenz entspricht, nicht ausschließt, den folgenden Ausdruck erfüllt:

wobei der Wert von u 25 ist, wenn ein Wert von

0 ist, der Wert von u 29 ist, wenn ein Wert von

1 ist, und der Wert von u 34 ist, wenn ein Wert von

2 ist.


 
4. Verfahren nach Anspruch 1 oder 2, wobei der Parameter in Bezug auf eine PSS-Zeitbereich-Leistungsgewichtung Folgendes umfasst: eine Zellreferenzsignalleistung, einen Leistungsversatz des PSS im Verhältnis zu einem Zellreferenzsignal, eine Zeitbereichszellrundsendungsgewichtung oder eine CDD-, Cyclic-Delay-Diversity-, Gewichtung und eine auf eine Zeitbereich-Antennenkalibrierung, AC, bezogene Gewichtung.
 
5. Vorrichtung zum Implementieren eines primären Synchronisationssignals (PSS) in einem Zeitbereich, Folgendes umfassend: ein Leistungsgewichtungsmodul (51) und mindestens ein PSS-Zeitbereichsdatenverarbeitungsmodul (52, 53, 54), wobei
das Leistungsgewichtungsmodul (51) dafür konfiguriert ist, einen Parameter in Bezug auf eine PSS-Zeitbereich-Leistungsgewichtung gemäß einem Parameter in Bezug auf eine PSS-Leistungssteuerung, einem Parameter in Bezug auf eine Zelle und Zeitplanungsinformationen zu erzielen und den Parameter in Bezug auf eine PSS-Zeitbereich-Leistungsgewichtung an das mindestens eine PSS-Zeitbereichsdatenverarbeitungsmodul zu senden, und
das mindestens eine PSS-Zeitbereichsdatenverarbeitungsmodul (52, 53, 54) dafür konfiguriert ist, PSS-Zeitbereichssequenzen mit unterschiedlichen Abtastraten und unterschiedlichen

-Konfigurationen vorzuspeichern, eine Leistungsgewichtungsverarbeitung an den PSS-Zeitbereichssequenzen durchzuführen, um gewichtete PSS-Zeitbereichssequenzen gemäß den vorgespeicherten PSS-Zeitbereichssequenzen mit unterschiedlichen Abtastraten und unterschiedlichen

- Konfigurationen und dem Parameter in Bezug auf eine PSS-Zeitbereich-Leistungsgewichtung zu erzielen, und eine Additionsoperation an den gewichteten PSS-Zeitbereichssequenzen und Zeitbereichsdaten von Signalen und Kanälen mit Ausnahme des PSS durchzuführen, um verarbeitete Zeitbereichsdaten zu erzielen, wobei ein Wert von

aus (0, 1, 2) ausgewählt ist.
 
6. Vorrichtung nach Anspruch 5, ferner ein n-Pfad-IFFT-, Inverse-Fast-FourierTransformation-, Verarbeitungsmodul (55) und ein Datenzwischenspeichermodul (56) umfassend, wobei
das n-Pfad-IFFT-Verarbeitungsmodul (55) dafür konfiguriert ist, die verarbeiteten Zeitbereichsdaten der Signale und Kanäle mit Ausnahme des PSS zu erzielen und die Zeitbereichssignale der Signale an das mindestens eine PSS-Zeitbereichsdatenverarbeitungsmodul zu senden, und
das Datenzwischenspeichermodul (56) dafür konfiguriert ist, die verarbeiteten Zeitbereichsdaten zu empfangen, die von dem mindestens einen PSS-Zeitbereichsdatenverarbeitungsmodul gesendet werden, und die verarbeiteten Zeitbereichsdaten zwischenzuspeichern, indem ein Symbol als eine Einheit angenommen wird.
 
7. Vorrichtung nach Anspruch 6, wobei das Datenzwischenspeichermodul (56) ein Speicher mit wahlfreiem Zugriff, RAM, ist.
 
8. Vorrichtung nach Anspruch 5 oder 6, wobei der Parameter in Bezug auf eine PSS-Zeitbereich-Leistungsgewichtung Folgendes umfasst: eine Zellreferenzsignalleistung, einen Leistungsversatz des PSS im Verhältnis zu einem Zellreferenzsignal, eine Zeitbereichszellrundsendungsgewichtung oder eine CDD-, Cyclic-Delay-Diversity-, Gewichtung und eine auf eine Zeitbereich-Antennenkalibrierung, AC, bezogene Gewichtung.
 
9. Computerspeichermedium, auf dem computerausführbare Befehle gespeichert sind, wobei die computerausführbaren Befehle dafür konfiguriert sind, das Verfahren zum Implementieren des primären Synchronisationssignals, PSS, in dem Zeitbereich nach einem der Ansprüche 1 bis 4 auszuführen.
 


Revendications

1. Procédé de mise en œuvre d'un signal de synchronisation primaire, PSS, dans un domaine temporel, en pré-stockant (401) des séquences de domaine temporel de signal PSS avec différentes fréquences d'échantillonnage et différentes configurations de

où une valeur de

est sélectionnée parmi {0, 1, 2},
dans lequel le procédé comprend en outre les étapes ci-dessous consistant à :

obtenir (301, 402) un paramètre connexe à une pondération de puissance de domaine temporel de signal PSS selon un paramètre connexe à une commande de puissance de signal PSS, un paramètre connexe à une cellule et des informations de temporisation ;

mettre en œuvre (302, 403) un traitement de pondération de puissance sur les séquences de domaine temporel de signal PSS pré-stockées avec différentes fréquences d'échantillonnage et différentes configurations de

en vue d'obtenir des séquences de domaine temporel de signal PSS pondérées selon les séquences de domaine temporel de signal PSS pré-stockées avec différentes fréquences d'échantillonnage et différentes configurations de

et le paramètre connexe à une pondération de puissance de domaine temporel de signal PSS ; et

mettre en œuvre (303, 405) une opération d'addition sur les séquences de domaine temporel de signal PSS pondérées et des données de domaine temporel de signaux et de canaux, à l'exception du signal PSS, en vue d'obtenir des données de domaine temporel traitées.


 
2. Procédé selon la revendication 1, dans lequel l'étape de pré-stockage des séquences de domaine temporel de signal PSS avec différentes fréquences d'échantillonnage et différentes configurations de

comprend l'étape ci-dessous consistant à :
obtenir au préalable des séquences de domaine fréquentiel de signal PSS avec différentes configurations de

et mettre en œuvre un traitement de transformée de Fourier rapide inverse, IFFT, avec différentes fréquences d'échantillonnage sur les séquences de domaine fréquentiel de signal PSS, en vue d'obtenir et de stocker les séquences de domaine temporel de signal PSS avec différentes fréquences d'échantillonnage et différentes configurations de


 
3. Procédé selon la revendication 2, dans lequel l'étape consistant à obtenir au préalable des séquences de domaine fréquentiel de signal PSS avec différentes configurations de

comprend les étapes ci-dessous consistant à :

obtenir les séquences de domaine fréquentiel de signal PSS en utilisant une formule de génération de signal PSS dans un protocole de couche physique de technologie d'évolution à long terme, LTE, dans lequel la formule de génération de signal PSS dans le protocole de couche physique de technologie LTE satisfait l'expression suivante :

où une valeur de « u » est égale à 25 lorsqu'une valeur de

est égale à 0, la valeur de « u » est égale à 29 lorsque la valeur de

est égale à 1, et la valeur de « u » est égale à 34 lorsque la valeur de

égale à 2 ; ou,

obtenir les séquences de domaine fréquentiel de signal PSS en utilisant une formule de génération de séquences de domaine fréquentiel de signal PSS qui n'exclut pas une composante de courant continu correspondant à une fréquence nulle, dans lequel la formule de génération de séquences de domaine fréquentiel de signal PSS qui n'exclut pas la composante de courant continu correspondant à la fréquence nulle satisfait l'expression suivante :

où la valeur de « u » est égale à 25 lorsque la valeur de

égale à 0, la valeur de « u » est égale à 29 lorsque la valeur de

égale à 1, et la valeur de « u » est égale à 34 lorsque la valeur de

égale à 2.


 
4. Procédé selon la revendication 1 ou 2, dans lequel le paramètre connexe à une pondération de puissance de domaine temporel de signal PSS comprend les éléments ci-après : une puissance de signal de référence de cellule, un décalage de puissance du signal PSS par rapport à un signal de référence de cellule, un coefficient de pondération de diffusion de cellule de domaine temporel ou un coefficient de pondération de diversité de retard cyclique, CDD, et un coefficient de pondération connexe à un étalonnage d'antenne de domaine temporel, AC.
 
5. Appareil pour mettre en œuvre un signal de synchronisation primaire, PSS, dans un domaine temporel, comprenant : un module de pondération de puissance (51) et au moins un module de traitement de données de domaine temporel de signal PSS (52, 53, 54), dans lequel :

le module de pondération de puissance (51) est configuré de manière à obtenir un paramètre connexe à une pondération de puissance de domaine temporel de signal PSS selon un paramètre connexe à une commande de puissance de signal PSS, un paramètre connexe à une cellule et des informations de temporisation, et à envoyer le paramètre connexe à une pondération de puissance de domaine temporel de signal PSS audit au moins un module de traitement de données de domaine temporel de signal PSS ; et

ledit au moins un module de traitement de données de domaine temporel de signal PSS (52, 53, 54) est configuré de manière à pré-stocker des séquences de domaine temporel de signal PSS avec différentes fréquences d'échantillonnage et différentes configurations de

à mettre en œuvre un traitement de pondération de puissance sur les séquences de domaine temporel de signal PSS en vue d'obtenir des séquences de domaine temporel de signal PSS pondérées selon les séquences de domaine temporel de signal PSS pré-stockées avec différentes fréquences d'échantillonnage et différentes configurations de

et selon le paramètre connexe à une pondération de puissance de domaine temporel de signal PSS, et à mettre en œuvre une opération d'addition sur les séquences de domaine temporel de signal PSS pondérées et des données de domaine temporel de signaux et de canaux, à l'exception du signal PSS, en vue d'obtenir des données de domaine temporel traitées, où une valeur de

est sélectionnée parmi {0, 1, 2}.


 
6. Appareil selon la revendication 5, comprenant en outre un module de traitement de transformée de Fourier rapide inverse à « n » trajets, IFFT, (55), et un module de mise en cache de données (56), dans lequel
le module de traitement de transformée IFFT à « n » trajets (55) est configuré de manière à obtenir les données de domaine temporel des signaux et canaux, à l'exception du signal PSS, et à envoyer les données de domaine temporel des signaux audit au moins un module de traitement de données de domaine temporel de signal PSS ; et
le module de mise en cache de données (56) est configuré de manière à recevoir les données de domaine temporel traitées envoyées par ledit au moins un module de traitement de données de domaine temporel de signal PSS, et à mettre en cache les données de domaine temporel traitées en prenant un symbole en tant qu'une unité.
 
7. Appareil selon la revendication 6, dans lequel le module de mise en cache de données (56) est une mémoire vive, RAM.
 
8. Appareil selon la revendication 5 ou 6, dans lequel le paramètre connexe à une pondération de puissance de domaine temporel de signal PSS comprend les éléments ci-après : une puissance de signal de référence de cellule, un décalage de puissance du signal PSS par rapport à un signal de référence de cellule, un coefficient de pondération de diffusion de cellule de domaine temporel ou un coefficient de pondération de diversité de retard cyclique, CDD, et un coefficient de pondération connexe à un étalonnage d'antenne de domaine temporel, AC.
 
9. Support de stockage informatique sur lequel sont stockées des instructions exécutables par ordinateur, dans lequel les instructions exécutables par ordinateur sont configurées de manière à exécuter le procédé de mise en œuvre du signal de synchronisation primaire, PSS, dans le domaine temporel, selon l'une quelconque des revendications 1 à 4.
 




Drawing














Cited references

REFERENCES CITED IN THE DESCRIPTION



This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Non-patent literature cited in the description