(19)
(11)EP 3 073 303 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
06.05.2020 Bulletin 2020/19

(21)Application number: 16000710.0

(22)Date of filing:  24.03.2016
(51)Int. Cl.: 
G02B 6/293  (2006.01)
G02F 1/01  (2006.01)

(54)

WAVELENGTH LOCKING FILTER

WELLENLEITERKOPPLUNGSFILTER

FILTRE DE BLOCAGE DE LONGUEUR D'ONDE


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 25.03.2015 US 201562137982 P

(43)Date of publication of application:
28.09.2016 Bulletin 2016/39

(73)Proprietor: Aurrion, Inc.
Goleta, CA 93117 (US)

(72)Inventor:
  • Guzzon, Robert Silvio
    Santa Barbara, California 93103 (US)

(74)Representative: D Young & Co LLP 
120 Holborn
London EC1N 2DY
London EC1N 2DY (GB)


(56)References cited: : 
EP-A2- 1 793 249
US-B1- 6 580 851
US-A1- 2003 072 534
US-B1- 7 177 503
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    TECHNICAL FIELD



    [0001] The subject matter disclosed herein generally relates to spectral filtering of optical signals. Specifically, the present disclosure addresses automatically locking an adjustable spectral filter to a first wavelength of an incoming light signal, and automatically filtering an additional incoming light signal at the first wavelength.

    BACKGROUND



    [0002] In some technical fields, such as telecommunications, it can be desirable to spectrally filter one light signal to match a wavelength of another light signal.
    US-B1-065 80851 relates to a resonator fiber bidirectional coupler .
    US-B1-7177503 relates to a four-port optical filter fabricated from tapered optical fiber.
    EP-A2-1793249 relates to optical switches and routers and optical filters.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0003] The figures of the accompanying drawings provide non-limiting and non-exhaustive examples of some embodiments. Like reference numerals refer to like parts throughout the various view unless otherwise specified. The following figures are not drawn to scale.

    FIG. 1 is a block diagram showing an example of an optical system that can automatically spectrally filter one light signal to match a wavelength of another light signal, in accordance with some embodiments.

    FIG. 2 is a block diagram showing a specific configuration of the optical system of FIG. 1, including an optical ring resonator, a power tap, a detector, circuitry, and a heater, in accordance with some embodiments.

    FIG. 3 is a block diagram showing an alternate configuration of the optical system of FIG. 1, including multiple optical ring resonators arranged in series, in accordance with some embodiments.

    FIG. 4 is a block diagram showing another example of an optical system that can automatically spectrally filter multiple light signals to match a wavelength of another light signal, optionally with multiplexers and demultiplexers on its inputs and outputs, respectively, in accordance with some embodiments.

    FIG. 5 is a block diagram showing a specific configuration of an optical system, including multiple optical ring resonators, in accordance with some embodiments.

    FIG. 6 is a flow chart showing an example of a method for automatically spectrally filtering one light signal to match a wavelength of another light signal, in accordance with some embodiments.

    FIG. 7 is a block diagram showing another example of an optical system, in accordance with some embodiments.


    DETAILED DESCRIPTION



    [0004] An optical system can automatically lock an adjustable spectral filter to a first wavelength of an incoming light signal, and can automatically filter an additional incoming light signal at the first wavelength. In some examples, a tunable source can automatically lock to the spectral filter, and produce light at the first wavelength. Such an optical system can be simpler than a comparable system that uses a detection system to sense the first wavelength of the incoming light signal, and a separate tuning system to actively tune a downstream spectral filter or a tunable source to match the first wavelength.

    [0005] FIG. 1 is a block diagram showing an example of an optical system 100 that can automatically spectrally filter one light signal to match a wavelength of another light signal, in accordance with some embodiments. The configuration of FIG. 1 is but one example of an optical system 100 that can automatically spectrally filter one light signal to match a wavelength of another light signal; other suitable configurations can also be used.

    [0006] A tunable filter 102 can have a filtering spectrum with an adjustable peak wavelength and increasing attenuation at wavelengths away from the adjustable peak wavelength. FIG. 1 shows an example of a filtering spectrum for the tunable filter 102, in which a power transmission curve appears as a peak at an adjustable peak wavelength, and decreasing power transmission (e.g., increasing attenuation) away from the adjustable peak wavelength. The power transmission curve can include sloping sides on either side of the peak. The peak wavelength can be locked to a wavelength of a light signal, as explained below, so that the whole power transmission curve (e.g., the peak wavelength and the sloping sides) can shift upward and downward in wavelength in real time, as needed.

    [0007] The tunable filter 102 can receive first input light 104, having a first wavelength denoted as λ1 in FIG. 1. The first wavelength λ1 can vary over time. The tunable filter 102 can spectrally filter the first input light 104 to form first output light 106. The optical system 100 can be configured so that the tunable filter 102 automatically follows the first wavelength λ1. As a result, the first output light 106 can have a wavelength that matches that of the first input light 104, namely λ1.

    [0008] A power tap 108 can direct a fraction of the first output light 106 to a detector 110. The fraction is between 0% and 100%, and can be on the order of 0.1%, 0.5%, 1%, 2%, 5%, 10%, or 20%, among other values. In general, the fraction should be large enough so that the detector and circuitry can function with a sufficiently large signal-to-noise ratio, but small enough so that the remaining first output light 106 can perform its intended task, such as providing data to a particular telecommunications channel. In some examples, the fraction can be 100%, where all of the first output light 106 is directed onto the detector 110. For these examples, the power tap 108 can be absent, or can be a coupling between a waveguide and the detector 110.

    [0009] Circuitry 112 coupled to the detector 110 and the tunable filter 102 can tune the tunable filter 102 to maximize a signal from the detector 110 and thereby adjust the peak wavelength to match the first wavelength λ1. The circuitry 112 can be processor-based, can be formed from discrete components, or can be a combination of processor-based and discrete. In some examples, the circuitry 112 can apply a dither to the tunable wavelength, so that the wavelength of the output light 106 varies with a periodic oscillation. In these examples, the circuitry 112 can sense a polarity of the periodic oscillation, can use the polarity to determine which side of the peak wavelength the output light 106 is on, and can form a servo that locks the peak wavelength of the tunable filter 102 to the first wavelength λ1 of the first input light 104. In other examples, the circuitry 112 can dither the peak wavelength of the tunable filter 102. In still other examples, the circuitry 112 can apply a hill-climbing algorithm to set the peak wavelength to match the first wavelength λ1.

    [0010] The tunable filter 102 can further receive second input light 114, and can spectrally filter the second input light 114 to form second output light 116. The second output light can be spectrally filtered with a peak at the first wavelength λ1 and increasing attenuation at wavelengths away from the first wavelength λ1. In FIG. 1 and subsequent figures, the second input light 114 (before filtering) has a wavelength or wavelength range denoted by λ', and the second output light 116 (after filtering) has a wavelength denoted by "λ' filtered to leave only λ1".

    [0011] FIG. 2 is a block diagram showing a specific configuration of the optical system of FIG. 1, including an optical ring resonator, a power tap, a detector, circuitry, and a heater, in accordance with some embodiments. The configuration of FIG. 2 is but one example; other suitable configurations can also be used.

    [0012] In the optical system 200 of FIG. 2, the tunable filter is an optical ring resonator 202 formed from at least one waveguide 204 arranged in a closed path. The optical ring resonator 202 can propagate light in a first direction 206 around the closed path (e.g. clockwise in FIG. 2) and a second direction 208, opposite the first direction 206 (e.g., counterclockwise in FIG. 2), around the closed path.

    [0013] The resonance of an optical ring resonator, such as 202, is a function of an optical path length around the optical ring resonator. The resonator shows relatively high resonance for optical path lengths that are an integral number (e.g., an integer-valued number) of wavelengths, and relatively low resonance for optical path lengths away from the integral number of wavelengths. In other words, a given optical ring resonator shows resonance at wavelengths for which an integral number "fit" within the optical path of the optical ring resonator. The spacing between adjacent resonant wavelengths is referred to as a free spectral range. In some examples, the free spectral range can be greater than a specified range of wavelengths for the first input light 104. For example, the specified range of wavelength can correspond to a range of wavelengths of a channel in a telecommunications system, or a specified range of wavelengths within a particular channel.

    [0014] A first input waveguide 212 can inject the first input light 104, having a first wavelength λ1, into the optical ring resonator 202 in the first direction 206. A first output waveguide 214 can extract the first output light 106 from the optical ring resonator 202 in the first direction 206. A second input waveguide 222 can inject the second input light 114 into the optical ring resonator 202 in the second direction 208. A second output waveguide 224 can extract the second output light 116 from the optical ring resonator 202 in the second direction 208. In some examples, at least one of the input or output waveguides is a discrete waveguide. In some examples, the input and/or output waveguides are constructed as a single waveguide with a coupling region parallel to or merging with the waveguide 204 of the optical ring resonator 202. The power tap 108 can extract a portion of the first output light 106 from the first output waveguide 214. The detector 110 and circuitry 112 function the same as the corresponding elements shown in FIG. 1.

    [0015] In the example of FIG. 2, the tunable filter can further include a material having a temperature-dependent refractive index disposed in an optical path of the optical ring resonator 202. In the example of FIG. 2, the tunable filter can further include a heater 210 that can controllably heat at least a portion of the material, and thereby change an optical path length around the optical ring resonator and thereby change a resonant wavelength of the optical ring resonator. In some examples, the tunable filter can further include multiple heaters disposed around the optical ring resonator 202, all of which are coupled to the circuitry 112. The circuitry 112 can further tune the tunable filter by heating the portion of the material.

    [0016] In other configurations, the tunable filter can include other ways to adjust the optical path length of the optical ring resonator 202. For example, the tunable filter can use a carrier injection, such as from a forward-biased PIN diode, to induce a change in refractive index via free-carrier absorption from a material disposed in the waveguide of the optical ring resonator 202. Carrier injection is especially well-suited for III-V semiconductor materials. Other suitable ways to adjust the optical path length can also be used.

    [0017] In some examples, some or all of the elements of FIG. 2 are formed at the wafer level, rather than as discrete components that are assembled after they have been manufactured. In some examples, a top silicon layer of a silicon-on-insulator wafer can shaped to define the optical ring resonator 202, the first and second input waveguides 212, 222, and the first and second output waveguides 214, 224. Other suitable substrate materials can also be used. In some examples, additional material or elements can be deposited or grown on the substrate. For example, the material having a temperature-dependent refractive index can be deposited or grown in the waveguide 204 of the optical ring resonator 202.

    [0018] FIG. 3 is a block diagram showing an alternate configuration of the optical system of FIG. 1, including multiple optical ring resonators arranged in series, in accordance with some embodiments. Optical system 300 can include a plurality of optical ring resonators, each of the plurality of optical ring resonators being formed from at least one waveguide arranged in a respective closed path. The configuration of FIG. 3 is but one example; other suitable configurations can also be used.

    [0019] Compared with the optical system 200 of FIG. 2, which includes a single optical ring resonator 202, the optical system 300 of FIG. 3 includes a first optical ring resonator 302 and a second optical ring resonator 304 connected in series between the input waveguides 212, 222 and the output waveguides 214, 224. Cascading one or more optical ring resonators in series can increase the free spectral range of the combination of resonators, which can be desirable in some cases. In some examples, cascading the optical ring resonators in series, and thereby increasing the free spectral range of the combination of resonators, can be referred to as a Vernier approach. In some configurations, more than two optical ring resonators can be cascaded in series. In other configurations, two or more optical ring resonators can be positioned in parallel between the input waveguides 212, 222 and the output waveguides 214, 224. The power tap, detector, circuitry, and heater are omitted from FIG. 3 for clarity, and can function in a manner similar to FIG. 2.

    [0020] FIG. 4 is a block diagram showing another example of an optical system 400 that can automatically spectrally filter multiple light signals to match a wavelength of another light signal, optionally with multiplexers and demultiplexers on its inputs and outputs, respectively, in accordance with some embodiments. The configuration of FIG. 4 is but one example; other suitable configurations can also be used.

    [0021] In some examples, the tunable filter 402 can further receive third input light and spectrally filter the third input light to form third output light, the third output light being spectrally filtered with a peak at the first wavelength and increasing attenuation at wavelengths away from the first wavelength. The tunable filter 402 can further extend the spectral filtering to fourth, fifth, and more than fifth input/outputs. In some examples, the tunable filter can automatically tune a plurality of input lights to the wavelength of a particular input light.

    [0022] In some examples, optical system 400 can further include a first input multiplexer 404 configured to multiplex a plurality of inputs 406 into the first input light 408. In some of these examples, optical system 400 can further include a first output demultiplexer 410 configured to demultiplex a plurality of outputs 412 from the first output light 414. In some examples, optical system 400 can further include a second input multiplexer 416 configured to multiplex a plurality of inputs 418 into the second input light 420. In some of these examples, optical system 400 can further include a second output demultiplexer 422 configured to demultiplex a plurality of outputs 424 from the second output light 426. Any or all of these multiplexers or demultiplexers can use at least one of frequency-division multiplexing, time-division multiplexing, polarization-division multiplexing. In addition, any or all could use electrical modulation or electrical demodulation.

    [0023] Similarly, in some examples, optical system 400 can further include a third input multiplexer 428 configured to multiplex a plurality of inputs 430 into the third input light 432. In some of these examples, optical system 400 can further include a third output demultiplexer 434 configured to demultiplex a plurality of outputs 436 from the third output light 438.

    [0024] The multiplexers and demultiplexers are optional, and can applied to any or all of the inputs and/or outputs to the tunable filter 402.

    [0025] FIG. 5 is a block diagram showing a specific configuration of an optical system 500, including multiple optical ring resonators 502, 504, in accordance with some embodiments. The configuration of FIG. 5 is but one example; other suitable configurations can also be used.

    [0026] In the optical system 500, the optical ring resonators 502, 504 are incorporated into a network in a manner that blurs the distinction between purely input waveguides and purely output waveguides. As a result, the waveguides that provide the input light and output light are referred to simply as waveguides. As with the examples discussed above, two or more waveguides can be constructed as a single waveguide that contacts a ring resonator at a coupling region. The following description uses the terms left, right, top, bottom, clockwise and counter-clockwise only for convenience, with respect to the orientations shown in FIG. 5.

    [0027] Waveguide 506 extends to the right and provides first input light 104 to a top of a first optical ring resonator 502 in a clockwise direction. Waveguide 512 extends to the right from the top of the first optical ring resonator 502. Waveguide 508 extends to the left from the bottom of the first optical ring resonator 502. Waveguide 510 extends to the left from a split in waveguide 508 to provide a first output light 522. Waveguide 512 loops downward to join waveguide 516 and extend to the left along waveguide 514. Waveguide 514 extends to the left to a top of second optical ring resonator 502 in a counter-clockwise direction. Second output light 526 extends to the left from the top of the second optical ring resonator 502. First and second output light 522, 526 are at the first wavelength, of the first input light 104. Waveguide 520 extends to the left and provides second input light 114 to a bottom of the second optical ring resonator 504 in a clockwise direction. Waveguide 518 extends to the left from the bottom of the second optical ring resonator 504. Third output light 524 extends to the right from the bottom of the first optical ring resonator 502. Fourth output light 516 extends to the right from the top of the second optical ring resonator 504. Third and fourth output light 524, 528 are spectrally filtered to match the first wavelength, of the first input light 104. Each splitting or joining of two waveguides can have a suitable splitting ratio (e.g., the ratio can be 50%, or another suitable value).

    [0028] In some examples, optical ring resonators 502 and 504 can have different sizes, and, therefore different optical path lengths. As such, the differently-sized optical ring resonators 502 and 504 can form a Vernier filter. For example, to tune the filters to match wavelength λ1, the optical system 500 can tune the first optical ring resonator 502 to maximize the first output light 522. Next, the optical system 500 can tune the second optical ring resonator 504 to maximize the second output light 526. Next, for examples in which a source of the second input light 114 is tunable, the optical system 500 can tune the source to maximize the third output light 524. This is but one example; other suitable examples can also be used.

    [0029] The configuration of FIG. 5 provides two outputs for each input. Other configurations can provide more than two outputs for each input.

    [0030] FIG. 6 is a flow chart showing an example of a method 600 for automatically spectrally filtering one light signal to match a wavelength of another light signal, in accordance with some embodiments. The method 600 can be executed by any suitable optical system with a tunable filter, such as 100, 200, 300, 400, 500, or another suitable optical system. The method 600 is but one example of a method 600 for automatically spectrally filtering one light signal to match a wavelength of another light signal; other suitable methods can also be used.

    [0031] At operation 602, the optical system can receive first input light, having a first wavelength, at a tunable filter. The tunable filter can have a filtering spectrum with an adjustable peak wavelength and increasing attenuation at wavelengths away from the adjustable peak wavelength.

    [0032] At operation 604, the optical system can spectrally filter the first input light with the tunable filter to form first output light.

    [0033] At operation 606, the optical system can detect a fraction of the first output light.

    [0034] At operation 608, the optical system can tune the tunable filter to maximize the detected fraction of the first output light, thereby adjusting the peak wavelength to match the first wavelength. In some examples, tuning the tunable filter to maximize the detected fraction of the first output light can include: heating at least a portion of a material having a temperature-dependent refractive index and positioned in an optical path of an optical ring resonator.

    [0035] At operation 610, the optical system can receive second input light at the tunable filter.

    [0036] At operation 612, the optical system can spectrally filter the second input light to form second output light, the second output light being spectrally filtered with a peak at the first wavelength and increasing attenuation at wavelengths away from the first wavelength.

    [0037] In some examples, the method 600 can optionally further include multiplexing a plurality of inputs into the first input light; and demultiplexing a plurality of outputs from the first output light.

    [0038] In some examples, the method 600 can optionally further include multiplexing a plurality of inputs into the second input light; and demultiplexing a plurality of outputs from the second output light.

    [0039] Thus far, the description of the optical system and method have discussed receiving a light input at a first wavelength, tuning the tunable filter to match the first wavelength, and tuning a second light input with the tunable filter to leave only the first wavelength. In some examples, the optical system and method can further wavelength-tune the optical source that produces the second light input to maximize light passed through the tunable filter.

    [0040] FIG. 7 is a block diagram showing another example of an optical system 700, in accordance with some embodiments. The optical system 700 includes a tunable optical source 714, such as a tunable laser, which produces the second light input 114. In some examples, a power tap (not shown) can direct a fraction of light from the tunable optical source 714 to form the second light input 114, and direct a complementary fraction of light from the tunable optical source 714 to another location. Other suitable optical sources can also be used. The optical source can be positioned upstream to the second input waveguide 222, and can produce the second light input 114. In addition, the optical system 700 can include an additional optical tap 708 to direct a fraction of the second light output 116 onto an additional detector 710. Wavelength-tuning circuitry 712 can adjust the wavelength of the optical source to maximize the signal from the additional detector 710, and thereby tune the wavelength of the second input light 114 to match the peak wavelength of the optical ring resonator 202, which in turn is tuned to match the wavelength of the first input light 104. The wavelength-tuning circuitry 712 can be made integral with circuitry 112 or can be separate from circuitry 112. In the configuration of FIG. 7, other suitable ways to vary the optical path length of the optical ring resonator 202 can also be used.

    [0041] Additionally, thus far, the optical ring resonators have been used to filter counter-propagating signals. For example, in FIG. 2, one signal propagates around the optical ring resonator 202 in a first direction 206, while a second signal propagates around the optical ring resonator 202 in a first direction 208. As an alternative configuration, both signals can propagate in the same direction. In this alternative configuration, the second input and output waveguides 222, 224 are swapped. In addition, to generate the servo signals that can drive the heater 210 (or drive another suitable tuning mechanism), the inputs can be modulated, so that only one of the first 104 or second 114 light inputs are on at any given time.

    [0042] The preceding description includes discussion of figures having illustrations given by way of example of implementations of embodiments of the disclosure. The drawings should be understood by way of example, and not by way of limitation. As used herein, references to one or more "embodiments" are to be understood as describing a particular feature, structure, or characteristic included in at least one implementation of the disclosure. Thus, phrases such as "in one embodiment" or "in an alternate embodiment" appearing herein describe various embodiments and implementations of the disclosure, and do not necessarily all refer to the same embodiment. However, they are also not necessarily mutually exclusive.

    [0043] Throughout this specification, several terms of art are used. These terms are to take on their ordinary meaning in the art from which they come, unless specifically defined herein or the context of their use would clearly suggest otherwise. In the preceding description numerous specific details are set forth to provide a thorough understanding of the embodiments. One skilled in the relevant art will recognize, however, that the techniques described herein can be practiced without one or more of the specific details, or with other methods, components, materials, etc. In other instances, well-known structures, materials, or operations are not shown or described in detail to avoid obscuring certain aspects.

    [0044] Reference throughout the foregoing specification to "one embodiment" or "an embodiment" means that a particular feature, structure or characteristic described in connection with the embodiment is included in at least one embodiment of the present disclosure. Thus, appearances of the phrases "in one embodiment" or "in an embodiment" in various places throughout the specification are not necessarily all referring to the same embodiment. Furthermore, the particular features, structures or characteristics may be combined in any suitable manner in one or more embodiments. In addition, it is appreciated that the figures provided are for explanation purposes to persons ordinarily skilled in the art and that the drawings are not necessarily drawn to scale. It is to be understood that the various regions, layers and structures of figures may vary in size and dimensions.

    [0045] The above described embodiments of the disclosure may include discrete devices, or may be components of a photonic integrated circuit (PIC). PICs that consist of multiple photonic components offer many advantages over those that consist of discrete photonic devices, such as higher efficiency due to the removal of coupling losses between components, fewer packages and packaging steps, smaller size, and overall better performance.

    [0046] The above-described embodiments of the disclosure may include SOI or silicon based (e.g., silicon nitride (SiN)) devices, or may include devices formed from both silicon and a non-silicon material. Said non-silicon material (alternatively referred to as "heterogeneous material") may include one of III-V material, magneto-optic material, or crystal substrate material.

    [0047] III-V semiconductors have elements that are found in group III and group V of the periodic table (e.g., Indium Gallium Arsenide Phosphide (InGaAsP), Gallium Indium Arsenide Nitride (GaInAsN)). The carrier dispersion effects of III-V based materials may be significantly higher than in silicon based materials, as electron speed in III-V semiconductors is much faster than that in silicon. In addition, III-V materials have a direct bandgap which enables efficient creation of light from electrical pumping. Thus, III-V semiconductor materials enable photonic operations with an increased efficiency over silicon for both generating light and modulating the refractive index of light.

    [0048] Thus, III-V semiconductor materials enable photonic operation with an increased efficiency at generating light from electricity and converting light back into electricity. The low optical loss and high quality oxides of silicon are thus combined with the electro-optic efficiency of III-V semiconductors in the heterogeneous optical devices described below. In embodiments of the disclosure, said heterogeneous devices utilize low loss heterogeneous optical waveguide transitions between the devices' heterogeneous and silicon-only waveguides.

    [0049] Magneto-optic materials allow heterogeneous PICs to operate based on the magneto-optic (MO) effect. Such devices may utilize the Faraday Effect, in which the magnetic field associated with an electrical signal modulates an optical beam, offering high bandwidth modulation, and rotates the electric field of the optical mode enabling optical isolators. Said magneto-optic materials may include, for example, materials such as such as iron, cobalt, or yttrium iron garnet (YIG).

    [0050] Crystal substrate materials provide heterogeneous PICs with a high electromechanical coupling, linear electro optic coefficient, low transmission loss, and stable physical and chemical properties. Said crystal substrate materials may include, for example, lithium niobate (LiNbO3) or lithium tantalate (LiTaO3).

    [0051] In the foregoing detailed description, the method and apparatus of the present disclosure have been described with reference to specific exemplary embodiments thereof. It will, however, be evident that various modifications and changes may be made thereto without departing from the broader scope of the present disclosure. The present specification and figures are accordingly to be regarded as illustrative rather than restrictive.


    Claims

    1. An optical system (200), comprising:

    a tunable filter (202) having a filtering spectrum with an adjustable peak wavelength and increasing attenuation at wavelengths away from the adjustable peak wavelength, the tunable filter configured to receive a light from a first input (104), having a first wavelength, and spectrally filter the first input light to form a light at a first output (106);

    a detector (110) configured to detect at least a fraction of the first output light; and

    circuitry (112) coupled to the detector and the tunable filter, the circuitry being configured to tune the tunable filter to maximize a signal from the detector and adjust the peak wavelength to match the first wavelength,

    the tunable filter further configured to receive a light from a second input (114) and spectrally filter the second input light to form a light at a second output (116), the second output light being spectrally filtered with a peak at the first wavelength and increasing attenuation at wavelengths away from the first wavelength.


     
    2. The optical system of claim 1, wherein the tunable filter comprises:
    an optical ring resonator formed from at least one waveguide arranged in a closed path.
     
    3. The optical system of claim 2, wherein the optical ring resonator is configured to propagate light in a first direction around the closed path and a second direction, opposite the first direction, around the closed path.
     
    4. The optical system of claim 3, further comprising:

    a first input waveguide configured to inject the first input light, having a first wavelength, into the optical ring resonator in the first direction;

    a first output waveguide configured to extract the first output light from the optical ring resonator in the first direction;


     
    5. The optical system of claim 4, further comprising:

    a second input waveguide configured to inject the second input light into the optical ring resonator in the second direction;

    a second output waveguide configured to extract the second output light from the optical ring resonator in the second direction.


     
    6. The optical system of claim 5, wherein the tunable filter further comprises:

    a material having a temperature-dependent refractive index disposed in an optical path of the optical ring resonator; and

    a heater configured to controllably heat at least a portion of the material, and thereby change an optical path length around the optical ring resonator and thereby change a resonant wavelength of the optical ring resonator,

    wherein the circuitry is further configured to tune the tunable filter by heating the portion of the material.


     
    7. The optical system of claim 5, wherein the tunable filter further comprises:

    a material having a current-dependent refractive index via free-carrier absorption disposed in an optical path of the optical ring resonator; and

    a forward-biased PIN diode configured to controllably inject current into at least a portion of the material, and thereby change an optical path length around the optical ring resonator and thereby change a resonant wavelength of the optical ring resonator,

    wherein the circuitry is further configured to tune the tunable filter by injecting the current into the portion of the material.


     
    8. The optical system of claim 5, wherein a top silicon layer of a silicon-on-insulator wafer is shaped to define the optical ring resonator, the first and second input waveguides, and the first and second output waveguides.
     
    9. The optical system of claim 2, wherein the optical ring resonator has a free spectral range greater than a specified range of wavelengths for the first input light.
     
    10. The optical system of claim 1, wherein the tunable filter comprises:
    a plurality of optical ring resonators, each of the plurality of optical ring resonators being formed from at least one waveguide arranged in a respective closed path.
     
    11. The optical system of claim 1, wherein the tunable filter is further configured to receive third input light and spectrally filter the third input light to form third output light, the third output light being spectrally filtered with a peak at the first wavelength and increasing attenuation at wavelengths away from the first wavelength.
     
    12. The optical system of claim 1, further comprising:

    a first input multiplexer configured to multiplex a plurality of inputs into the first input; and

    a first output demultiplexer configured to demultiplex a plurality of outputs from the first output light.


     
    13. The optical system of claim 1, further comprising:

    a second input multiplexer configured to multiplex a plurality of inputs into the second input light; and

    a second output demultiplexer configured to demultiplex a plurality of outputs from the second output light.


     
    14. The optical system of claim 1, further comprising:

    a tunable optical source configured to produce the second input light;

    a second detector configured to detect at least a fraction of the second output light; and

    wavelength-tuning circuitry coupled to the second detector and the tunable optical source, the wavelength-tuning circuitry being configured to tune the tunable optical source to maximize a signal from the second detector and adjust a wavelength of the second input light to match the peak wavelength and thereby match the first wavelength.


     
    15. A method (600), comprising:

    receiving (602) a light from a first input (104), having a first wavelength, at a tunable filter (202), the tunable filter having a filtering spectrum with an adjustable peak wavelength and increasing attenuation at wavelengths away from the adjustable peak wavelength;

    spectrally filtering (604) the first input light with the tunable filter to form a light at a first output (106);

    detecting (606) a fraction of the first output light;

    tuning (608) the tunable filter to maximize the detected fraction of the first output light, thereby adjusting the peak wavelength to match the first wavelength;

    receiving (610) a light from a second input (114) at the tunable filter; and

    spectrally filtering (612) the second input light to form a light at a second output (116), the second output light being spectrally filtered with a peak at the first wavelength and increasing attenuation at wavelengths away from the first wavelength.


     


    Ansprüche

    1. Optisches System (200), das Folgendes umfasst:

    ein durchstimmbares Filter (202), das ein Filterspektrum mit einer anpassbaren Spitzenwellenlänge und einer zunehmenden Abschwächung bei Wellenlängen von der anpassbaren Spitzenwellenlänge entfernt aufweist, wobei das durchstimmbare Filter zum Empfangen eines Lichts von einem ersten Eingang (104) mit einer ersten Wellenlänge und zum spektralen Filtern des ersten Eingangslichts konfiguriert ist, um ein Licht an einem ersten Ausgang (106) zu bilden;

    einen Detektor (110), der zum Detektieren wenigstens eines Bruchteils des ersten Ausgangslichts konfiguriert ist; und

    eine Schaltungsanordnung (112), die mit dem Detektor und dem durchstimmbaren Filter gekoppelt ist, wobei die Schaltungsanordnung zum Durchstimmen des durchstimmbaren Filters, um ein Signal von dem Detektor zu maximieren, und zum Anpassen der Spitzenwellenlänge, um mit der ersten Wellenlänge übereinzustimmen, konfiguriert ist,

    wobei das durchstimmbare Filter ferner zum Empfangen eines Lichts von einem zweiten Eingang (114) und zum spektralen Filtern des zweiten Eingangslichts konfiguriert ist, um ein Licht an einem zweiten Ausgang (116) zu bilden, wobei das zweite Ausgangslicht mit einer Spitze bei der ersten Wellenlänge und einer zunehmenden Abschwächung bei Wellenlängen von der ersten Wellenlänge entfernt spektral gefiltert wird.


     
    2. Optisches System nach Anspruch 1, wobei das durchstimmbare Filter Folgendes umfasst:
    einen optischen Ringresonator, der aus wenigstens einem Wellenleiter gebildet ist, der in einem geschlossenen Pfad angeordnet ist.
     
    3. Optisches System nach Anspruch 2, wobei der optische Ringresonator zum Propagieren von Licht in einer ersten Richtung um den geschlossenen Pfad herum und einer zweiten Richtung, die entgegengesetzt zu der ersten Richtung ist, um den geschlossenen Pfad herum konfiguriert ist.
     
    4. Optisches System nach Anspruch 3, das ferner Folgendes umfasst:

    einen ersten Eingangswellenleiter, der zum Injizieren des ersten Eingangslichts mit einer ersten Wellenlänge in den optischen Ringresonator in der ersten Richtung konfiguriert ist;

    einen ersten Ausgangswellenleiter, der zum Extrahieren des ersten Ausgangslichts aus dem optischen Ringresonator in der ersten Richtung konfiguriert ist.


     
    5. Optisches System nach Anspruch 4, das ferner Folgendes umfasst:

    einen zweiten Eingangswellenleiter, der zum Injizieren des zweiten Eingangslichts in den optischen Ringresonator in der zweiten Richtung konfiguriert ist;

    einen zweiten Ausgangswellenleiter, der zum Extrahieren des zweiten Ausgangslichts aus dem optischen Ringresonator in der zweiten Richtung konfiguriert ist.


     
    6. Optisches System nach Anspruch 5, wobei das durchstimmbare Filter ferner Folgendes umfasst:

    ein Material mit einem temperaturabhängigen Brechungsindex, das in einem optischen Pfad des optischen Ringresonators angeordnet ist; und

    ein Heizelement, das zum steuerbaren Erwärmen wenigstens eines Teils des Materials und dadurch zum Ändern einer optischen Pfadlänge um den optischen Ringresonator herum und dadurch zum Ändern einer Resonanzwellenlänge des optischen Ringresonators konfiguriert ist,

    wobei die Schaltungsanordnung ferner zum Durchstimmen des durchstimmbaren Filters durch Erwärmen des Teils des Materials konfiguriert ist.


     
    7. Optisches System nach Anspruch 5, wobei das durchstimmbare Filter ferner Folgendes umfasst:

    ein Material mit einem über Absorption freier Ladungsträger stromabhängigen Brechungsindex, welches in einem optischen Pfad des optischen Ringresonators angeordnet ist; und

    eine in Vorwärtsrichtung vorgespannte PIN-Diode, die zum steuerbaren Injizieren von Strom in wenigstens einem Teil des Materials und dadurch zum Ändern einer optischen Pfadlänge um den optischen Ringresonator herum und dadurch zum Ändern einer Resonanzwellenlänge des optischen Ringresonators konfiguriert ist,

    wobei die Schaltungsanordnung ferner zum Durchstimmen des durchstimmbaren Filters durch Injizieren des Stroms in den Teil des Materials konfiguriert ist.


     
    8. Optisches System nach Anspruch 5, wobei eine obere Siliciumschicht eines Silicium-auf-Isolator-Wafers so geformt ist, dass der optische Ringresonator, der erste und zweite Eingangswellenleiter und der erste und zweite Ausgangswellenleiter definiert sind.
     
    9. Optisches System nach Anspruch 2, wobei der optische Ringresonator einen freien Spektralbereich größer als ein spezifizierter Wellenlängenbereich für das erste Eingangslicht ist.
     
    10. Optisches System nach Anspruch 1, wobei das durchstimmbare Filter Folgendes umfasst:
    mehrere optische Ringresonatoren, wobei jeder der mehreren optischen Ringresonatoren aus wenigstens einem Wellenleiter gebildet ist, der in einem jeweiligen geschlossenen Pfad angeordnet ist.
     
    11. Optisches System nach Anspruch 1, wobei das durchstimmbare Filter ferner zum Empfangen eines dritten Eingangslichts und zum spektralen Filtern des dritten Eingangslichts konfiguriert ist, um ein drittes Ausgangslicht zu bilden, wobei das dritte Ausgangslicht mit einer Spitze bei der ersten Wellenlänge und einer zunehmenden Abschwächung bei Wellenlängen von der ersten Wellenlänge entfernt spektral gefiltert wird.
     
    12. Optisches System nach Anspruch 1, das ferner Folgendes umfasst:

    einen ersten Eingangsmultiplexer, der zum Multiplexen mehrerer Eingänge in den ersten Eingang konfiguriert ist; und

    einen ersten Ausgangsdemultiplexer, der zum Demultiplexen mehrerer Ausgänge aus dem ersten Ausgangslicht konfiguriert ist.


     
    13. Optisches System nach Anspruch 1, das ferner Folgendes umfasst:

    einen zweiten Eingangsmultiplexer, der zum Multiplexen mehrerer Eingänge in das zweite Eingangslicht konfiguriert ist; und

    einen zweiten Ausgangsdemultiplexer, der zum Demultiplexen mehrerer Ausgänge aus dem zweiten Ausgangslicht konfiguriert ist.


     
    14. Optisches System nach Anspruch 1, das ferner Folgendes umfasst:

    eine durchstimmbare optische Quelle, die zum Produzieren des zweiten Eingangslichts konfiguriert ist;

    einen zweiten Detektor, der zum Detektieren wenigstens eines Bruchteils des zweiten Ausgangslicht konfiguriert ist; und

    eine Wellenlängendurchstimmungsschaltungsanordnung, die mit dem zweiten Detektor und der durchstimmbaren optischen Quelle gekoppelt ist, wobei die Wellenlängendurchstimmungsschaltungsanordnung zum Durchstimmen der durchstimmbaren optischen Quelle, um ein Signal von dem zweiten Detektor zu maximieren, und zum Anpassen einer Wellenlänge des zweiten Eingangslichts, um mit der Spitzenwellenlänge übereinzustimmen und dadurch mit der ersten Wellenlänge übereinzustimmen, konfiguriert ist.


     
    15. Verfahren (600), das Folgendes umfasst:

    Empfangen (602) eines Lichts von einem ersten Eingang (104) mit einer ersten Wellenlänge an einem durchstimmbaren Filter (202), wobei das durchstimmbare Filter ein Filterspektrum mit einer anpassbaren Spitzenwellenlänge und einer zunehmenden Abschwächung bei Wellenlängen von der anpassbaren Spitzenwellenlänge entfernt aufweist;

    spektrales Filtern (604) des ersten Eingangslichts mit dem durchstimmbaren Filter, um ein Licht an einem ersten Ausgang (106) zu bilden;

    Detektieren (606) eines Bruchteils des ersten Ausgangslichts;

    Durchstimmen (608) des durchstimmbaren Filters, um den detektierten Bruchteil des ersten Ausgangslichts zu maximieren, wodurch die Spitzenwellenlänge angepasst wird, um mit der ersten Wellenlänge übereinzustimmen;

    Empfangen (610) eines Lichts von einem zweiten Eingang (114) an dem durchstimmbaren Filter; und

    spektrales Filtern (612) des zweiten Eingangslichts, um ein Licht an einem zweiten Ausgang (116) zu bilden, wobei das zweite Ausgangslicht mit einer Spitze bei der ersten Wellenlänge und einer zunehmenden Abschwächung bei Wellenlängen von der ersten Wellenlänge entfernt gefiltert wird.


     


    Revendications

    1. Système optique (200), comprenant :

    un filtre accordable (202) ayant un spectre de filtrage avec une longueur d'onde de crête réglable et une atténuation croissante aux longueurs d'onde éloignées de la longueur d'onde de crête réglable, le filtre accordable étant configuré pour recevoir une lumière provenant d'une première entrée (104), ayant une première longueur d'onde, et pour filtrer spectralement la première lumière d'entrée pour former une lumière à une première sortie (106) ;

    un détecteur (110) configuré pour détecter au moins une fraction de la première lumière de sortie ; et

    un circuit (112) couplé au détecteur et au filtre accordable, le circuit étant configuré pour accorder le filtre accordable afin de maximiser un signal provenant du détecteur et d'ajuster la longueur d'onde de crête pour qu'elle corresponde à la première longueur d'onde, le filtre accordable est en outre configuré pour recevoir une lumière provenant d'une deuxième entrée (114) et filtrer spectralement la deuxième lumière d'entrée pour former une lumière à une deuxième sortie (116), la deuxième lumière de sortie étant filtrée spectralement avec un pic à la première longueur d'onde et une atténuation croissante aux longueurs d'onde éloignées de la première longueur d'onde.


     
    2. Système optique selon la revendication 1, dans lequel le filtre accordable comprend :
    un résonateur optique en anneau formé d'au moins un guide d'ondes disposé dans un chemin fermé.
     
    3. Système optique selon la revendication 2, dans lequel le résonateur optique en anneau est configuré pour propager la lumière dans une première direction autour du chemin fermé et une deuxième direction, opposée à la première direction, autour du chemin fermé.
     
    4. Système optique selon la revendication 3, comprenant en outre :

    un premier guide d'ondes d'entrée configuré pour injecter la première lumière d'entrée, ayant une première longueur d'onde, dans le résonateur optique en anneau dans la première direction ;

    un premier guide d'ondes de sortie configuré pour extraire la première lumière de sortie du résonateur optique en anneau dans la première direction.


     
    5. Système optique selon la revendication 4, comprenant en outre :

    un deuxième guide d'ondes d'entrée configuré pour injecter la deuxième lumière d'entrée dans le résonateur optique en anneau dans la deuxième direction ;

    un deuxième guide d'ondes de sortie configuré pour extraire la deuxième lumière de sortie du résonateur optique en anneau dans la deuxième direction.


     
    6. Système optique selon la revendication 5, dans lequel le filtre accordable comprend en outre :

    un matériau ayant un indice de réfraction dépendant de la température disposé dans un chemin optique du résonateur optique en anneau ; et

    un élément chauffant configuré pour chauffer de manière contrôlée au moins une partie du matériau, et ainsi modifier la longueur du chemin optique autour du résonateur optique en anneau et ainsi modifier la longueur d'onde de résonance du résonateur optique en anneau,

    où le circuit est en outre configuré pour accorder le filtre accordable en chauffant la partie du matériau.


     
    7. Système optique selon la revendication 5, dans lequel le filtre accordable comprend en outre :

    un matériau ayant un indice de réfraction dépendant du courant, par l'intermédiaire de l'absorption de porteurs libres, disposé dans un chemin optique du résonateur optique en anneau ; et

    une diode PIN polarisée dans le sens passant configurée pour injecter de manière contrôlée du courant dans au moins une partie du matériau, et ainsi changer une longueur de chemin optique autour du résonateur optique en anneau et ainsi changer une longueur d'onde de résonance du résonateur optique en anneau,

    où le circuit est en outre configuré pour accorder le filtre accordable en injectant le courant dans la partie du matériau.


     
    8. Système optique selon la revendication 5, dans lequel une couche de silicium supérieure d'une plaquette de silicium sur isolant est formée pour définir le résonateur optique en anneau, les premier et deuxième guides d'ondes d'entrée, et les premier et deuxième guides d'ondes de sortie.
     
    9. Système optique selon la revendication 2, dans lequel le résonateur optique en anneau a une plage spectrale libre supérieure à une plage spécifiée de longueurs d'onde pour la première lumière d'entrée.
     
    10. Système optique selon la revendication 1, dans lequel le filtre accordable comprend :
    une pluralité de résonateurs optiques en anneau, chacun de la pluralité de résonateurs optiques en anneau étant formé d'au moins un guide d'ondes disposé dans un chemin fermé respectif.
     
    11. Système optique selon la revendication 1, dans lequel le filtre accordable est en outre configuré pour recevoir une troisième lumière d'entrée et pour filtrer spectralement la troisième lumière d'entrée afin de former une troisième lumière de sortie, la troisième lumière de sortie étant filtrée spectralement avec un pic à la première longueur d'onde et une atténuation croissante aux longueurs d'onde éloignées de la première longueur d'onde.
     
    12. Système optique selon la revendication 1, comprenant en outre :

    un premier multiplexeur d'entrée configuré pour multiplexer une pluralité d'entrées dans la première entrée ; et

    un premier démultiplexeur de sortie configuré pour démultiplexer une pluralité de sorties de la première lumière de sortie.


     
    13. Système optique selon la revendication 1, comprenant en outre :

    un deuxième multiplexeur d'entrée configuré pour multiplexer une pluralité d'entrées dans la deuxième lumière d'entrée ; et

    un deuxième démultiplexeur de sortie configuré pour démultiplexer une pluralité de sorties de la deuxième lumière de sortie.


     
    14. Système optique selon la revendication 1, comprenant en outre :

    une source optique accordable configurée pour produire la deuxième lumière d'entrée ;

    un deuxième détecteur configuré pour détecter au moins une fraction de la deuxième lumière de sortie ; et

    un circuit d'accord de longueur d'onde couplé au deuxième détecteur et à la source optique accordable, le circuit d'accord de longueur d'onde étant configuré pour accorder la source optique accordable afin de maximiser un signal provenant du deuxième détecteur et d'ajuster une longueur d'onde de la deuxième lumière d'entrée pour qu'elle corresponde à la longueur d'onde de crête et corresponde ainsi à la première longueur d'onde.


     
    15. Procédé (600), comprenant les étapes suivantes :

    recevoir (602) une lumière provenant d'une première entrée (104), ayant une première longueur d'onde, au niveau d'un filtre accordable (202), le filtre accordable ayant un spectre de filtrage avec une longueur d'onde de crête réglable et une atténuation croissante aux longueurs d'onde éloignées de la longueur d'onde de crête réglable ;

    filtrer spectralement (604) la première lumière d'entrée avec le filtre accordable pour former une lumière à une première sortie (106) ;

    détecter (606) une fraction de la première lumière de sortie ;

    accorder (608) le filtre accordable pour maximiser la fraction détectée de la première lumière de sortie, en ajustant ainsi la longueur d'onde de crête pour qu'elle corresponde à la première longueur d'onde ;

    recevoir (610) une lumière provenant d'une deuxième entrée (114) au niveau du filtre accordable ; et

    filtrer spectralement (612) la deuxième lumière d'entrée pour former une lumière à une deuxième sortie (116), la deuxième lumière de sortie étant filtrée spectralement avec un pic à la première longueur d'onde et une atténuation croissante aux longueurs d'onde éloignées de la première longueur d'onde.


     




    Drawing
























    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description