(19)
(11)EP 3 071 894 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
13.01.2021 Bulletin 2021/02

(21)Application number: 14864185.5

(22)Date of filing:  04.11.2014
(51)International Patent Classification (IPC): 
F24F 1/00(2019.01)
F24F 1/44(2011.01)
F24F 1/06(2011.01)
F25B 31/00(2006.01)
F24F 11/30(2018.01)
F24F 1/08(2011.01)
F25B 13/00(2006.01)
F25B 49/02(2006.01)
(86)International application number:
PCT/KR2014/010534
(87)International publication number:
WO 2015/076509 (28.05.2015 Gazette  2015/21)

(54)

AIR CONDITIONER AND METHOD OF CONTROLLING THE SAME

KLIMAANLAGE UND VERFAHREN ZUR STEUERUNG DAVON

CLIMATISEUR ET SON PROCÉDÉ DE COMMANDE


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 20.11.2013 KR 20130141207

(43)Date of publication of application:
28.09.2016 Bulletin 2016/39

(73)Proprietor: LG Electronics Inc.
Seoul 150-721 (KR)

(72)Inventors:
  • CHA, Wooho
    Seoul 153-802 (KR)
  • CHUNG, Baikyoung
    Seoul 153-802 (KR)
  • CHOI, Song
    Seoul 153-802 (KR)

(74)Representative: Vossius & Partner Patentanwälte Rechtsanwälte mbB 
Siebertstrasse 3
81675 München
81675 München (DE)


(56)References cited: : 
JP-A- H07 174 434
JP-A- 2002 168 540
JP-A- 2004 060 953
JP-A- 2010 276 276
KR-A- 20120 070 006
JP-A- 2001 099 519
JP-A- 2002 168 540
JP-A- 2004 060 953
JP-A- 2010 276 276
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    Technical Field



    [0001] The present disclosure relates to an electric heat pump (EHP) type and gas heat pump (GHP) type air conditioner and a method of controlling the same.

    Background Art



    [0002] Air conditioners are apparatuses for cooling/heating or purifying air in an indoor space in order to provide more comfortable indoor environment to a user.

    [0003] Such an air conditioner may be classified into a split type air conditioner in which indoor and outdoor units are separated from each other and an integral type air conditioner in which indoor and outdoor units are integrally coupled to each other as a single unit. Air conditioners may also be classified into single type air conditioners having capacity that is capable of operating one indoor unit so as to be used in narrow spaces, middle and large sized air conditioners having very large capacity so as to be used in companies or restaurants, and multi type air conditioners having capacity that is capable of sufficiently operating a plurality of indoor units according to the capacity thereof.

    [0004] Here, such a split type air conditioner includes an indoor unit installed in an indoor space to supply hot wind or cold wind into a space to be air-conditioned and an outdoor unit in which compression and expansion are performed for performing a sufficient heat-exchanging operation in the indoor unit.

    [0005] Also, the air conditioner may be classified into an electric heat pump (EHP) type air conditioner and a gas heat pump (GHP) type air conditioner according to power sources for driving a compressor. The EHP type air conditioner uses electricity as a power source for the compressor, and the GHP type air conditioner uses a fuel such as an LNG or LPG as a power source for the compressor. In the GHP type air conditioner, an engine operates through fuel combustion to provide an output of a compressor motor.

    [0006] A prior art document relating to the GHP type air conditioner: Patent Application No. 10-2012-0016202

    [0007] A prior art document relating to the EHP type air conditioner: Patent Application No. 10-2003-0077857

    [0008] In the EHP type air conditioner according to the related art, supplied current may be adjusted to easily control the compressor. Thus, the EHP type air conditioner may be adequate for response to a partial load and has high energy efficiency. However, the EHP type air conditioner may have a limitation in that frost is attached to an outdoor heat exchanger when low-temperature heating is performed.

    [0009] On the other hand, the GHP type air conditioner may have an advantage in that waste heat of the engine is used to improve defrosting performance. However, the GHP type air conditioner may have low engine efficiency due to heat losses.

    [0010] JP 2002- 168540 A relates to an air conditioning load control system. To reduce the facility cost or the installation space and also to achieve efficiency increase in heating operation, in the case of arranging an engine or the like as a separate drive source or installing a private power plant by gas engine or the like jointly, a multiple air conditioner is provided with a plurality of outdoor units, and the line having connected these outdoor units in parallel is connected to a line from an indoor unit, and deals with air conditioning load by controlling the number of outdoor units in operation. At least one outdoor unit is driven by the power of an engine for driving a generator through a stepless speed change gear, and another outdoor unit is driven by motor power. One unit of the outdoor unitsdriven by motor power is provided with a heat exchanger which performs heat exchange between a refrigerant and the waste heat of the drive engine of the above outdoor unit driven by engine power, and at heating, the heat exchanger works as a heat pump on the side of a tow- temperature heat source.

    [0011] JP 2010-276276 A relates to an air conditioner capable of improving comfortability in a space where each indoor unit is installed while improving energy saving performance. It is suggested that a control device acquires a capacity of a plurality of indoor units, acquires a temperature difference between a suction temperature and a set temperature of each of the operating indoor units, calculates an air conditioning load temperature difference and controls an upper limit of a rotating speed of a compressor based on the air conditioning load temperature difference.

    [0012] From JP 2004 060953 A relates to detecting a shortage in the amount of refrigerant in an ejector cycle. The degree of superheat in the refrigerant at a refrigerant outlet side in an evaporator is detected according to the temperature difference between refrigerant temperature sensors. When the degree of superheat in the refrigerant is equal to or more than a specific value, it is regarded that the amount of refrigerant is less than a prescribed value, thus shortage in the amount of refrigerant is detected more readily compared with a case where shortage in the refrigerant is judged according to the temperature of a discharge medium.

    [0013] It is an object of the invention to provide an air conditioner having an improved heating performance and system efficiency as well as a method of controlling an air conditioner.

    [0014] The above objective is achieved by the invention as defined in the independent claims 1 and 12. The dependent claims define preferred embodiments of the invention.

    [0015] In one embodiment, an air conditioner as defined in claim 1 is provided, including: an indoor unit including an indoor heat exchanger; a first outdoor unit connected to the indoor unit, the first outdoor unit including a first compressor compressing a refrigerant and a first outdoor heat exchanger; a second outdoor unit including an engine generating a power by using combustion gas, a generator supplying electricity into the first compressor by using the power generated in the engine, a second compressor compressing the refrigerant by using the power of the engine, and a second outdoor heat exchanger; and a controller determining an additional operation of the second compressor on the basis of required cooling or heating load while the first compressor operates.

    [0016] The air conditioner further includes: a first low-pressure sensor provided in the first outdoor unit to detect a suction-side pressure of the first compressor; and a first high-pressure sensor provided in the first outdoor unit to detect a discharge-side pressure of the first compressor.

    [0017] It is determined that the pressure detected by the first low-pressure sensor is above a target low pressure while the cooling operation is performed, the controller may additionally drive the second compressor.

    [0018] It is determined that the pressure detected by the first high-pressure sensor is below a target high pressure while the heating operation is performed, the controller may additionally drive the second compressor.

    [0019] The air conditioner may further include: a cooling water tube guiding cooling water circulated into the engine; and a waste heat collection heat exchanger in which the cooling water flowing into the cooling water tube is heat-exchanged with the refrigerant circulated into the first outdoor unit.

    [0020] The air conditioner may further include a cooling water pump provided in the cooling water tube to supply the cooling water into the waste heat collection heat exchanger, thereby heating the refrigerant introduced into the first outdoor heat exchanger.

    [0021] The waste heat collection heat exchanger may include: a first waste heat collection heat exchanger in which the refrigerant introduced into the first outdoor heat exchanger is heat-exchanged; and a second waste heat collection heat exchanger in which the refrigerant introduced into the second outdoor heat exchanger is heat-exchanged.

    [0022] The first waste heat collection heat exchanger and the second waste heat collection heat exchanger may be arranged in a line, and the cooling water within the cooling water tube may successively pass through the first waste heat collection heat exchanger and the second waste heat collection heat exchanger.

    [0023] The air conditioner includes a third compressor in the second outdoor unit, wherein the controller determines an additional operation of the third compressor on the basis of the required cooling or heating load.

    [0024] When it is determined that the pressure detected by the first low-pressure sensor is above a target low pressure while the second compressor additionally operates, the controller may additionally drive the third compressor.

    [0025] When it is determined that the pressure detected by the first low-pressure sensor is above a target low pressure while the second compressor additionally operates, the controller may additionally drive the third compressor.

    [0026] When a target operation torque of the engine for satisfying the cooling or heating load is above maximum torque of the engine while all of the second and third compressors operate, the controller may stop the operation of at least one compressor of the second and third compressors.

    [0027] The air conditioner may further include a first refrigerant amount detection part for determining an amount of refrigerant circulated into the first outdoor unit in the first outdoor unit, wherein the first refrigerant amount detection part may include an inlet-side temperature sensor and an outlet-side temperature sensor of the first outdoor heat exchanger.

    [0028] In another embodiment, a method of controlling an air conditioner as defined in claim 12 is provided, including driving an engine provided in a gas heat pump (GHP) type outdoor unit to provide a power into a generator; supplying the power generated in the generator to drive a first compressor provided in an electric heat pump (EHP) type outdoor unit and a refrigeration cycle; determining whether the present pressure of the refrigeration cycle is above or below a target pressure; and comparing the present pressure of the refrigeration cycle to the target pressure to determine an operation of a second compressor provided in the GHP type outdoor unit, wherein an operation of a third compressor provided in the GHP type outdoor unit is determined on the basis of the required cooling or heating load.

    [0029] The determining of whether the present pressure of the refrigeration cycle is above or below the target pressure may include: comparing the present low pressure of the refrigeration cycle to a target low pressure while a cooling operation is performed; and comparing the present high pressure of the refrigeration cycle to a target high pressure while a heating operation is performed.

    [0030] When the present low pressure of the refrigeration cycle is above the target low pressure while the cooling operation is performed, the second compressor may operate.

    [0031] When the present high pressure of the refrigeration cycle is below the target high pressure while the heating operation is performed, the second compressor may operate.

    [0032] The GHP type outdoor unit includes a third compressor, and the determining of whether the present pressure of the refrigeration cycle is above or below the target pressure may include: primarily comparing the present pressure of the refrigeration cycle to the target pressure to determine an operation of the second compressor; and secondarily comparing the present pressure of the refrigeration cycle to the target pressure in the state where the second compressor operates to determine an operation of the third compressor.

    [0033] The method may further include determining whether a target operation torque of the engine is above maximum torque of the engine while all of the second and third compressors operate.

    [0034] The method may further include stopping the operation of at least one compressor of the second and third compressors when it is determined that the target operation torque of the engine is above the maximum torque of the engine.

    Advantageous Effects of Invention



    [0035] According to the embodiments, the GHP type compressor and generator may operate by driving the engine provided in the GHP type outdoor unit, and the power generated by the generator may be supplied into the EHP type outdoor unit. Also, if the power of the generator supplied into the EHP is insufficient, the EHP may receive the power from the external power source to reduce electricity costs.

    [0036] Also, since the GHP type outdoor unit and the EHP type outdoor unit are connected to a common tube to supply the waste heat generated in the GHP into the system, the heating performance and defrosting performance in the system may be improved.

    [0037] Also, since the EHP type outdoor unit operates first to perform the cooling or heating operation, and then the GHP type outdoor unit additionally operates according to whether a pressure in the system reaches a preset pressure, i.e., the performance of the system is secured, customized operation according to the required load may be enable.

    [0038] Also, since a plurality of compressors are provided in the GHP type outdoor unit, if the plurality of compressors operate to secure the system performance, the number of operating compressors may be controlled by calculating the target operation torque of the engine to prevent the operation torque of the engine from exceeding the maximum torque of the engine.

    Brief Description of Drawings



    [0039] 

    Fig. 1 is a block diagram illustrating constitutions of an air conditioner according to an embodiment, however not showing the third compressor.

    Fig. 2 is a view illustrating a refrigeration cycle in the air conditioner according to an embodiment, however not showing the third compressor.

    Fig. 3 is a flowchart illustrating a method of controlling the air conditioner according to an embodiment, however not showing the features of the controller pertaining to the operation of the third compressor.

    Fig. 4 is a block diagram illustrating constitutions of an air conditioner according to an embodiment.

    Figs. 5 and 6 are flowcharts illustrating a method of controlling the air conditioner according to a preferred embodiment.


    Mode for the Invention



    [0040] Hereinafter, exemplary embodiments will be described with reference to the accompanying drawings. The invention may, however, be embodied in many different forms and should not be construed as being limited to the embodiments set forth herein; rather, the invention as defined in the appended claims and supported by the present disclosure will fully convey the concept of the invention to those skilled in the art.

    [0041] Fig. 1 is a block diagram illustrating constitutions of an air conditioner according to an embodiment, however not showing the features of the third compressor.

    [0042] Referring to Fig. 1, an air conditioner 100 according to an embodiment includes a plurality of outdoor units 120 and 130 having a refrigeration cycle and an indoor unit 110 connected to the plurality of outdoor units 120 and 130.

    [0043] In detail, the air conditioner 100 includes an electric heat pump (EHP) type first outdoor unit 120, a gas heat pump (GHP) type second outdoor unit 130, and an indoor unit connected to the first outdoor unit 120 and second outdoor unit 130 to cool or heat an indoor space.

    [0044] The first outdoor unit 120 includes a first compressor 122 connected to an external power source 105 to compress a refrigerant and a first controller 120a controlling an operation of the first outdoor unit 120 or the first compressor 122.

    [0045] The second outdoor unit 130 includes an engine 136 generating a power by using a combustion gas, a second compressor 132 operating by the power generated in the engine 136, and a second controller 130a controlling operations of a generator 138 and the second outdoor unit 130. The first controller 120a and the second controller 130a may be connected to communicate with each other. The first and second controllers 120a and 130a may be called a "controller".

    [0046] The refrigerant compressed in the first and second compressors 122 and 132 may be circulated into the refrigeration cycle while being condensed, expanded, and evaporated.

    [0047] The power generated in the generator 138 may be supplied into power components for the second outdoor unit 30. In addition, the power may also be supplied into the indoor unit 110.

    [0048] Also, the first compressor 122 may operate by the power generated in the generator 138. That is, the first compressor 122 may operate by a power supplied from the generator 138 or the external power source 105. For example, the first compressor 122 may operate by the power supplied from the generator 138 in the ordinary way. However, if it is difficult to sufficiently secure the performance of the compressor by using only the power supplied from the generator 138, the under power may be supplemented through the power supplied from the external power source 105.

    [0049] Fig. 2 is a view illustrating a refrigeration cycle in the air conditioner according to an embodiment, however not showing the features of the third compressor.

    [0050] Referring to Fig. 2, the indoor unit 110 includes an indoor heat exchanger 111 in which the refrigerant is heat-exchanged with air and an indoor fan 112 for blowing air toward the indoor heat exchanger 111.

    [0051] The indoor unit 110 is connected to each of the first and second outdoor units 120 and 130 through a refrigerant tube 140. The first and second outdoor units 120 and 130 may selectively or simultaneously operate to supply the refrigerant into the indoor unit 110, thereby cooling or heating the indoor space.

    [0052] For example, the refrigerant tube 140 in which the refrigerant introduced into the indoor unit 110 or discharged from the indoor unit 110 flows may be branched into a plurality of tubes and then connected to the first and second outdoor units 120 and 130. That is, the refrigerant discharged from the indoor unit 110 may be branched, and then the branched refrigerant may be introduced into the first and second outdoor units 120 and 130. The refrigerant discharged from the first and second outdoor units 130 may be combined with each other, and then the combined refrigerant may be introduced into the indoor unit 110.

    [0053] The first outdoor unit 120 includes a first outdoor heat exchanger 121 that is heat-exchanged with outdoor air and the first compressor 122 operating by the power supplied from the external power source 105 or the generator 138. Also, the first outdoor unit 120 further includes an accumulator 123 for separating a liquid refrigerant from the refrigerant introduced into the first compressor 122, a four-way valve 124 for switching a flow direction of the refrigerant, and an outdoor fan 125.

    [0054] The second outdoor unit includes a second outdoor heat exchanger 131 that is heat-exchanged with outdoor air and the second compressor 132 operating by the engine 136. Also, the second outdoor unit 130 further includes an accumulator 133, a four-way valve 134, and an outdoor fan 135.

    [0055] The second outdoor unit 130 further includes a cooling water tube 210 for cooling the engine 136. The cooling water tube 210 may include a close loop-passage. Cooling water may flow into the cooling water tube 210 to absorb heat of the heated engine 136. A cooling water pump 215 for providing a flow force of the cooling water may be disposed in the cooling water tube 210.

    [0056] The air conditioner 100 includes a waste heat collection heat exchanger 220 in which the refrigerant introduced into each of the first and second outdoor heat exchangers 121 and 131 is heat-exchanged with the cooling water of the cooling water tube 210.

    [0057] Here, when the air conditioner 100 performs the heating operation, the refrigerant may be condensed in the outdoor heat exchanger 111 and be evaporated in each of the first and second outdoor heat exchangers 121 and 131.

    [0058] On the other hand, when the air conditioner 100 performs the cooling operation, the refrigerant may be condensed in the first and second outdoor heat exchangers 121 and 131 and be evaporated in the indoor heat exchanger 111.

    [0059] In detail, the waste heat collection heat exchanger 220 includes a first waste heat collection heat exchanger 221 in which the refrigerant introduced into the first outdoor heat exchanger 121 is heat-exchanged and a second waste heat collection heat exchanger 222 in which the refrigerant introduced into the second outdoor heat exchanger 131 is heat-exchanged.

    [0060] In the first waste heat collection heat exchanger 221, the refrigerant tube 141 in which the refrigerant introduced into the first outdoor heat exchanger 121 flows and the cooling water tube 210 in which the high-temperature cooling water flows are heat-exchanged therebetween. For example, the refrigerant of the refrigerant tube 141 may absorb heat from the high-temperature cooling water.

    [0061] In the second waste heat collection heat exchanger 222, the refrigerant tube 142 in which the refrigerant introduced into the second outdoor heat exchanger 131 flows and the cooling water tube 210 in which the high-temperature cooling water flows are heat-exchanged therebetween. For example, the refrigerant of the refrigerant tube 142 may absorb heat from the high-temperature cooling water.

    [0062] The first waste heat collection heat exchanger 221 and the second waste heat collection heat exchanger 222 may be arranged in a line so that the single cooling water tube 210 passes therethrough. Thus, the cooling water heated while passing through the engine 136 may successively pass through the second waste heat collection heat exchanger 222 and the first waste heat collection heat exchanger 221.

    [0063] However, the present disclosure is not limited thereto. For example, the cooling water may successively pass through the first waste heat collection heat exchanger 221 and the second waste heat collection heat exchanger 222. For example, the first and second waste heat collection heat exchangers 221 and 222 may be arranged so that the cooling water preferentially passes through the water heat collection heat exchanger having a relatively low refrigerant temperature.

    [0064] Here, the heat exchange may occur due to a difference in temperature of the refrigerant and the cooling water in the first and second waste heat collection heat exchangers 221 and 222.

    [0065] In detail, in the first waste heat collection heat exchanger 221, since the refrigerant introduced into the first outdoor heat exchanger 121 is expanded in an expansion valve 126 after being condensed in the indoor unit 110 and thus becomes to a low-temperature low-pressure state, heat may be transferred from the high-temperature cooling water to the refrigerant. Thus, when a low-temperature heating operation is performed, a temperature of the refrigerant introduced into the first outdoor heat exchanger 121 may increase to improve the heating performance and help defrosting for the first outdoor heat exchanger 121.

    [0066] Similarly, in the second waste heat collection heat exchanger 222, heat may be transferred from the cooling water to the low-temperature refrigerant that is expanded in the expansion valve 137. Thus, a temperature of the refrigerant introduced into the second outdoor heat exchanger 131 may increase to improve the heating performance and help defrosting for the second outdoor heat exchanger 131.

    [0067] The first outdoor unit 120 includes a first low-pressure sensor 129a for detecting a pressure of the evaporated refrigerant, i.e., the refrigerant to be introduced into the first compressor 122, i.e., a low pressure in the refrigeration cycle and a first high-pressure sensor 129b for detecting a pressure of the refrigerant discharged from the first compressor 122, i.e., a high-pressure in the refrigeration cycle.

    [0068] Fig. 3 is a flowchart illustrating a method of controlling the air conditioner according to an embodiment, however not showing the features of the controller pertaining to the operation of the third compressor. A method of controlling the air conditioner according to an embodiment will be described with reference to Fig. 3.

    [0069] When an air conditioner 100 operates, an engine 136 provided in a GHP type second outdoor unit 130 may operate. Here, the engine 136 may operate to generate a power. Thus, a generator 138 may operate by using the generated power.

    [0070] Also, in operations S11, S12, and S13, the power generated in the generator 138 may be supplied into a first compressor 122 provided in an EHP type first indoor unit 120, and the first compressor 122 may operate by using the power of the generator 138.

    [0071] Since the first compressor 122 operates, the air conditioner 100 may perform a cooling or heating operation. In operation S14, an operation mode with respect to the cooling or heating operation may be determined.

    [0072] When the air conditioner 100 performs the cooling operation, the first outdoor unit 120 may operate according to the cooling operation mode. That is, the refrigerant compressed in the first compressor 122 may be condensed in a first outdoor heat exchanger 121, be expanded in an expansion valve 126, and be evaporated in an indoor heat exchanger 111. Also, in operations S15 and S16, the evaporated refrigerant may be introduced again into the first compressor 122.

    [0073] While the cooling operation is performed, a low pressure of a refrigeration cycle due to the first outdoor unit 120 may be detected by using a first low-pressure sensor 129a. Also, it may be determined whether the present low-pressure of the refrigeration cycle, which is detected by the first low-pressure sensor 129a, is above a target low pressure. If the present low pressure is above the target low pressure, it may be determined that the refrigeration cycle that operates at the present does not satisfy a cooling load in the air conditioner 100. A first controller 120a may transmit the determined information into a second controller 130a.

    [0074] Also, the second controller 130a may drive a second compressor provided in the second outdoor unit 130. Here, an output of the engine 136 may increase. Also, a power supplied from the engine 136 may be supplied into the second compressor 132 as well as the generator 138. In operations S17 and S18, the second compressor 132 may operate.

    [0075] On the other hand, in the operation S17, if the present low pressure is below the target low pressure, it may be determined that the refrigeration cycle that operates at the present satisfies the cooling load required in the air conditioner 100. Thus, it may be unnecessary to allow the refrigeration cycle of the second outdoor unit 130 to operate. Thus, the operation S16 may be continuously performed.

    [0076] As described above, when the cooling operation is performed, since the refrigeration cycle of the first outdoor unit 120 operates by using the engine 136 of the second outdoor unit 130, and the refrigeration cycle of the second outdoor unit 130 additionally operates according to whether the cooling load is satisfied, the unnecessary operation of the air conditioner may be minimized to improve performance in system.

    [0077] In the operation S15, when the air conditioner 100 performs the heating operation, the first outdoor unit 120 may operate according to the heating operation mode. That is, the refrigerant compressed in the first compressor 122 may be condensed in the indoor heat exchanger 111, be expanded in the expansion valve 126, and be evaporated in the first outdoor heat exchanger 121. Also, in operation S19, the evaporated refrigerant may be introduced again into the first compressor 122.

    [0078] While the air conditioner 100 performs the heating operation, the refrigerant flowing into the first outdoor unit 120 may be heat-exchanged with cooling water in a first waste heat collection heat exchanger 221. Here, a cooling water pump 215 may operate to circulate the cooling water into a cooling water tube 210. While the refrigerant and the cooling water of the first outdoor unit 120 are heat-exchanged with each other, the refrigerant may absorb heat or be heated.

    [0079] As described above, since the waste heat of the engine 136 is collected to supply the collected heat into the refrigerant, defrosting performance of the first outdoor heat exchanger 121 may be improved, and heating efficiency may be improved in operation S20.

    [0080] While the air conditioner 100 performs the heating operation, a high pressure of the refrigeration cycle may be detected by using a first high-pressure sensor 129b. Also, it may be determined whether the present high-pressure of the refrigeration cycle, which is detected by the first high-pressure sensor 129a, is below a target high pressure. If the present high pressure is below the target high pressure, it may be determined that the refrigeration cycle that operates at the present does not satisfy a heating load required in the air conditioner 100.

    [0081] Thus, the second controller 130a may drive a second compressor provided in the second outdoor unit 130. Here, an output of the engine 136 may increase. Also, a power supplied from the engine 136 may be supplied into the second compressor 132 as well as the generator 138. In operations S18 and S21, the second compressor 132 may operate.

    [0082] On the other hand, in the operation S21, if the present high pressure is above the target high pressure, it may be determined that the refrigeration cycle that operates at the present satisfies the heating load required in the air conditioner 100. Thus, it may be unnecessary to allow the refrigeration cycle of the second outdoor unit 130 to operate. Thus, the operations S19 and S20 may be continuously performed.

    [0083] As described above, when the heating operation is performed, since the refrigeration cycle of the first outdoor unit 120 operates by using the engine 136 of the second outdoor unit 130, and the refrigeration cycle of the second outdoor unit 130 additionally operates according to whether the heating load is satisfied, the unnecessary operation of the air conditioner may be minimized to improve performance in system.

    [0084] Hereinafter, a description will be made according to an embodiment. Since the current embodiment is the same as the foregoing embodiment except for portions of the constitutions and the control method, different parts between the embodiments will be described principally, and descriptions of the same parts will be denoted by the same reference numerals and descriptions of the foregoing embodiment.

    [0085] Fig. 4 is a block diagram illustrating constitutions of an air conditioner according to an embodiment.

    [0086] Referring to Fig. 4, an air conditioner 100 according to an embodiment includes a first compressor 122, a first low-pressure sensor 129a, a first high-pressure sensor 129b, and a first outdoor unit 120 including a first refrigerant amount detection part 129c.

    [0087] The first refrigerant amount detection part 129c includes an inlet-side temperature sensor and an outlet-side temperature sensor of a first outdoor heat exchanger 121. A circulating refrigerant amount may be determined on the basis of a difference in inlet and outlet-side temperature of the first outdoor heat exchanger 121.

    [0088] For example, if the difference in inlet and outlet-side temperature of the first outdoor heat exchanger 121 is greater than a preset temperature, it may be determined that the refrigerant amount is less than a preset amount. On the other hand, if the difference in inlet and outlet-side temperature of the first outdoor heat exchanger 121 is less than the preset temperature, it may be determined that the refrigerant amount is relatively greater than the preset amount.

    [0089] The air conditioner 100 further includes a second outdoor unit 130 including a plurality of compressors 132a and 132b. The plurality of compressors 132a and 132b include a second compressor 132a and a third compressor 132b.

    [0090] The second outdoor unit 130 further includes a second low-pressure sensor 139a for detecting a low pressure of a refrigeration cycle that operates by the second outdoor unit 130, a second high-pressure sensor 139b for detecting a high pressure of the refrigeration cycle, and a second refrigerant amount detection part 139c for detecting an amount of refrigerant circulated into the refrigeration cycle.

    [0091] The second refrigerant amount detection part 139c includes an inlet-side temperature sensor and an outlet-side temperature sensor of a second outdoor heat exchanger 131. A circulating refrigerant amount may be determined on the basis of a difference in inlet and outlet-side temperature of the second outdoor heat exchanger 131.

    [0092] Figs. 5 and 6 are flowcharts illustrating a method of controlling the air conditioner according to a preferred embodiment including a third compressor. A method of controlling the air conditioner according to this embodiment will be described with reference to Figs. 5 and 6.

    [0093] When an air conditioner 100 operates, an engine 136 provided in a GHP type second outdoor unit 130 may operate. Here, the engine 136 may operate to generate a power. Thus, a generator 138 may operate by using the generated power. Also, in operations S31, S32, and S33, the power generated in the generator 138 may be supplied into a first compressor 122 provided in an EHP type first indoor unit 120, and the first compressor 122 may operate by using the power of the generator 138.

    [0094] Since the first compressor 122 operates, the air conditioner 100 may perform a cooling or heating operation. In operation S34, an operation mode with respect to the cooling or heating operation may be determined.

    [0095] When the air conditioner 100 performs the cooling operation, the first outdoor unit 120 may operate in the cooling operation mode. That is, the refrigerant compressed in the first compressor 122 may be condensed in a first outdoor heat exchanger 121, be expanded in an expansion valve 126, and be evaporated in an indoor heat exchanger 111. Also, in operations S35 and S36, the evaporated refrigerant may be introduced again into the first compressor 122.

    [0096] While the cooling operation is performed, a low pressure of a refrigeration cycle may be detected (primarily detected) by using a first low-pressure sensor 129a. Also, the first controller 120a may determine whether the present low-pressure of the refrigeration cycle, which is detected by the first low-pressure sensor 129a, is above a target low pressure.

    [0097] If the present low pressure is above the target low pressure, the first controller 120a may transmit the determined information into a second controller 130a. Thus, the second controller 130a may drive a second compressor 132a provided in the second outdoor unit 130. Here, an output of the engine 136 may increase. Also, a power supplied from the engine 136 may be supplied into the second compressor 132a as well as the generator 138. In operations S37 and S38, the second compressor 132a may operate.

    [0098] On the other hand, in the operation S37, if the present low pressure is below the target low pressure, it may be unnecessary to allow the refrigeration cycle of the second outdoor unit 130 to operate. Thus, the operation S36 may be continuously performed.

    [0099] While the second compressor 132a operates, a lower pressure of the refrigeration cycle of the first outdoor unit 120 may be detected again (secondarily detected) by using the first low-pressure sensor 129a. Also, it may be determined whether the present low-pressure of the refrigeration cycle, which is detected by the first low-pressure sensor 129a, is above a target low pressure. Here, alternatively, the low pressure of the refrigeration cycle due to the second outdoor unit 130 may be detected again (secondarily detected) by using a second low-pressure sensor 139a, and the detected low pressure may be compared to the other target low pressure.

    [0100] When the present low pressure is above the target low pressure, the third compressor 132b provided in the second outdoor unit 130 may additionally operate. Here, an output of the engine 136 may increase. Also, a power supplied from the engine 136 may be supplied into the second and third compressors 132a and 132b as well as the generator 138. In operations S39 and S40, the second and third compressors 132a and 132b may operate.

    [0101] On the other hand, in the operation S39, if the present low pressure is below the target low pressure, it may be unnecessary to allow the refrigeration cycle of the second outdoor unit 130 to operate. Thus, the operation S38 may be continuously performed.

    [0102] While the operation S40 is performed, target operation torque of the engine 136 may be determined. The target operation torque of the engine 136 may be understood as operation torque of the engine 136 for satisfying a cooling load required in the air conditioner 100.

    [0103] The target operation torque of the engine 136 may be determined on the basis of information with respect to a suction/discharge pressure of the first compressor 122, a suction/discharge pressure of the second compressor 132a, and a suction/discharge pressure of the third compressor 132b and information with respect to an amount of refrigerant circulated into the refrigeration cycle by the first outdoor unit 120 and an amount of refrigerant circulated into the refrigeration cycle by the second outdoor unit 130.

    [0104] The suction/discharge pressures of the first to third compressors 122, 132a, and 132b may be detected through the low-pressure sensors 129a and 139a and high-pressure sensors 129b and 139b of the refrigeration cycle, respectively.

    [0105] Also, the amount of refrigerant circulated into the refrigeration cycle by the first outdoor unit 120 may be determined by the first refrigerant amount detection part 129c, and the amount of refrigerant circulated into the refrigeration cycle by the second outdoor unit 130 may be determined by the second refrigerant amount detection part 139c.

    [0106] It is determined whether the target operation torque of the engine 136 is above maximum torque of the engine 136. Here, the maximum torque of the engine 136 may be understood as maximum performance of the engine 136.

    [0107] If the target operation torque of the engine 136 is above the maximum torque of the engine 136, the engine 136 may be overloaded while the air conditioner 100 operates to cause breakdown or errors of the air conditioner 100. Here, the second controller 130a may stop an operation of one compressor of the plurality of compressors 132a and 132b of the second outdoor unit 130. For example, in operation S41 and S42, the operation of the third compressor 132b may be stopped.

    [0108] On the other hand, if the target operation torque of the engine 136 is below the maximum torque of the engine 136, the second and third compressors 132a and 132b may continuously operate in operation S43.

    [0109] As described above, when the cooling operation is performed, if all of the plurality of compressors 132a and 132b of the second outdoor unit 130 operate, the air conditioner may have limited engine output. Also, if the target operation torque is above the maximum torque of the engine 136, a portion of the compressors may be stopped in operation. Thus, the air conditioner 100 may stably perform the cooling operation.

    [0110] In the operation S35, when the air conditioner 100 performs the heating operation, the first outdoor unit 120 may operate according to the heating operation mode. That is, the refrigerant compressed in the first compressor 122 may be condensed in the indoor heat exchanger 111, be expanded in the expansion valve 126, and be evaporated in the first outdoor heat exchanger 121. Also, in operation S51, the evaporated refrigerant may be introduced again into the first compressor 122.

    [0111] While the air conditioner 100 performs the heating operation, the refrigerant flowing into the first outdoor unit 120 may be heat-exchanged with cooling water in a first waste heat collection heat exchanger 221. Here, a cooling water pump 215 may operate to circulate the cooling water into a cooling water tube 210. While the refrigerant and the cooling water of the first outdoor unit 120 are heat-exchanged with each other, the refrigerant may absorb heat.

    [0112] As described above, since the waste heat of the engine 136 is collected to supply the collected heat into the refrigerant, defrosting performance of the first outdoor heat exchanger 121 may be improved, and heating efficiency may be improved in operation S52.

    [0113] While the air conditioner 100 performs the heating operation, a high pressure of the refrigeration cycle may be detected (primarily detected) by using a first high-pressure sensor 129b. Also, it may be determined whether the present high-pressure of the refrigeration cycle, which is detected by the first high-pressure sensor 129a, is below a target high pressure.

    [0114] When the present high pressure is below the target low pressure, the third compressor 132b provided in the second outdoor unit 130 may operate. Here, an output of the engine 136 may increase. Also, a power supplied from the engine 136 may be supplied into the second compressor 132a as well as the generator 138. In operations S53 and S54, the second compressor 132a may operate.

    [0115] On the other hand, in the operation S53, if the present high pressure is above the target high pressure, it may be determined that the refrigeration cycle that operates at the present satisfies the heating load required in the air conditioner 100. Thus, it may be unnecessary to allow the refrigeration cycle of the second outdoor unit 130 to operate. Thus, the operations S51 and S52 may be continuously performed.

    [0116] While the second compressor 132a operates, a high pressure of the refrigeration cycle of the first outdoor unit 120 may be detected again (secondarily detected) by the first high-pressure sensor 129b. Also, it may be determined whether the present high-pressure of the refrigeration cycle, which is detected by the first high-pressure sensor 129a, is below a target high pressure. Here, alternatively, the high pressure of the refrigeration cycle due to the second outdoor unit 130 may be detected again (secondarily detected) by using a second low-pressure sensor 139a, and the detected high pressure may be compared to the other target high pressure in operation S55.

    [0117] When the present high pressure is below the target low pressure, the third compressor 132b provided in the second outdoor unit 130 may additionally operate. Here, an output of the engine 136 may increase. Also, a power supplied from the engine 136 may be supplied into the second and third compressors 132a and 132b as well as the generator 138. In operations S39 and S40, the second and third compressors 132a and 132b may operate.

    [0118] On the other hand, in the operation S55, if the present high pressure is below the target high pressure, it may be unnecessary to allow the refrigeration cycle of the second outdoor unit 130 to operate. Thus, the operation S54 may be continuously performed.

    [0119] While the operation S56 is performed, target operation torque of the engine 136 may be determined. The target operation torque of the engine 136 may be understood as operation torque of the engine 136 for satisfying a heating load required in the air conditioner 100.

    [0120] The target operation torque of the engine 136 may be determined on the basis of information with respect to a suction/discharge pressure of the first compressor 122, a suction/discharge pressure of the second compressor 132a, and a suction/discharge pressure of the third compressor 132b and information with respect to an amount of refrigerant circulated into the refrigeration cycle by the first outdoor unit 120 and an amount of refrigerant circulated into the refrigeration cycle by the second outdoor unit 130.

    [0121] It is determined whether the target operation torque of the engine 136 is above maximum torque of the engine 136. Here, in operation S136, the maximum torque of the engine 136 may be understood as maximum performance of the engine 136.

    [0122] If the target operation torque of the engine 136 is above the maximum torque of the engine 136, one of the plurality of compressors 132a and 132b may be stopped in operation. For example, in operation S58, the operation of the third compressor 132b may be stopped.

    [0123] On the other hand, if the target operation torque of the engine 136 is below the maximum torque of the engine 136, the second and third compressors 132a and 132b may continuously operate in operation S59.

    [0124] As described above, when the heating operation is performed, if all of the plurality of compressors 132a and 132b of the second outdoor unit 130 operate, the air conditioner may have limited engine output. Also, if the target operation torque is above the maximum torque of the engine 136, a portion of the compressors may be stopped in operation. Thus, the air conditioner 100 may stably perform the heating operation.

    Industrial Applicability



    [0125] According to the embodiments, the GHP type compressor and generator may operate by driving the engine provided in the GHP type outdoor unit, and the power generated by the generator may be supplied into the EHP type outdoor unit. Also, if the power of the generator supplied into the EHP is insufficient, the EHP may receive the power from the external power source to reduce electricity costs. Therefore, industrial applicability is significantly high.


    Claims

    1. An air conditioner (100) comprising: an indoor unit (110) comprising an indoor heat exchanger (111); a first outdoor unit (120) connected to the indoor unit (110), the first outdoor unit (120) comprising a first compressor (122) compressing a refrigerant, a first outdoor heat exchanger (121), a first low-pressure sensor (129a) to detect a suction-side pressure of the first compressor and a first high-pressure sensor (129b) to detect a discharge-side pressure of the first compressor; a second outdoor unit (130) comprising an engine (136) generating a power by using combustion gas, a generator (138) supplying electricity into the first compressor (122) by using the power generated in the engine, a second compressor (132a) compressing the refrigerant by using the power of the engine, and a second outdoor heat exchanger (131) ; and a controller (120a, 130a) configured for determining an operation of the second compressor on the basis of required cooling or heating load while the first compressor operates,
    wherein the air conditioner (100) further comprises a third compressor (132b) in the second outdoor unit, and
    the controller is further configured to determine an operation of the third compressor (132b) on the basis of the required cooling or heating load.
     
    2. The air conditioner according to claim 1, wherein when it is determined that the pressure detected by the first low-pressure sensor is above a target low pressure while the cooling operation is performed, the controller is configured to drive the second compressor.
     
    3. The air conditioner according to claim 1 or 2, wherein when it is determined that the pressure detected by the first high-pressure sensor is below a target high pressure while the heating operation is performed, the controller is configured to drive the second compressor.
     
    4. The air conditioner according to claim 1, further comprising:

    a cooling water tube (210) guiding cooling water circulated into the engine; and

    a waste heat collection heat exchanger (220) in which the cooling water flowing into the cooling water tube is heat-exchanged with the refrigerant circulated into the first outdoor unit.


     
    5. The air conditioner according to claim 4, further comprising a cooling water pump (215) provided in the cooling water tube to supply the cooling water into the waste heat collection heat exchanger, thereby heating the refrigerant introduced into the first outdoor heat exchanger.
     
    6. The air conditioner according to claim 4, wherein the waste heat collection heat exchanger comprises:

    a first waste heat collection heat exchanger (221) in which the refrigerant introduced into the first outdoor heat exchanger is heat-exchanged; and

    a second waste heat collection heat exchanger (222) in which the refrigerant introduced into the second outdoor heat exchanger is heat-exchanged.


     
    7. The air conditioner according to claim 6, wherein the first waste heat collection heat exchanger and the second waste heat collection heat exchanger are arranged in a line, and
    the cooling water within the cooling water tube successively passes through the first waste heat collection heat exchanger and the second waste heat collection heat exchanger.
     
    8. The air conditioner according to claim 1, wherein, when it is determined that the pressure detected by the first low-pressure sensor is above a target low pressure while the second compressor operates, the controller is configured to drive the third compressor.
     
    9. The air conditioner according to claim 1, wherein, when it is determined that the pressure detected by the first low-pressure sensor is above a target low pressure while the second compressor operates, the controller is configured to drive the third compressor.
     
    10. The air conditioner according to claim 1, wherein, when a target operation torque of the engine for satisfying the cooling or heating load is above maximum torque of the engine while all of the second and third compressors operate, the controller is configured to stop the operation of at least one compressor of the second and third compressors.
     
    11. The air conditioner according to claim 1, further comprising a first refrigerant amount detection part (129c) for determining an amount of refrigerant circulated into the first outdoor unit in the first outdoor unit,
    wherein the first refrigerant amount detection part comprises an inlet-side temperature sensor and an outlet-side temperature sensor of the first outdoor heat exchanger.
     
    12. A method of controlling an air conditioner (100), the method comprising:

    driving an engine (136) provided in a gas heat pump (GHP) type outdoor unit (130) to provide a power into a generator (138);

    supplying the power generated in the generator to drive a first compressor (121) provided in an electric heat pump (EHP) type outdoor unit (120) and a refrigeration cycle;

    determining whether the present pressure of the refrigeration cycle is above or below a target pressure; and

    comparing the present pressure of the refrigeration cycle to the target pressure to determine an operation of a second compressor (132a) provided in the GHP type outdoor unit, the method further comprising: determining an operation of a third compressor (132b) provided in the GHP type outdoor unit (130) on the basis of required cooling or heating load.


     
    13. The method according to claim 12, wherein the determining of whether the present pressure of the refrigeration cycle is above or below the target pressure comprises:

    comparing the present low pressure of the refrigeration cycle to a target low pressure while a cooling operation is performed; and

    comparing the present high pressure of the refrigeration cycle to a target high pressure while a heating operation is performed.


     


    Ansprüche

    1. Klimaanlage (100) die aufweist: eine Inneneinheit (110), die einen Innenwärmetauscher (111) aufweist; eine erste Außeneinheit (120), die mit der Inneneinheit (110) verbunden ist, wobei die erste Außeneinheit (120) einen ersten Verdichter (122), der ein Kältemittel verdichtet, einen ersten Außenwärmetauscher (121), einen ersten Niederdrucksensor (129a), um einen Druck der Ansaugseite des ersten Verdichters zu erfassen, und einen ersten Hochdrucksensor (129b) aufweist, um einen Druck der Ausstoßseite des ersten Verdichters zu erfassen; eine zweite Außeneinheit (130), die einen Motor (136), der unter Verwendung eines Brenngases Leistung erzeugt, einen Generator (138), der dem ersten Verdichter (122) unter Verwendung der im Motor erzeugten Leistung Strom zuführt, einen zweiten Verdichter (132a), der unter Verwendung der Leistung des Motors das Kältemittel verdichtet, und einen zweiten Außenwärmetauscher (131) aufweist; und eine Steuereinheit (120a, 130a), die zum Bestimmen eines Betriebs des zweiten Verdichters auf der Grundlage einer benötigten Kühl- oder Heizlast konfiguriert ist, während der erste Verdichter arbeitet,
    wobei die Klimaanlage (100) ferner einen dritten Verdichter (132b) in der zweiten Außeneinheit aufweist, und
    die Steuereinheit ferner konfiguriert ist, einen Betrieb des dritten Verdichters (132b) auf der Grundlage der benötigten Kühl- oder Heizlast zu bestimmen.
     
    2. Klimaanlage nach Anspruch 1, wobei, wenn festgestellt wird, dass der durch den ersten Niederdrucksensor erfasste Druck über einem Zielniederdruck liegt, während der Kühlbetrieb durchgeführt wird, die Steuereinheit konfiguriert ist, den zweiten Verdichter zu betreiben.
     
    3. Klimaanlage nach Anspruch 1 oder 2, wobei, wenn festgestellt wird, dass der durch den ersten Hochdrucksensor erfasste Druck unter einem Zielhochdruck liegt, während der Heizbetrieb durchgeführt wird, die Steuereinheit konfiguriert ist, den zweiten Verdichter zu betreiben.
     
    4. Klimaanlage nach Anspruch 1, die ferner aufweist:

    eine Kühlwasserleitung (210), die das im Motor umgewälzte Kühlwasser leitet; und

    einen Abwärmesammel-Wärmetauscher (220), in dem das in der Kühlwasserleitung fließende Kühlwasser mit dem in der ersten Außeneinheit umgewälzten Kältemittel wärmegetauscht wird.


     
    5. Klimaanlage nach Anspruch 4, die ferner eine Kühlwasserpumpe (215) aufweist, die in der Kühlwasserleitung vorgesehen ist, um das Kühlwasser in den Abwärmesammel-Wärmetauscher zuzuführen, wodurch das in den ersten Außenwärmetauscher eingeleitete Kältemittel erwärmt wird.
     
    6. Klimaanlage nach Anspruch 4, wobei der Abwärmesammel-Wärmetauscher aufweist:

    einen ersten Abwärmesammel-Wärmetauscher (221), in dem das in den ersten Außenwärmetauscher eingeleitete Kältemittel wärmegetauscht wird; und

    einen zweiten Abwärmesammel-Wärmetauscher (222), in dem das in den zweiten Außenwärmetauscher eingeleitete Kältemittel wärmegetauscht wird.


     
    7. Klimaanlage nach Anspruch 6, wobei der erste Abwärmesammel-Wärmetauscher und der zweite Abwärmesammel-Wärmetauscher in einer Linie angeordnet sind, und das Kühlwasser in der Kühlwasserleitung nacheinander durch den ersten Abwärmesammel-Wärmetauscher und den zweiten Abwärmesammel-Wärmetauscher strömt.
     
    8. Klimaanlage nach Anspruch 1, wobei, wenn festgestellt wird, dass der durch den ersten Niederdrucksensor erfasste Druck über einem Zielniederdruck liegt, während der zweite Verdichter arbeitet, die Steuereinheit konfiguriert ist, den dritten Verdichter zu betreiben.
     
    9. Klimaanlage nach Anspruch 1, wobei, wenn festgestellt wird, dass der durch den ersten Niederdrucksensor erfasste Druck über einem Zielniederdruck liegt, während der zweite Verdichter arbeitet, die Steuereinheit konfiguriert ist, den dritten Verdichter zu betreiben.
     
    10. Klimaanlage nach Anspruch 1, wobei, wenn ein Zielbetriebsdrehmoment des Motors zur Erfüllung der Kühl- oder Heizlast über einem Maximaldrehmoment des Motors liegt, während der zweite und dritte Verdichter beide arbeiten, die Steuereinheit konfiguriert ist, den Betrieb von mindestens einem Verdichter des zweiten und dritten Verdichters zu stoppen.
     
    11. Klimaanlage nach Anspruch 1, die ferner einen ersten Kältemittelmenge-Erfassungsteil (129c) zum Bestimmen einer Kältemittelmenge aufweist, die in der ersten Außeneinheit in die erste Außeneinheit umgewälzt wird,
    wobei der erste Kältemittelmenge-Erfassungsteil einen einlassseitigen Temperatursensor und einen auslassseitigen Temperatursensor des ersten Außenwärmetauschers aufweist.
     
    12. Verfahren zum Steuern einer Klimaanlage (100), wobei das Verfahren aufweist:

    Betreiben eines Motors (136), der in einer Gaswärmepumpen- (GHP) Außeneinheit (130) vorgesehen ist, um einem Generator (138) Leistung zuzuführen;

    Bereitstellen des im Generator erzeugten Stroms, um einen ersten Verdichter (121), der in einer Elektrowärmepumpen- (EHP) Außeneinheit (120) vorgesehen ist, und einen Kältekreislauf zu betreiben;

    Feststellen, ob der gegenwärtige Druck des Kältekreislaufs über oder unter einem Zieldruck liegt; und

    Vergleichen des gegenwärtigen Drucks des Kältekreislaufs mit dem Zieldruck, um einen Betrieb eines zweiten Verdichters (132a) zu bestimmen, der in der GHP-Außeneinheit vorgesehen ist, wobei das Verfahren ferner aufweist:
    Bestimmen eines Betriebs eines dritten Verdichters (132b), der der in der GHP-Außeneinheit (130) vorgesehen ist, auf der Grundlage der benötigten Kühl- oder Heizlast.


     
    13. Verfahren nach Anspruch 12, wobei das Feststellen, ob der gegenwärtige Druck des Kältekreislaufs über oder unter dem Zieldruck liegt, aufweist:

    Vergleichen des gegenwärtigen Niederdruck des Kältekreislaufs mit einem Zielniederdruck, während ein Kühlbetrieb durchgeführt wird; und

    Vergleichen des gegenwärtigen Hochdrucks des Kältekreislaufs mit einem Zielhochdruck, während ein Heizbetrieb durchgeführt wird.


     


    Revendications

    1. Climatiseur (100), comprenant : une unité intérieure (110) comprenant un échangeur de chaleur intérieur (111) ; une première unité extérieure (120) reliée à l'unité intérieure (110), ladite première unité extérieure (120) comprenant un premier compresseur (122) comprimant un réfrigérant, un premier échangeur de chaleur extérieur (121), un premier capteur de basse pression (129a) destiné à détecter une pression côté aspiration du premier compresseur et un premier capteur de haute pression (129b) destiné à détecter une pression côté refoulement du premier compresseur ; une deuxième unité extérieure (130) comprenant un moteur (136) générant une puissance au moyen de gaz de combustion, un générateur (138) alimentant en électricité le premier compresseur (122) au moyen de la puissance générée dans le moteur, un deuxième compresseur (132a) comprimant le réfrigérant au moyen de la puissance du moteur, et un deuxième échangeur de chaleur extérieur (131) ; et un contrôleur (120a, 130a), prévu pour déterminer un fonctionnement du deuxième compresseur sur la base de la charge de refroidissement ou de chauffage exigée pendant le fonctionnement du premier compresseur, où
    ledit climatiseur (100) comprend en outre un troisième compresseur (132b) dans la deuxième unité extérieure, et
    le contrôleur est en outre prévu pour déterminer un fonctionnement du troisième compresseur (132b) sur la base de la charge de refroidissement ou de chauffage exigée.
     
    2. Climatiseur selon la revendication 1, où, s'il est déterminé que la pression détectée par le premier capteur de basse pression est supérieure à la basse pression de consigne pendant l'exécution de l'opération de refroidissement, le contrôleur est prévu pour entraîner le deuxième compresseur.
     
    3. Climatiseur selon la revendication 1 ou la revendication 2, où, s'il est déterminé que la pression détectée par le premier capteur de haute pression est inférieure à une haute pression de consigne pendant l'exécution de l'opération de chauffage, le contrôleur est prévu pour entraîner le deuxième compresseur.
     
    4. Climatiseur selon la revendication 1, comprenant en outre :

    un tuyau à eau de refroidissement (210) conduisant l'eau de refroidissement vers le moteur ; et

    un échangeur de chaleur à collecte de chaleur résiduelle (220) où l'eau de refroidissement circulant vers le tuyau à eau de refroidissement est soumise à un échange thermique avec le réfrigérant circulant vers la première unité extérieure.


     
    5. Climatiseur selon la revendication 4, comprenant en outre une pompe à eau de refroidissement (215) prévue dans le tuyau à eau de refroidissement pour refouler l'eau de refroidissement vers l'échangeur de chaleur à collecte de chaleur résiduelle, en chauffant ainsi le réfrigérant introduit dans le premier échangeur de chaleur extérieur.
     
    6. Climatiseur selon la revendication 4, où l'échangeur de chaleur à collecte de chaleur résiduelle comprend :

    un premier échangeur de chaleur à collecte de chaleur résiduelle (221) où le réfrigérant introduit dans le premier échangeur de chaleur extérieur est soumis à un échange thermique ; et

    un deuxième échangeur de chaleur à collecte de chaleur résiduelle (222) où le réfrigérant introduit dans le deuxième échangeur de chaleur extérieur est soumis à un échange thermique.


     
    7. Climatiseur selon la revendication 6, où le premier échangeur de chaleur à collecte de chaleur résiduelle et le deuxième échangeur de chaleur à collecte de chaleur résiduelle sont disposés en ligne, et où
    l'eau de refroidissement à l'intérieur du l'tuyau à eau de refroidissement traverse successivement le premier échangeur de chaleur à collecte de chaleur résiduelle et le deuxième échangeur de chaleur à collecte de chaleur résiduelle.
     
    8. Climatiseur selon la revendication 1, où, s'il est déterminé que la pression détectée par le premier capteur de basse pression est supérieure à une basse pression de consigne pendant le fonctionnement du deuxième compresseur, le contrôleur est prévu pour entraîner le troisième compresseur.
     
    9. Climatiseur selon la revendication 1,
    où, s'il est déterminé que la pression détectée par le premier capteur de basse pression est supérieure à une basse pression de consigne pendant le fonctionnement du deuxième compresseur, le contrôleur est prévu pour entraîner le troisième compresseur.
     
    10. Climatiseur selon la revendication 1, où, si un couple de fonctionnement de consigne du moteur pour satisfaire à la charge de refroidissement ou de chauffage est supérieur à un couple maximal du moteur pendant le fonctionnement du deuxième et du troisième compresseurs, le contrôleur est prévu pour interrompre le fonctionnement d'au moins un compresseur entre le deuxième et le troisième compresseurs.
     
    11. Climatiseur selon la revendication 1, comprenant en outre une première section de détection de débit de réfrigérant (129c) destinée à déterminer un débit de réfrigérant écoulé vers la première unité extérieure dans la première unité extérieure,
    où la première section de détection de débit de réfrigérant comprend un capteur de température côté entrée et un capteur de température côté sortie du premier échangeur de chaleur extérieur.
     
    12. Procédé de commande d'un climatiseur (100), ledit procédé comprenant :

    l'entraînement d'un moteur (136) prévu dans une unité extérieure (130) de type pompe à chaleur à gaz (GHP) pour fournir une puissance à un générateur (138) ;

    la transmission de la puissance générée dans le générateur pour entraîner un premier compresseur (121) prévu dans une unité extérieure (120) de type pompe à chaleur électrique (EHP) et un cycle de réfrigération ;

    la détermination si la pression actuelle du cycle de réfrigération est supérieure ou inférieure à une pression de consigne ; et

    la comparaison de la pression actuelle du cycle de réfrigération avec la pression de consigne afin de déterminer un fonctionnement d'un deuxième compresseur (132a) prévu dans l'unité extérieure de type GHP,

    ledit procédé comprenant en outre :
    la détermination d'un fonctionnement d'un troisième compresseur (132b) prévu dans l'unité extérieure de type GHP (130) sur la base de la charge de refroidissement ou de chauffage exigée.


     
    13. Procédé selon la revendication 12, où la détermination si la pression actuelle du cycle de réfrigération est supérieure ou inférieure à la pression de consigne comprend :

    la comparaison de la basse pression actuelle du cycle de réfrigération avec une basse pression de consigne pendant l'exécution d'une opération de refroidissement ; et

    la comparaison de la haute pression actuelle du cycle de réfrigération avec une haute pression de consigne pendant l'exécution d'une opération de chauffage.


     




    Drawing























    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description