(19)
(11)EP 3 073 538 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
01.07.2020 Bulletin 2020/27

(21)Application number: 16162140.4

(22)Date of filing:  24.03.2016
(51)Int. Cl.: 
H01L 33/14  (2010.01)
H01L 33/12  (2010.01)
H01L 33/02  (2010.01)
H01L 33/10  (2010.01)
H01L 33/04  (2010.01)
H01L 33/30  (2010.01)
H01L 33/00  (2010.01)
H01L 33/06  (2010.01)

(54)

RED LIGHT EMITTING DEVICE AND LIGHTING SYSTEM

ROTLICHTEMITTIERENDE VORRICHTUNG UND BELEUCHTUNGSSYSTEM

DISPOSITIF ÉLECTROLUMINESCENT ROUGE ET SYSTÈME D'ÉCLAIRAGE


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 25.03.2015 KR 20150041302
25.03.2015 KR 20150041303
25.03.2015 KR 20150041304

(43)Date of publication of application:
28.09.2016 Bulletin 2016/39

(73)Proprietor: LG Innotek Co., Ltd.
Seoul, 04637 (KR)

(72)Inventors:
  • KO, Eun Bin
    04637 Seoul (KR)
  • KIM, Yong Jun
    04637 Seoul (KR)
  • HONG, Ki Yong
    04637 Seoul (KR)
  • JEONG, Byung Hak
    04637 Seoul (KR)

(74)Representative: M. Zardi & Co S.A. 
Via G. B. Pioda, 6
6900 Lugano
6900 Lugano (CH)


(56)References cited: : 
EP-A2- 0 518 320
US-A1- 2009 010 290
US-A1- 2002 104 996
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    BACKGROUND



    [0001] The embodiment relates to a red light emitting device, a method of fabricating a light emitting device, a light emitting device package, and a lighting system.

    [0002] A light emitting diode (LED) includes a P-N junction diode having a characteristic of converting electrical energy into light energy. The LED may be produced by combining dopants of semiconductor compounds on the periodic table. LEDs representing various colors, such as blue, green, UV, and red LEDs can be realized by adjusting the compositional ratio of the semiconductor compounds.

    [0003] For example, the red LED includes an AlGaInP-based LED to convert electrical energy, which is applied, into light having a wavelength in the range of about 570 nm to about 630 nm. The wavelength variation is determined depending on the intensity of bandgap energy of the LED, the intensity of the bandgap energy may be adjusted by adjusting the compositional ratio of Al and Ga, and the wavelength may be shorten as the compositional ratio of Al is increased.

    [0004] Meanwhile, recently, the application range of the AlGaInP-based red LED has been enlarged to a light source for high color rendering index (high CRI) or a light source for a vehicle, and the competition of the AlGaInP-based red LED in the market is deepened. Accordingly, to ensure high optical power (Po) or electrical reliability has been raised as an important issue.

    [0005] For example, according to the related art, as current is injected, doping elements of carriers are diffused into an active area to lower a light speed.

    [0006] In addition, according to the related art, as current is injected, the operating voltage Vf is increased.

    [0007] Further, according to the related art, when a temperature or current is increased due to the heat emitted from an LED chip, droop is caused in external quantum efficiency (EQE).

    [0008] In addition, according to the related art, as current is injected, the operating voltage Vf is increased. Further examples of red light emitting devices are known from prior art document US 2002/104996.

    SUMMARY



    [0009] The embodiment provides a red light emitting device capable of representing higher optical power, a method of fabricating a light emitting device, a light emitting device package, and a lighting system.

    [0010] The embodiment provides a red light emitting device capable of representing high electrical reliability, a method of fabricating a light emitting device, a light emitting device package, and a lighting system.

    [0011] The embodiment provides a red light emitting device capable of overcoming droop to represent improved luminous intensity, a method of fabricating a light emitting device, a light emitting device package, and a light system.

    [0012] According to the embodiment, a red light emitting device includes a first conductivity type first semiconductor layer, an active layer provided on the first conductivity type first semiconductor layer and including a quantum well and a quantum barrier, a second conductivity type second semiconductor layer on the active layer, a second conductivity type third semiconductor layer on the second conductivity type second semiconductor layer, a second conductivity type fifth semiconductor layer on the second conductivity type third semiconductor layer, the device further comprising the additional features as recited in claim 1.

    [0013] The second conductivity type third semiconductor layer includes an AlGaInP-based semiconductor layer and the red light emitting device may include a second conductivity type fourth semiconductor layer that may include an AlGaInP-based semiconductor layer, and Al composition of the second conductivity type fourth semiconductor layer may be lower than Al composition of the second conductivity type third semiconductor layer.

    [0014] In addition, according to an embodiment, a red light emitting device includes a first conductivity type first semiconductor layer, an active layer on the first conductivity type first semiconductor layer, a second conductivity type second semiconductor layer on the active layer, a second conductivity type third semiconductor layer on the second conductivity type second semiconductor layer, and a second conductivity type fifth semiconductor layer on the second conductivity type third semiconductor layer, and the remaining features of claim 1.

    [0015] The second conductivity type third semiconductor layer includes an (AlxGa1-x)InP layer (0≤x≤1), and Al composition is graded in the second conductivity type third semiconductor layer.

    [0016] Further disclosed is a red light emitting device including a first conductivity type first semiconductor layer, an active layer on the first conductivity type first semiconductor layer, a second conductivity type second semiconductor layer on the active layer, a second conductivity type fourth semiconductor layer on the second conductivity type second semiconductor layer, and a second conductivity type fifth semiconductor layer on the second conductivity type fourth semiconductor layer.

    [0017] A doping concentration of second conductivity type atoms of the second conductivity type fourth semiconductor layer may be lower than a doping concentration of second conductivity type atoms of the second conductivity type fifth semiconductor layer.

    [0018] According to the present invention there is further provided a lighting system including a light emitting unit including the red light emitting device. Further preferred embodiments of the invention are defined in the appended claims.

    [0019] The embodiment can provide a red light emitting device capable of representing higher light speed, a method of fabricating a light emitting device, a light emitting device package, and a lighting system.

    [0020] The embodiment can provide a red light emitting device capable of representing high electrical reliability, a method of fabricating a light emitting device, a light emitting device package, and a lighting system.

    [0021] The embodiment can provide a red light emitting device capable of overcoming droop to represent improved luminous intensity, a method of fabricating a light emitting device, a light emitting device package, and a light system.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0022] 

    FIG. 1 is a sectional view showing a red light emitting device according to the embodiment.

    FIG. 2A is an energy band diagram of a red light emitting device according to the first embodiment.

    FIG. 2B is an energy band diagram showing a red light emitting device according to the second embodiment.

    FIG. 2C is an energy band diagram showing a red light emitting device according to the third embodiment.

    FIG. 2D is an energy band diagram showing a red light emitting device according to the fourth embodiment.

    FIG. 3 is a graph showing I-V curve data of red light emitting devices according to the comparative example and the embodiments.

    FIG. 4 is a graph showing thermal droop data of the red light emitting devices according to the comparative example and the embodiments.

    FIG. 5 is a graph showing EQE data of red light emitting devices according to the comparative example and the fourth embodiment.

    FIG. 6 is an enlarged view showing the second conductive type fifth semiconductor layer of the red light emitting device according to the fifth embodiment.

    FIGS. 7A and 7B are graphs showing operating voltage data of red light emitting devices according to the comparative example and the sixth embodiment.

    FIG. 8 is a graph showing SIMS data of a red light emitting device according to the embodiment.

    FIGS. 9A and 9B are graphs showing light speed variation data in an operation/life test according to the comparative example and the embodiment.

    FIG. 10 is a graph showing operating voltage data of the red light emitting devices according to the comparative example and the embodiment.

    FIG. 11 is a graph showing light speed data of the red light emitting devices according to the comparative example and the embodiment.

    FIGS. 12 to 14 are sectional views showing a method of fabricating the red light emitting device according to the embodiment.

    FIG. 15 is a sectional view showing a light emitting device according to the seventh embodiment.

    FIG. 16 is a sectional view showing a light emitting device package according to the embodiment.

    FIG. 17 is a view showing a lighting system according to the embodiment.


    DETAILED DESCRIPTION OF THE EMBODIMENTS



    [0023] Hereinafter, a light emitting device, a light emitting device package, and a lighting system according to the embodiment will be described with reference to accompanying drawings.

    [0024] In the description of embodiments, it will be understood that when a layer (or film) is referred to as being 'on' another layer or substrate, it can be directly on another layer or substrate, or intervening layers may also be present. Further, it will be understood that when a layer is referred to as being 'under' another layer, it can be directly under another layer, and one or more intervening layers may also be present. In addition, it will also be understood that when a layer is referred to as being 'between' two layers, it can be the only layer between the two layers, or one or more intervening layers may also be present.

    (First to Fifth Embodiments)



    [0025] FIG. 1 is a sectional view showing a red light emitting device (LED) 100 according to the embodiment.

    [0026] The red light emitting device 100 according to the embodiment includes a first conductivity type (abbreviated in the rest of the disclosure as first conductive type) first semiconductor layer 112, an active layer 114, a second conductivity type (abbreviated in the rest of the disclosure as second conductive type) second semiconductor layer 116, a second conductive type third semiconductor layer 123, a second conductive type fourth semiconductor layer 124, and a second conductive type fifth semiconductor layer 125.

    [0027] As shown in FIGs. 1 and 2A, the red light emitting device 100 according to the embodiment includes the first conductive type first semiconductor layer 112, the active layer 114 including a quantum well 114W and a quantum barrier 114B and provided on the first conductive type first semiconductor layer 112, the second conductive type second semiconductor layer 116 on the active layer 114, the second conductive type third semiconductor layer 123 on the second conductive type second semiconductor layer 116, the second conductive type fourth semiconductor layer 124 on the second conductive type third semiconductor layer 123, and the second conductive type fifth semiconductor layer 125 on the second conductive type fourth semiconductor layer 124.

    [0028] FIG. 1 shows a lateral-type light emitting device, but the embodiment is not limited thereto.

    [0029] Reference numbers, which are not described, among components of FIG. 1 will be described in the following description of a method of fabricating the light emitting device.

    [0030] According to the related art, an AlGaInP-based red light emitting device has a physical property weaker than that of a GaN-based blue LED in terms of thermal drop.

    [0031] Since AlGaInP-based materials have energy band offset smaller than that of GaN-based materials, the AlGaInP-based materials are weak in droop as current is increased or a temperature is increased.

    [0032] Especially, according to the embodiment, acceptors represent a rapider ionization rate as compared to that of donors. In order to inhibit ionized donors, the droop is overcome by improving GaP layer quality through the optimization of Al compositions or the improvement in the structure of the active layer in a p-AlGaInP-based semiconductor layer.

    [0033] FIG. 2A is an energy band diagram of a red light emitting device according to the first embodiment.

    [0034] In the red light emitting device according to the first embodiment, the second conductive type third semiconductor layer 123 and the second conductive type fourth semiconductor layer 124 may include AlGaInP-based semiconductor layers.

    [0035] In the red light emitting device according to the first embodiment, the second conductive type fourth semiconductor layer 124 may have Al composition lower than that of the second conductive type third semiconductor layer 123.

    [0036] For example, the second conductive type third semiconductor layer 123 may have the composition of an (Alx3Ga1-x3)yIn1-yP layer (0.80≤x3≤90, 0.4≤y≤0.6).

    [0037] In addition, the second conductive type fourth semiconductor layer 124 may have the composition of an (Alx4Ga1-x4)yIn1-yP layer (0.50≤x4≤70, 0.4≤y≤0.6).

    [0038] The second conductive type fourth semiconductor layer 124 may have bandgap energy lower than that of the second conductive type third semiconductor layer 123.

    [0039] In addition, the second conductive type fourth semiconductor layer 124 may have bandgap energy higher than that of the second conductive type fifth semiconductor layer 125.

    [0040] According to the first embodiment, in the p-AlGaInP-based layer, a GaP layer quality can be improved by optimizing of Al compositions.

    [0041] According to the first embodiment, the second conductive type fourth semiconductor layer 124 is interposed between the second conductive type third semiconductor layer 123 and the second conductive type fifth semiconductor layer 125 to serve as an energy bandgap buffer layer.

    [0042] According to the first embodiment, the second conductive type fourth semiconductor layer 124 is interposed between the second conductive type third semiconductor layer 123 and the second conductive type fifth semiconductor layer 125 to reduce strain between the second conductive type third semiconductor layer 123 and the second conductive type fifth semiconductor layer 125 so that light emitting device quality can be improved.

    [0043] FIG. 2B is an energy band diagram showing a red light emitting device according to the second embodiment.

    [0044] The second embodiment may employ the features of the first embodiment, and the following description will be made while focusing on the main features of the second embodiment.

    [0045] A quantum well 114W2 according to the second embodiment may have the composition of an (AlpGa1-p)qIn1-qP layer (0.05≤p≤0.20, 0.4≤q≤0.6).

    [0046] The quantum well 114W2 according to the second embodiment may have the thickness T1 in the range of 150 Å to 170 Å. The quantum well 114W2 according to the second embodiment may be paired with the quantum barrier 114B, and about 12 pairs may be formed, but the embodiment is not limited thereto.

    [0047] According to the second embodiment, when comparing with the related art, the thickness of the quantum well 114W2 in the active layer is more increased, so that the radiative recombination is increased in an active layer region, so that light efficiency can be improved.

    [0048] FIG. 2C is an energy band diagram showing a red light emitting device according to the third embodiment. The third embodiment may employ the features of the first embodiment or the second embodiment, and the following description of the third embodiment will be described while focusing on the main feature of the third embodiment.

    [0049] The quantum barrier according to the third embodiment includes the last quantum barrier closest to the second conductive type second semiconductor layer 116, and the last quantum barrier includes a first last quantum barrier 114B1 having Al composition of the first concentration and a second last quantum barrier 114B2 having Al composition of the second concentration higher than the first concentration.

    [0050] The Al composition in the last quantum barrier may be graded from the quantum well 114W2 toward the second conductive type second semiconductor layer 116.

    [0051] The second last quantum barrier 114B2 is provided closer to the second conductive type second semiconductor layer 116 than the first last quantum barrier 114B1.

    [0052] The last quantum barrier according to the third embodiment includes the first last quantum barrier 114B1, which may be an (Alp1Ga1-p1)q1In1-q1P layer (0.60≤p1≤0.80, 0.4≤q1≤0.6), and the second last quantum barrier 114B2 which may be an (Alp2Ga1-p2)q2In1-q2P layer (0.80≤p2≤0.90, 0.4≤q2≤0.6).

    [0053] The first last quantum barrier 114B1 and the second last quantum barrier 114B2 may have an equal thickness, but the embodiment is not limited thereto.

    [0054] According to the third embodiment, the last quantum barrier is formed in an Al composition step structure including the first last quantum barrier 114B1 having Al composition of the first concentration and the second last quantum barrier 114B2 having Al composition of the second concentration higher than the first concentration, thereby effectively blocking electrons and improving the layer quality.

    [0055] FIG. 2D is an energy band diagram showing a red light emitting device according to the fourth embodiment. The fourth embodiment is obtained by systematically combining the first to third embodiments, which are described above, with each other.

    [0056] Hereinafter, the characteristics of the red light emitting device according to the embodiment will be described while comparing with that of a comparative example.

    [0057] FIG. 3 is a graph showing I-V curve data of red light emitting devices according to the comparative example and the embodiments.
    Table 1
    Comparison with RefP-AlGaInP 60% (First embodiment)Wide Well (Second embodiment)2 step L/B (Third embodiment)
    Voltage improvement% 2.56% 1.08% 1.62%


    [0058] Table 1 shows a voltage improvement percentage (Voltage improvement%) of the first to third embodiments as compared with the comparative example.

    [0059] As shown in table 1 and FIG. 3, voltage has been improved in the first to third embodiments as compared with the comparative example (Ref) when viewed the I-V curve.

    [0060] FIG. 4 is a graph showing thermal droop data of the red light emitting devices according to the comparative example and the embodiments.

    [0061] As shown in FIG. 4, in relation to 1W chip package (PKG) thermal droop, the P-AlGaInP 60% (the first embodiment), the Wide Well (the second embodiment), and the 2 step L/B (the third embodiment) are improved by about 1% to 2.5% comparing with the Ref.
    Table 2
    RefP-AlGaInP 60% (First embodiment)Wide Well (Second embodiment)2step L/B (Third embodiment)
    85.64% 93.27% 89.25% 89.37%


    [0062] Table 2 shows EQE variation when current is varied from about 350 mA to 1000 mA in the 1W chip PKG, that is, EQE data of the comparative example (Ref) and the first to third embodiments.

    [0063] As shown in Table 2, the EQE of the first to third embodiments is improved by about 4% to about 8% based on the EQE of the comparative example.

    [0064] FIG. 5 is a graph showing EQE data of red light emitting devices according to the comparative example and the fourth embodiment.

    [0065] The fourth embodiment is obtained by systematically combining the first to third embodiments with each other, and represents EQE significantly improved as compared with that of the comparative example.

    [0066] FIG. 6 is an enlarged view showing the second conductive type fifth semiconductor layer 125 of the red light emitting device according to the fifth embodiment.

    [0067] The second conductive type fifth semiconductor layer 125 includes the superlattice structure of a GaP layer 125a/InxGa1-xP layer (0≤x≤1) 125b.

    [0068] The second conductive type fifth semiconductor layer 125 includes a third GaP layer 125c doped with second conductive type dopants. The second conductive type dopants may be P type conductive type dopants, but the embodiment is not limited thereto.

    [0069] The second conductive type fifth semiconductor layer 125 is doped with the second conductive type dopants having the first concentration, and the GaP layer 125a is doped with the second conductive type dopants having the concentration lower than the first concentration. The InxGa1-xP layer (0≤x≤1) 125b is not doped with the second conductive type dopants.

    [0070] For example, the second conductive type fifth semiconductor layer 125 may be doped with magnesium (Mg) atoms at a concentration of about 10×1018 atoms/cm3, the GaP layer 125a may be doped with Mg atoms at a concentration of about 10×1017 atoms/cm3, and the InxGa1-xP layer (0≤x≤1) 125b is not doped with the second conductive type dopants, but the embodiment is not limited thereto.

    [0071] Accordingly, the second conductive type fifth semiconductor layer 125 has the superlattice structure of the GaP layer 125a/ InxGa1-xP layer (0≤x≤1) 125b. The InxGa1-xP layer (0≤x≤1) 125b may represent a lower energy level, and the GaP layer 125a may represent an energy level higher than that of the InxGa1-xP layer (0≤x≤1) 125b.

    (Sixth Embodiment)



    [0072] The embodiment provides a red light emitting device representing high optical power, a method of fabricating a light emitting device, a light emitting device package, and a lighting system. According to the embodiment, the second conductive type third semiconductor layer 123 may be interposed between the active layer 114 and the second conductive type fifth semiconductor layer 125.

    [0073] The second conductive type third semiconductor layer 123 includes an (AlxGa1-x)InP layer (0≤x≤1).

    [0074] The Al composition is graded in the second conductive type third semiconductor layer 123.

    [0075] For example, the Al composition in the second conductive type third semiconductor layer 123 may be increased from the active layer 114 to the second conductive type fifth semiconductor layer 125.

    [0076] FIGS. 7A and 7B are graphs showing operating voltage data of red light emitting devices according to the comparative example and the sixth embodiment.

    [0077] According to the embodiment, the second conductive type third semiconductor layer 123 having the Al composition, which is gradually graded, is interposed between the active layer 114 and the second conductive type fifth semiconductor layer 125 to form a bandgap (Eg) buffer layer.

    [0078] As shown in FIG. 7A, according to the comparative example, when the bandgap (Eg) buffer layer is not provided, that is, when the second conductive type third semiconductor layer 123 is not provided, an operating voltage (Vf) is increased as current is injected in a reliability life test. For example, the comparative example has test results such as 2A, 3A, 5A, 6A, 8A, or 10A as shown in FIG. 7A.

    [0079] Meanwhile, as shown in FIG. 7B, when the second conductive type third semiconductor layer 123, which serves as the Eg buffer layer, is interposed between the active layer 114 and the second conductive type second semiconductor layer 116, the variation of the operating voltage Vf is significantly stably maintained. For example, the embodiment has test results such as 2A, 3B, 5B, 6B, 8B as shown in FIG. 7B.

    [0080] FIG. 8 is a graph showing SIMS data according to a red light emitting device according to the embodiment.

    [0081] According to the embodiment, the concentration of the second conductive type atoms doped into the second conductive type fourth semiconductor layer 124 may be lower than that of the second conductive type fifth semiconductor layer 125.

    [0082] For example, according to the embodiment, the concentration of Mg atoms, which are the second conductive type atoms, doped into the second conductive type fourth semiconductor layer 124 may be lower than the concentration of Mg atoms, which are the second conductive type atoms, doped into the second conductive type fifth semiconductor layer 125.

    [0083] For example, the second conductive type fourth semiconductor layer 124 may be a GaP layer, Mg atoms may be doped as p-type dopants, and the doping concentration may be in the range of 1 × 1016 to 5 × 1017 atoms/cm3.

    [0084] For example, the second conductive type fifth semiconductor layer 125 may be a GaP layer, Mg atoms may be doped as p-type dopants, and the doping concentration may be in the range of 5×1016 to 1×1018 atoms/cm3.

    [0085] In addition, the concentration of the second conductive type atoms doped into the second conductive type fourth semiconductor layer 124 may be lower than that of the second conductive type second semiconductor layer 116.

    [0086] For example, the concentration of Mg atoms, which are the second conductive type atoms, doped into the second conductive type fourth semiconductor layer 124 may be lower than the concentration of Mg atoms, which are the second conductive type atoms, doped into the second conductive type second semiconductor layer 116.

    [0087] For example, the second conductive type second semiconductor layer 116 may be an AlGaInP layer, Mg atoms may be doped as p-type dopants, and the doping concentration may be in the range of 5×1016 to 1×1018 atoms/cm3.

    [0088] According to the related art, the dopants, for example, Mg atoms of the second conductive type fifth semiconductor layer 125 are diffused into the active layer as current is injected in an LED life test, thereby causing the drop of a light speed.

    [0089] According to the embodiment, in order to prevent the drop of the light speed resulting from the diffusion of the dopants of the second conductive type fifth semiconductor layer 125, the second conductive type fourth semiconductor layer 124 having the concentration lower than that of Mg atoms which are second conductive type elements, doped into the second conductive type fifth semiconductor layer 125 is interposed between the second conductive type fifth semiconductor layer 125 and the second conductive type second semiconductor layer 116, thereby trapping diffused dopants, for example, Mg atoms to prevent the dopants from being diffused, so that the light speed may be maintained as an initial value without the drop of the light speed.

    [0090] FIGS. 9A and 9B are graphs showing light speed variation data in an operation/life test according to the comparative example and the embodiment. Numbers 3A, 6A, 7A, 9A in drawings refer to numbers of samples that have been tested according to the comparative example. Numbers 3B, 6B, 7B, 9B in drawings refer to numbers of samples that have been tested according to the embodiment.

    [0091] FIG. 9A , according to the comparative example, shows that a light speed is out of a predetermined allowable error range of ±10% as current is injected (along an X axis) in an LED life test.

    [0092] On the contrary, FIG. 9B, according to the embodiment, shows that the light speed is maintained within a predetermined allowable error range of ±10% as the current is injected (along the X axis) in the LED life test.

    [0093] According to the embodiment, the second conductive type fourth semiconductor layer 124 may has the thickness thinner than that of the second conductive type fifth semiconductor layer 125. For example, the second conductive type fourth semiconductor layer 124 may have the thickness in the range of about 1500 Å to about 5000 Å, and the second conductive type fifth semiconductor layer 125 may have the thickness in the range of 20,000 Å to 50,000 Å.

    [0094] According to the embodiment, the second conductive type fifth semiconductor layer 125 may have the thickness thicker than that of the second conductive type second semiconductor layer 116.

    [0095] For example, the second conductive type fifth semiconductor layer 125 may have the thickness at least about 10 times thicker than that of the second conductive type second semiconductor layer 116. Accordingly, the reliability of the red light emitting device according to the embodiment may be improved, and the light speed may be improved.

    [0096] For example, the second conductive type fifth semiconductor layer 125 may have the thickness in the range of 8,000 Å to 140,000 Å, and the second conductive type second semiconductor layer 116 may have the thickness in the range of 2,000 Å to 6,000 Å.

    [0097] FIG. 10 is a graph showing operating voltage data of the red light emitting devices according to the comparative example and the embodiment, and FIG. 11 is a graph showing light speed data of the red light emitting device according to the comparative example and the embodiment.

    [0098] As shown in FIGS. 10 and 11, according to the embodiment, as the thickness of the second conductive type fifth semiconductor layer 125 performing current spreading and a window function is increased to at least 10 times thicker than that of the second conductive type second semiconductor layer 116, the operating voltage Vf and the light speed may be improved.

    [0099] According to the embodiment, in order to distribute the light emitted from the light emitting device upward, a distributed Bragg-Reflector serving as a semiconductor reflective layer 107 may be interposed between a substrate 105 and the active layer 114.

    [0100] The semiconductor reflective layer 107 may include a superlattice layer formed by stacking at least one pair of a first refractive layer, which has a first refractive index, and a second refractive layer, which has a second refractive index greater than the first refractive index, while alternately arranging the first refractive layer and the second refractive layer.

    [0101] The semiconductor reflective layer 107 may include an AlAs layer (not shown)/AlGaAs layer (not shown), and may be doped with the first conductive type dopants, but the embodiment is not limited thereto.

    [0102] Al composition of the AlAs layer may be higher than Al composition of an AlGaAs layer, and the semiconductor reflective layer 115 may effectively reflect light having a wavelength within a red range.

    [0103] Hereinafter, a method of fabricating a red light emitting device according to the embodiment will be described with reference to FIGS. 12 to 14.

    [0104] First, as shown in FIG. 12, the substrate 105 is prepared. The substrate 105 may be formed of a material representing excellent thermal conductivity, and may include a conductive type substrate or an insulating substrate. For example, the substrate 105 may include at least one of GaAs, sapphire (Al2O3), SiC, Si, GaN, ZnO, GaP, InP, Ge or Ga2O3. A concavo-convex structure may be formed in the substrate 105, but the embodiment is not limited thereto. The impurities on the surface of the substrate 105 may be removed through wet cleaning for the substrate 105. A buffer layer may be formed on the substrate 105. The buffer layer may reduce the lattice mismatch between the material of the light emitting structure 110 and the substrate 105. The buffer layer may include at least one of group III-V compound semiconductors such as GaN, InN, AlN, InGaN, AlGaN, InAlGaN, or AlInN.

    [0105] Thereafter, the semiconductor reflective layer 107 may be formed on the substrate 105 or the buffer layer.

    [0106] The semiconductor reflective layer 107 may include a superlattice layer formed by stacking at least one pair of a first refractive layer, which has a first refractive index, and a second refractive layer, which has a second refractive index greater than the first refractive index, while alternately arranging the first refractive layer and the second refractive layer.

    [0107] The semiconductor reflective layer 107 may be formed together with a light emitting structure 110 to be formed later in situ through an MOCVD, but the embodiment is not limited thereto.

    [0108] According to the embodiment, the reflection effect of the semiconductor reflective layer 107 is produced due to the constructive interference between light waves, the second refractive layer having a higher refractive index is located at an outermost layer to which light is incident, and the thickness of the second refractive layer is thinner than that of the first refractive layer having a lower refractive index, so that the constructive interference may be increased, so the reflection effect may be increased and the light emission efficiency may be increased.

    [0109] The semiconductor reflective layer 107 may include an AlAs layer/AlGaAs layer, and the semiconductor reflective layer 107 may be doped with the first conductive type dopants, but the embodiment is not limited thereto.

    [0110] Thereafter, the light emitting structure 110 including the first conductive type first semiconductor layer 112, the active layer 114, and the second conductive type second semiconductor layer 116 may be formed on the semiconductor reflective layer 107.

    [0111] The first conductive type first semiconductor layer 112 may be formed with a semiconductor compound, for example, a group III-V or II-VI compound semiconductor, and may be doped with the first conductive type dopants. When the first conductive type first semiconductor layer 112 is an N type semiconductor layer, the N type dopants may include Si, Ge, Sn, Se, or Te, but the embodiment is not limited thereto.

    [0112] The first conductive type first semiconductor layer 112 may include a semiconductor material having a compositional formula of InxAlyGa1-x-yP (0≤x≤1, 0≤y≤1, 0≤x+y≤1) or InxAlyGa1-x-yN (0≤x≤1, 0≤y≤1, 0≤x+y≤1).

    [0113] The first conductive type first semiconductor layer 112 may include at least one of AlGaP, InGaP, AlInGaP, InP, GaN, InN, AlN, InGaN, AlGaN, InAlGaN, AlInN, AlGaAs, InGaAs, AlInGaAs,or GaP.

    [0114] The first conductive type first semiconductor layer 112 may be formed through a chemical vapor deposition (CVD), molecular beam epitaxy (MBE), sputtering, or hydride vapor phase epitaxy (HVPE) scheme, but the embodiment is not limited thereto.

    [0115] Thereafter, the active layer 114 may be formed on the first conductive type first semiconductor layer 112.

    [0116] The active layer 114 is a layer to emit light having energy determined by an intrinsic energy band of a material of the active layer (light emitting layer) as electrons injected into the active layer through the first conductive type first semiconductor layer 112 meet holes injected into the active layer the second conductive type second semiconductor layer 116 formed thereafter.

    [0117] The active layer 114 may be formed in at least one of a single quantum well structure, a multi-quantum well structure (MQW), a quantum-wire structure, or a quantum dot structure.

    [0118] The active layer 114 may include a quantum well 114W/quantum barrier 114B structure. For example, the active layer 114 may be formed in at least one of pair structures including GaInP/AlGaInP, GaP/AlGaP, InGaP/AlGaP, InGaN/GaN, InGaN/InGaN, GaN/AlGaN, InAlGaN/GaN, GaAs/AlGaAs, or InGaAs/AlGaAs, but the embodiment is not limited thereto. The well layer may be formed of a material having a band gap lower than that of the barrier layer.

    [0119] Meanwhile, as shown in FIG. 2B, the quantum well 114W2 according to the second embodiment may have the composition of an (AlpGa1-p)qIn1-qP layer (0.05≤p≤0.20, 0.4≤q≤0.6)

    [0120] The quantum well 114W2 according to the second embodiment may have the thickness in the range of 150 Å to 170 Å. The quantum well 114W2 according to the second embodiment is paired with the quantum barrier 114B, and 12 pairs may be formed, but the embodiment is not limited thereto.

    [0121] According to the second embodiment, when comparing with the related art, the thickness T1 of the quantum well 114W2 in the active layer is increased, so that the radiactive recombination is increased in an active layer region, so that light efficiency can be improved.

    [0122] In addition, as shown in FIG. 2C, according to the third embodiment, the quantum barrier 114B may include the last quantum barrier closest to the second conductive type second semiconductor layer 116, and the last quantum barrier may include the first last quantum barrier 114B1 having the Al composition of the first concentration and the second last quantum barrier 114B2 having the Al composition of the second concentration higher than the first concentration.

    [0123] The Al composition in the last quantum barrier may be graded from the quantum well 114W2 toward the second conductive type second semiconductor layer 116.

    [0124] For example, the second last quantum barrier 114B2 may be provided closer to the second conductive type second semiconductor layer 116 than the first last quantum barrier 114B1.

    [0125] For example, the last quantum barrier according to the third embodiment may include the first last quantum barrier 114B1, which is an (Alp1Ga1-p1)q1In1-q1P layer (0.60≤p1≤0.80, 0.4≤q1≤0.6), and the second last quantum barrier 114B2 which is an (Alp2Ga1-p2)q2In1-q2P layer (0.80≤p2≤0.90, 0.4≤q2≤0.6).

    [0126] The first last quantum barrier 114B1 and the second last quantum barrier 114B2 may have an equal thickness, but the embodiment is not limited thereto.

    [0127] According to the third embodiment, the last quantum barrier is formed in an Al composition step structure including the first last quantum barrier 114B1 having the Al composition of the first concentration and the second last quantum barrier 114B2 having the Al composition of the second concentration higher than the first concentration, thereby effectively blocking electrons and improving the layer quality.

    [0128] Next, the second conductive type second semiconductor layer 116 may be formed with a semiconductor compound, for example, a group III-V or II-VI compound semiconductor, and may be doped with the first conductive type dopants.

    [0129] For example, the second conductive type second semiconductor layer 116 may include a semiconductor material having a compositional formula of InxAlyGa1-x-yP (0≤x≤1, 0≤y≤1, 0≤x+y≤1) or InxAlyGa1-x-yN (0≤x≤1, 0≤y≤1, 0≤x+y≤1). When the second conductive type second semiconductor layer 116 is a P type semiconductor layer, the P type dopants may include Mg, Zn, Ca, Sr, or Ba.

    [0130] According to the embodiment, the first conductive type first semiconductor layer 112 may be formed with an N type semiconductor layer, and the second conductive type second semiconductor layer 116 may be realized with a P type semiconductor layer, but the embodiment is not limited thereto. For example, according to the embodiment, the first conductive type first semiconductor layer 112 may be formed with a P type semiconductor layer, and the second conductive type second semiconductor layer 116 may be formed with an N type semiconductor layer.

    [0131] In addition, a semiconductor having a polarity opposite to that of the second conductive type, for example, an N type semiconductor layer (not shown) may be formed on the second conductive type second semiconductor layer 116. Accordingly, the light emitting structure 110 may be formed in one of an N-P junction structure, a P-N junction structure, an N-P-N junction structure, or a P-N-P junction structure.

    [0132] Next, as shown in FIG. 13, the second conductive type third semiconductor layer 123, the second conductive type fourth semiconductor layer 124, and the second conductive type fifth semiconductor layer 125 may be formed on the second conductive type second semiconductor layer 116.

    [0133] The second conductive type third semiconductor layer 123 and the second conductive type fourth semiconductor layer 124 may include AlGaInP-based semiconductor layers. The second conductive type fifth semiconductor layer 125 may include a P type GaP-based layer having the second concentration.

    [0134] In the red light emitting device according to the embodiment, the Al composition of the second conductive type fourth semiconductor layer 124 may be lower than the Al composition of the second conductive type third semiconductor layer 123.

    [0135] For example, the second conductive type third semiconductor layer 123 may have the composition of an (Alx3Ga1-x3)yIn1-yP layer (0.80≤x3≤90, 0.4≤y≤0.6).

    [0136] In addition, the second conductive type fourth semiconductor layer 124 may have the composition of an (Alx4Ga1-x4)yIn1-yP layer (0.50≤x4≤70, 0.4≤y≤0.6).

    [0137] The bandgap energy of the second conductive type fourth semiconductor layer 124 may be lower than that of the second conductive type third semiconductor layer 123.

    [0138] In addition, the bandgap energy of the second conductive type fourth semiconductor layer 124 may be higher than that of the second conductive type fifth semiconductor layer 125.

    [0139] According to the embodiment, a GaP layer quality may be improved by optimizing the Al composition of the p-AlGaInP-based layer.

    [0140] According to the embodiment, the second conductive type fourth semiconductor layer 124 to serve as an energy bandgap buffer layer is interposed between the second conductive type third semiconductor layer 123 and the second conductive type fifth semiconductor layer 125.

    [0141] According to the first embodiment, the second conductive type fourth semiconductor layer 124 is interposed between the second conductive type third semiconductor layer 123 and the second conductive type fifth semiconductor layer 125 to reduce strain between the second conductive type third semiconductor layer 123 and the second conductive type fifth semiconductor layer 125 so that light emitting device quality can be improved.

    [0142] As shown in table 1 and FIG. 3, voltage is improved in the first to third embodiments as compared with the comparative example (Ref) when viewed the I-V curve.

    [0143] As shown in FIG. 4, in relation to 1W chip package (PKG) thermal droop, the P-AlGaInP 60% (the first embodiment), the Wide Well (the second embodiment), and the 2 step L/B (the third embodiment) are improved by about 1% to 2.5% based on the Ref.

    [0144] The EQE of the first to third embodiments is improved by about 4% to about 8% based on the EQE of the comparative example.

    [0145] The fourth embodiment, which is obtained by systematically combining the first to third embodiments with each other, represents EQE significantly improved as compared with that of the comparative example.

    [0146] Meanwhile, as shown in FIG. 6, the second conductive type fifth semiconductor layer 125 may include the superlattice structure of a GaP layer 125a/InxGa1-xP layer (0≤x≤1) 125b.

    [0147] The second conductive type fifth semiconductor layer 125 may include a third GaP layer 125c doped with second conductive type dopants. The second conductive type dopants may be P type conductive type dopants, but the embodiment is not limited thereto.

    [0148] The second conductive type fifth semiconductor layer 125 may be doped with the second conductive type dopants having the first concentration, and the GaP layer 125a may be doped with the second conductive type dopants having the concentration lower than the first concentration. The InxGa1-xP layer (0≤x≤1) 125b may not be doped with the second conductive type dopants.

    [0149] For example, the second conductive type fifth semiconductor layer 125 may be doped with magnesium (Mg) atoms at a concentration of about 10×1018 atoms/cm3, the GaP layer 125a may be doped with Mg atoms at a concentration of about 10×1017 atoms/cm3, and the InxGa1-xP layer (0≤x≤1) 125b may not be doped with the second conductive type dopants, but the embodiment is not limited thereto.

    [0150] Accordingly, the second conductive type fifth semiconductor layer 125 may have the superlattice structure of the GaP layer 125a/ InxGa1-xP layer (0≤x≤1) 125b. The InxGa1-xP layer (0≤x≤1) 125b may represent a lower energy level, and the GaP layer 125a may represent an energy level higher than that of the InxGa1-xP layer (0≤x≤1) 125b.

    [0151] Thereafter, a transmissive electrode layer 140 may be formed on the second conductive type fifth semiconductor layer 125.

    [0152] The transmissive electrode layer 140 may include an ohmic layer, and may be formed by multiply stacking single metal, a metallic alloy, or a metallic oxide to effectively inject holes.

    [0153] For example, the transmissive electrode layer 140 may be formed of a material representing an excellent electrical contact with a semiconductor. For example, the transmissive electrode layer 140 may include at least one of indium tin oxide (ITO), indium zinc oxide (IZO), indium zinc tin oxide (IZTO), indium aluminum zinc oxide (IAZO), indium gallium zinc oxide (IGZO), indium gallium tin oxide (IGTO), aluminum zinc oxide (AZO), antimony tin oxide (ATO), gallium zinc oxide (GZO), IZO Nitride (IZON), Al-Ga ZnO (AGZO), In-Ga ZnO (IGZO), ZnO, IrOx, RuOx, NiO, RuOx/ITO, Ni/IrOx/Au, Ni/IrOx/Au/ITO, Ag, Ni, Cr, Ti, Al, Rh, Pd, Ir, Ru, Mg, Zn, Pt, Au, or Hf, but the embodiment is not limited thereto.

    [0154] Then, as shown in FIG. 14, a second electrode 152 may be formed on the transmissive electrode layer 140, and a first electrode 151 may be formed under the substrate 105.

    [0155] The second electrode 152 may be electrically connected with the transmissive electrode layer 140. The second electrode 152 may include a contact layer (not shown), an intermediate layer (not shown), and an upper layer (not shown). The contact layer may include a material selected from among Cr, V, W, Ti, and Zn to realize ohmic contact. The intermediate layer may be realized with a material selected from among Ni, Cu, and Al. The upper layer may include, for example, Au.

    [0156] The first electrode 151 may include a conductive type metal layer. For example, the first electrode 151 may include at least one of Ti, Cr, Ni, Al, Pt, Au, W, Cu, Mo, Cu-W, or a semiconductor substrate implanted with impurities (e.g., Si, Ge, GaN, GaAs, ZnO, SiC, and SiGe).

    (Seventh Embodiment)



    [0157] FIG. 15 is a sectional view showing a light emitting device according to a seventh embodiment.

    [0158] The light emitting device according to the seventh embodiment may employ the features of the above-described embodiments, and the following description will be described while focusing on additional main features of the seventh embodiment.

    [0159] In the light emitting device according to the seventh embodiment, a second electrode layer 140 may be provided under a light emitting structure 110.

    [0160] The second electrode layer 140 may include at least one of a second ohmic layer 141, a metallic reflective layer 142, a bonding layer 144, a support substrate 146, or a lower electrode 148.

    [0161] The second ohmic layer 141 may partially make contact with the second conductive type fifth semiconductor layer 125, and an omnidirectional reflective layer 132 may be provided in the second ohmic layer 141.

    [0162] For example, the second ohmic layer 141 may be formed of a material representing an excellent electrical contact with a semiconductor. For example, the second ohmic layer 141 may include at least one of indium tin oxide (ITO), indium zinc oxide (IZO), indium zinc tin oxide (IZTO), indium aluminum zinc oxide (IAZO), indium gallium zinc oxide (IGZO), indium gallium tin oxide (IGTO), aluminum zinc oxide (AZO), antimony tin oxide (ATO), gallium zinc oxide (GZO), IZO Nitride (IZON), Al-Ga ZnO (AGZO), In-Ga ZnO (IGZO), ZnO, IrOx, RuOx, NiO, RuOx/ITO, Ni/IrOx/Au, Ni/IrOx/Au/ITO, Ag, Ni, Cr, Ti, Al, Rh, Pd, Ir, Ru, Mg, Zn, Pt, Au, or Hf, but the embodiment is not limited thereto.

    [0163] The omnidirectional reflective layer 132 may have a structure including a metal-based reflective layer (not shown) and a low refractive index layer (not shown) formed on the metal-based reflective layer. The metal-based reflective layer may include Ag or Al, and the low refractive index layer having an insulating property may include a transparent material including SiO2, Si3N4, or MgO, but the embodiment is not limited thereto.

    [0164] The metallic reflective layer 142 may be formed of a material representing excellently electrical contact, and a material representing high reflectance. For example, the metallic reflective layer 142 may include metal including at least one of Pd, Ir, Ru, Mg, Zn, Pt, Ag, Ni, Al, Rh, Au, and Hf, or the alloy thereof.

    [0165] The bonding layer 144 may include nickel (Ni), titanium (Ti), gold (Au), or the alloy thereof, but the embodiment is not limited thereto.

    [0166] A support member may selectively include, for example, a carrier wafer (e.g., GaN, Si, Ge, GaAs, ZnO, SiGe, or SiC), copper (Cu), gold (Au), a copper alloy (Cu alloy), nickel (Ni), or copper-tungsten (Cu-W).

    [0167] The lower electrode 148 may include at least one of Ti, Cr, Ni, Al, Pt, Au, W, Cu, Mo, or Cu-W.

    [0168] A predetermined light extraction pattern R may be formed on the light emitting structure 110. For example, a roughness pattern R is formed on the top surface of the first conductive type first semiconductor layer 112 through a dry etching process or a wet etching process to form the light extraction pattern R, so that the light extraction efficiency can be improved.

    [0169] A pad electrode 174 may be formed on the first conductive type first semiconductor layer 112.

    [0170] According to the embodiment, a branch electrode 172 may be formed on the first conductive type first semiconductor layer 112 while interposing a third ohmic layer 171 between the first conductive type first semiconductor layer 112 and the branch electrode 172, and the pad electrode 174 may be formed on the branch electrode 172.

    [0171] The pad electrode 174 may make contact with both of the first conductive type first semiconductor layer 112 and the branch electrode 172. The contact part between the pad electrode 174 and the first conductive type first semiconductor layer 112 are not in ohmic contact due to schottky contact, so that a low current injection ratio is represented, and current spreading occurs, thereby improving optical power.

    [0172] For example, the third ohmic layer 171 may be formed of a material representing an excellent electrical contact with a semiconductor. For example, the third ohmic layer 171 may include at least one of Ag, Ni, Cr, Ti, Al, Rh, Pd, Ir, Ru, Mg, Zn, Pt, Au, Hf, indium tin oxide (ITO), indium zinc oxide (IZO), indium zinc tin oxide (IZTO), indium aluminum zinc oxide (IAZO), indium gallium zinc oxide (IGZO), indium gallium tin oxide (IGTO), aluminum zinc oxide (AZO), antimony tin oxide (ATO), gallium zinc oxide (GZO), IZO Nitride (IZON), Al-Ga ZnO (AGZO), In-Ga ZnO (IGZO), ZnO, IrOx, RuOx, NiO, RuOx/ITO, Ni/IrOx/Au, or Ni/IrOx/Au/ITO, but the embodiment is not limited thereto.

    [0173] The pad electrode 174 and the branch electrode 172 may include at least one of Ti, Cr, Ni, Al, Pt, Au, W, Cu, Mo, or Cu-W, but the embodiment is not limited thereto.

    [0174] A first passivation layer 160 may be formed on a top surface and a lateral side of the light emitting structure 110, and a second passivation layer 162 may be formed on a portion of a lateral side and a top surface of the pad electrode 174.

    [0175] The first passivation layer 160 and the second passivation layer 162 may be formed of an insulating material such as an oxide or a nitride, but the embodiment is not limited thereto.

    [0176] A plurality of red light emitting devices according to the embodiment may be arrayed in the form of a package on a substrate, and a light guide plate, a prism sheet, a diffusion sheet and a phosphor sheet, which are optical members, may be provided on the path of light emitted from a light emitting device package.

    [0177] FIG. 16 is a sectional view showing a light emitting device package 200 in which a red light emitting device according to the embodiments are mounted.

    [0178] The light emitting device package 200 according to the embodiment may include a package body 205, third and fourth electrode layers 213 and 214 mounted on the package body 205, a red light emitting device 100 mounted in the package body 205 and electrically connected with the third and fourth electrodes 213 and 214, and a molding member 240 including a phosphor 232 to surround the red light emitting device 100.

    [0179] The third electrode layer 213 may be electrically insulated from the fourth electrode layer 214, and supply power to the red light emitting device 100 by a wire 230. In addition, the third and fourth electrode layers 213 and 214 may reflect light emitted from the red light emitting device 100 to increase light efficiency, and discharge heat emitted from the red light emitting device 100 to the outside.

    [0180] The red light emitting device 100 may be electrically connected with the third electrode layer 213 and/or the fourth electrode layer 214 through one of a wire scheme, a flip-chip scheme, and a die-bonding scheme.

    [0181] The red light emitting device 100 according to the embedment may be applied to a backlight unit, a lighting unit, a display device, an indicator, a lamp, a street lamp, a lighting device for a vehicle, a display device for a vehicle, or a smart watch, but the embodiment is not limited thereto.

    [0182] FIG. 17 is an exploded perspective view showing a lighting system according to the embodiment.

    [0183] The lighting system according to the embodiment may include a cover 2100, a light source module 2200, a heat radiator 2400, a power supply 2600, an inner case 2700, and a socket 2800. The lighting system according to the embodiment may further include at least one of a member 2300 and a holder 2500. The light source module 2200 may include the red light emitting device 100 or the light emitting device package 200 according to the embodiment.

    [0184] The light source module 2200 may include a light source unit 2210, a connection plate 2230, and a connector 2250. The member 2300 is provided on the top surface of the heat heat radiator 2400, and has guide grooves 2310 into which a plurality of light source units 2210 and a connector 2250 are inserted.

    [0185] The holder 2500 closes a receiving groove 2719 of an insulating unit 2710 of an inner case 2700. Accordingly, the power supply 2600 received in the insulating unit 2710 of the inner case 2700 is sealed. The holder 2500 has a guide protrusion 2510.

    [0186] The power supply 2600 may include a protrusion part 2610, a guide part 2630, a base 2650, and an extension part 2670. The inner case 2700 may be provided therein with a molding part together with the power supply 2600. The molding part is formed by solidifying a molding liquid to fix the power supply 2600 into the inner case 2700.

    [0187] Any reference in this specification to "one embodiment," "an embodiment," "example embodiment," etc., means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment of the invention, provided that it falls within the scope of the appended claims. The appearances of such phrases in various places in the specification are not necessarily all referring to the same embodiment. Further, when a particular feature, structure, or characteristic is described in connection with any embodiment, it is submitted that it is within the purview of one skilled in the art to effect such feature, structure, or characteristic in connection with other ones of the embodiments.

    [0188] Although embodiments have been described with reference to a number of illustrative embodiments thereof, it should be understood that numerous other modifications and embodiments can be devised by those skilled in the art that will fall within the scope of the principles of this disclosure. More particularly, various variations and modifications are possible in the component parts and/or arrangements of the subject combination arrangement within the scope of the appended claims.


    Claims

    1. A red light emitting device comprising:

    a first conductivity type first semiconductor layer (112);

    an active layer (114) on the first conductivity type first semiconductor layer (112) and the active layer (114) including a quantum well (114W) and a quantum barrier (114B);

    a second conductivity type second semiconductor layer (116) on the active layer (114);

    a second conductivity type third semiconductor layer (123) on the second conductivity type second semiconductor layer (116);

    a second conductivity type fifth semiconductor layer (125) on the second conductivity type third semiconductor layer (123),

    wherein the second conductivity type third semiconductor layer (123) includes an AlGaInP-based semiconductor layer,

    wherein Al composition of the second conductivity type third semiconductor layer (123) is graded,

    wherein the quantum barrier (114B) comprises a last quantum barrier closest to the second conductivity type second semiconductor layer (116) and

    characterized in that the last quantum barrier comprises:

    a first last quantum barrier (114B1) having Al composition of a first concentration; and

    a second last quantum barrier (114B2) having Al composition of a second concentration higher than the first concentration, and

    wherein the second last quantum barrier (114B2) is provided closer to the second conductivity type second semiconductor layer (116) than the first last quantum barrier (114B1),

    wherein the second conductivity type fifth semiconductor layer (125) includes a superlattice structure of a GaP layer (125a)/InxGa1-xP (0≤x≤1) (125b) and comprises a third GaP layer (125c) directly under and directly above the superlattice structure of the GaP layer (125a)/InxGa1-xP (0≤x≤1) (125b),

    wherein the second conductivity type fifth semiconductor layer (125) is doped with a second conductivity type dopant having a first dopant concentration, and the GaP layer (125a) is doped with the second conductivity type dopant having a second dopant concentration lower than the first dopant concentration, and the InxGa1-xP (0≤x≤1) (125b) layer is not doped with the second conductivity type dopants.


     
    2. The red light emitting device of claim 1, wherein the Al composition of the second conductivity type third semiconductor layer is graded from the active layer toward the second conductivity type fifth semiconductor layer.
     
    3. The red light emitting device of claim 1 or 2, further comprising a second conductivity type fourth semiconductor layer (124) on the second conductivity type third semiconductor layer.
     
    4. The red light emitting device of claim 3, wherein a doping concentration of second conductive type atoms of the second conductivity type fourth semiconductor layer is lower than a doping concentration of second conductive type atoms of the second conductivity type fifth semiconductor layer.
     
    5. The red light emitting device of claim 4, wherein the doping concentration of second conductive type atoms of the second conductivity type fourth semiconductor layer is lower than a doping concentration of second conductive type atoms of the second conductivity type second semiconductor layer.
     
    6. The red light emitting device of claim 4 or 5, wherein the second conductivity type fourth semiconductor layer has a thickness thinner than a thickness of the second conductivity type fifth semiconductor layer.
     
    7. The red light emitting device of any one of claims 4 to 6, wherein Al composition of the second conductivity type fourth semiconductor layer is lower than Al composition of the second conductivity type third semiconductor layer.
     
    8. The red light emitting device of any one of claims 3 to 7, wherein the Al composition of the second conductivity type fourth semiconductor layer includes an (Alx4Ga1-x4)yIn1-yP layer (0.50≤x4≤70, 0.4≤y≤0.6), and
    the Al composition of the second conductivity type third semiconductor layer includes an (Alx3Ga1-x3)yIn1-yP layer (0.80≤x3≤90, 0.4≤y≤0.6).
     
    9. The red light emitting device of any one of claim 3 or 8, wherein bandgap energy of the second conductivity type fourth semiconductor layer is lower than bandgap energy of the second conductivity type third semiconductor layer.
     
    10. The red light emitting device of any one of claims 3 to 9, wherein bandgap energy of the second conductivity type fourth semiconductor layer is greater than bandgap energy of the second conductivity type fifth semiconductor layer.
     
    11. The red light emitting device of any one of claims 1 to 10, wherein composition of the quantum well includes an (AlpGa1-p)qIn1-qP layer (0.05≤p≤0.20, 0.4≤q≤0.6).
     
    12. The red light emitting device of claim 11, wherein the quantum well has a thickness in a range of 150 Å to 170 Å.
     
    13. The red light emitting device of any one of claims 1 to 12, wherein the third GaP layer (125c) is doped with the second conductive type dopant having a dopant concentration higher than the second conductive type dopant concentration of the GaP layer (125a).
     
    14. A lighting system comprising a light emitting unit including the red light emitting device according to any one of claims 1 to 13.
     


    Ansprüche

    1. Rotlichtemittierungsvorrichtung umfassend:

    eine erste Halbleiterschicht eines ersten Leitfähigkeitstyps (112);

    eine aktive Schicht (114) auf der ersten Halbleiterschicht des ersten Leitfähigkeitstyps (112), wobei die aktive Schicht (114) einen Quantentopf (114W) und eine Quantenbarriere (114B) umfasst;

    eine zweite Halbleiterschicht eines zweiten Leitfähigkeitstyps (116) auf der aktiven Schicht (114);

    eine dritte Halbleiterschicht des zweiten Leitfähigkeitstyps (123) auf der zweiten Halbleiterschicht des zweiten Leitfähigkeitstyps (116);

    eine fünfte Halbleiterschicht des zweiten Leitfähigkeitstyps (125) auf der dritten Halbleiterschicht des zweiten Leitfähigkeitstyps (123),

    wobei die dritte Halbleiterschicht des zweiten Leitfähigkeitstyps (123) eine AlGaInP-basierte Halbleiterschicht umfasst,

    wobei eine Al-Zusammensetzung der dritten Halbleiterschicht des zweiten Leitfähigkeitstyps (123) abgestuft ist,

    wobei die Quantenbarriere (114B) eine letzte Quantenbarriere umfasst, die am nächsten zu der zweiten Halbleiterschicht des zweiten Leitfähigkeitstyps (116) ist, und

    dadurch gekennzeichnet, dass die letzte Quantenbarriere umfasst:

    eine erste letzte Quantenbarriere (114B1), die eine Al-Zusammensetzung einer ersten Konzentration aufweist; und

    eine zweite letzte Quantenbarriere (114B2), die eine Al-Zusammensetzung einer zweiten Konzentration aufweist, die höher als die erste Konzentration ist, und

    wobei die zweite letzte Quantenbarriere (114B2) näher an der zweiten Halbleiterschicht des zweiten Leitfähigkeitstyps (116) als die erste letzte Quantenbarriere (114B1) vorgesehen ist,

    wobei die fünfte Halbleiterschicht des zweiten Leitfähigkeitstyps (125) eine Übergitterstruktur einer GaP-Schicht (125a)/InxGa1-xP (0≤x≤1) (125b) umfasst und eine dritte GaP-Schicht (125c) direkt unter und direkt über der Supergitterstruktur der GaP-Schicht (125a)/InxGa1-xP (0≤x≤1)(125b) umfasst,

    wobei die fünfte Halbleiterschicht des zweiten Leitfähigkeitstyps (125) mit einem Dotiermittel des zweiten Leitfähigkeitstyps dotiert ist, das eine erste Dotiermittelkonzentration aufweist, und die GaP-Schicht (125a) mit einem Dotiermittel des zweiten Leitfähigkeitstyps dotiert ist, das eine zweite Dotiermittelkonzentration aufweist, die niedriger als die erste Dotiermittelkonzentration ist, und die InxGa1-xP (0≤x≤1) (125b)-Schicht nicht mit den Dotiermitteln des zweiten Leitfähigkeitstyps dotiert ist.


     
    2. Rotlichtemittierungsvorrichtung nach Anspruch 1, wobei die Al-Zusammensetzung der dritten Halbleiterschicht des zweiten Leitfähigkeitstyps von der aktiven Schicht zu der fünften Halbleiterschicht des zweiten Leitfähigkeitstyps hin abgestuft ist.
     
    3. Rotlichtemittierungsvorrichtung nach Anspruch 1 oder 2, ferner umfassend eine vierte Halbleiterschicht des zweiten Leitfähigkeitstyps (124) auf der dritten Halbleiterschicht des zweiten Leitfähigkeitstyps.
     
    4. Rotlichtemittierungsvorrichtung nach Anspruch 3, wobei eine Dotierkonzentration von Atomen des zweiten Leitfähigkeitstyps der vierten Halbleiterschicht des zweiten Leitfähigkeitstyps niedriger als eine Dotierkonzentration von Atomen des zweiten Leitfähigkeitstyps der fünften Halbleiterschicht des zweiten Leitfähigkeitstyps ist.
     
    5. Rotlichtemittierungsvorrichtung nach Anspruch 4, wobei die Dotierkonzentration von Atomen des zweiten Leitfähigkeitstyps der vierten Halbleiterschicht des zweiten Leitfähigkeitstyps niedriger als eine Dotierkonzentration von Atomen des zweiten Leitfähigkeitstyps der zweiten Halbleiterschicht des zweiten Leitfähigkeitstyps ist.
     
    6. Rotlichtemittierungsvorrichtung nach Anspruch 4 oder 5, wobei die vierte Halbleiterschicht des zweiten Leitfähigkeitstyps eine Dicke aufweist, die dünner als eine Dicke der fünften Halbleiterschicht des zweiten Leitfähigkeitstyps ist.
     
    7. Rotlichtemittierungsvorrichtung nach einem der Ansprüche 4 bis 6, wobei eine AI-Zusammensetzung der vierten Halbleiterschicht des zweiten Leitfähigkeitstyps niedriger als eine Al-Zusammensetzung der dritten Halbleiterschicht des zweiten Leitfähigkeitstyps ist.
     
    8. Rotlichtemittierungsvorrichtung nach einem der Ansprüche 3 bis 7, wobei die AI-Zusammensetzung der vierten Halbleiterschicht des zweiten Leitfähigkeitstyps eine (Alx4Ga1-x4)yIn1-yP-Schicht (0,50≤x4≤70, 0,4≤y≤0,6) umfasst, und
    die Al-Zusammensetzung der dritten Halbleiterschicht des zweiten Leitfähigkeitstyps eine (Alx3Ga1-x3)yIn1-yP-Schicht (0,80≤x3≤90, 0,4≤y≤0,6) umfasst.
     
    9. Rotlichtemittierungsvorrichtung nach einem der Ansprüche 3 oder 8, wobei eine Bandlückenenergie der vierten Halbleiterschicht des zweiten Leitfähigkeitstyps niedriger als eine Bandlückenenergie der dritten Halbleiterschicht des zweiten Leitfähigkeitstyps ist.
     
    10. Rotlichtemittierungsvorrichtung nach einem der Ansprüche 3 bis 9, wobei eine Bandlückenenergie der vierten Halbleiterschicht des zweiten Leitfähigkeitstyps größer als eine Bandlückenenergie der fünften Halbleiterschicht des zweiten Leitfähigkeitstyps ist.
     
    11. Rotlichtemittierungsvorrichtung nach einem der Ansprüche 1 bis 10, wobei eine Zusammensetzung des Quantentopfes eine (AlpGa1-p)qIn1-qP-Schicht (0,05≤p≤0,20, 0,4≤q≤0,6) umfasst.
     
    12. Rotlichtemittierungsvorrichtung nach Anspruch 11, wobei der Quantentopf eine Dicke in einem Bereich von 150 Å bis 170 Å aufweist.
     
    13. Rotlichtemittierungsvorrichtung nach einem der Ansprüche 1 bis 12, wobei die dritte GaP-Schicht (125c) mit dem Dotiermittel des zweiten Leitfähigkeitstyps dotiert ist, das eine Dotiermittelkonzentration aufweist, die höher als die Konzentration des Dotiermittels des zweiten Leitfähigkeitstyps der GaP-Schicht (125a) ist.
     
    14. Beleuchtungssystem umfassend eine Lichtemittierungseinheit, die die Rotlichtemittierungsvorrichtung nach einem der Ansprüche 1 bis 13 umfasst.
     


    Revendications

    1. Un dispositif électroluminescent rouge comprenant :

    une première couche semi-conductrice (112) d'un premier type de conductivité ;

    une couche active (114) sur la première couche semi-conductrice (112) du premier type de conductivité, la couche active (114) comprenant un puits quantique (114W) et une barrière quantique (114B) ;

    une deuxième couche semi-conductrice (116) d'un deuxième type de conductivité située sur la couche active (114) ;

    une troisième couche semi-conductrice (123) du deuxième type de conductivité située sur la deuxième couche semi-conductrice (116) du deuxième type de conductivité ;

    une cinquième couche semi-conductrice (125) du deuxième type de conductivité située sur la troisième couche semi-conductrice (123) du deuxième type de conductivité,

    la troisième couche semi-conductrice (123) du deuxième type de conductivité comprenant une couche semi-conductrice à base d'AlGaInP,

    la composition d'Al de la troisième couche semi-conductrice (123) du deuxième type de conductivité étant graduelle,

    la barrière quantique (114B) comprenant une dernière barrière quantique la plus proche de la deuxième couche semi-conductrice (116) du deuxième type de conductivité, et

    caractérisé en ce que la dernière barrière quantique comprend :

    une première dernière barrière quantique (114B1) ayant une composition d'Al d'une première concentration ; et

    une deuxième dernière barrière quantique (114B2) ayant une composition d'Al d'une deuxième concentration, supérieure à la première concentration,

    la deuxième dernière barrière quantique (114B2) étant prévue de façon plus proche de la deuxième couche semi-conductrice (116) du deuxième type de conductivité que la première dernière barrière quantique (114B1),

    la cinquième couche semi-conductrice (125) du deuxième type de conductivité comprenant une structure en super-réseau d'une couche de GaP (125a) / InxGa1-xP (0≤x≤1) (125b), et comprenant une troisième couche de GaP (125c) directement en dessous et directement au-dessus de la structure en super-réseau de la couche de GaP (125a) / InxGa1-xP (0≤x≤1) (125b),

    la cinquième couche semi-conductrice (125) du deuxième type de conductivité étant dopée avec un dopant du deuxième type de conductivité ayant une première concentration en dopant, et la couche de GaP (125a) étant dopée avec le dopant du deuxième type de conductivité ayant une deuxième concentration en dopant inférieure à la concentration du premier dopant, et la couche de InxGa1-xP (0≤x≤1) (125b) n'étant pas dopée avec les dopants du deuxième type de conductivité.


     
    2. Le dispositif électroluminescent rouge selon la revendication 1, dans lequel la composition d'Al de la troisième couche semi-conductrice du deuxième type de conductivité est graduelle depuis la couche active en allant vers la cinquième couche semi-conductrice du deuxième type de conductivité.
     
    3. Le dispositif électroluminescent rouge selon la revendication 1 ou la revendication 2, comprenant en outre une quatrième couche semi-conductrice (124) du deuxième type de conductivité sur la troisième couche semi-conductrice du deuxième type de conductivité.
     
    4. Le dispositif électroluminescent rouge selon la revendication 3, dans lequel une concentration de dopage en atomes du deuxième type de conductivité de la quatrième couche semi-conductrice du deuxième type de conductivité est inférieure à une concentration de dopage en atomes du deuxième type de conductivité de la cinquième couche semi-conductrice du deuxième type de conductivité.
     
    5. Le dispositif électroluminescent rouge selon la revendication 4, dans lequel la concentration de dopage en atomes du deuxième type de conductivité de la quatrième couche semi-conductrice du deuxième type de conductivité est inférieure à la concentration de dopage en atomes du deuxième type de conductivité de la deuxième couche semi-conductrice du deuxième type de conductivité.
     
    6. Le dispositif électroluminescent rouge selon la revendication 4 ou la revendication 5, dans lequel la quatrième couche semi-conductrice du deuxième type de conductivité a une épaisseur plus réduite qu'une épaisseur de la cinquième couche semi-conductrice du deuxième type de conductivité.
     
    7. Le dispositif électroluminescent rouge selon l'une quelconque des revendications 4 à 6, dans lequel la composition d'Al de la quatrième couche semi-conductrice du deuxième type de conductivité est inférieure à la composition d'Al de la troisième couche semi-conductrice du deuxième type de conductivité.
     
    8. Le dispositif électroluminescent rouge selon l'une quelconque des revendications 3 à 7, dans lequel la composition d'Al de la quatrième couche semi-conductrice du deuxième type de conductivité comprend une couche de (Alx4Ga1-x4)yIn1-yP (0,50≤x4≤70, 0,4≤y≤0.6), et
    la composition d'Al de la troisième couche semi-conductrice du deuxième type de conductivité comprend une couche de (Alx3Ga1-x3)yIn1-yP (0,80≤x3≤90, 0,4≤y≤0,6).
     
    9. Le dispositif électroluminescent rouge selon l'une quelconque des revendications 3 ou 8, dans lequel l'énergie de bande interdite de la quatrième couche semi-conductrice du deuxième type de conductivité est inférieure à l'énergie de bande interdite de la troisième couche semi-conductrice du deuxième type de conductivité.
     
    10. Le dispositif électroluminescent rouge selon l'une quelconque des revendications 3 à 9, dans lequel l'énergie de bande interdite de la quatrième couche semi-conductrice du deuxième type de conductivité est supérieure à l'énergie de bande interdite de la cinquième couche semi-conductrice du deuxième type de conductivité.
     
    11. Le dispositif électroluminescent rouge selon l'une quelconque des revendications 1 à 10, dans lequel la composition du puits quantique comprend une couche de (AlpGa1-p)qIn1-qP (0,05≤p≤0,20, 0,4≤q≤0,6).
     
    12. Le dispositif électroluminescent rouge selon la revendication 11, dans lequel le puits quantique a une épaisseur située dans une gamme allant de 150 Å à 170 Å.
     
    13. Le dispositif électroluminescent rouge selon l'une quelconque des revendications 1 à 12, dans lequel la troisième couche de GaP (125c) est dopée avec le dopant du deuxième type de conductivité ayant une concentration en dopant supérieure à la concentration en dopant du deuxième type de conductivité de la couche de GaP (125a).
     
    14. Un système d'éclairage comprenant une unité électroluminescente comprenant le dispositif électroluminescent rouge selon l'une quelconque des revendications 1 à 13.
     




    Drawing
















































    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description