(19)
(11)EP 3 076 406 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
18.03.2020 Bulletin 2020/12

(21)Application number: 16163097.5

(22)Date of filing:  31.03.2016
(51)Int. Cl.: 
H01F 1/057  (2006.01)
B22F 3/10  (2006.01)
B22F 9/02  (2006.01)
C22C 33/02  (2006.01)
H01F 41/02  (2006.01)
B22F 3/24  (2006.01)
B22F 9/04  (2006.01)

(54)

MAKING METHOD OF A R-FE-B SINTERED MAGNET

HERSTELLUNGSVERFAHREN FÜR EINEN R-FE-B-SINTERMAGNETEN

PROCÉDÉ DE FABRICATION D'UN AIMANT FRITTÉ R-FE-B AUX TERRES RARES


(84)Designated Contracting States:
DE

(30)Priority: 31.03.2015 JP 2015072228
15.02.2016 JP 2016025511

(43)Date of publication of application:
05.10.2016 Bulletin 2016/40

(73)Proprietor: Shin-Etsu Chemical Co., Ltd.
Tokyo (JP)

(72)Inventors:
  • HIROTA, Koichi
    Fukui-ken (JP)
  • NAGATA, Hiroaki
    Fukui-ken (JP)
  • KUME, Tetsuya
    Fukui-ken (JP)
  • KAMATA, Masayuki
    Fukui-ken (JP)
  • NAKAMURA, Hajime
    Fukui-ken (JP)

(74)Representative: Mewburn Ellis LLP 
City Tower 40 Basinghall Street
London EC2V 5DE
London EC2V 5DE (GB)


(56)References cited: : 
EP-A1- 0 945 878
JP-A- 2011 211 071
DE-A1- 19 945 942
US-A1- 2004 094 237
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    TECHNICAL FIELD



    [0001] This invention relates to a method for preparing an R-Fe-B base sintered magnet having a high coercivity.

    BACKGROUND



    [0002] While Nd-Fe-B sintered magnets, referred to as Nd magnets, hereinafter, are regarded as the functional material necessary for energy saving and performance improvement, their application range and production volume are expanding every year. Since many applications are used in high temperature, the Nd magnets are required to have not only a high remanence but also a high coercivity. On the other hand, since the coercivity of Nd magnets are easy to decrease significantly at a elevated temperature, the coercivity at room temperature must be increased enough to maintain a certain coercivity at a working temperature.

    [0003] As the means for increasing the coercivity of Nd magnets, it is effective to substitute Dy or Tb for part of Nd in Nd2Fe14B compound as main phase. For these elements, there are short resource reserves in the world, the commercial mining areas in operation are limited, and geopolitical risks are involved. These factors indicate the risk that the price is unstable or largely fluctuates. Under the circumstances, the development for a new process and a new composition of R-Fe-B magnets with a high coercivity, which include a minimizing the content of Dy and Tb, is required.

    [0004] From this standpoint, several methods are already proposed. Patent Document 1 discloses an R-Fe-B base sintered magnet having a composition of 12-17 at% of R (wherein R stands for at least two of yttrium and rare earth elements and essentially contains Nd and Pr), 0.1-3 at% of Si, 5-5.9 at% of B, 0-10 at% of Co, and the balance of Fe (with the proviso that up to 3 at% of Fe may be substituted by at least one element selected from among Al, Ti, V, Cr, Mn, Ni, Cu, Zn, Ga, Ge, Zr, Nb, Mo, In, Sn, Sb, Hf, Ta, W, Pt, Au, Hq, Pb, and Bi), containing a R2 (Fe, (Co), Si)14B intermetallic compound as main phase, and exhibiting a coercivity of at least 800kA/m (10kOe). Further, the magnet is free of a B-rich phase and contains at least 1 vol% based on the entire magnet of an R-Fe(Co)-Si phase consisting essentially of 25-35 at% of R, 2-8 at% of Si, up to 8 at% of Co, and the balance of Fe. During sintering or post-sintering heat treatment, the sintered magnet is cooled at a rate of 0.1 to 5°C/min at least in a temperature range from 700°C to 500°C, or cooled in multiple stages including holding at a certain temperature for at least 30 minutes on the way of cooling, for thereby generating the R-Fe(Co)-Si phase in grain boundary.

    [0005] Patent Document 2 discloses a Nd-Fe-B alloy with a low boron content, a sintered magnet prepared by the alloys, and their process. In the sintering process, the magnet is quenched after sintering below 300°C, and an average cooling rate down to 800°C is ΔT1/Δtl < 5K/min.

    [0006] Patent Document 3 discloses an R-T-B magnet comprising R2Fe14B main phase and some grain boundary phases. One of grain boundary phase is R-rich phase with more R than the main phase and another is Transition Metal-rich phase with a lower rare earth and a higher transition metal concentration than that of main phase. The R-T-B rare earth sintered magnet is prepared by sintering at 800 to 1,200°C and heat-treating at 400 to 800°C.

    [0007] Patent Document 4 discloses an R-T-B rare earth sintered magnet comprising a grain boundary phase containing an R-rich phase having a total atomic concentration of rare earth elements of at least 70 at% and a ferromagnetic transition metal-rich phase having a total atomic concentration of rare earth elements of 25 to 35 at%, wherein an area proportion of the transition metal-rich phase is at least 40% of the grain boundary phase. The green body of magnet alloy powders is sintered at 800 to 1,200°C, and then heat-treated with multiple steps. First heat-treatment is in the range of 650 to 900°C, then sintered magnet is cooled down to 200°C or below, and second heat-treatment is in range of at 450 to 600°C.

    [0008] Patent Document 5 discloses an R-T-B rare earth sintered magnet comprising a main phase of R2Fe14B and a grain boundary phase containing more R than that of the main phase, wherein easy axis of magnetization of R2Fe14B compound is in parallel to the c-axis, the shape of the crystal grain of R2Fe14B phase is elliptical shape elongated in a perpendicular direction to the c-axis, and the grain boundary phase contains an R-rich phase having a total atomic concentration of rare earth elements of at least 70 at% and a transition metal-rich phase having a total atomic concentration of rare earth elements of 25 to 35 at%. It is also described that magnet are sintered at 800 to 1,200°C and subsequent heat treatment at 400 to 800°C in an argon atmosphere.

    [0009] Patent Document 6 discloses a rare earth magnet comprising R2T14B main phase and an intergranular grain boundary phase, wherein the intergranular grain boundary phase has a thickness of 5 nm to 500 nm and the magnetism of the phase is not ferromagnetism. It is described that the intergranular grain boundary phase is formed from a non-ferromagnetic compound due to add element M such as Al, Ge, Si, Sn or Ga, though this phase contains the transition metal elements. Furthermore by adding Cu to the magnet, a crystalline phase with a La6Co11Ga3-type crystal structure can be uniformly and widely formed as the intergranular grain boundary phase, and a thin R-Cu layer may be formed at the interface between the La6Co11Ga3-type grain boundary phase and the R2T14B main phase crystal grains. As a result, the interface of the main phase is passivated, a lattice distortion of main phase can be suppressed, and nucleation of the magnetic reversal domain can be inhibited. The method of preparing the magnet involves post-sintering heat treatment at a temperature in the range of 500 to 900°C, and cooling at the rate of least 100°C/min, especially at least 300°C/min.

    [0010] Patent Document 7 and 8 disclose an R-T-B sintered magnet comprising a main phase of Nd2Fe14B compound, an intergranular grain boundary which is enclosed between two main phase grains and which has a thickness of 5 nm to 30 nm, and a grain boundary triple junction which is the phase surrounded by three or more main phase grains.

    [0011] Patent Document 9 describes a sintered magnet that includes a group of crystal grains for an R-T-B rare-earth magnet, which has a core, and a shell for covering the core. The percentage of the mass of heavy rare-earth elements in the shell is higher than the percent age of the mass of heavy rare-earth elements in the core. A lattice defect is formed between the core and the shell.

    Citation List



    [0012] 

    Patent Document 1: JP 3997413 (US 7090730, EP 1420418)

    Patent Document 2: JP-A 2003-510467 (EP 1214720)

    Patent Document 3: JP 5572673 (US 20140132377)

    Patent Document 4: JP-A 2014-132628

    Patent Document 5: JP-A 2014-146788 (US 20140191831)

    Patent Document 6: JP-A 2014-209546 (US 20140290803)

    Patent Document 7: WO 2014/157448

    Patent Document 8: WO 2014/157451

    Patent Document 9: JP-A 2011-211071



    [0013] However, there exists a need for an R-Fe-B sintered magnet which exhibits a high coercivity despite a minimal or nil content of Dy, Tb and Ho.

    [0014] The present disclosure provides an R-Fe-B sintered magnet exhibiting a high coercivity, and a method for preparing the same.

    [0015] The inventors have found that a desired R-Fe-B base sintered magnet can be prepared by a method consisting of the steps of shaping an alloy powder (consisting essentially of 12 to 17 at% of R, 0.1 to 3 at% of M1, 0.05 to 0.5 at% of M2, 4.8+2×m to 5.9+2×m at% of B, up to 10 at% of Co, and the balance of Fe) into a green compact, sintering the green compact, cooling the sintered compact to a temperature of 400°C or below, post-sintering heat treatment including heating the sintered compact at a temperature in the range of 700 to 1,100°C which temperature is exceeding peritectic temperature of R-Fe(Co)-M1 phase, and cooling down to a temperature of 400°C or below at a rate of 5 to 100°C/min, and aging treatment including exposing the sintered compact at a temperature in the range of 400 to 600°C which temperature is lower than the peritectic temperature of R-Fe(Co)-M1 phase so as to form the R-Fe(Co)-M1 phase at a grain boundary, and cooling down to a temperature of 200°C or below; or a method consisting of the steps of shaping the alloy powder into a green compact, sintering the green compact, cooling the sintered compact down to a temperature of 400°C or below at a rate of 5 to 100°C/min, and aging treatment including exposing the sintered compact at a temperature in the range of 400 to 600°C which temperature is lower than the peritectic temperature of R-Fe(Co)-M1 phase so as to form the R-Fe(Co)-M1 phase at a grain boundary, and cooling down to a temperature of 200°C or below. The R-Fe-B base sintered magnet thus obtained contains R2(Fe,(Co))14B intermetallic compound as a main phase, contains an M2 boride phase at a grain boundary triple junction, but not including R1.1Fe4B4 compound phase, and has a core/shell structure that at least 50% of the main phase is covered with an R-Fe(Co)-M1 phase with a width of at least 10 nm and at least 50 nm on the average. The sintered magnet exhibits a coercivity of at least 800kA/m (10kOe). Continuing experiments to establish appropriate processing conditions, the inventors have completed the invention.

    [0016] It is noted that Patent Document 1 recites a low cooling rate after sintering. Even if R-Fe(Co)-Si grain boundary phase forms a grain boundary triple junction, in fact, the R-Fe(Co)-Si grain boundary phase does not enough cover the main phase or form a intergranular grain boundary phase un-continuously. Because of same reason, Patent Document 2 fails to establish the core/shell structure that the main phase is covered with the R-Fe(Co)-M1 grain boundary phase. Patent Document 3 does not refer to the cooling rate after sintering and post-sintering heat treatment, and it does not describe that an intergranular grain boundary phase is formed. The magnet of Patent Document 4 has a grain boundary phase containing R-rich phase and a ferromagnetic transition metal-rich phase with 25 to 35 at% of R, whereas the R-Fe(Co)-M1 phase of the present magnet is not a ferromagnetic phase but an anti-ferromagnetic phase. The post-sintering heat treatment in Patent Document 4 is carried out at the temperature below the peritectic temperature of R-Fe(Co)-M1 phase, whereas the post-sintering heat treatment in the invention is carried out at the temperature above the peritectic temperature of R-Fe(Co)-M1 phase.

    [0017] Patent Document 5 describes that post-sintering heat treatment is carried out at 400 to 800°C in an argon atmosphere, but it does not refer to the cooling rate. The description of the structure suggests the lack of the core/shell structure that the main phase is covered with the R-Fe(Co)-M1 phase. In Patent Document 6, it is described that the cooling rate of post-sintering heat treatment is preferably at least 100°C/min, especially at least 300°C/min. The sintered magnet above obtained contains crystalline R6T13M1 phase and amorphous or nano-crystalline R-Cu phase. Herein, the R-Fe(Co)-M1 phase in the sintered magnet is amorphous or nano-crystalline.

    [0018] The Patent Document 7 provides the magnet contain the Nd2Fe14B main phase, an intergranular grain boundary and a grain boundary triple junction. In addition, the thickness of the intergranular grain boundary is in range of 5nm to 30nm. However the thickness of the intergranular grain boundary phase is too small to achieve a sufficient improvement in the coercivity. Patent Document 8 describes in Example section substantially the same method for preparing sintered magnet as Patent Document 7, suggesting that the thickness (phase width) of the intergranular grain boundary phase is small. Described herein is an R-Fe-B base sintered magnet of a composition consisting essentially of 12 to 17 at% of R which is at least two elements selected from yttrium and rare earth elements and essentially contains Nd and Pr, 0.1 to 3 at% of M1, which is at least one element selected from the group consisting of Si, Al, Mn, Ni, Cu, Zn, Ga, Ge, Pd, Ag, Cd, In, Sn, Sb, Pt, Au, Hg, Pb, and Bi, 0.05 to 0.5 at% of M2 which is at least one element selected from the group consisting of Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, and W, 4.8+2×m to 5.9+2×m at% of B wherein m stands for atomic concentration of M2, up to 10 at% of Co, up to 0.5 at% of carbon, up to 1.5 at% of oxygen, up to 0.5 at% of nitrogen, and the balance of Fe, containing R2(Fe,Co)14B intermetallic compounds as a main phase, and having a coercivity of at least 800kA/m (10kOe) at room temperature. The magnet contains an M2 boride phase at grain boundary triple junctions, but not including R1.1Fe4B4 compound phase, has a core/shell structure that the main phase is covered with grain boundary phase comprising an amorphous and/or sub-10 nm nano-crystalline R-Fe(Co)-M1 phase consisting essentially of 25 to 35 at% of R, 2 to 8 at% of M1, up to 8 at% of Co, and the balance of Fe, or the R-Fe(Co)-M1 phase and a crystalline or a sub-10 nm nano-crystalline and amorphous R-M1 phase having at least 50 at% of R, wherein the R-Fe(Co)-M1 phase exists outside of and surrounding the main phase, and wherein a surface area coverage of the R-Fe(Co)-M1 phase on main phase is at least 50%, and the width of the intergranular grain boundary phase is at least 10 nm and at least 50 nm on the average. It is noted that R, M1 and M2 are as defined above.

    [0019] Preferably, in the R-Fe(Co)-M1 phase, M1 consists of 0.5 to 50 at% of Si and the balance of at least one element selected from the group consisting of Al, Mn, Ni, Cu, Zn, Ga, Ge, Pd, Ag, Cd, In, Sn, Sb, Pt, Au, Hg, Pb, and Bi. Also preferably, in the R-Fe(Co)-M1 phase, M1 consists of 1.0 to 80 at% of Ga and the balance of at least one element selected from the group consisting of Si, Al, Mn, Ni, Cu, Zn, Ge, Pd, Ag, Cd, In, Sn, Sb, Pt, Au, Hg, Pb, and Bi. Yet preferably, in the R-Fe(Co)-M1 phase, M1 consists of 0.5 to 50 at% of Al and the balance of at least one element selected from the group consisting of Si, Mn, Ni, Cu, Zn, Ga, Ge, Pd, Ag, Cd, In, Sn, Sb, Pt, Au, Hg, Pb, and Bi.

    [0020] Typically the sintered magnet has a total content of Dy, Tb and Ho which is 0 to 5.0 at%.

    [0021] As specified in claim 1, the invention relates to a method for preparing the R-Fe-B base sintered magnet defined above, consisting of the steps of:

    shaping an alloy powder into a green compact, the alloy powder being obtained by finely pulverizing an alloy consisting essentially of 12 to 17 at% of R which is at least two elements selected from yttrium and rare earth elements and essentially contains Nd and Pr, 0.1 to 3 at% of M1 which is at least one element selected from the group consisting of Si, Al, Mn, Ni, Cu, Zn, Ga, Ge, Pd, Ag, Cd, In, Sn, Sb, Pt, Au, Hg, Pb, and Bi, 0.05 to 0.5 at% of M2 which is at least one element selected from the group consisting of Ti, V, Cr, Zr, Nb, Mo, Hf, Ta and W, 4.8+2×m to 5.9+2×m at% of B wherein m stands for atomic concentration of M2, up to 10 at% of Co, and the balance of Fe,

    sintering the green compact at a temperature of 1,000 to 1,150°C,

    cooling the sintered compact to a temperature of 400°C or below,

    post-sintering heat treatment including heating the sintered compact at a temperature in the range of 700 to 1,100°C which temperature is exceeding peritectic temperature of R-Fe(Co)-M1 phase, and cooling down to a temperature of 400°C or below at a rate of 5 to 100°C/min, and

    aging treatment including exposing the sintered compact at a temperature in the range of 400 to 600°C which temperature is lower than the peritectic temperature of R-Fe(Co)-M1 phase so as to form the R-Fe(Co)-M1 phase at a grain boundary, and cooling down to a temperature of 200°C or below.



    [0022] As specified in claim 2, the invention also relates to a method for preparing the R-Fe-B base sintered magnet defined above, consisting of the steps of:

    shaping an alloy powder as defined above into a green compact,

    sintering the green compact at a temperature of 1,000 to 1,150°C,

    cooling the sintered compact to a temperature of 400°C or below at a rate of 5 to 100°C/min, and

    aging treatment including exposing the sintered compact at a temperature in the range of 400 to 600°C which temperature is lower than the peritectic temperature of R-Fe(Co)-M1 phase so as to form the R-Fe(Co)-M1 phase at a grain boundary, and cooling down to a temperature of 200°C or below.



    [0023] Typically, the alloy contains Dy, Tb and Ho in a total amount of 0 to 5.0 at%.

    [0024] The R-Fe-B base sintered magnet described herein exhibits a coercivity of at least 800kA/m (10kOe) despite a low or nil content of Dy, Tb and Ho.

    BRIEF DESCRIPTION OF DRAWINGS



    [0025] 

    FIG. 1 is a Back scatter electron image (×3000) in cross section of a sintered magnet in Example 1, observed under electron probe microanalyzer (EPMA).

    FIG. 2a is an electron image of grain boundary phase in the sintered magnet in Example 1, observed under TEM; FIG. 2b is an electron beam diffraction pattern at point "a" in FIG. 2a.

    FIG. 3 is a bright-field image of a sintered magnet in Example 11.

    FIG. 4 is a Back scatter electron image in cross section of a sintered magnet in Comparative Example 2, observed under EPMA.


    FURTHER DEFINITIONS; OPTIONS; AND PREFERENCES



    [0026] First, the composition of the R-Fe-B sintered magnet is described. The magnet has a composition (expressed in atomic percent) consisting essentially of 12 to 17 at%, preferably 13 to 16 at%, of R, 0.1 to 3 at%, preferably 0.5 to 2.5 at%, of M1, 0.05 to 0.5 at% of M2, 4.8+2×m to 5.9+2×m at% of B wherein m stands for atomic concentration of M2, up to 10 at% of Co, up to 0.5 at% of carbon, up to 1.5 at% of oxygen, up to 0.5 at% of nitrogen, and the balance of Fe.

    [0027] Herein, R is at least two elements selected from yttrium and rare earth elements and essentially contains neodymium (Nd) and praseodymium (Pr). Preferably the total amount of Nd and Pr account for 80 to 100 at% of R. When the content of R in the sintered magnet is less than 12 at%, the coercivity of the magnet extremely decreases. When the content of R is more than 17 at%, the remanence (residual magnetic flux density, Br) of the magnet extremely decreases. Notably Dy, Tb and Ho may not be contained as R, and if any, the total amount of Dy, Tb and Ho is preferably up to 5.0 at% (i.e., 0 to 5.0 at%), more preferably up to 4.0 at% (i.e., 0 to 4.0 at%), even more preferably up to 2.0 at% (i.e., 0 to 2.0 at%), and especially up to 1.5 at% (i.e., 0 to 1.5 at%).

    [0028] M1 is at least one element selected from the group consisting of Si, Al, Mn, Ni, Cu, Zn, Ga, Ge, Pd, Ag, Cd, In, Sn, Sb, Pt, Au, Hg, Pb, and Bi. When the content of M1 is less than 0.1 at%, the R-Fe(Co)-M1 grain boundary phase is present in an insufficient proportion to improve the coercivity. When the content of M1 is more than 3 at%, the squareness of the magnet get worse and the remanence of the magnet decreases significantly. The content of M1 is preferably 0.1 to 3 at%.

    [0029] An element M2 to form a stable boride is added for the purpose of inhibiting abnormal grain growth during sintering. M2 is at least one element selected from the group consisting of Ti, V, Cr, Zr, Nb, Mo, Hf, Ta and W. M2 is desirably added in an amount of 0.05 to 0.5 at%, which enables sintering at a relatively high temperature, leading to improvements in squareness and magnetic properties.

    [0030] In particular, the upper limit of B is crucial. If the boron (B) content exceeds (5.9+2×m) at% wherein m stands for atomic concentration of M2, the R-Fe(Co)-M1 phase is not formed in grain boundary, but an R1.1Fe4B4 compound phase, which is so-called B-rich phase, is formed. As long as the present investigation is concerned, when the B-rich phase is present in the magnet, the coercivity of the magnet cannot be enhanced enough. If the B content is less than (4.8+2×m) at%, the percent volume of the main phase is reduced so that magnetic properties of the magnet become worse. For this reason, the B content is better to be (4.8+2×m) to (5.9+2×m) at%, preferably (4.9+2×m) to (5.7+2×m) at%.

    [0031] The addition of Cobalt (Co) to the magnet is optional. For the purpose of improving Curie temperature and corrosion resistance, Co may substitute for up to 10 at%, preferably up to 5 at% of Fe. Co substitution in excess of 10 at% is undesirable because of a substantial loss of the coercivity of the magnet.

    [0032] For the magnet, the contents of oxygen, carbon and nitrogen are desirably as low as possible. In the production process of the magnet, contaminations of such elements cannot be avoided completely. An oxygen content of up to 1.5 at%, especially up to 1.2 at%, a carbon content of up to 0.5 at%, especially up to 0.4 at%, and a nitrogen content of up to 0.5 at%, especially up to 0.3 at% are permissible. The inclusion of up to 0.1 at% of other elements such as H, F, Mg, P, S, Cl and Ca as the impurity is permissible, and the content thereof is desirably as low as possible.

    [0033] The balance is iron (Fe). The Fe content is preferably 70 to 80 at%, more preferably 75 to 80 at%.

    [0034] An average grain size of the magnet is up to 6 µm, preferably 1.5 to 5.5 µm, and more preferably 2.0 to 5.0 µm, and an orientation of the c-axis of R2Fe14B grains, which is an easy axis of magnetization, preferably is at least 98%. The average grain size is measured as follows. First, a cross-section of sintered magnet is polished, immersed into an etchant such as vilella solution (mixture of glycerol : nitric acid : hydrochloric acid = 3:1:2) for selectively etching the grain boundary phase, and observed under a laser microscope. On analysis of the image, the cross-sectional area of individual grains is determined, from which the diameter of an equivalent circle is computed. Based on the data of area fraction of each grain size, the average grain size is determined. The average grain size is the average of about 2,000 grain sizes at the different 20 images. The average grain size of the sintered body is controlled by reducing the average particle size of the fine powder during pulverizing.

    [0035] The microstructure of the magnet contains R2(Fe,(Co))14B phase as a main phase, and R-Fe(Co)-M1 phase and R-M1 phase as a grain boundary phase. The R-Fe(Co)-M1 phase accounts for preferably at least 1% by volume. If the R-Fe(Co)-M1 grain boundary phase is less than 1 vol%, a enough high coercivity cannot be obtained. The R-Fe(Co)-M1 grain boundary phase is desirably present in a proportion of 1 to 20% by volume, more desirably 1 to 10% by volume. If the R-Fe(Co)-M1 grain boundary phase is more than 20 vol%, there may be accompanied a substantial loss of remanence. Herein, the main phase is preferably free of a solid solution of an element other than the above-identified elements. Also R-M1 phase may coexist. Notably precipitation of R2(Fe,(Co))17 phase is not confirmed. Also the magnet contains M2 boride phase at the grain boundary triple junction, but not R1.1Fe4B4 compound phase. R-rich phase, and phases formed from inevitable elements included in the production process of the magnet such as R oxide, R nitride, R halide and R acid halide may be contained.

    [0036] The R-Fe(Co)-M1 grain boundary phase is a compound containing Fe or Fe and Co, and considered as an intermetallic compound phase having a crystal structure of space group 14/mcm, for example, R6Fe13Ga1. On quantitative analysis by electron probe microanalyzer (EPMA), this phase consists of 25 to 35 at% of R, 2 to 8 at% of M1, 0 to 8 at% of Co, and the balance of Fe, the range being inclusive of measurement errors. A Co-free magnet composition may be contemplated, and in this case, as a matter of course, neither the main phase nor the R-Fe(Co)-M1 grain boundary phase contains Co. The R-Fe(Co)-M1 grain boundary phase is distributed around main phases such that neighboring main phases are magnetically divided, leading to an enhancement in the coercivity.

    [0037] In the R-Fe(Co)-M1 phase, it is preferred that M1 consists of 0.5 to 50 at% (based on M1) of Si and the balance of at least one element selected from the group consisting of Al, Mn, Ni, Cu, Zn, Ga, Ge, Pd, Ag, Cd, In, Sn, Sb, Pt, Au, Hg, Pb, and Bi; 1.0 to 80 at% (based on M1) of Ga and the balance of at least one element selected from the group consisting of Si, Al, Mn, Ni, Cu, Zn, Ge, Pd, Ag, Cd, In, Sn, Sb, Pt, Au, Hg, Pb, and Bi; or 0.5 to 50 at% (based on M1) of Al and the balance of at least one element selected from the group consisting of Si, Mn, Ni, Cu, Zn, Ga, Ge, Pd, Ag, Cd, In, Sn, Sb, Pt, Au, Hg, Pb, and Bi. These elements can form stable intermetallic compounds such as R6Fe13Ga1 and R6Fe13Si1 as mentioned above, and are capable of relative substitution at M1 site. Multiple additions of such elements at M1 site does not bring a significant difference in magnetic properties, but in practice, achieves stabilization of magnet quality by reducing the variation of magnetic properties and a cost reduction by reducing the amount of expensive elements.

    [0038] The width of the R-Fe(Co)-M1 phase in intergranular grain boundary is preferably at least 10nm, more preferably 10 to 500 nm, even more preferably 20 to 300 nm. If the width of the R-Fe(Co)-M1 is less than 10 nm, a coercivity enhancement effect due to magnetic decoupling is not obtainable. Also preferably the width of the R-Fe(Co)-M1 grain boundary phase is at least 50 nm on an average, more preferably 50 to 300 nm, and even more preferably 50 to 200 nm.

    [0039] The R-Fe(Co)-M1 phase intervenes between neighboring R2Fe14B main phases as intergranular grain boundary phase, and is distributed around main phase so as to cover the main phase, that is, forms a core/shell structure with the main phase. A ratio of surface area coverage of the R-Fe(Co)-M1 phase relative to the main phase is at least 50%, preferably at least 60%, and more preferably at least 70%, and the R-Fe(Co)-M1 phase may even cover overall the main phase. The balance of the intergranular grain boundary phase around the main phase is R-M1 phase containing at least 50% of R.

    [0040] The crystal structure of the R-Fe(Co)-M1 phase is amorphous, nano-crystalline or nano-crystalline including amorphous while the crystal structure of the R-M1 phase is crystalline or nano-crystalline including amorphous. Preferably nano-crystalline grains have a size of up to 10 nm. As crystallization of the R-Fe(Co)-M1 phase proceeds, the R-Fe(Co)-M1 phase agglomerates at the grain boundary triple junction, and the width of the intergranular grain boundary phase becomes thinner and discontinuous, as a result the coercivity of the magnet decrease significantly. Also as crystallization of the R-Fe(Co)-M1 phase proceeds, R-rich phase may form at the interface between the main phase and the grain boundary phase as the by-product of peritectic reaction, but the formation of the R-rich phase itself does not contribute to a substantial improvement in the coercivity.

    [0041] Now the method for preparing an R-Fe-B base sintered magnet having the above-defined structure is described. The method generally involves grinding and milling of a mother alloy, pulverizing a coarse powder, compaction into a green body applying an external magnetic field, and sintering.

    [0042] The mother alloy is prepared by melting raw metals or alloys in vacuum or an inert gas atmosphere, preferably argon atmosphere, and casting the melt into a flat mold or book mold or strip casting. If primary crystal of α-Fe is left in the cast alloy, the alloy may be heat-treated at 700 to 1,200°C for at least one hour in vacuum or in an Ar atmosphere to homogenize the microstructure and to erase α-Fe phases.

    [0043] The cast alloy is crushed or coarsely grinded to a size of typically 0.05 to 3 mm, especially 0.05 to 1.5 mm. The crushing step generally uses a Brown mill or hydrogen decrepitation. For the alloy prepared by strip casting, hydrogen decrepitation is preferred. The coarse powder is then pulverized on a jet mill by a high-pressure nitrogen gas, for example, into a fine particle powder with a particle size of typically 0.2 to 30 µm, especially 0.5 to 20 µm on an average. If desired, a lubricant or other additives may be added in any of crushing, milling and pulverizing processes.

    [0044] Binary alloy method is also applicable to the preparation of the magnet alloy power. In this method, a mother alloy with a composition of approximate to the R2-T14-B1 and a sintering aid alloy with R-rich composition are prepared respectively. The alloy is milled into the coarse powder independently, and then mixture of alloy powder of mother alloy and sintering aid is pulverized as well as above mentioned. To prepare the sintering aid alloy, not only the casting technique mentioned above, but also the melt span technique may be applied.

    [0045] The composition of the alloy is essentially 12 to 17 at% of R which is at least two elements selected from yttrium and rare earth elements and essentially contains Nd and Pr, 0.1 to 3 at% of M1 which is at least one element selected from the group consisting of Si, Al, Mn, Ni, Cu, Zn, Ga, Ge, Pd, Ag, Cd, In, Sn, Sb, Pt, Au, Hg, Pb, and Bi, 0.05 to 0.5 at% of M2 which is at least one element selected from the group consisting of Ti, V, Cr, Zr, Nb, Mo, Hf, Ta and W, 4.8+2×m to 5.9+2×m at% of B wherein m stands for atomic concentration of M2, up to 10 at% of Co, and the balance of Fe.

    [0046] The fine powder above obtained is compacted under an external magnetic field by a compression molding machine. The green compact is then sintered in a furnace in vacuum or in an inert gas atmosphere typically at a temperature of 900 to 1,250°C, preferably 1,000 to 1,150°C for 0.5 to 5 hours.

    [0047] In a first embodiment of the method for preparing a sintered magnet having the above-defined structure, the compact as sintered above is cooled to a temperature of 400°C or below, especially 300°C or below, typically room temperature. The cooling rate is preferably 5 to 100°C/min, more preferably 5 to 50°C/min, though not limited thereto. After sintering, the sintered compact is heated at a temperature in the range of 700 to 1,100°C which temperature is exceeding peritectic temperature of R-Fe(Co)-M1 phase. (It is called post-sintering heat treatment.) The heating rate is preferably 1 to 20°C/min, more preferably 2 to 10°C/min, though not limited thereto. The peritectic temperature depends on the additive elements of M1. For example, the peritectic temperature is 640°C at M1 = Cu, 750 to 820°C at M1 = Al, 850°C at M1 = Ga, 890°C at M1 = Si, and 1,080°C at M1 = Sn. The holding time at the temperature is preferably at least 1 hour, more preferably 1 to 10 hours, and even more preferably 1 to 5 hours. The heat treatment atmosphere is preferably vacuum or an inert gas atmosphere such as Ar gas.

    [0048] After the post-sintering heat treatment, the sintered compact is cooled down to a temperature of 400°C or below, preferably 300°C or below. The cooling rate down to 400°C or below is 5 to 100°C/min, preferably 5 to 80°C/min, and more preferably 5 to 50°C/min. If the cooling rate is less than 5°C/min, then R-Fe(Co)-M1 phase segregates at the grain boundary triple junction, and magnetic properties are degraded substantially. A cooling rate of more than 100°C/min is effective for inhibiting precipitation of R-Fe(Co)-M1 phase during the cooling, but the dispersion of R-M1 phase in the microstructure is insufficient. As a result, squareness of the sintered magnet becomes worse.

    [0049] The aging treatment is performed after post-sintering heat treatment. The aging treatment is desirably carried out at a temperature of 400 to 600°C, more preferably 400 to 550°C, and even more preferably 450 to 550°C, for 0.5 to 50 hours, more preferably 0.5 to 20 hours, and even more preferably 1 to 20 hours, in vacuum or an inert gas atmosphere such as Ar gas. The temperature is lower than the peritectic temperature of R-Fe(Co)-M1 phase so as to form the R-Fe(Co)-M1 phase at a grain boundary. If the aging temperature is blow 400°C, a reaction rate of forming R-Fe(Co)-M1 phase is too slow. If the aging temperature is above 600°C, the reaction rate to form R-Fe(Co)-M1 phase increases significantly so that the R-Fe(Co)-M1 grain boundary phase segregates at the grain boundary triple junction, and magnetic properties are degraded substantially. The heating rate to a temperature in the range of 400 to 600°C is preferably 1 to 20°C/min, more preferably 2 to 10°C/min, though not limited thereto.

    [0050] In a second embodiment of the method for preparing a sintered magnet having the above-defined structure, the compact as sintered above is cooled to a temperature of 400°C or below, especially 300°C or below. The cooling rate is critical. The sintered compact is cooled down to a temperature of 400°C or below at a cooling rate of 5 to 100°C/min, preferably 5 to 50°C/min.

    [0051] If the cooling rate is less than 5°C/min, then R-Fe(Co)-M1 phase segregates at the grain boundary triple junction, and magnetic properties are substantially degraded. A cooling rate of more than 100°C/min is effective for inhibiting precipitation of R-Fe(Co)-M1 phase during the cooling, but the dispersion of R-M1 phase in the microstructure is insufficient. As a result, squareness of the sintered magnet becomes worse.

    [0052] After the sintered compact is cooled as above described, aging treatment is carried out as well as the first embodiment of the method. That is, the aging treatment is by holding the sintered compact at a temperature in the range of 400 to 600°C and not higher than the peritectic temperature of R-Fe(Co)-M1 phase so as to form the R-Fe(Co)-M1 phase at a grain boundary. If the aging temperature is below 400°C, a reaction rate to form R-Fe(Co)-M1 phase is too slow. If the aging temperature is above 600°C, the reaction rate to form R-Fe(Co)-M1 phase increases significantly so that the R-Fe(Co)-M1 grain boundary phase segregates at the grain boundary triple junction, and magnetic properties are substantially degraded. The aging time is preferably 0.5 to 50 hours, more preferably 0.5 to 20 hours, and even more preferably 1 to 20 hours in vacuum or an inert gas atmosphere such as Ar gas. The heating rate to a temperature in the range of 400 to 600°C is preferably 1 to 20°C/min, more preferably 2 to 10°C/min, though not limited thereto.

    EXAMPLE



    [0053] Examples of magnets afforded by methods of the present invention are given below for further illustrating the invention although the invention is not limited thereto.

    Examples 1 to 12 & Comparative Examples 1 to 7



    [0054] The alloy was prepared specifically by using rare earth metals (Neodymium or Didymium), electrolytic iron, Co, ferro-boron and other metals and alloys, weighing them with a designated composition, melting at high-frequency induction furnace in an Ar atmosphere, and casting the molten alloy on the water-cooling copper roll. The thickness of the obtained alloy was about 0.2 to 0.3 mm. The alloy was powdered by the hydrogen decrepitation process, that is, hydrogen absorption at normal temperature and subsequent heating at 600°C in vacuum for hydrogen desorption. A stearic acid as lubricant with the amount of 0.07 wt% was added and mixed to the coarse alloy powder. The coarse powder was pulverized into a fine powder with a particle size of about 3 µm on an average by using a jet milling machine with a nitrogen jet stream. Fine powder was molded while applying a magnetic field of 1200kA/m (15kOe) for orientation. The green compact was sintered in vacuum at 1,050 to 1,100°C for 3 hours, and cooled below 200°C. The sintered body was post-sintered at 900°C for 1 hour, cooled to 200°C, and heat-treated for aging for 2 hours. Table 1 tabulates the composition of a magnet, although oxygen, nitrogen and carbon concentrations are shown in Table 2. The condition of the heat treatment such as a cooling rate from 900°C to 200°C, aging treatment temperature, and magnetic properties are shown in Table 2. The composition of R-Fe(Co)-M1 phase is shown in Table 3.



    Table 3
     R-Fe(Co)-M1 phase (at%)
    NdPrFeCoCuAlGaSiAg
    Example 1 21.9 7.1 61.4 1.3 0.6 1.0 4.3 0.1  
    2 21.5 6.9 62.3 1.4 0.8 0.9 5.1 0.1  
    3 22.3 7.6 59.8 1.8 0.7 1.0 2.9 2.5  
    4 22.8 7.2 59.7 1.6 0.9 0.8 3.2 2.1  
    5 22.2 7.1 61.7 1.2 0.8 0.9 5.0 0.1  
    6 21.7 7.0 62.4 1.1 0.8 0.8 4.8 0.1  
    7 22.5 7.1 61.3 1.1 0.9 1.0 5.2 0.1  
    8 22.3 7.0 61.1 1.2 0.8 1.0 5.1 0.1  
    9 22.8 7.5 59.8 1.1 0.7 0.7 4.2 0.1 2.1
    10 21.5 6.9 61.0 1.1 0.7 0.7 3.5 1.1 1.9
    11 21.9 7.0 61.5 1.0 0.7 1.0 4.2 1.9  
    12 22.1 6.8 61.2 1.1 0.6 0.8 3.8 2.1  


    [0055] In those examples with Cu and Ag added, although the cooling rate after post-sintering heat treatment was slower than other examples, values of the coercivity after aging heat treatment keep same level such as more than 1520kA/m (19kOe) because the peritectic temperatures of R-Fe(Co)-M1 phase were decreased due to addition of Cu and Ag.

    [0056] In those examples with various amounts of Zr addition, ZrB2 phase formed preferentially during sintering and precipitated at the grain boundary triple junction. This inhibits abnormal grain growth during sintering and enables sintering at a higher temperature, for thereby improving squareness of sintered magnets.

    [0057] The content of R in R-M1 phase was 50 to 92 at%.

    [0058] A cross section of the sintered magnet obtained in Example 1 was observed under an electron probe microanalyzer (EPMA). As shown in FIG. 1, a grain boundary phase (R-Fe(CO)-M1 phase, R-M1 phase) covering a main phase (R2(Fe,Co)14B) was observed. Further, the grain boundary phase covering the main phase was observed under a transmission electron microscope (TEM). As shown in FIG. 2a, the grain boundary phase had a thickness (or phase width) of about 200 nm. The EDX and the diffraction image of FIG. 2b at point "a" in FIG. 2a demonstrate the presence of R3(CoGa)1 phase and R-Fe(Co)-M1 phase which are amorphous or nanocrystalline.

    [0059] FIG. 3 is a bright-field image of intergranular grain boundary phase in the magnet prepared in Example 11. It is seen that an interface extends obliquely from the upper side to the lower side of the figure. On the right of the interface, the presence of R2(Fe,(Co))14B phase with a crystalline could be observed, and on the other side of the interface, nanocrystalline R-Fe(Co)-M1 phase with a size of about 5 nm in grain boundary could be observed.

    [0060] FIG. 4 is an image of a cross section of the sintered magnet in Comparative Example 2 as observed under EPMA. Since the cooling rate of the post-sintering heat treatment was too slow, the R-Fe(Co)-M1 phase was discontinuous at the intergranular grain boundary and segregates corpulently at the grain boundary triple junction. It was confirmed that a size of the R-Fe(Co)-M1 phase segregated at the grain boundary triple junction were more than 10 nm by the observation under TEM.

    Example 13



    [0061] The alloy was prepared specifically by using rare earth metals (Neodymium or Didymium), electrolytic iron, Co, ferro-boron and other metals and alloys, weighing them with the same composition as in Example 1, melting at high-frequency induction furnace in an Ar atmosphere, and casting the molten alloy on the water-cooling copper roll. The thickness of the obtained alloy was about 0.2 to 0.3 mm. The alloy was powdered by the hydrogen decrepitation process, that is, hydrogen absorption at normal temperature and subsequent heating at 600°C in vacuum for hydrogen desorption. A stearic acid as lubricant with the amount of 0.07 wt% was added and mixed to the coarse alloy powder. The coarse powder was pulverized into a fine powder with a particle size of about 3 µm on an average by using a jet milling machine with a nitrogen jet stream. Fine powder was molded while applying a magnetic field of 1200kA/m (15kOe) for orientation. The green compact was sintered in vacuum at 1,080°C for 3 hours, and cooled below 200°C at a cooling rate of 25°C/min. Then, the sintered body was heat-treated for aging at 450°C for 2 hours. The aging treatment temperature, and magnetic properties are shown in Table 4. The composition of R-Fe(Co)-M1 phase was substantially the same as in Example 1.



    [0062] Although some preferred embodiments have been described, many modifications and variations may be made thereto in light of the above teachings. It is therefore to be understood that the invention may be practiced otherwise than as specifically described without departing from the scope of the appended claims.

    [0063] In respect of numerical ranges disclosed in the present description it will of course be understood that in the normal way the technical criterion for the upper limit is different from the technical criterion for the lower limit, i.e. the upper and lower limits are intrinsically distinct proposals.

    [0064] For the avoidance of doubt it is confirmed that in the general description above, in the usual way the proposal of general preferences and options in respect of different features of the magnets and methods constitutes the proposal of general combinations of those general preferences and options for the different features, insofar as they are combinable and compatible and are put forward in the same context.


    Claims

    1. A method for preparing an R-Fe-B base sintered magnet of a composition consisting essentially of 12 to 17 at% of R which is at least two of yttrium and rare earth elements and essentially contains Nd and Pr, 0.1 to 3 at% of M1 which is at least one element selected from the group consisting of Si, Al, Mn, Ni, Cu, Zn, Ga, Ge, Pd, Ag, Cd, In, Sn, Sb, Pt, Au, Hg, Pb, and Bi, 0.05 to 0.5 at% of M2 which is at least one element selected from the group consisting of Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, and W, 4.8+2×m to 5.9+2×m at% of B wherein m stands for atomic concentration of M2, up to 10 at% of Co, up to 0.5 at% of carbon, up to 1.5 at% of oxygen, up to 0.5 at% of nitrogen, and the balance of Fe, containing R2(Fe,(Co))14B intermetallic compound as a main phase, and having a coercivity of at least 800kA/m (10kOe) at room temperature, wherein
    the magnet contains an M2 boride phase at grain boundary triple junctions, but not including R1.1Fe4B4 compound phase, has a core/shell structure that the main phase is covered with grain boundary phase comprising an amorphous and/or sub-10 nm nanocrystalline R-Fe(Co)-M1 phase consisting essentially of 25 to 35 at% of R, 2 to 8 at% of M1, up to 8 at% of Co, and the balance of Fe, or the R-Fe(Co)-M1 phase and a crystalline or a sub-10 nm nano-crystalline and amorphous R-M1 phase having at least 50 at% of R, wherein the R-Fe(Co)-M1 phase exists outside of and surrounding the main phase, and wherein a surface area coverage of the R-Fe(Co)-M1 phase on the main phase is at least 50%, and the width of the intergranular grain boundary phase is at least 10 nm and at least 50 nm on the average, the method consisting of the steps of:

    shaping an alloy powder into a green compact, the alloy powder being obtained by finely pulverizing an alloy consisting essentially of 12 to 17 at% of R which is at least two of yttrium and rare earth elements and essentially contains Nd and Pr, 0.1 to 3 at% of M1 which is at least one element selected from the group consisting of Si, Al, Mn, Ni, Cu, Zn, Ga, Ge, Pd, Ag, Cd, In, Sn, Sb, Pt, Au, Hg, Pb, and Bi, 0.05 to 0.5 at% of M2 which is at least one element selected from the group consisting of Ti, V, Cr, Zr, Nb, Mo, Hf, Ta and W, 4.8+2×m to 5.9+2×m at% of B wherein m stands for atomic concentration of M2, up to 10 at% of Co, and the balance of Fe,

    sintering the green compact at a temperature of 1,000 to 1,150°C,

    cooling the sintered compact to a temperature of 400°C or below,

    post-sintering heat treatment including heating the sintered compact at a temperature in the range of 700 to 1,100°C which temperature is exceeding peritectic temperature of R-Fe(Co)-M1 phase, and cooling down to a temperature of 400°C or below at a rate of 5 to 100°C/min, and

    aging treatment including exposing the sintered compact at a temperature in the range of 400 to 600°C which temperature is lower than the peritectic temperature of R-Fe(Co)-M1 phase so as to form the R-Fe(Co)-M1 phase at a grain boundary, and cooling down to a temperature of 200°C or below.


     
    2. A method for preparing an R-Fe-B base sintered magnet of a composition consisting essentially of 12 to 17 at% of R which is at least two of yttrium and rare earth elements and essentially contains Nd and Pr, 0.1 to 3 at% of M1 which is at least one element selected from the group consisting of Si, Al, Mn, Ni, Cu, Zn, Ga, Ge, Pd, Ag, Cd, In, Sn, Sb, Pt, Au, Hg, Pb, and Bi, 0.05 to 0.5 at% of M2 which is at least one element selected from the group consisting of Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, and W, 4.8+2×m to 5.9+2×m at% of B wherein m stands for atomic concentration of M2, up to 10 at% of Co, up to 0.5 at% of carbon, up to 1.5 at% of oxygen, up to 0.5 at% of nitrogen, and the balance of Fe, containing R2(Fe,(Co))14B intermetallic compound as a main phase, and having a coercivity of at least 800kA/m (10kOe) at room temperature, wherein
    the magnet contains an M2 boride phase at grain boundary triple junctions, but not including R1.1Fe4B4 compound phase, has a core/shell structure that the main phase is covered with grain boundary phase comprising an amorphous and/or sub-10 nm nanocrystalline R-Fe(Co)-M1 phase consisting essentially of 25 to 35 at% of R, 2 to 8 at% of M1, up to 8 at% of Co, and the balance of Fe, or the R-Fe(Co)-M1 phase and a crystalline or a sub-10 nm nano-crystalline and amorphous R-M1 phase having at least 50 at% of R, wherein the R-Fe(Co)-M1 phase exists outside of and surrounding the main phase, and wherein a surface area coverage of the R-Fe(Co)-M1 phase on the main phase is at least 50%, and the width of the intergranular grain boundary phase is at least 10 nm and at least 50 nm on the average, the method consisting of the steps of:

    shaping an alloy powder into a green compact, the alloy powder being obtained by finely pulverizing an alloy consisting essentially of 12 to 17 at% of R which is at least two of yttrium and rare earth elements and essentially contains Nd and Pr, 0.1 to 3 at% of M1 which is at least one element selected from the group consisting of Si, Al, Mn, Ni, Cu, Zn, Ga, Ge, Pd, Ag, Cd, In, Sn, Sb, Pt, Au, Hg, Pb, and Bi, 0.05 to 0.5 at% of M2 which is at least one element selected from the group consisting of Ti, V, Cr, Zr, Nb, Mo, Hf, Ta and W, 4.8+2×m to 5.9+2×m at% of B wherein m stands for atomic concentration of M2, up to 10 at% of Co, and the balance of Fe,

    sintering the green compact at a temperature of 1,000 to 1,150°C,

    cooling the sintered compact to a temperature of 400°C or below at a rate of 5 to 100°C/min, and

    aging treatment including exposing the sintered compact at a temperature in the range of 400 to 600°C which temperature is lower than the peritectic temperature of R-Fe(Co)-M1 phase so as to form the R-Fe(Co)-M1 phase at a grain boundary, and cooling down to a temperature of 200°C or below.


     
    3. The method of claim 1 or claim 2 wherein in the R-Fe(Co)-M1 phase, M1 consists of 0.5 to 50 at% of Si and the balance of at least one element selected from the group consisting of Al, Mn, Ni, Cu, Zn, Ga, Ge, Pd, Ag, Cd, In, Sn, Sb, Pt, Au, Hg, Pb, and Bi.
     
    4. The method of claim 1 or claim 2 wherein in the R-Fe(Co)-M1 phase, M1 consists of 1.0 to 80 at% of Ga and the balance of at least one element selected from the group consisting of Si, Al, Mn, Ni, Cu, Zn, Ge, Pd, Ag, Cd, In, Sn, Sb, Pt, Au, Hg, Pb, and Bi.
     
    5. The method of claim 1 or claim 2 wherein in the R-Fe(Co)-M1 phase, M1 consists of 0.5 to 50 at% of Al and the balance of at least one element selected from the group consisting of Si, Mn, Ni, Cu, Zn, Ga, Ge, Pd, Ag, Cd, In, Sn, Sb, Pt, Au, Hg, Pb, and Bi.
     
    6. The method of any one of claims 1 to 5 wherein a total content of Dy, Tb and Ho is 0 to 5.0 at%.
     
    7. The method of any one of claims 1 to 6, wherein the R-Fe(Co)-M1 grain boundary phase accounts for 1 to 20 vol.%.
     
    8. The method of any one of claims 1 to 7, wherein the width of the R-Fe(Co)-M1 phase in the intergranular grain boundary is 10 to 500 nm.
     
    9. The method of any one of claims 1 to 8, wherein the surface area coverage of the R-Fe(Co)-M1 grain boundary phase over the main phase is at least 50%.
     


    Ansprüche

    1. Verfahren zur Herstellung eines Sintermagneten auf R-Fe-B-Basis mit einer Zusammensetzung, die im Wesentlichen aus Folgendem besteht: 12 bis 17 Atom-% R, das zumindest zwei aus Yttrium und Seltenerdelementen ist und im Wesentlichen Nd und Pr enthält; 0,1 bis 3 Atom-% M1, das zumindest ein aus der aus Si, Al, Mn, Ni, Cu, Zn, Ga, Ge, Pd, Ag, Cd, In, Sn, Sb, Pt, Au, Hg, Pb und Bi bestehenden Gruppe ausgewähltes Element ist; 0,05 bis 0,5 Atom-% M2, das zumindest ein aus der aus Ti, V, Cr, Zr, Nb, Mo, Hf, Ta und W bestehenden Gruppe ausgewähltes Element ist; 4,8+2xm bis 5,9+2xm Atom-% B, wobei m für die Atomkonzentration von M2 steht; bis zu 10 Atom-% Co; bis zu 0,5 Atom-% Kohlenstoff; bis zu 1,5 Atom-% Sauerstoff; bis zu 0,5 Atom-% Stickstoff; und dem Rest Fe, enthaltend eine intermetallische Verbindung R2(Fe,(Co))14B als Hauptphase und mit einer Koerzitivfeldstärke von zumindest 800 kA/m (10 kOe) bei Raumtemperatur, wobei
    der Magnet eine M2-Boridphase an Korngrenzen-Dreifachverbindungen aufweist, aber nicht umfassend die R1,1Fe4B4-Verbindungsphase, eine Kern/Schale-Struktur aufweist, sodass die Hauptphase mit einer Korngrenzenphase bedeckt ist, umfassend eine amorphe und/oder weniger als 10 nm kleine nanokristalline R-Fe(Co)-M1-Phase, die im Wesentlichen aus 25 bis 35 Atom-% R, 2 bis 8 Atom-% M1, bis zu 8 Atom-% Co und dem Rest Fe besteht, oder die R-Fe(Co)-M1-Phase und eine kristalline oder weniger als 10 nm kleine nano-kristalline und amorphe R-M1-Phase mit zumindest 50 Atom-% R, wobei die R-Fe(Co)-M1-Phase außerhalb von und rund um die Hauptphase herum besteht und wobei eine Oberflächenabdeckung der R-Fe(Co)-M1-Phase auf der Hauptphase zumindest 50 % beträgt, die Breite der intergranularen Korngrenzenphase zumindest 10 nm und im Mittel zumindest 50 nm beträgt, wobei das Verfahren aus den folgenden Schritten besteht:

    Formen eines Legierungspulvers in einen Grünling, wobei das Legierungspulver durch das Feinpulverisieren einer Legierung erhalten wird, die im Wesentlichen aus Folgendem besteht: 12 bis 17 Atom-% R, das zumindest zwei aus Yttrium und Seltenerdelementen ist und im Wesentlichen Nd und Pr enthält; 0,1 bis 3 Atom-% M1, das zumindest ein aus der aus Si, Al, Mn, Ni, Cu, Zn, Ga, Ge, Pd, Ag, Cd, In, Sn, Sb, Pt, Au, Hg, Pb und Bi bestehenden Gruppe ausgewähltes Element ist; 0,05 bis 0,5 Atom-% M2, das zumindest ein aus der aus Ti, V, Cr, Zr, Nb, Mo, Hf, Ta und W bestehenden Gruppe ausgewähltes Element ist; 4,8+2xm bis 5,9+2xm Atom-% B, wobei m für die Atomkonzentration von M2 steht; bis zu 10 Atom-% Co; und dem Rest Fe;

    Sintern des Grünlings bei einer Temperatur von 1.000 bis 1.150 °C,

    Abkühlen des Sinterkörpers auf eine Temperatur von 400 °C oder weniger, Nachsinter-Wärmebehandlung, umfassend das Erwärmen des Sinterkörpers bei einer Temperatur im Bereich von 700 bis 1.100 °C, wobei diese Temperatur die peritektische Temperatur der R-Fe(Co)-M1-Phase übersteigt, und das Abkühlen auf eine Temperatur von 400 °C oder weniger in einer Geschwindigkeit von 5 bis 100 °C/min, und

    Alterungsbehandlung, umfassend das Aussetzen des Sinterkörpers gegenüber einer Temperatur im Bereich von 400 bis 600 °C, wobei diese Temperatur niedriger ist als die peritektische Temperatur der R-Fe(Co)-M1-Phase, um die R-Fe(Co)-M1-Phase bei einer Korngrenze zu bilden, und das Abkühlen auf eine Temperatur von 200 °C oder weniger.


     
    2. Verfahren zur Herstellung eines Sintermagneten auf R-Fe-B-Basis mit einer Zusammensetzung, die im Wesentlichen aus Folgendem besteht: 12 bis 17 Atom-% R, das zumindest zwei aus Yttrium und Seltenerdelementen ist und im Wesentlichen Nd und Pr enthält; 0,1 bis 3 Atom-% M1, das zumindest ein aus der aus Si, Al, Mn, Ni, Cu, Zn, Ga, Ge, Pd, Ag, Cd, In, Sn, Sb, Pt, Au, Hg, Pb und Bi bestehenden Gruppe ausgewähltes Element ist; 0,05 bis 0,5 Atom-% M2, das zumindest ein aus der aus Ti, V, Cr, Zr, Nb, Mo, Hf, Ta und W bestehenden Gruppe ausgewähltes Element ist; 4,8+2xm bis 5,9+2xm Atom-% B, wobei m für die Atomkonzentration von M2 steht; bis zu 10 Atom-% Co; bis zu 0,5 Atom-% Kohlenstoff; bis zu 1,5 Atom-% Sauerstoff; bis zu 0,5 Atom-% Stickstoff; und dem Rest Fe, enthaltend eine intermetallische Verbindung R2(Fe,(Co))14B als Hauptphase und mit einer Koerzitivfeldstärke von zumindest 800 kA/m (10 kOe) bei Raumtemperatur, wobei
    der Magnet eine M2-Boridphase an Korngrenzen-Dreifachverbindungen aufweist, aber nicht umfassend die R1,1Fe4B4-Verbindungsphase, eine Kern/Schale-Struktur aufweist, sodass die Hauptphase mit einer Korngrenzenphase bedeckt ist, umfassend eine amorphe und/oder weniger als 10 nm kleine nanokristalline R-Fe(Co)-M1-Phase, die im Wesentlichen aus 25 bis 35 Atom-% R, 2 bis 8 Atom-% M1, bis zu 8 Atom-% Co und dem Rest Fe besteht, oder die R-Fe(Co)-M1-Phase und eine kristalline oder weniger als 10 nm kleine nano-kristalline und amorphe R-M1-Phase mit zumindest 50 Atom-% R, wobei die R-Fe(Co)-M1-Phase außerhalb von und rund um die Hauptphase herum besteht und wobei eine Oberflächenabdeckung der R-Fe(Co)-M1-Phase auf der Hauptphase zumindest 50 % beträgt, die Breite der intergranularen Korngrenzenphase zumindest 10 nm und im Mittel zumindest 50 nm beträgt, wobei das Verfahren aus den folgenden Schritten besteht:

    Formen eines Legierungspulvers in einen Grünling, wobei das Legierungspulver durch das Feinpulverisieren einer Legierung erhalten wird, die im Wesentlichen aus Folgendem besteht: 12 bis 17 Atom-% R, das zumindest zwei aus Yttrium und Seltenerdelementen ist und im Wesentlichen Nd und Pr enthält; 0,1 bis 3 Atom-% M1, das zumindest ein aus der aus Si, Al, Mn, Ni, Cu, Zn, Ga, Ge, Pd, Ag, Cd, In, Sn, Sb, Pt, Au, Hg, Pb und Bi bestehenden Gruppe ausgewähltes Element ist; 0,05 bis 0,5 Atom-% M2, das zumindest ein aus der aus Ti, V, Cr, Zr, Nb, Mo, Hf, Ta und W bestehenden Gruppe ausgewähltes Element ist; 4,8+2xm bis 5,9+2xm Atom-% B, wobei m für die Atomkonzentration von M2 steht; bis zu 10 Atom-% Co; und dem Rest Fe;

    Sintern des Grünlings bei einer Temperatur von 1.000 bis 1.150 °C,

    Abkühlen des Sinterkörpers auf eine Temperatur von 400 °C oder weniger in einer Geschwindigkeit von 5 bis 100 °C/min und

    Alterungsbehandlung, umfassend das Aussetzen des Sinterkörpers gegenüber einer Temperatur im Bereich von 400 bis 600 °C, wobei diese Temperatur niedriger ist als die peritektische Temperatur der R-Fe(Co)-M1-Phase, um die R-Fe(Co)-M1-Phase bei einer Korngrenze zu bilden, und das Abkühlen auf eine Temperatur von 200 °C oder weniger.


     
    3. Verfahren nach Anspruch 1 oder Anspruch 2, wobei in der R-Fe(Co)-M1-Phase M1 aus 0,5 bis 50 Atom-% Si und dem Rest aus zumindest einem aus der aus Al, Mn, Ni, Cu, Zn, Ga, Ge, Pd, Ag, Cd, In, Sn, Sb, Pt, Au, Hg, Pb und Bi bestehenden Gruppe ausgewählten Element besteht.
     
    4. Verfahren nach Anspruch 1 oder Anspruch 2, wobei in der R-Fe(Co)-M1-Phase M1 aus 1,0 bis 80 Atom-% Ga und dem Rest aus zumindest einem aus der aus Si, Al, Mn, Ni, Cu, Zn, Ge, Pd, Ag, Cd, In, Sn, Sb, Pt, Au, Hg, Pb und Bi bestehenden Gruppe ausgewählten Element besteht.
     
    5. Verfahren nach Anspruch 1 oder Anspruch 2, wobei in der R-Fe(Co)-M1-Phase M1 aus 0,5 bis 50 Atom-% Al und dem Rest aus zumindest einem aus der aus Si, Mn, Ni, Cu, Zn, Ga, Ge, Pd, Ag, Cd, In, Sn, Sb, Pt, Au, Hg, Pb und Bi bestehenden Gruppe ausgewählten Element besteht.
     
    6. Verfahren nach einem der Ansprüche 1 bis 5, wobei ein Gesamtgehalt von Dy, Tb und Ho 0 bis 5,0 Atom-% beträgt.
     
    7. Verfahren nach einem der Ansprüche 1 bis 6, wobei die R-Fe(Co)-M1-Korngrenzenphase 1 bis 20 Vol.-% ausmacht.
     
    8. Verfahren nach einem der Ansprüche 1 bis 7, wobei die Breite der R-Fe(Co)-M1-Phase in der intergranularen Korngrenzenphase 10 bis 500 nm beträgt.
     
    9. Verfahren nach einem der Ansprüche 1 bis 8, wobei die Oberflächenabdeckung der R-Fe(Co)-M1-Korngrenzenphase auf der Hauptphase zumindest 50 % beträgt.
     


    Revendications

    1. Procédé pour préparer un aimant fritté à base de R-Fe-B ayant une composition consistant essentiellement en 12 à 17 % atomiques de R qui est au moins deux parmi l'yttrium et les éléments des terres rares et contient essentiellement Nd et Pr, 0,1 à 3 % atomiques de M1 qui est au moins un élément choisi dans le groupe constitué par Si, Al, Mn, Ni, Cu, Zn, Ga, Ge, Pd, Ag, Cd, In, Sn, Sb, Pt, Au, Hg, Pb et Bi, 0,05 à 0,5 % atomique de M2 qui est au moins un élément choisi dans le groupe constitué par Ti, V, Cr, Zr, Nb, Mo, Hf, Ta et W, 4,8+2xm à 5,9+2xm % atomiques de B où m désigne la concentration atomique de M2, jusqu'à 10 % atomiques de Co, jusqu'à 0,5 % atomique de carbone, jusqu'à 1,5 % atomiques d'oxygène, jusqu'à 0,5 % atomique d'azote, le reste étant du Fe, contenant le composé intermétallique R2(Fe,(Co))14B en tant que phase principale, et ayant une coercivité d'au moins 800 kA/m (10 kOe) à la température ambiante, dans lequel l'aimant contient une phase de borure de M2 à des jonctions triples de joint de grain, mais ne contient pas de phase de composé R1,1Fe4B4, a une structure cœur/gaine telle que la phase principale est recouverte de la phase de joint de grain comprenant une phase de R-Fe(Co)-M1 amorphe et/ou nanocristalline inférieure à 10 nm consistant essentiellement en 25 à 35 % atomiques de R, 2 à 8 % atomiques de M1, jusqu'à 8 % atomiques de Co, le reste étant du Fe, ou la phase R-Fe(Co)-M1 et une phase de R-M1 cristalline ou nanocristalline inférieure à 10 nm et amorphe ayant au moins 50 % atomiques de R, dans lequel la phase de R-Fe(Co)-M1 existe en-dehors de la phase principale et entourant celle-ci, et dans lequel la couverture en surface de la phase de R-Fe(Co)-M1 sur la phase principale est d'au moins 50 %, et la largeur de la phase de joint de grain intergranulaire est d'au moins 10 nm et d'au moins 50 nm en moyenne, le procédé consistant en les étapes suivantes :

    façonnage d'une poudre d'alliage en un comprimé cru, la poudre d'alliage étant obtenue par pulvérisation fine d'un alliage consistant essentiellement en 12 à 17 % atomiques de R qui est au moins deux parmi l'yttrium et les éléments des terres rares et contient essentiellement Nd et Pr, 0,1 à 3 % atomiques de M1 qui est au moins un élément choisi dans le groupe constitué par Si, Al, Mn, Ni, Cu, Zn, Ga, Ge, Pd, Ag, Cd, In, Sn, Sb, Pt, Au, Hg, Pb et Bi, 0,05 à 0,5 % atomique de M2 qui est au moins un élément choisi dans le groupe constitué par Ti, V, Cr, Zr, Nb, Mo, Hf, Ta et W, 4,8+2xm à 5,9+2×m % atomiques de B où m désigne la concentration atomique de M2, jusqu'à 10 % atomiques de Co, le reste étant du Fe,

    frittage du comprimé cru à une température de 1000 à 1150°C,

    refroidissement du comprimé fritté à une température de 400°C ou moins,

    traitement à la chaleur post-frittage comprenant un chauffage du comprimé fritté à une température située dans la plage allant de 700 à 1100°C, laquelle température dépasse la température péritectique de la phase de R-Fe(Co)-M1, et un refroidissement à une température de 400°C ou moins à une vitesse de 5 à 100°C/min, et

    traitement de vieillissement comprenant une exposition du comprimé fritté à une température située dans la plage allant de 400 à 600°C, laquelle température est inférieure à la température péritectique de la phase de R-Fe(Co)-M1 de façon à former la phase de R-Fe(Co)-M1 au niveau d'un joint de grain, et un refroidissement à une température de 200°C ou moins.


     
    2. Procédé pour préparer un aimant fritté à base de R-Fe-B ayant une composition consistant essentiellement en 12 à 17 % atomiques de R qui est au moins deux parmi l'yttrium et les éléments des terres rares et contient essentiellement Nd et Pr, 0,1 à 3 % atomiques de M1 qui est au moins un élément choisi dans le groupe constitué par Si, Al, Mn, Ni, Cu, Zn, Ga, Ge, Pd, Ag, Cd, In, Sn, Sb, Pt, Au, Hg, Pb et Bi, 0,05 à 0,5 % atomique de M2 qui est au moins un élément choisi dans le groupe constitué par Ti, V, Cr, Zr, Nb, Mo, Hf, Ta et W, 4,8+2xm à 5,9+2xm % atomiques de B où m désigne la concentration atomique de M2, jusqu'à 10 % atomiques de Co, jusqu'à 0,5 % atomique de carbone, jusqu'à 1,5 % atomiques d'oxygène, jusqu'à 0,5 % atomique d'azote, le reste étant du Fe, contenant le composé intermétallique R2(Fe,(Co))14B en tant que phase principale, et ayant une coercivité d'au moins 800 kA/m (10 kOe) à la température ambiante, dans lequel l'aimant contient une phase de borure de M2 à des jonctions triples de joint de grain, mais ne contient pas de phase de composé R1,1Fe4B4, a une structure cœur/gaine telle que la phase principale est recouverte de la phase de joint de grain comprenant une phase de R-Fe(Co)-M1 amorphe et/ou nanocristalline inférieure à 10 nm consistant essentiellement en 25 à 35 % atomiques de R, 2 à 8 % atomiques de M1, jusqu'à 8 % atomiques de Co, le reste étant du Fe, ou la phase R-Fe(Co)-M1 et une phase de R-M1 cristalline ou nanocristalline inférieure à 10 nm et amorphe ayant au moins 50 % atomiques de R, dans lequel la phase de R-Fe(Co)-M1 existe en-dehors de la phase principale et entourant celle-ci, et dans lequel la couverture en surface de la phase de R-Fe(Co)-M1 sur la phase principale est d'au moins 50 %, et la largeur de la phase de joint de grain intergranulaire est d'au moins 10 nm et d'au moins 50 nm en moyenne, le procédé consistant en les étapes suivantes :

    façonnage d'une poudre d'alliage en un comprimé cru, la poudre d'alliage étant obtenue par pulvérisation fine d'un alliage consistant essentiellement en 12 à 17 % atomiques de R qui est au moins deux parmi l'yttrium et les éléments des terres rares et contient essentiellement Nd et Pr, 0,1 à 3 % atomiques de M1 qui est au moins un élément choisi dans le groupe constitué par Si, Al, Mn, Ni, Cu, Zn, Ga, Ge, Pd, Ag, Cd, In, Sn, Sb, Pt, Au, Hg, Pb et Bi, 0,05 à 0,5 % atomique de M2 qui est au moins un élément choisi dans le groupe constitué par Ti, V, Cr, Zr, Nb, Mo, Hf, Ta et W, 4,8+2xm à 5,9+2×m % atomiques de B où m désigne la concentration atomique de M2, jusqu'à 10 % atomiques de Co, le reste étant du Fe,

    frittage du comprimé cru à une température de 1000 à 1150°C,

    refroidissement du comprimé fritté à une température de 400°C ou moins à une vitesse de 5 à 100°C/min, et

    traitement de vieillissement comprenant une exposition du comprimé fritté à une température située dans la plage allant de 400 à 600°C, laquelle température est inférieure à la température péritectique de la phase de R-Fe(Co)-M1 de façon à former la phase de R-Fe(Co)-M1 au niveau d'un joint de grain, et un refroidissement à une température de 200°C ou moins.


     
    3. Procédé selon la revendication 1 ou la revendication 2, dans lequel, dans la phase de R-Fe(Co)-M1, M1 consiste en 0,5 à 50 % atomiques de Si et, pour le reste, au moins un élément choisi dans le groupe constitué par Al, Mn, Ni, Cu, Zn, Ga, Ge, Pd, Ag, Cd, In, Sn, Sb, Pt, Au, Hg, Pb et Bi.
     
    4. Procédé selon la revendication 1 ou la revendication 2, dans lequel, dans la phase de R-Fe(Co)-M1, M1 consiste en 1,0 à 80 % atomiques de Ga et, pour le reste, au moins un élément choisi dans le groupe constitué par Si, Al, Mn, Ni, Cu, Zn, Ge, Pd, Ag, Cd, In, Sn, Sb, Pt, Au, Hg, Pb et Bi.
     
    5. Procédé selon la revendication 1 ou la revendication 2, dans lequel, dans la phase de R-Fe(Co)-M1, M1 consiste en 0,5 à 50 % atomiques d'Al et, pour le reste, au moins un élément choisi dans le groupe constitué par Si, Mn, Ni, Cu, Zn, Ga, Ge, Pd, Ag, Cd, In, Sn, Sb, Pt, Au, Hg, Pb et Bi.
     
    6. Procédé selon l'une quelconque des revendications 1 à 5, dans lequel la teneur totale en Dy, Tb et Ho est de 0 à 5,0 % atomiques.
     
    7. Procédé selon l'une quelconque des revendications 1 à 6, dans lequel la phase de joint de grain de R-Fe(Co)-M1 représente de 1 à 20 % en volume.
     
    8. Procédé selon l'une quelconque des revendications 1 à 7, dans lequel la largeur de la phase de R-Fe(Co)-M1 dans le joint de grain intergranulaire est de 10 à 500 nm.
     
    9. Procédé selon l'une quelconque des revendications 1 à 8, dans lequel le recouvrement en surface de la phase de joint de grain de R-Fe(Co)-M1 sur la phase principale est d'au moins 50 %.
     




    Drawing















    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description