(19)
(11)EP 3 063 386 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
03.07.2019 Bulletin 2019/27

(21)Application number: 14858095.4

(22)Date of filing:  23.05.2014
(51)International Patent Classification (IPC): 
F02C 7/05(2006.01)
B29C 39/02(2006.01)
B29C 43/02(2006.01)
F02C 7/047(2006.01)
F04D 29/02(2006.01)
F02C 7/045(2006.01)
B29C 39/26(2006.01)
B29C 70/06(2006.01)
F01D 25/02(2006.01)
F04D 29/52(2006.01)
(86)International application number:
PCT/US2014/039360
(87)International publication number:
WO 2015/065526 (07.05.2015 Gazette  2015/18)

(54)

FAN CASE ICE LINER FOR TURBOFAN ENGINE

EISSCHUTZ-AUSKLEIDUNG EINES BLÄSERGEHÄUSES FÜR EIN MANTELSTROMTRIEBWERK

CHEMISAGE ANTI-GIVRE DE CARTER DE SOUFFLANTE POUR RÉACTEUR À DOUBLE FLUX


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 28.10.2013 US 201361896259 P

(43)Date of publication of application:
07.09.2016 Bulletin 2016/36

(73)Proprietor: United Technologies Corporation
Farmington, CT 06032 (US)

(72)Inventors:
  • ROBERTSON, Thomas J. Jr.
    Glastonbury, CT 06033 (US)
  • CLARKSON, Steven
    Cheshire, CT 06410 (US)

(74)Representative: Dehns 
St. Brides House 10 Salisbury Square
London EC4Y 8JD
London EC4Y 8JD (GB)


(56)References cited: : 
EP-A2- 2 623 725
US-A1- 2004 094 359
US-A1- 2008 135 329
US-A1- 2011 138 769
US-A1- 2012 082 541
US-A1- 2004 045 765
US-A1- 2008 135 329
US-A1- 2011 138 769
US-A1- 2011 211 943
US-A1- 2013 195 635
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    Technical Field:



    [0001] This disclosure relates to fan containment case assemblies for turbo-machinery, such as gas turbine engines. More particularly, this disclosure relates to ice liners for fan containment cases that include a series of panels aligned end to end to form a cylindrical ring that is disposed aft of the fan. Still, more specifically, this disclosure relates to improved core structures disposed between a splice joint where two ice liner panels meet and the fan containment case.

    Description of the Related Art:



    [0002] Gas turbine engines generally operate on the principle of compressing air within a compressor section of the engine, and then delivering the compressed air to the combustion section of the engine where fuel is added to the air and ignited. The resulting combustion mixture is delivered to the turbine section of the engine, where a portion of the energy generated by the combustion process is extracted by one or more turbines to drive one or more engine compressors. Turbofan gas turbine engines are widely used for high performance aircraft that operate at subsonic speeds. Turbofan gas turbine engines have a large rotary fan disposed at the front of the engine to produce thrust.

    [0003] The rotary fan is circumscribed by a stationary fan containment case assembly that includes an outer case and a series of radially inwardly facing liners. Fan containment cases serve to channel incoming air through the fan to ensure that the bulk of the air entering the engine will be compressed by the fan. Fan containment cases may include a forward liner disposed in front of the fan, an abradable rub strip that surrounds the fan, an ice liner disposed aft of the fan and the rub strip, and a rear liner disposed aft of the ice liner.

    [0004] Certain environmental conditions cause ice formation on the rotating fan blades and adjacent rotating components during engine operation. When this ice sheds, it is thrown radially outwardly and aft of the fan at high velocities by centrifugal forces and the flow of air through the fan. The ice impinges against the ice liner, which is disposed aft of the fan and the abradable rub strip and which faces radially inwardly from the outer case. Accordingly, these ice liners, or fan containment case liners disposed aft of the fan, must be strong enough to resist the high velocity impact of the ice.

    [0005] Since turbofan engines power an aircraft in flight, the weight of the fan containment case, including the ice liner, is a significant factor affecting the overall weight and efficiency of the engine. Accordingly, it is difficult to make fan containment case liners, or more specifically, ice liners, that are lightweight, but still strong enough to avoid damage from the ice shed from the fan blades. As modern aircraft turbofan engines become larger, fan diameters become larger as do the diameters of the fan containment cases and the diameters of the ice liners. As a result, an ice liner is a structurally significant component, which significantly adds to the weight of the engine. In addition, increased engine weight decreases fuel efficiency.

    [0006] Impact resistant ice liners typically include a series of panels, arranged end to end as they form a cylindrical liner aft of the fan and abradable rub strip. A core structure is typically disposed between the panels and the outer case. A splice joint is created where the ends of two panels meet. For example, if six panels form an ice liner, the six panels form six splice joints. Obviously, the number of panels used to form an ice liner can vary. While the core structure disposed between the ice panels and the outer case help to reinforce the panels of the ice liner, additional reinforcement at each splice joint is required.

    [0007] To provide the required strength or reinforcement at the splice joints, dense aluminum honeycomb cores are disposed between the outer case and each splice joint. These dense aluminum honeycomb cores may also be flanked on either side by the regular core structures. Such dense aluminum honeycomb cores are expensive and heavy and significantly add to the overall weight of the ice liner.

    [0008] To increase fuel and engine efficiency, there is a need for gas turbine engine components that are sufficiently strong, but lightweight. As a result, there is a need for fan containment case designs and ice liner designs that are lightweight, but strong enough to withstand impact from ice that is shed from the rotating fan blades.

    [0009] EP 2623725 discloses a gas turbine engine fan case assembly having anti-rotation features to force the assembly to expand and contract radially. The anti-rotation members comprise compliant channel members and tongue members.

    [0010] US 2011/138769 discloses a fan containment case for a gas turbine engine having a penetration resistant covering circumscribing an impact zone of the containment case.

    [0011] US 2012/082541 discloses a fan case formed of several part-circumference sections attached by joints.

    SUMMARY OF THE DISCLOSURE



    [0012] In one aspect, there is provided a liner according to claim 1 for a fan containment case assembly, the liner comprising: a plurality of arcuate panels arranged end to end to form a cylinder with a plurality of splice joints, each splice joint formed by an end of one panel meeting and abutting an end of another panel; a plurality of splice support cores, each splice support core engaging and being disposed radially outside of one of the plurality of splice joints, the splice support cores comprising a molded polymer; and a plurality of standard support cores (48), each of the plurality of standard support cores being disposed radially outside one of the arcuate panels and between two of the splice support cores.

    [0013] In another aspect, an ice liner assembly according to claim 11 for a fan containment case assembly is disclosed. The ice liner assembly includes the liner of the above described aspect. The molded polymer is selected from a group consisting of polyetherimide (PEI), polyimide, polyether ether ketone (PEEK), polycarbonate (PC), polyether ketone ketone (PEKK), polysulfone, Nylon, polyphenylsulfide, reinforced polyetherimide, reinforced polyimide, reinforced PEEK, reinforced PC, reinforced PEKK, reinforced polysulfone, reinforced Nylon, reinforced polyphenylsulfide, and combinations thereof.

    [0014] In yet another aspect, a fan containment case assembly according to claim 14 is disclosed. The fan containment case assembly includes a cylindrical outer case; a front cylindrical liner disposed inside the outer case; the ice liner assembly of the above described aspect disposed inside the outer case; an abradable strip liner disposed inside the outer case and between the front liner and the ice liner, and a rear liner disposed inside the outer case and opposite the ice liner from the abradable strip liner. Each splice support core is engaged and disposed radially between one of the splice joints and the outer case. Each standard support core is disposed radially between one of the arcuate panels and the outer case and circumferentially between two of the splice support cores.

    [0015] In any one or more of the embodiments described above, the splice support cores may be injection molded or compression molded. Further, in any one or more of the embodiments described above, the splice support cores may include reinforcing fibers or particles such as carbon fibers, carbon particles, fiber glass and combinations thereof.

    [0016] In any one or more of the embodiments described above, the splice support cores may include and inner end that faces radially inwardly towards one of the splice joints and an outer end that faces radially outwardly, or towards the outer case. Further, each splice support core may further include a plurality of ribs that extend between the inner and outer ends thereof. In a further refinement of this concept, the splice support cores may include a pair of sidewalls that flank the plurality of ribs and that also extend between the inner and outer ends of the splice support core. In a further refinement of this concept, the sidewalls and ribs may be arranged substantially parallel to each other. In a further refinement, the inner and outer ends of the splice support cores may include inner and outer walls were in the ribs and sidewalls may extend between and be connected to the inner and outer walls.

    [0017] In any one or more of the embodiments described above, the splice support cores may include a plurality of reinforcing ribs that intersect each other. In a further refinement of this concept, the splice support cores may include a pair of sidewalls that flank the plurality of ribs in were each rib is extends between and is connected to each of the pair of sidewalks.

    [0018] Other advantages and features will be apparent from the following detailed description when read in conjunction with the attached drawings.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0019] For a more complete understanding of the disclosed methods and apparatuses, reference should not be made to the embodiment illustrated in greater detail on the accompanying drawings, wherein:

    FIG. 1 is a sectional view of a turbofan gas turbine engine;

    FIG. 2 is a perspective view of a fan containment case assembly of the gas turbine engine of FIG. 1.

    FIG. 3 is a sectional view of the fan containment case assembly of FIG. 2;

    FIG. 4 is a partial and enlarged perspective view of the ice liner assembly of the fan containment case assembly shown in FIGS. 2 and 3;

    FIG. 5 Is a perspective view of one disclosed splice support core;

    FIG. 6 is a perspective view of another disclosed splice support core.



    [0020] It should be understood that the drawings are not necessarily to scale and that the disclosed embodiments are sometimes illustrated diagrammatically and in partial views. In certain instances, details which are not necessary for an understanding of the disclosed methods and apparatuses or which render other details difficult to perceive may have been omitted. It should be understood, of course, that this disclosure is not limited to the particular embodiments illustrated herein.

    DETAILED DESCRIPTION OF THE PRESENTLY PREFERRED EMBODIMENTS



    [0021] Turning to FIG. 1, a turbofan gas turbine engine 10 is shown in a sectional view and which includes a rotating fan 11 that is mounted on a nose 12 and coupled to a low pressure compressor 13. The low pressure compressor 13 is disposed between the fan 11 and a high pressure compressor 14. The high pressure compressor 14 is disposed between the low pressure compressor 13 and a combustor 15. The combustor 15 is disposed between a high pressure turbine 16 and the high pressure compressor 14. The high pressure turbine 16 is disposed between the combustor 15 and a low pressure turbine 17. The low pressure turbine 17 is coupled to a low pressure shaft or spool 18 which, in turn, drives the fan 11 and the low pressure compressor 13. The high pressure turbine 16 is coupled to a high pressure tubular shaft or spool 19 which, in turn, drives the high pressure compressor 14.

    [0022] Still referring to FIG. 1, the fan 11 and low pressure compressor 13 are disposed within a fan containment case assembly 25, which is also shown in FIG. 2. The fan containment case assembly 25 includes an outer case 26 and a series of liners, including a front liner 27, an abradable rub strip liner 28, an ice liner assembly 29 and a rear liner 31. All four liners 27, 28, 29, 31 are also illustrated in the sectional view of FIG. 3.

    [0023] Turning to FIG. 3, the front liner 27 includes a series of outer panels 35 and a core 36 that is sandwiched between the outer panels 35 and the forward end 37 of the outer case 26. Similarly, the abradable rub strip liner 28 includes a series of abradable rub strip panels 38 that are also supported by a core structure 39 that are sandwiched between the outer case 26 and the abradable rub strip panels 38. Similarly, the rear liner 31 also includes a series of rear liner panels 45 that are reinforced by another core 46 that is sandwiched between the rear liner panel 45 and the outer case 26.

    [0024] Turning to the ice liner assembly 29 shown in FIGS. 3 and 4, the ice liner panel assembly 29 also includes a series of arcuate panels 47 arranged end to end to form a cylindrical structure that is reinforced by a standard core 48. Turning to FIG. 4, two ice liner arcuate panels 47 are shown that each have an end 51 that meet and form a splice joint 52. The splice joints 52 present a weakened point or area of the ice liner assembly 29. Hence, standard core 48 is not sufficiently strong to support or reinforce a splice joint 52. Further, the ice liner assembly 29 includes a plurality of splice joints 52. For example, the ice liner assembly 29 may include six arcuate panels 47 that form six splice joints 52. The six splice joints 52 are weaker than middle portions of the arcuate panel 47 and therefore require stronger reinforcement than provided by the standard cores 48. Therefore, instead of standard cores 48 being disposed between the splice joints 52 and the outer case 26, splice support cores 55 are disposed between the splice joints 52 and the outer case 26. The splice support cores 55 must be strong enough to sufficiently reinforce the splice joints 52 when the splice joints 52 are struck by high velocity ice.

    [0025] Currently, splice joints 52 are reinforced by high density aluminum honeycomb cores. However, high density aluminum core honeycomb are both expensive and heavy, thereby adding to both the cost and weight of the engine 10. Because of high fuel cost, fuel efficiency of gas turbine engines 10 is critical. Because fuel efficiency can be increased by decreasing the weight of the engine 10, it is desirable to design parts for gas turbine engines 10 that are lighter than conventional or currently employed parts. Two examples of disclosed splice support cores 155, 255 are illustrated in FIGS. 5 and 6. Heavy high density aluminum honeycomb cores may be replaced by molded polymeric cores 155, 255.

    [0026] Turning to FIG. 5, the splice support core 155 includes an outer end 156, an inner end 157 and a plurality of reinforcing ribs 158 extending between the outer end 156 and inner end 157. In addition, the splice support core 155 may also include a pair of side walls 159, 161 that flank the reinforcing ribs 158. In the splice support core 155 shown in FIG. 5, the ribs 158 and side walls 159, 161 are generally parallel in configuration.

    [0027] In contrast, the splice support core 255 of FIG. 6 also includes an outer end 256, an inner end 257 and a plurality of intersecting ribs 258 that extend between the outer end 256 and the inner end 257. In the configuration shown in FIG. 6, three groups of intersecting ribs 258 are utilized. The splice support core 255 may also include side walls 259, 261, a front wall 262 and a rear wall 263. The side walls 259, 261, the front wall 262 and the rear wall 263 may also perform the reinforcing function of the ribs 258.

    [0028] The splice support cores 155, 255 may be fabricated from a variety of polymeric materials including, but not limited to polyetherimide (PEI), polyimide, polyether ether ketone (PEEK), polycarbonate (PC), polyether ketone ketone (PEKK), polysulfone, Nylon, polyphenylsulfide, reinforced polyetherimide, reinforced polyimide, reinforced PEEK, reinforced PC, reinforced PEKK, reinforced polysulfone, reinforced Nylon, reinforced polyphenylsulfide, and combinations thereof. The polymeric material may be reinforced with carbon fibers, carbon particles, fiber glass, and other reinforcing particles or short fibers that would be apparent to those skills in the art. The splice support cores 155, 255 may be injection molded or compression molded. If a compression molding technique is utilized, the polymeric material may be reinforced with long carbon fibers or fiber glass in the form of continues long fibers or chopped tape.

    INDUSTRIAL APPLICABILITY



    [0029] Improved ice liner assemblies 29 for fan containment case assemblies 25 are disclosed. The improved ice liner assemblies 29 are reinforced at each splice joint by a molded polymeric splice support core 155, 255 that is substantially lighter than the currently employed dense aluminum honeycomb core materials used to reinforce splice joints of a conventional fan case ice liner. The disclosed splice support cores 155, 255 provide the necessary stiffness to the splice joints 52 and prevent edge damage during ice impact. However, the disclosed splice support cores 155, 255 are lighter and less expensive than conventional dense aluminum honeycomb cores. The disclosed splice support cores 155, 255 may be injection or compression molded from a variety of materials and may also be reinforced with particle, fibers or other reinforcing materials as will be apparent to those skilled in the art. The disclosed splice support cores 155, 255 include stiffening ribs 158, 258 that extend radially. In addition to reducing weight and cost, the use of polymeric splice support cores 155, 255 prevents any galvanic action between the cores 155, 255 and the metallic materials used to form the outer case 26. Thus, the use of polymeric splice support cores 155, 255 eliminates the need to anodize and/or bond prime and, as a result of eliminating these processes, the disclosed splice support cores 155, 255 provide a green alternative to existing high density aluminum honeycomb cores.

    [0030] While only certain embodiments have been set forth, alternatives and modifications will be apparent from the above description to those skilled in the art. These and other alternatives are considered equivalents and within the scope of this disclosure and the appended claims.


    Claims

    1. A liner for a fan containment case assembly (25), the liner being characterised in that it comprises
    a plurality of arcuate panels (47) arranged end to end to form a cylinder with a plurality of splice joints (52), each splice joint formed by an end (51) of one panel meeting and abutting an end of another panel;
    a plurality of splice support cores (155, 255), each splice support core engaging and being disposed radially outside of one of the plurality of splice joints, the splice support cores comprising a molded polymer; and
    a plurality of standard support cores (48), each of the plurality of standard support cores being disposed radially outside one of the arcuate panels (47) and between two of the splice support cores (155, 255).
     
    2. The liner of claim 1 wherein the splice support cores (155, 255) are injection molded.
     
    3. The liner of claim 1 wherein the splice support cores (155, 255) are compression molded.
     
    4. The liner of claim 2 wherein the injection molded polymer of the splice support cores (155, 255) includes reinforcing fibers, preferably wherein the reinforcing fibers are selected from the group consisting of carbon fibers, fiberglass and combinations thereof.
     
    5. The liner of claim 2 wherein the injection molded polymer of the splice support cores (155, 255) includes reinforcing particles, preferably wherein the particles are selected from the group consisting of carbon particles, fiberglass particles and combinations thereof.
     
    6. The liner of claim 1 wherein at least one of the splice support cores (155, 255) includes an inner end (157, 257) that faces radially inwardly towards one of the splice joints (52) and an outer end (156, 256) that faces radially outwardly, each splice support core further includes a plurality of ribs (158, 258) extending between the inner and outer ends thereof.
     
    7. The liner of claim 6 wherein at least one of the splice support cores (155, 255) includes a pair of sidewalls (159, 161, 259, 261) that flank the plurality of ribs (158, 258) and that also extend between the inner (157, 257) and outer (156, 256) ends thereof.
     
    8. The liner of claim 7 wherein the sidewalls (159, 161) and ribs (158) are arranged substantially parallel to each other, preferably wherein the outer end (156) of at least one of the splice support cores (155) includes an outer wall, the inner end (157) of at least one of the splice support cores includes an inner wall, and
    the ribs (158) and sidewalls (159, 161) extend between and are connected to the inner and outer walls.
     
    9. The liner of claim 6 wherein the plurality of ribs (258) includes groups of ribs that intersect each other, preferably wherein at least one of the splice support cores (255) includes a pair of sidewalls (259, 261) that flank the plurality of ribs and wherein each rib extends between and is connected to each of the pair of sidewalls.
     
    10. The liner of any preceding claim, wherein the polymer is selected from the group consisting of: polyetherimide (PEI); polyimide; polyether ether ketone (PEEK); polycarbonate (PC); polyether ketone ketone (PEKK); polysulfone; Nylon; polyphenylsulfide; reinforced polyetherimide; reinforced polyimide; reinforced PEEK; reinforced PC; reinforced PEKK; reinforced polysulfone; reinforced Nylon; reinforced polyphenylsulfide; and combinations thereof.
     
    11. An ice liner assembly (29) for a fan containment case assembly (25), the ice liner assembly comprising the liner of claim 1, wherein the molded polymer is selected from the group consisting of polyetherimide (PEI), polyimide, polyether ether ketone (PEEK), polycarbonate (PC), polyether ketone ketone (PEKK), polysulfone, Nylon, polyphenylsulfide, reinforced polyetherimide, reinforced polyimide, reinforced PEEK, reinforced PC, reinforced PEKK, reinforced polysulfone, reinforced Nylon, reinforced polyphenylsulfide, and combinations thereof.
     
    12. The ice liner assembly (29) of claim 11 wherein at least one of the splice support cores (155, 255) includes an inner end (157, 257) that faces radially inwardly towards one of the splice joints (52) and an outer end (156, 256) that faces radially outwardly, each splice support core further includes a plurality of ribs (158, 258) extending between the inner and outer ends thereof.
     
    13. The ice liner assembly (29) of claim 12 wherein the ribs (158) are arranged substantially parallel to each other, or wherein the plurality of ribs (258) includes groups of ribs that intersect each other.
     
    14. A fan containment case assembly (25), comprising:

    a cylindrical outer case (26);

    a front cylindrical liner (27) disposed inside the outer case;

    the ice liner assembly (29) of claim 11 disposed inside the outer case;

    an abradable strip liner (28) disposed inside the outer case and between the front liner and the ice liner; and

    a rear liner (31) disposed inside the outer case and opposite the ice liner from the abradable strip liner;

    each splice support core engaging and being disposed radially between one of the splice joints and the outer case; and

    each standard support core being disposed radially between one of the arcuate panels and the outer case and circumferentially between two of the splice support cores.


     


    Ansprüche

    1. Auskleidung für eine Bläserumschließungsgehäusebaugruppe (25), wobei die Auskleidung dadurch gekennzeichnet ist, dass sie Folgendes umfasst:

    eine Vielzahl von Bogenplatten (47), die Ende an Ende angeordnet sind, um einen Zylinder mit einer Vielzahl von Spleißverbindungen (52) zu bilden, wobei jede Spleißverbindung durch ein Ende (51) einer Platte gebildet wird, die auf ein Ende einer anderen Platte trifft und an diese anstößt;

    eine Vielzahl von Spleißunterstützungskernen (155, 255), wobei jeder Spleißunterstützungskern mit einer von der Vielzahl von Spleißverbindungen in Eingriff tritt und radial außerhalb davon angeordnet ist, wobei die Spleißunterstützungskerne ein geformtes Polymer umfassen; und

    eine Vielzahl von Standardunterstützungskernen (48), wobei jeder von der Vielzahl von Standardunterstützungskernen radial außerhalb einer der Bogenplatten (47) und zwischen zwei der Spleißunterstützungskerne (155, 255) angeordnet ist.


     
    2. Auskleidung nach Anspruch 1, wobei die Spleißunterstützungskerne (155, 255) spritzgegossen sind.
     
    3. Auskleidung nach Anspruch 1, wobei die Spleißunterstützungskerne (155, 255) formgepresst sind.
     
    4. Auskleidung nach Anspruch 2, wobei das spritzgegossene Polymer der Spleißunterstützungskerne (155, 255) verstärkende Fasern beinhaltet, wobei die verstärkenden Fasern vorzugsweise ausgewählt sind aus der Gruppe bestehend aus Kohlenstofffasern, Glasfaser und Kombinationen davon.
     
    5. Auskleidung nach Anspruch 2, wobei das spritzgegossene Polymer der Spleißunterstützungskerne (155, 255) verstärkende Partikel beinhaltet, wobei die Partikel vorzugsweise ausgewählt sind aus der Gruppe bestehend aus Kohlenstoffpartikeln, Glasfaserpartikeln und Kombinationen davon.
     
    6. Auskleidung nach Anspruch 1, wobei zumindest einer der Spleißunterstützungskerne (155, 255) ein inneres Ende (157, 257) beinhaltet, das radial nach innen in Richtung einer der Spleißverbindungen (52) weist, und ein äußeres Ende (156, 256), das radial nach außen weist, wobei jeder Spleißunterstützungskern ferner eine Vielzahl von Rippen (158, 258) beinhaltet, die sich zwischen den inneren und äußeren Enden davon erstrecken.
     
    7. Auskleidung nach Anspruch 6, wobei zumindest einer der Spleißunterstützungskerne (155, 255) ein Paar von Seitenwänden (159, 161, 259, 261) beinhaltet, die die Vielzahl von Rippen (158, 258) flankieren und die sich außerdem zwischen den inneren (157, 257) und äußeren (156, 256) Enden davon erstrecken.
     
    8. Auskleidung nach Anspruch 7, wobei die Seitenwände (159, 161) und Rippen (158) im Wesentlichen parallel zueinander angeordnet sind, wobei das äußere Ende (156) von zumindest einem der Spleißunterstützungskerne (155) vorzugsweise eine äußere Wand beinhaltet, wobei das innere Ende (157) von zumindest einem der Spleißunterstützungskerne eine innere Wand beinhaltet, und sich die Rippen (158) und Seitenwände (159, 161) zwischen den inneren und äußeren Wänden erstrecken und damit verbunden sind.
     
    9. Auskleidung nach Anspruch 6, wobei die Vielzahl von Rippen (258) eine Gruppe von Rippen beinhaltet, die einander schneiden, wobei zumindest einer der Spleißunterstützungskerne (255) vorzugsweise ein Paar von Seitenwänden (259, 261) beinhaltet, die die Vielzahl von Rippen flankieren und wobei sich jede Rippe zwischen dem Paar von Seitenwänden erstreckt und damit verbunden ist.
     
    10. Auskleidung nach einem der vorhergehenden Ansprüche, wobei das Polymer ausgewählt ist aus der Gruppe bestehend aus: Polyetherimid (PEI); Polymid; Polyetheretherketon (PEEK); Polycarbonat (PC); Polyetherketonketon (PEKK); Polysulfon; Nylon; Polyphenylsulfid; verstärktem Polyetherimid; verstärktem Polymid; verstärktem PEEK; verstärktem PC; verstärktem PEKK; verstärktem Polysulfon; verstärktem Nylon; verstärktem Polyphenylsulfid und Kombinationen davon.
     
    11. Eisschutz-Auskleidungsbaugruppe (29) für eine Bläserumschließungsgehäusebaugruppe (25), wobei die Eisschutz-Auskleidungsbaugruppe die Auskleidung nach Anspruch 1 umfasst, wobei das geformte Polymer ausgewählt ist aus der Gruppe bestehend aus Polyetherimid (PEI); Polymid; Polyetheretherketon (PEEK); Polycarbonat (PC); Polyetherketonketon (PEKK); Polysulfon; Nylon; Polyphenylsulfid; verstärktem Polyetherimid; verstärktem Polymid; verstärktem PEEK; verstärktem PC; verstärktem PEKK; verstärktem Polysulfon; verstärktem Nylon; verstärktem Polyphenylsulfid und Kombinationen davon.
     
    12. Eisschutz-Auskleidungsbaugruppe (29) nach Anspruch 11, wobei zumindest einer der Spleißunterstützungskerne (155, 255) ein inneres Ende (157, 257) beinhaltet, das radial nach innen in Richtung einer der Spleißverbindungen (52) weist, und ein äußeres Ende (156, 256), das radial nach außen weist, wobei jeder Spleißunterstützungskern ferner eine Vielzahl von Rippen (158, 258) beinhaltet, die sich zwischen inneren und äußeren Enden davon erstrecken.
     
    13. Eisschutz-Auskleidungsbaugruppe (29) nach Anspruch 12, wobei die Rippen (158) im Wesentlichen parallel zueinander angeordnet sind, oder wobei die Vielzahl von Rippen (258) Gruppen von Rippen beinhaltet, die einander schneiden.
     
    14. Bläserumschließungsgehäusebaugruppe (25), umfassend:

    ein zylinderförmiges Außengehäuse (26);

    eine vordere zylinderförmige Auskleidung (27), die im Innern des Außengehäuses angeordnet ist;

    die Eisschutz-Auskleidungsbaugruppe (29) nach Anspruch 11, die im Innern des Außengehäuses angeordnet ist;

    eine abschleifbare Streifenauskleidung (28), die im Innern des Außengehäuses und zwischen der vorderen Auskleidung und der Eisschutz-Auskleidung angeordnet ist; und

    eine hintere Auskleidung (31), die im Innern des Außengehäuses und gegenüber der Eisschutz-Auskleidung von der abschleifbaren Streifenauskleidung angeordnet ist;

    wobei jeder Spleißunterstützungskern mit einer der Spleißverbindungen und dem Außengehäuse in Eingriff tritt und radial dazwischen angeordnet ist; und

    jeder Standardunterstützungskern radial zwischen einer der Bogenplatten und dem Außengehäuse und umfangsmäßig zwischen zwei der Spleißunterstützungskerne angeordnet ist.


     


    Revendications

    1. Chemisage pour un ensemble carter de confinement de soufflante (25), le chemisage étant caractérisé en ce qu'il comprend
    une pluralité de panneaux arqués (47) agencés bout à bout pour former un cylindre avec une pluralité de joints d'épissure (52), chaque joint d'épissure étant formé par une extrémité (51) d'un panneau rejoignant et venant en butée contre une extrémité d'un autre panneau ;
    une pluralité de noyaux de support d'épissure (155, 255), chaque noyau de support d'épissure venant en prise et étant disposé radialement à l'extérieur de l'un de la pluralité de joints d'épissure, les noyaux de support d'épissure comprenant un polymère moulé ; et
    une pluralité de noyaux de support standard (48), chacun de la pluralité de noyaux de support standard étant disposé radialement à l'extérieur de l'un des panneaux arqués (47) et entre deux des noyaux de support d'épissure (155, 255).
     
    2. Chemisage selon la revendication 1, dans lequel les noyaux de support d'épissure (155, 255) sont moulés par injection.
     
    3. Chemisage selon la revendication 1, dans lequel les noyaux de support d'épissure (155, 255) sont moulés par compression.
     
    4. Chemisage selon la revendication 2, dans lequel le polymère moulé par injection des noyaux de support d'épissure (155, 255) inclut des fibres de renforcement, de préférence dans lequel les fibres de renforcement sont choisies dans le groupe constitué des fibres de carbone, de la fibre de verre et des combinaisons de celles-ci.
     
    5. Chemisage selon la revendication 2, dans lequel le polymère moulé par injection des noyaux de support d'épissure (155, 255) inclut des particules de renforcement, de préférence dans lequel les particules sont choisies dans le groupe constitué des particules de carbone, des particules de fibre de verre et des combinaisons de celles-ci.
     
    6. Chemisage selon la revendication 1, dans lequel au moins l'un des noyaux de support d'épissure (155, 255) inclut une extrémité interne (157, 257) qui fait face radialement vers l'intérieur en direction de l'un des joints d'épissure (52) et une extrémité externe (156, 256) qui fait face radialement vers l'extérieur, chaque noyau de support d'épissure inclut en outre une pluralité de nervures (158, 258) s'étendant entre ses extrémités interne et externe.
     
    7. Chemisage selon la revendication 6, dans lequel au moins l'un des noyaux de support d'épissure (155, 255) inclut une paire de parois latérales (159, 161, 259, 261) qui bordent la pluralité de nervures (158, 258) et qui s'étendent également entre leurs extrémités interne (157, 257) et externe (156, 256).
     
    8. Chemisage selon la revendication 7, dans lequel les parois latérales (159, 161) et les nervures (158) sont agencées sensiblement parallèlement les unes aux autres, de préférence dans lequel l'extrémité externe (156) d'au moins l'un des noyaux de support d'épissure (155) inclut une paroi externe, l'extrémité interne (157) d'au moins l'un des noyaux de support d'épissure inclut une paroi interne, et les nervures (158) et les parois latérales (159, 161) s'étendent entre les parois interne et externe et sont reliées à celles-ci.
     
    9. Chemisage selon la revendication 6, dans lequel la pluralité de nervures (258) inclut des groupes de nervures qui se coupent, de préférence dans lequel au moins l'un des noyaux de support d'épissure (255) inclut une paire de parois latérales (259, 261) qui bordent la pluralité de nervures et dans lequel chaque nervure s'étend entre et est reliée à chacune des paires de parois latérales.
     
    10. Chemisage selon une quelconque revendication précédente, dans lequel le polymère est choisi dans le groupe constitué par : le polyétherimide (PEI) ; le polyimide ; le polyétheréthercétone (PEEK) ; le polycarbonate (PC) ; le polyéther cétone cétone (PEKK); le polysulfone ; le nylon ; le polyphénylsulfure; le polyétherimide renforcé ; le polyimide renforcé ; le PEEK renforcé ; le PC renforcé ; le PEKK renforcé ; le polysulfone renforcé ; le nylon renforcé ; le polyphénylsulfure renforcé ; et des combinaisons de ceux-ci.
     
    11. Ensemble chemisage anti-givre (29) pour un ensemble carter de confinement de soufflante (25), l'ensemble chemisage anti-givre comprenant le chemisage selon la revendication 1, dans lequel le polymère moulé est choisi dans le groupe constitué par le polyétherimide (PEI), le polyimide, le polyétheréthercétone (PEEK), le polycarbonate (PC), le polyéther cétone cétone (PEKK), le polysulfone, le nylon, le polyphénylsulfure, le polyétherimide renforcé, le polyimide renforcé, le PEEK renforcé, le PC renforcé, le PEKK renforcé, le polysulfone renforcé, le nylon renforcé, le polyphénylsulfure renforcé et des combinaisons de ceux-ci.
     
    12. Ensemble chemisage anti-givre (29) selon la revendication 11, dans lequel au moins l'un des noyaux de support d'épissure (155, 255) inclut une extrémité interne (157, 257) qui fait face radialement vers l'intérieur en direction de l'un des joints d'épissure (52) et une extrémité externe (156, 256) qui fait face radialement vers l'extérieur, chaque noyau de support d'épissure inclut en outre une pluralité de nervures (158, 258) s'étendant entre ses extrémités interne et externe.
     
    13. Ensemble chemisage anti-givre (29) selon la revendication 12, dans lequel les nervures (158) sont agencées sensiblement parallèlement les unes aux autres, ou dans lequel la pluralité de nervures (258) inclut des groupes de nervures qui se coupent.
     
    14. Ensemble carter de confinement de soufflante (25), comprenant :

    un carter externe cylindrique (26) ;

    une chemisage cylindrique avant (27) disposé à l'intérieur du carter externe ;

    l'ensemble chemisage anti-givre (29) selon la revendication 11 disposé à l'intérieur du carter externe ;

    un chemisage de bande abradable (28) disposé à l'intérieur du carter externe et entre le chemisage avant et le chemisage anti-givre ; et

    un chemisage arrière (31) disposé à l'intérieur du carter externe et opposé au chemisage anti-givre du chemisage de bande abradable ; chaque noyau de support d'épissure venant en prise avec et étant disposé radialement entre l'un des joints d'épissure et le carter externe ; et

    chaque noyau de support standard étant disposé radialement entre l'un des panneaux arqués et le carter externe et circonférentiellement entre deux des noyaux de support d'épissure.


     




    Drawing














    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description