(19)
(11)EP 3 076 133 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
06.05.2020 Bulletin 2020/19

(21)Application number: 16162385.5

(22)Date of filing:  24.03.2016
(51)Int. Cl.: 
G01C 25/00  (2006.01)
G01C 21/16  (2006.01)

(54)

VEHICLE NAVIGATION SYSTEM WITH ADAPTIVE GYROSCOPE BIAS COMPENSATION

FAHRZEUGNAVIGATIONSSYSTEM MIT ADAPTIVER KREISELVORSPANNUNGSKOMPENSATION

SYSTÈME DE NAVIGATION DE VÉHICULE AVEC COMPENSATION DE POLARISATION ADAPTATIVE DE GYROSCOPE


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 01.04.2015 US 201514676595

(43)Date of publication of application:
05.10.2016 Bulletin 2016/40

(73)Proprietor: Trimble Inc.
Sunnyvale, CA 94085 (US)

(72)Inventors:
  • Zhi, Xiaorong
    Sunnyvale, CA 94085 (US)
  • Hoshizaki, Takayuki
    Sunnyvale, CA 94085 (US)
  • Loomis, Peter Van Wyck
    Sunnyvale, CA 94085 (US)
  • Stockwell, Walter Kenneth
    Sunnyvale, CA 94085 (US)

(74)Representative: Richards, John et al
Ladas & Parry LLP
Temple Chambers 3-7 Temple Avenue London EC4Y 0DA
Temple Chambers 3-7 Temple Avenue London EC4Y 0DA (GB)


(56)References cited: : 
US-A- 5 527 003
US-A1- 2005 256 659
US-A1- 2003 036 847
US-B1- 8 583 371
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    Technical Field



    [0001] The present disclosure relates to gyroscope calibration.

    Background



    [0002] Vehicle navigation systems are found in an ever increasing proportion of new cars and light trucks. The primary source of position, velocity and time data in a typical vehicle navigation system is a global navigational satellite system (GNSS) receiver. (The United States' NAVSTAR Global Positioning System (GPS) is the most widely used GNSS; however, modern GNSS receivers may use signals from GPS and other GNSSs such as the Russian GLONASS, Chinese BeiDou and European Galileo systems.)

    [0003] The accuracy of GNSS receivers suffers if a clear view of several satellites is not available. GNSS receivers can have difficulty in urban canyons, parking garages, tunnels, bridge lower decks or dense forests, as examples. Dead reckoning, meaning estimating position based on heading and distance traveled since the last GNSS position fix, is a way to fill in gaps in GNSS coverage. Dead reckoning is based on data obtained from sensors such as accelerometers, gyroscopes and odometers.

    [0004] Gyroscopes used in vehicle navigation systems are inexpensive micro-electromechanical systems (MEMS). In 2015 a MEMS gyroscope cost only about $1. As in many things, you get what you pay for, and low-cost MEMS gyroscopes, while being an essential component of dead reckoning systems, have severe limitations. In particular, low-cost MEMS gyroscopes are not supplied with unit-specific characterization data or precise self-calibration mechanisms. A hundred gyros, all of the same type, may all produce different readings under identical operating conditions. Left uncorrected, these variations can lead to navigation errors.

    [0005] US 2003/0036847 to Geier provides methods for compensating for temperature-dependent drift of bias in a vehicle heading sensor of a dead reckoning vehicle positioning system. Specifically, the invention uses a Kalman filter to generate a calibration curve for the rate of heading sensor bias drift with temperature change. The Kalman filter calculates coefficients for a model of heading sensor bias drift rate versus temperature at each point where the vehicle is stationary. The bias drift rate calibration curve is then used to estimate a heading sensor bias periodically while the vehicle is moving. The invention further provides a method for using an aging time for temperature sensor bias drift rate to force convergence of the error variance matrix of the Kalman filter. The invention further provides vehicle navigational systems that utilize the methods of the present invention.

    [0006] US 8,583,371 to Goodzeit provides systems and methods that improve the pointing accuracy of a spacecraft using temperature-sensitive gyros (e.g., MEMS gyros) by using a temperature bias model to compensate for temperature biases of the gyros and using attitude data (e.g., star tracker data) to automatically and continuously calibrate the temperature bias model over the life of the spacecraft. When star tracker data is unavailable (e.g., due to sun interference), the most recently updated temperature bias model is used in open-loop to provide improved estimation of the gyro biases and improved attitude estimation.

    [0007] Therefore, what are needed are systems and methods to track and estimate errors in low-cost MEMS gyroscopes found in vehicle navigation systems.

    Summary of the invention



    [0008] The present invention provides a method for improving the accuracy of a vehicle navigation module according to claim 1 and a vehicle navigation module according to claim 11.

    Brief Description of the Drawings



    [0009] 

    Fig. 1 is a simplified block diagram of a vehicle navigation system.

    Fig. 2 is a diagram of a MEMS gyroscope module.

    Fig. 3 illustrates obtaining a reference rotation rate with map matching techniques.

    Fig. 4 is a graph of bias versus temperature for a typical X axis gyroscope.

    Fig. 5 is a graph of bias versus temperature for a typical Y axis gyroscope.

    Fig. 6 is a graph of bias versus temperature for a typical Z axis gyroscope.

    Figs. 7A and 7B illustrate typical properties of gyroscope bias data.

    Fig. 8 is a graph illustrating how gyroscope bias may be estimated for temperature T1.

    Fig. 9 is a map of experimental data showing that adaptive gyroscope bias compensation improves the accuracy of inertial vehicle navigation.


    Detailed Description



    [0010] Advanced car navigation modules use both GNSS and dead reckoning (DR). DR fills in the gaps when GNSS accuracy is degraded or GNSS is not available. As an example, when a car travels through a mountain tunnel its GNSS receiver is blocked from receiving satellite signals and a navigation module cannot compute GNSS-based position or velocity. Instead, inertial and other sensors supply data from which position and velocity may be estimated. For example, a yaw gyro may keep track of heading changes while an odometer records how far the car travels. In dead reckoning mode, therefore, one factor that affects navigation accuracy is the accuracy of heading estimates based on yaw gyro data.

    [0011] Fig. 1 is a simplified block diagram of a vehicle navigation system. In Fig. 1, navigation module 105 contains gyroscope 110, optional accelerometer 115, GNSS receiver 120 and navigation filter 125. Module 105 may contain several other components, such as input/output interfaces, that are not shown in Fig. 1. External sensors 130 provide additional input to module 105 and position and velocity estimates 135 are among the module's outputs.

    [0012] In a typical navigation module, gyroscope 110 is a low-cost MEMS gyroscope. Such gyroscopes usually include an internal temperature sensor. External sensors 130 may include an odometer and a forward/reverse indicator. An odometer may be used by a navigation filter when GNSS data is not available to determine whether or not the navigation module is moving. ("Odometer" includes any indicator of wheel rotation such as a wheel tachometer, speedometer, system for generating wheel ticks, and the like.) Optional accelerometer 115, if included, is a MEMS device. Navigation filter 125 comprises a microprocessor, memory and associated firmware. The navigation filter combines GNSS, gyroscope, accelerometer and external sensor data to produce position and velocity estimates. As an example, a navigation filter may implement a Kalman filter to estimate a state vector that includes position, heading, and sensor biases.

    [0013] A MEMS gyroscope measures rotation rate around an axis. "Gyroscope" is used throughout to mean a device that measures rate of change of angle with time. Such devices may also be referred to as "rate gyros". Gyroscopes, i.e. rate gyros, may be rotating gyroscopes or vibrating structure gyroscopes, also called Coriolis vibratory gyros. MEMS gyroscopes are Coriolis vibratory gyros, for example.

    [0014] MEMS gyroscopes are often fabricated as a set of three gyroscopes in a module. The three gyroscopes measure rotation rates around three orthogonal axes. Fig. 2 is a diagram of a MEMS gyroscope module. In Fig. 2, gyroscope module 205 measures rotation rate around X, Y and Z axes. The direction of positive rotation is set by convention according to the right hand rule. A gyroscope module may be mounted such that its axes are not aligned with the vehicle's axes. In that case rotation rates measured around the gyroscope module's X, Y and Z axes may be transformed via a rotation matrix into rotation rates around the vehicle's axes provided that the orientation of the gyroscope module with respect to the vehicle is known. Said another way, suppose coordinate system 210 is aligned with a vehicle. Rotation rates around the X', Y' and Z' axes may be found by multiplying a vector of rotation rates around the X, Y and Z axes by a rotation matrix that relates the orientation of the (X, Y, Z) and (X', Y', Z') coordinate systems.

    [0015] Rotation rate around an axis may be estimated as the product of rotation rate around the axis as measured by a gyroscope minus gyroscope bias, and a scale factor. In symbols:



    [0016] Here θ̇g is rotation rate as measured by a gyroscope. (Dot notation indicates a time derivative:

    B(T) is gyroscope bias. k is a scale factor; k may be a conversion factor that translates gyroscope rotation rate units into degrees per second, for example. θ̇ is the actual rotation rate as estimated from gyroscope measurements considering bias and scale factor. Gyroscope bias B(T) is a function of temperature, T, but may also depend on power on/off events and other sources of drift.

    [0017] Bias B(T) may be estimated whenever rotation rate can be measured independently of the gyroscope. When a so-called "reference rotation rate", θ̇ref, is available, we have:

    B(T) may then be estimated from:

    In words, and ignoring scale factor k for a moment, the gyroscope bias is the difference between the rotation rate as measured by the gyroscope and the reference, or actual, rotation rate.

    [0018] There are several different ways of obtaining a reference rotation rate while a gyroscope is in motion. First, if GNSS velocity information is available, then rotation rates may be inferred from attitude changes. For example if GNSS-velocity-derived heading changes from heading θ1 at time t1 to heading θ2 at time t2 then reference heading rate may be estimated as:



    [0019] Alternatively, heading changes (as opposed to heading rate changes) may be compared to time integrated bias and time integrated gyroscope output:



    [0020] Here the change in heading (θ2 - θ1) from t1 to t2 inferred from GNSS is compared to integrated rotation rate, k · ∫ θ̇g dt, as measured by a gyroscope. The difference is gyroscope bias, integrated over time. Note that it is possible that θ2 = θ1 even if heading is not constant between t1 and t2. Heading might change from north to east and then back to north, for example. Non-zero bias would be revealed by a non-zero value of k · ∫ θ̇g dt in that case. Of course whenever an equation involves a heading change (θ2 - θ1) one must keep track of zero crossings. A heading change from northeast, through north, to northwest is -π/2, not +3π/2, for example.

    [0021] As a second example, Fig. 3 illustrates obtaining a reference rotation rate with map matching techniques. Fig. 3 shows a curved road, 305. Consider a vehicle established, via map matching, to be travelling on the road. Fig. 3 shows such a vehicle at two positions as it travels along the road: 310 and 315. At 310 the vehicle's heading is θ1 at time t1. Later, the vehicle is at 315 with heading θ2 at time t2. The heading of the vehicle at each position is known from the layout of the road as represented by a map. If the vehicle is moving along a northbound section of the road, for example, then its heading is north. The speed of the vehicle may be estimated from odometer readings. The known curvature of the road combined with the known speed of the vehicle may be used to estimate reference heading rate as, again:

    The time integrated form discussed above applies in the same way.

    [0022] A third way to obtain a reference rotation rate is via video navigation. Video of pavement taken from a moving vehicle can be used for dead reckoning navigation and can provide estimates of attitude rate, for example. Most new cars have rearward facing video cameras that could be adapted to obtain video images for this purpose. Determining translational and rotational motion of a video camera from apparent motion of objects in successive video images is often referred to as an "optical flow" technique. Given a heading rate determined from video images, gyro bias may be estimated as described above.

    [0023] Thus, a reference rotation rate may be obtained from one or more of several sources. When a reference rotation rate is available, gyroscope bias may be estimated in motion. If a gyroscope is not moving, on the other hand, then θ̇ref = 0 and B(T) = θ̇g. Bias estimates made at a standstill are simple and convenient, but it is not necessarily a good assumption that a vehicle will stop often during a driving trip. Many vehicles are used in nearly the same way every day. A commuter may start driving to work the say way every time he starts his car in the morning, for example. A bus may start from an overnight yard and proceed to its first passenger stop in the same way every day. After engine start, a gyroscope in the car or bus typically warms up (as the engine warms up) until a stable temperature is reached several minutes later. If the vehicle seldom or never stops during the first few minutes of its daily routine, then there may be few opportunities to calibrate B(T) at a standstill for temperatures encountered during the warmup period.

    [0024] In normal operation, a navigation module in a vehicle updates its estimates for gyroscope bias whenever a reference rotation rate is available. This may include times when the vehicle is turned off and no one is in it. A navigation module may be programmed to wake up periodically, even when a vehicle is not operating, to obtain stationary gyro bias estimates and temperature data.

    [0025] A vehicle may sustain significant periods of time when an accurate reference rotation rate is not available. Driving in an urban canyon formed by tall buildings or driving through a tunnel are common examples. During these periods bias cannot be estimated from GNSS measurements. Absent map matching, video or other another source of reference rotation rate, if gyroscope temperature changes during one of these periods, then navigation accuracy suffers.

    [0026] Although it is well known that gyroscope bias is affected by temperature, low-cost MEMS gyroscopes are not usually shipped with detailed information on the shape of B(T) curves. As examples, Figs. 4 - 6 show gyroscope output versus temperature characteristics that were measured in a laboratory for the X, Y and Z axes of a typical MEMS gyroscope. Since the gyroscope was not moving during the test, the output equals the gyroscope bias. The graphs represent data accumulated over three temperature cycles. Each graph shows gyroscope output, θ̇g, as a function of temperature for one axis.

    [0027] The graphs of Figs. 4- 6 show that: B(T) is a different function for each gyroscope axis; B(T) may be nonlinear; and B(T) curves obtained on different temperature cycles have similar shape, but may differ by an offset.

    [0028] Laboratory measurements of several low-cost MEMS gyroscopes show that a set of gyroscopes, all of the same make and model, each have different bias characteristics. In other words, there is no set of three curves that applies to every three-axis, low-cost, MEMS gyroscope module having a certain part number from a given manufacturer. Each gyroscope module has unique bias characteristics. The bias characteristics of any gyroscope module also tend to differ by a random, constant offset each time the module is turned on.

    [0029] Figs. 7A and 7B illustrate typical properties of gyroscope bias data. Fig. 7A shows a conceptual graph of bias versus temperature data. (It is not a graph of data measured from an actual gyroscope.) The graph of Fig. 7A show three B(T) curves that are offset from one another. For example, the highest and lowest curves are offset by δB. The curves are representative of bias versus temperature data from different power or temperature cycles of a single gyroscope. Fig. 7A may be compared, for example, with Fig. 5. The thickness of the plot in Fig. 5 is due to run-to-run variations, not short-term noise. In Fig. 5, gyroscope output at 20 °C is shown as varying between approximately 0.18 deg/s and 0.24 deg/s. However if the gyroscope output is monitored continuously at 20 °C, it fluctuates far less than that over a period of hours.

    [0030] Given that gyroscope bias is relatively stable over short time periods, but can vary significantly over long time periods or across power cycles, a simple look up table of bias versus temperature is not sufficient for estimating gyroscope bias at any particular time.

    [0031] Fig. 7B shows a conceptual graph of average bias versus temperature according to an embodiment of the claimed invention. The graph of Fig. 7B is the average of the graphs of Fig. 7A. A similar procedure could be applied to the graphs of Figs. 4 - 6 or the long-term graph of bias versus temperature data for any gyroscope. According to an embodiment of the claimed invention, a graph such as that of Fig. 7B shows the long term average value of B for each T. This average includes data from many different power cycles. In one implementation, the average includes data from 40 power cycles.

    [0032] According to an embodiment of the claimed invention, a graph of average B versus T is usul because it may be compute rate of change of bias versus temperature,

    And it turns out that

    versus T is approximately the same for each of the curves that was averaged together (for example the curves of Fig. 7A) to find the average B versus T. Thus, given a starting bias value at a particular temperature, one can determine which of the curves of Fig. 7A will apply in the near future.

    [0033] Fig. 8 is a graph illustrating how gyroscope bias may be estimated for temperature T1 according to an embodement of the claimed invention Information needed to make the estimate includes bias, B0, measured at an initial temperature T0 and the temperature difference ΔT = T1 - T0. Also needed is the rate of change of bias with temperature at T0. The bias at temperature T1 may then be estimated via linear extrapolation as:



    [0034] According to embodements of the claimed invention, the following method, performed by a navigation filter such as 125, is used for estimating bias in low-cost MEMS gyroscopes used in car navigation modules:
    1. (1) Estimate gyroscope bias, and record bias and gyroscope temperature whenever a reference rotation rate is available. From this data, build a table of bias versus temperature.
      Step (1) may be performed during normal driving. In addition it may be performed when a car is turned off and parked (e.g. overnight) if its navigation module is programmed to "wake up" periodically when the car is not being driven. A car navigation module may be programmed to turn on periodically whenever electrical power is available even if the car in which the module is installed is not turned on.
    2. (2) Average the bias versus temperature data obtained in step (1) over many driving trips or power cycles. Compute the rate of change of bias versus temperature

      from the average bias versus temperature data. Optionally, store rate-of-change-of-bias data in a table.
    3. (3) During a driving trip, if temperature changes occur during periods when a reference rotation rate is not available, then estimate gyroscope bias according to the linear extrapolation:



    [0035] Here ΔT is the difference between the current temperature and T0.

    [0036] Bias data may be stored in the memory of a navigation filter. Table 1 provides a conceptual example of a bias table:
    Table 1: Conceptual example of a bias table.
    T [°C]Average Bias B(T) [deg/s]Bias Variance [(deg/s)2]Number of Points

    ... ... ... ... ...
    20 0.10 0.0352 40 0.01
    21 0.11 0.0302 45 0.01
    ... ... ... ... ...


    [0037] In Table 1, the T column contains temperatures in units of [°C]; the Average Bias B(T) column contains gyroscope biases in units of [deg/s]; the Bias Variance column contains the variance (in units of [(deg/s)2]) of the data used to compute the average bias; the Number of Points column contains the number of bias measurements used to compute the average bias; and the

    column contains gyroscope bias rates in units of

    (Of course other temperature, time and angle units may be used.)

    [0038] Alternatively,

    may be computed from B(T) on an as-needed basis rather than stored in a table. Furthermore,

    may be approximated from discrete data points as, for example:



    [0039] Here, subscript n enumerates discrete temperatures at which average B(T) data exists. Clearly, other discrete approximations for

    suffice, such as those involving temperatures a few points farther removed from Tn. An approximation for

    may be derived from B(T) at Tn-2, Tn-1, Tn, Tn+1, Tn+2, for example.

    [0040] The variance of a set of bias measurements may be used as a criterion to decide whether or not to use the average of the measurements when computing

    For example, if the variance of a set of bias measurements made at 21 °C is too large, then the utility of an average bias computed at 21 °C is suspect. A maximum variance may be specified such that if the maximum variance is exceeded for a set of bias measurements at a given temperature, then average bias at that temperature is considered inadequate for use in

    computations.

    [0041] The number of points, i.e. number of bias measurements, used to compute the average bias may be another criterion to decide whether or not to use the average of the measurements when computing

    A minimum number of points may be specified such that average bias is considered inadequate for use in

    computations unless at least that number of data points is available. As mentioned above in connection with Figs. 7A and 7B, B(T) is fairly stable during any particular power cycle, but tends to jump from one power cycle to the next. Therefore, the "Number of Points" tracked in Table 1 may be not merely the number of bias measurements (hundreds of bias measurements may be accumulated during a single driving trip or power cycle), but the number of power cycles during which at least one bias measurement at the particular temperature exists.

    [0042] It is apparent from Fig. 6 that B(T) may be a nonlinear function. Using the data of Fig. 6, the method described above would not be successful if it were used to estimate B(40 °C) starting from B(10 °C). dB/dT at 10 °C is a large positive number and would lead to a gross overestimate of B(40 °C). In practice, however, such errors do not occur because temperature changes slowly. Bias estimates may be updated periodically and often, for example once per second, and temperature does not change appreciably in such a short time. Thus there is never any need to use a large ΔT. For small ΔT, on the other hand, even a curve like that of Fig. 6 may be locally approximated by a linear function.

    [0043] Any particular MEMS gyro tends to have a B(T) curve that has an unknown, but repeatable shape, and an unknown offset that changes over long periods or power cycles. Given this behavior, the method according to the claimed invention described above provides a way to estimate B(T) when a vehicle is moving and accurate GNSS velocity data or other sources of reference rotation rate are not available. The method may be called "adaptive gyroscope bias compensation" since dB/dT versus T may be updated whenever new B(T) data is available. Adaptive gyroscope bias compensation allows a car navigation module to estimate position and velocity reliably during periods of GNSS unavailability even in the presence of temperature changes.

    [0044] Adaptive gyroscope bias compensation may be extended in various ways. For example, B(T) data may exhibit hysteresis. The bias at a given temperature may depend upon whether that temperature was reached after a period of cooling or after a period of warming. Said another way, bias may depend not just on temperature, but on whether temperature is decreasing or increasing. Hysteresis may be taken into account by computing average biases for both decreasing and increasing temperatures.

    [0045] Although most of the examples discussed so far involve yaw and reference yaw rates, pitch and roll rates are also valuable for vehicle navigation. Thus reference rotation rate may be estimated from attitude (i.e. pitch, roll and yaw) rates or attitude changes determined from GNSS, map-matching or video, as examples. When attitude change (as opposed to rate) is available, it is compared to integrated gyroscope output and integrated bias as discussed above.

    [0046] Video and map-matching techniques may be preferred over GNSS as sources for pitch and roll reference rotation rates in some cases. In particular, maps are continually improving and map data with enough accuracy and precision to report road slopes that are useful for gyroscope calibration are now available. When a car starts up a hilly road, for example, map-matching may be used to estimate pitch rate as the slope of road changes. Video may be a useful source of roll rotation rate depending on the field of view of the video source.

    [0047] When pitch and/or roll are used in navigation, the techniques for estimating B(T) described above may be repeated for each axis of interest. For example, tables like Table 1 may be created for the pitch, roll and yaw axes.

    [0048] The techniques for estimating gyroscope bias, B(T), described above are useful in vehicle inertial navigation systems. In particular, gyroscope bias estimates may inform a gyroscope bias model when gyroscope bias is an element of a state vector in a Kalman filter.

    [0049] Fig. 9 is a map of experimental data showing that adaptive gyroscope bias compensation improves the accuracy of inertial vehicle navigation. A series of driving tests were conducted to obtain GNSS, accelerometer and gyroscope data. A bias error, similar in shape to the bias versus temperature curve of Fig. 6, was added to recorded gyroscope data for all times during the tests. Next, data from several driving tests were replayed to allow the adaptive bias compensation methods described above to learn a temperature compensation table similar to Table 1. Finally, a GNSS outage was simulated so that vehicle navigation depended on gyroscope performance. Fig. 9 shows results with and without the benefit of adaptive bias compensation. In Fig. 9, map 905 covers city streets in an area about 1/2 mile wide by 7/8 mile long. White circles with black dots 910 indicate position fixes obtained without adaptive gyroscope bias compensation. White arrows 915 indicate position fixes obtained with adaptive gyroscope bias compensation. It is clear from the experimental data that adaptive gyroscope bias compensation improves the accuracy of vehicle navigation.


    Claims

    1. A method for improving the accuracy of a vehicle navigation module (105), the method comprising:
    the vehicle navigation module including a MEMS gyroscope (110) that includes an internal temperature sensor and a navigation filter (125), the navigation filter (125):

    (a) when a reference rotation rate is available, estimating a gyroscope bias by comparing rotation rate as measured by the gyroscope to said reference rotation rate and recording the bias versus gyroscope temperature data;

    (b) averaging the bias versus gyroscope temperature data obtained in step (a) over many power cycles of said MEMS gyroscope;

    (c) storing the average gyroscope bias versus temperature data;

    (d) computing a rate of change of gyroscope bias versus temperature from the average gyroscope bias versus temperature data and storing the computed rate of change of gyroscope bias versus temperature; and

    (e) during a driving trip, if temperature changes occur during periods when no reference rotation rate is available, estimating a gyroscope bias, via linear extrapolation from a known bias value, the linear extrapolation taking into account a temperature change from the current gyroscope temperature and the temperature corresponding to the known bias value (T0) and rate of change of gyroscope bias versus temperature obtained in step (d).


     
    2. The method of Claim 1 further comprising:
    updating the average gyroscope bias versus temperature data from results of step (a).
     
    3. The method of Claim 1 further comprising:
    in step (d), excluding average gyroscope bias versus temperature data points for which a number of gyroscope bias estimates used to compute the average is less than a specified minimum number of gyroscope bias estimates.
     
    4. The method of Claim 1 further comprising:
    in step (d), excluding average gyroscope bias versus temperature data points for which a variance of gyroscope bias estimates used to compute the average is greater than a specified maximum variance.
     
    5. The method of Claim 1, the reference rotation rate being estimated from attitude rates or changes determined from GNSS velocity data.
     
    6. The method of Claim 1, the reference rotation rate being estimated from one of: attitude rates or changes determined by map-matching techniques; and attitude rates or changes determined from video data.
     
    7. The method of Claim 1 wherein said estimating a gyroscope bias comprises using linear extrapolation from a known bias value, the linear extrapolation according to :

    wherein B1 is the gyroscope bias, B0 is the known bias value, dB/dT0 is the computed range of change of gyroscope bias versus temperature, and ΔT is the difference between the current gyroscope temperature and the temperature corresponding to the known bias value (T0).
     
    8. The method of Claim 1, step (a) being performed when the gyroscope is stationary and the reference rotation rate being zero.
     
    9. The method of Claim 1, the navigation module being installed in a vehicle, and the navigation filter performing steps (a) - (e) regardless of whether the vehicle is turned on or off.
     
    10. The method of Claim 1, the navigation module being installed in a vehicle, and the navigation module being programmed to turn on periodically whenever electrical power is available even if the vehicle in which the module is installed is not turned on.
     
    11. A vehicle navigation module (105) comprising:

    a MEMS gyroscope (110) that includes an internal temperature sensor; and

    a navigation filter (125) arranged for:

    (a) when a reference rotation rate is available, estimating a gyroscope bias by comparing rotation rate as measured by the gyroscope to said reference rotation rate and recording the bias versus gyroscope temperature data;

    (b) averaging the bias versus gyroscope temperature data obtained in step (a) over many power cycles of said MEMS gyroscope;

    (c) storing the average gyroscope bias versus temperature data;

    (d) computing a rate of change of gyroscope bias versus temperature from the average gyroscope bias versus temperature and storing the computed rate of change of gyroscope bias versus temperature; and

    (e) during a driving trip, if temperature changes occur during periods when no reference rotation rate is available, estimating a gyroscope bias via linear extrapolation from a known bias value, the linear extrapolation taking into account a temperature change from the current gyroscope temperature and the temperature corresponding to the known bias value (T0) and rate of change of gyroscope bias versus temperature obtained in step (d).


     
    12. The module of Claim 11, the navigation filter being arranged for further updating the average gyroscope bias versus temperature data from results of step (a).
     
    13. The module of Claim 11, the navigation filter being arranged for further, in step (d), excluding average gyroscope bias versus temperature data points for which a number of gyroscope bias estimates used to compute the average is less than a specified minimum number of gyroscope bias estimates.
     
    14. The module of Claim 11, the navigation filter being arranged for further, in step (d), excluding average gyroscope bias versus temperature data points for which a variance of gyroscope bias estimates used to compute the average is greater than a specified maximum variance.
     
    15. The module of Claim 11, the reference rotation rate being estimated from attitude rates or changes determined from GNSS velocity data.
     
    16. The module of Claim 11, the reference rotation rate being estimated from one of: attitude rates or changes determined by map-matching techniques; and attitude rates or changes determined from video data.
     
    17. The module of claim 11 arranged for said estimating a gyroscope bias using linear extrapolation from a known bias value, the linear extrapolation according to :

    wherein B1 is the gyroscope bias, B0 is the known bias value, dB/dT0 is the computed range of change of gyroscope bias versus temperature, and ΔT is the difference between the current gyroscope temperature and the temperature corresponding to the known bias value (T0).
     
    18. The module of Claim 11, the navigation filter being arranged for performing step (a) when the gyroscope is stationary, and the reference rotation rate being zero.
     


    Ansprüche

    1. Verfahren zur Verbesserung der Genauigkeit eines Fahrzeugnavigationsmoduls (105), wobei das Verfahren folgendes umfasst:
    das Fahrzeugnavigationsmodul, das ein MEMS-Gyroskop (110) aufweist, das einen inneren Temperaturfühler aufweist, und einen Navigationsfilter (125), wobei der Navigationsfilter (125) folgendes ausführt:

    (a) wenn eine Referenzdrehrate verfügbar ist, Schätzen einer systematischen Messabweichung des Gyroskops durch Vergleichen einer durch das Gyroskop gemessenen Drehrate mit der Referenzdrehrate und Aufzeichnen der systematischen Messabweichung im Vergleich zu den Gyroskoptemperaturdaten;

    (b) Bilden eines Mittelwertes der in Schritt (a) erhaltenen systematischen Messabweichung im Vergleich zu den Gyroskoptemperaturdaten über viele Leistungszyklen des MEMS-Gyroskops

    (c) Speichern der mittleren systematischen Messabweichung im Vergleich zu den Gyroskoptemperaturdaten;

    (d) Berechnen einer Änderungsrate der systematischen Messabweichung im Vergleich zu der Temperatur anhand der mittleren systematischen Messabweichung im Vergleich zu den Gyroskoptemperaturdaten und Speichern der berechneten Änderungsrate der systematischen Messabweichung im Vergleich zu der Temperatur; und

    (e) während einer Reisefahrt, wenn in Temperaturänderungen in Perioden auftreten, in denen keine Referenzdrehrate verfügbar ist, Schätzen einer systematischen Messabweichung des Gyroskops mittels linearer Extrapolation von einem bekannten Wert für die systematische Messabweichung, wobei die lineare Extrapolation eine Temperaturänderung von der aktuellen Gyroskoptemperatur sowie die Temperatur berücksichtigt, die dem bekannten Wert für die systematische Messabweichung (T0) entspricht, und einer Änderungsrate der Wert für die systematische Messabweichung des Gyroskops im Vergleich zu der in Schritt (d) erhaltenen Temperatur.


     
    2. Verfahren nach Anspruch 1, wobei dieses ferner folgendes umfasst:
    Aktualisieren der mittleren systematische Messabweichung des Gyroskops im Vergleich zu Temperaturdaten aus den Ergebnissen aus Schritt (a).
     
    3. Verfahren nach Anspruch 1, wobei dieses ferner folgendes umfasst:
    in Schritt (d), Ausschließen der mittleren systematischen Messabweichung im Vergleich zu den Temperaturdatenpunkten, für welche eine Anzahl der verwendeten Schätzwerte für die Berechnung des Mittelwertes der systematischen Messabweichung des Gyroskops kleiner ist als eine spezifizierte Mindestanzahl der Schätzwerte für die systematische Messabweichung des Gyroskops.
     
    4. Verfahren nach Anspruch 1, wobei dieses ferner folgendes umfasst:
    in Schritt (d), Ausschließen der mittleren systematischen Messabweichung im Vergleich zu den Temperaturdatenpunkten, für welche eine Abweichung der verwendeten Schätzwerte für die Berechnung des Mittelwertes der systematischen Messabweichung des Gyroskops größer ist als eine spezifizierte maximale Abweichung.
     
    5. Verfahren nach Anspruch 1, wobei die Referenzdrehrate aus Höhenraten oder aus durch GNSS-Geschwindigkeitsdaten bestimmten Veränderungen geschätzt wird.
     
    6. Verfahren nach Anspruch 1, wobei die Referenzdrehrate aus einem der folgenden geschätzt wird: Höhenraten oder durch Kartenabbildungstechniken bestimmten Veränderungen; und
    Höhenraten oder aus Videodaten bestimmten Veränderungen.
     
    7. Verfahren nach Anspruch 1, wobei das Schätzen einer systematischen Messabweichung eines Gyroskops das Verwenden einer linearen Extrapolation von einem bekannten Wert für die systematische Messabweichung umfasst, mit einer linearen Extrapolation gemäß:

    wobei B1 die systematische Messabweichung des Gyroskops ist, wobei B0 der bekannte Wert für die systematische Messabweichung ist, wobei dB/T0 der berechnete Veränderungsbereich der systematischen Messabweichung des Gyroskops im Vergleich zur Temperatur ist, und wobei ΔT die Differenz zwischen der aktuellen Gyroskoptemperatur und der Temperatur ist, die dem bekannten Wert für die systematische Messabweichung (T0) ist.
     
    8. Verfahren nach Anspruch 1, wobei Schritt (a) ausgeführt wird, wenn das Gyroskop stationär ist und die Referenzdrehrate Null ist.
     
    9. Verfahren nach Anspruch 1, wobei das Navigationsmodul in einem Fahrzeug installiert ist, und wobei der Navigationsfilter die Schritte (a) bis (e) unabhängig davon ausführt, ob das Fahrzeug eingeschaltet oder ausgeschaltet ist.
     
    10. Verfahren nach Anspruch 1, wobei das Navigationsmodul in einem Fahrzeug installiert ist, und wobei das Navigationsmodul so programmiert ist, dass es sich immer dann periodisch einschaltet, wenn elektrischer Strom zur Verfügung steht, auch wenn das Fahrzeug, in dem das Modul installiert ist, nicht eingeschaltet ist.
     
    11. Fahrzeugnavigationsmodul (105), das folgendes umfasst:

    MEMS-Gyroskop (110), das einen inneren Temperaturfühler aufweist; und

    einen Navigationsfilter (125), der für folgende Zwecke angeordnet ist:

    (a) wenn eine Referenzdrehrate verfügbar ist, Schätzen einer systematischen Messabweichung des Gyroskops durch Vergleichen einer durch das Gyroskop gemessenen Drehrate mit der Referenzdrehrate und Aufzeichnen der systematischen Messabweichung im Vergleich zu den Gyroskoptemperaturdaten;

    (b) Bilden eines Mittelwertes der in Schritt (a) erhaltenen systematischen Messabweichung im Vergleich zu den Gyroskoptemperaturdaten über viele Leistungszyklen des MEMS-Gyroskops

    (c) Speichern der mittleren systematischen Messabweichung im Vergleich zu den Gyroskoptemperaturdaten;

    (d) Berechnen einer Änderungsrate der systematischen Messabweichung im Vergleich zu der Temperatur anhand der mittleren systematischen Messabweichung im Vergleich zu den Gyroskoptemperaturdaten und Speichern der berechneten Änderungsrate der systematischen Messabweichung im Vergleich zu der Temperatur; und

    (e) während einer Reisefahrt, wenn in Temperaturänderungen in Perioden auftreten, in denen keine Referenzdrehrate verfügbar ist, Schätzen einer systematischen Messabweichung des Gyroskops mittels linearer Extrapolation von einem bekannten Wert für die systematische Messabweichung, wobei die lineare Extrapolation eine Temperaturänderung von der aktuellen Gyroskoptemperatur sowie die Temperatur berücksichtigt, die dem bekannten Wert für die systematische Messabweichung (T0) entspricht, und einer Änderungsrate der Wert für die systematische Messabweichung des Gyroskops im Vergleich zu der in Schritt (d) erhaltenen Temperatur.


     
    12. Modul nach Anspruch 11, wobei der Navigationsfilter ferner angeordnet ist für eine Aktualisierung der mittleren systematischen Messabweichung des Gyroskops im Vergleich zu Temperaturdaten aus den Ergebnissen aus Schritt (a).
     
    13. Modul nach Anspruch 11, wobei der Navigationsfilter ferner angeordnet ist, um folgendes auszuführen:
    in Schritt (d), Ausschließen der mittleren systematischen Messabweichung des Gyroskops im Vergleich zu den Temperaturdatenpunkten, für welche eine Anzahl der verwendeten Schätzwerte für die Berechnung des Mittelwertes kleiner ist als eine spezifizierte Mindestanzahl der Schätzwerte für die systematische Messabweichung des Gyroskops.
     
    14. Modul nach Anspruch 11, wobei der Navigationsfilter ferner angeordnet ist, um folgendes auszuführen:
    in Schritt (d), Ausschließen der mittleren systematischen Messabweichung des Gyroskops im Vergleich zu den Temperaturdatenpunkten, für welche eine Abweichung der verwendeten Schätzwerte für die Berechnung des Mittelwertes der systematischen Messabweichung des Gyroskops größer ist als eine spezifizierte maximale Abweichung.
     
    15. Modul nach Anspruch 11, wobei die Referenzdrehrate aus Höhenraten oder aus durch GNSS-Geschwindigkeitsdaten bestimmten Veränderungen geschätzt wird.
     
    16. Modul nach Anspruch 11, wobei die Referenzdrehrate aus einem der folgenden geschätzt wird: Höhenraten oder durch Kartenabbildungstechniken bestimmten Veränderungen; und
    Höhenraten oder aus Videodaten bestimmten Veränderungen.
     
    17. Modul nach Anspruch 11, wobei das Modul angeordnet ist zum Schätzen einer systematischen Messabweichung eines Gyroskops unter Verwendung einer linearen Extrapolation von einem bekannten Wert für die systematische Messabweichung umfasst, mit einer linearen Extrapolation gemäß:

    wobei B1 die systematische Messabweichung des Gyroskops ist, wobei B0 der bekannte Wert für die systematische Messabweichung ist, wobei dB/T0 der berechnete Veränderungsbereich der systematischen Messabweichung des Gyroskops im Vergleich zur Temperatur ist, und wobei ΔT die Differenz zwischen der aktuellen Gyroskoptemperatur und der Temperatur ist, die dem bekannten Wert für die systematische Messabweichung (T0) ist.
     
    18. Modul nach Anspruch 11, wobei der Navigationsfilter zur Ausführung von Schritt (a) angeordnet ist, wenn das Gyroskop stationär ist und die Referenzdrehrate Null ist.
     


    Revendications

    1. Procédé pour améliorer la précision d'un module de navigation de véhicule (105), le procédé comprenant :
    le module de navigation du véhicule comprenant un gyroscope MEMS (110) qui comprend un capteur de température interne et un filtre de navigation (125), le filtre de navigation (125) :

    (a) lorsqu'une vitesse de rotation de référence est disponible, estimant un biais du gyroscope en comparant la vitesse de rotation telle que mesurée par le gyroscope à ladite vitesse de rotation de référence et enregistrant les données de biais par rapport à température du gyroscope ;

    (b) faisant la moyenne des données de biais par rapport à température du gyroscope obtenues à l'étape (a) sur de nombreux cycles d'alimentation dudit gyroscope MEMS;

    (c) stockant les données moyennes de biais par rapport à température du gyroscope ;

    (d) calculant une vitesse de changement du biais par rapport à température du gyroscope à partir des données moyennes de biais par rapport à température du gyroscope et stockant la vitesse de changement calculée du biais par rapport à température du gyroscope ; et

    (e) pendant un trajet de conduite, si des changements de température se produisent pendant des périodes où aucune vitesse de rotation de référence n'est disponible, estimant un biais du gyroscope, par extrapolation linéaire à partir d'une valeur de biais connue, l'extrapolation linéaire prenant en compte un changement de température par rapport à la température actuelle du gyroscope et la température correspondant à la valeur de biais connue (T0) et la vitesse de changement du biais par rapport à température du gyroscope obtenue à l'étape (d).


     
    2. Procédé selon la revendication 1 comprenant en outre l'étape consistant à : mettre à jour les données moyennes de biais par rapport à température du gyroscope à partir des résultats de l'étape (a).
     
    3. Procédé selon la revendication 1 comprenant en outre l'étape consistant à :
    à l'étape (d), exclure les points de données moyennes de biais par rapport à température du gyroscope pour lesquels un nombre d'estimations de biais du gyroscope utilisées pour calculer la moyenne est inférieur à un nombre minimal spécifié d'estimations de biais du gyroscope.
     
    4. Procédé selon la revendication 1 comprenant en outre l'étape consistant à :
    à l'étape (d), exclure les points de données moyennes de biais par rapport à température du gyroscope pour lesquels une variance des estimations de biais du gyroscope utilisées pour calculer la moyenne est supérieure à une variance maximale spécifiée.
     
    5. Procédé selon la revendication 1, la vitesse de rotation de référence étant estimée à partir des vitesses ou changements d'attitude déterminés à partir des données de vitesse du GNSS.
     
    6. Procédé selon la revendication 1, la vitesse de rotation de référence étant estimée à partir de l'un des éléments suivants : vitesses ou changements d'attitude déterminés par des techniques de correspondance cartographique ; et vitesses ou changements d'attitude déterminés à partir de données vidéo.
     
    7. Procédé selon la revendication 1, ladite estimation d'un biais de gyroscope comprenant l'étape consistant à utiliser une extrapolation linéaire à partir d'une valeur de biais connue, l'extrapolation linéaire étant selon :

    B1 étant le biais du gyroscope, B0 étant la valeur de biais connue, dB/dT0 étant la plage calculée de changement de biais par rapport à température du gyroscope, et ΔT étant la différence entre la température du gyroscope actuelle et la température correspondant à la valeur de biais connue (T0).
     
    8. Procédé selon la revendication 1, l'étape (a) étant effectué lorsque le gyroscope est stationnaire et la vitesse de rotation de référence est nulle.
     
    9. Procédé selon la revendication 1, le module de navigation étant installé dans un véhicule et le filtre de navigation exécutant les étapes (a) à (e), que le véhicule soit allumé ou éteint.
     
    10. Procédé selon la revendication 1, le module de navigation étant installé dans un véhicule et le module de navigation étant programmé pour s'allumer périodiquement chaque fois que l'alimentation électrique est disponible, même si le véhicule dans lequel le module est installé n'est pas allumé.
     
    11. Module de navigation de véhicule (105) comprenant :

    un gyroscope MEMS (110) qui comprend un capteur de température interne ; et

    un filtre de navigation (125) conçu pour :

    (a) lorsqu'une vitesse de rotation de référence est disponible, estimer un biais du gyroscope en comparant la vitesse de rotation telle que mesurée par le gyroscope à ladite vitesse de rotation de référence et enregistrant les données de biais par rapport à température du gyroscope ;

    (b) faire la moyenne des données de biais par rapport à température du gyroscope obtenues à l'étape (a) sur de nombreux cycles d'alimentation dudit gyroscope MEMS ;

    (c) stocker les données moyennes de biais par rapport à température du gyroscope ;

    (d) calculer une vitesse de changement du biais par rapport à température du gyroscope à partir des données moyennes de biais par rapport à température du gyroscope et stockant la vitesse de changement calculée du biais par rapport à température du gyroscope ; et

    (e) pendant un trajet de conduite, si des changements de température se produisent pendant des périodes où aucune vitesse de rotation de référence n'est disponible, estimant un biais du gyroscope, par extrapolation linéaire à partir d'une valeur de biais connue, l'extrapolation linéaire prenant en compte un changement de température par rapport à la température actuelle du gyroscope et la température correspondant à la valeur de biais connue (T0) et la vitesse de changement du biais par rapport à température du gyroscope obtenue à l'étape (d).


     
    12. Module selon la revendication 11, le filtre de navigation étant conçu pour mettre à jour les données moyennes de biais par rapport à température du gyroscope à partir des résultats de l'étape (a).
     
    13. Module selon la revendication 11, le filtre de navigation étant en outre conçu pour, à l'étape (d), exclure les points de données moyennes de biais par rapport à température du gyroscope pour lesquels un nombre d'estimations du biais du gyroscope utilisées pour calculer la moyenne est inférieur à un nombre minimal spécifié d'estimations du biais du gyroscope.
     
    14. Module selon la revendication 11, le filtre de navigation étant en outre conçu pour, à l'étape (d), exclure les points de données moyennes de biais par rapport à température du gyroscope pour lesquels une variance des estimations du biais du gyroscope utilisées pour calculer la moyenne est supérieure à une variance maximale spécifiée.
     
    15. Module selon la revendication 11, la vitesse de rotation de référence étant estimée à partir des vitesses ou changements d'attitude déterminés à partir des données de vitesse du GNSS.
     
    16. Module selon la revendication 11, la vitesse de rotation de référence étant estimée à partir de l'un des éléments suivants : vitesses ou changements d'attitude déterminés par des techniques de correspondance cartographique ; et vitesses ou changements d'attitude déterminés à partir de données vidéo.
     
    17. Module selon la revendication 11, ladite estimation d'un biais de gyroscope comprenant l'étape consistant à utiliser une extrapolation linéaire à partir d'une valeur de biais connue, l'extrapolation linéaire étant selon :

    B1 étant le biais du gyroscope, B0 étant la valeur de biais connue, dB/dT0 étant la plage calculée de changement de biais par rapport à température du gyroscope, et ΔT étant la différence entre la température du gyroscope actuelle et la température correspondant à la valeur de biais connue (T0).
     
    18. Module selon la revendication 11, le filtre de navigation étant conçu pour effectuer l'étape (a) lorsque le gyroscope est stationnaire, et la vitesse de rotation de référence est nulle.
     




    Drawing






























    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description