(19)
(11)EP 3 079 720 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
02.09.2020 Bulletin 2020/36

(21)Application number: 14870387.9

(22)Date of filing:  15.12.2014
(51)International Patent Classification (IPC): 
C07K 16/12(2006.01)
A61K 39/40(2006.01)
C07K 16/40(2006.01)
A61P 31/04(2006.01)
(86)International application number:
PCT/US2014/070337
(87)International publication number:
WO 2015/089502 (18.06.2015 Gazette  2015/24)

(54)

PASSIVE IMMUNIZATION FOR STAPHYLOCOCCUS INFECTIONS

PASSIVE IMMUNISIERUNG FÜR STAPHYLOCOCCUS-INFEKTIONEN

IMMUNISATION PASSIVE POUR INFECTIONS PAR LE STAPHYLOCOCCUS


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 13.12.2013 US 201361915953 P

(43)Date of publication of application:
19.10.2016 Bulletin 2016/42

(73)Proprietor: University of Rochester
Rochester, NY 14642 (US)

(72)Inventors:
  • DAISS, John L.
    Rochester, NY 14625 (US)
  • SCHWARZ, Edward
    Rochester, NY 14618 (US)
  • VARRONE, John J.
    Rochester, NY 14642 (US)
  • BRODELL, James
    Rochester, NY 14642 (US)
  • BELLO-IRIZARRY, Sheila N.
    Durham, NC 27713-6608 (US)

(74)Representative: Potter Clarkson 
The Belgrave Centre Talbot Street
Nottingham NG1 5GG
Nottingham NG1 5GG (GB)


(56)References cited: : 
WO-A1-2013/066876
US-A1- 2011 092 372
US-A1- 2008 177 045
US-A1- 2013 110 249
  
  • M. SUGAI ET AL: "Identification of endo-beta-N-acetylglucosaminidase and N-acetylmuramyl-L- alanine amidase as cluster-dispersing enzymes in Staphylococcus aureus", JOURNAL OF BACTERIOLOGY, 1 March 1995 (1995-03-01), pages 1491-1496, XP055070004, DOI: 10.1128/jb.177.6.1491-1496.1995
  • SUGAI M ET AL: "Localized perforation of the cell wall by a major autolysin: atl gene products and the onset of penicillin-induced lysis of Staphylococcus aureus", JOURNAL OF BACTERIOLOGY, AMERICAN SOCIETY FOR MICROBIOLOGY, US, vol. 179, no. 9, 1 May 1997 (1997-05-01), pages 2958-2962, XP001127471, ISSN: 0021-9193
  • JEFFREY L. BOSE ET AL: "Contribution of the Staphylococcus aureus Atl AM and GL Murein Hydrolase Activities in Cell Division, Autolysis, and Biofilm Formation", PLOS ONE, vol. 7, no. 7, 31 July 2012 (2012-07-31), page e42244, XP055147205, DOI: 10.1371/journal.pone.0042244
  • GARCIA E ET AL: "Preparation of antiserum against the pneumococcal autolysin-inhibition of autolysin activity and some autolytic processes by the antibody", FEMS MICROBIOLOGY LETTERS, WILEY-BLACKWELL PUBLISHING LTD, GB, vol. 14, no. 2, 1 June 1982 (1982-06-01), pages 133-136, XP023661133, ISSN: 0378-1097 [retrieved on 1982-06-01]
  • Daniel C. Nelson ET AL: "Endolysins as Antimicrobials" In: "Advances in Virus Research", 1 January 2012 (2012-01-01), Academic Press, US, XP055220045, ISSN: 0065-3527 vol. 83, pages 299-365, DOI: 10.1016/B978-0-12-394438-2.00007-4, * table I *
  • S YAMADA ET AL: "An autolysin ring associated with cell separation of Staphylococcus aureus.", JOURNAL OF BACTERIOLOGY, vol. 178, no. 6, 1 March 1996 (1996-03-01) , pages 1565-1571, XP055381248, US ISSN: 0021-9193, DOI: 10.1128/jb.178.6.1565-1571.1996
  • OSHIDA ET AL: "A Staphylococcus aureus autolysin that has an N-acetylmuramoyl-L-alanine amidase domain and an endo-beta-N-acetylglucosaminidase domain: Cloning, sequence analysis, and characterization", PROCEEDINGS NATIONAL ACADEMY OF SCIENCES PNAS, NATIONAL ACADEMY OF SCIENCES, US, vol. 92, 3 January 1995 (1995-01-03), pages 285-289, XP002090226, ISSN: 0027-8424, DOI: 10.1073/PNAS.92.1.285
  • BELLO-IRIZARRY S N ET AL: "2604: Anti-Amidase Monoclonal Antibodies as a Passive Immunization against Methicillin-Resistant Staphylococcus aureus (MRSA) Implant-Associated Osteomyelitis", ABSTRACTS OF THE GENERAL MEETING OF THE AMERICAN SOCIETY FOR MICROBIOLOGY; 114TH GENERAL MEETING OF THE AMERICAN-SOCIETY-FOR-MICROBIOLOGY, AMERICAN SOCIETY FOR MICROBIOLOGY, US; BOSTON, MA, USA, vol. 114, 1 January 2014 (2014-01-01), page 2604, XP008184870, ISSN: 1060-2011
  • Sheila N Bello-Irizarry ET AL: "Complete Protection from Methicillin-Resistant Staphylococcus aureus (MRSA) Implant-Associated Osteomyelitis in Mice Passively Immunization with Anti-Autolysin Monoclonal Antibodies as Determined by Inhibition of Osteolysis, Biofilm and Staphylococcal Abscess Communities (SAC)", , 8 March 2016 (2016-03-08), XP055381999, Retrieved from the Internet: URL:http://www.ors.org/Transactions/62/209 5.pdf [retrieved on 2017-06-15]
  • GEDBJERG ET AL.: 'Anti-Glucosaminidase IgG in Sera as a Biomarker of Host Immunity Against Staphylococcus aureus in Orthopaedic Surgery Patients' J BONE JOINT SURG AM. vol. 95, 20 November 2013, pages 1 - 9, XP009180827
  • ANDREW C R MARTIN ED - ROLAND KONTERMANN AND STEFAN DÜBEL: "Protein Sequence and Structure Analysis of Antibody Variable Domains", ANTIBODY ENGINEE, SPRINGER-VERLAG, BERLIN/HEIDELBERG, DE, vol. 2, 1 January 2010 (2010-01-01), pages 33-51, XP008184542, DOI: 10.1007/978-3-642-01147-4_3 ISBN: 978-3-642-01146-7
 
Remarks:
The file contains technical information submitted after the application was filed and not included in this specification
 
Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


Description

FIELD OF USE



[0001] Disclosed herein are methods and compositions for the passive immunization against Staphylococcus infection, particularly for the prevention or treatment of osteomyelitis and for infections arising from implantation of a medical device, or an orthopedic implant or graft. Antibodies that bind specifically to a Staphylococcus spp. autolysin N-acetylmuramoyl-L-alanine amidase catalytic domain and/or cell wall binding domain, and pharmaceutical compositions containing the same can be used for these purposes.

BACKGROUND



[0002] There is a great need for novel interventions of chronic osteomyelitis (OM) as approximately 112,000 orthopedic device-related infections occur per year in the US, at an approximate hospital cost of $15,000-70,000 per incident (Darouiche, "Treatment of Infections Associated With Surgical Implants," N. Engl. J. Med. 350(14):1422-9 (2004)). Although improvements in surgical technique and aggressive antibiotic prophylaxis have decreased the infection rate following orthopedic implant surgery to 1-5%, osteomyelitis (OM) remains a serious problem and appears to be on the rise from minimally invasive surgery (Mahomed et al., "Rates and Outcomes of Primary and Revision Total Hip Replacement in the United States Medicare Population," J. Bone Joint Surg. Am. 85(A-1):27-32 (2003); WHO Global Strategy for Containment of Antimicrobial Resistance, 2001). The significance of this resurgence, 80% of which is due to Staphylococcus aureus, is amplified by the fact that ∼50% of clinical isolates are methicillin resistant S. aureus (MRSA). While the infection rates for joint prostheses and fracture-fixation devices have been only 0.3-11% and 5-15% of cases, respectively, over the last decade (Lew and Waldvogel, "Osteomyelitis," Lancet 364(9431):369-79 (2004); Toms et al., "The Management of Peri-Prosthetic Infection in Total Joint Arthroplasty," J. Bone Joint Surg. Br. 88(2):149-55 (2006)), this result may lead to amputation or death. Additionally, the popularization of "minimally invasive surgery" for elective total joint replacements (TJR) in which the very small incision often leads to complications from the prosthesis contacting skin during implantation, has markedly increased the incidence of OM (Mahomed et al., "Rates and Outcomes of Primary and Revision Total Hip Replacement in the United States Medicare Population," J. Bone Joint Surg. Am. 85(A-1):27-32 (2003); WHO Global Strategy for Containment of Antimicrobial Resistance, 2001). These infections require a very expensive two-stage revision surgery, and recent reports suggest that success rates could be as low as 50% (Azzam et al., "Outcome of a Second Two-stage Reimplantation for Periprosthetic Knee Infection," Clin. Orthop. Relat. Res. 467(7):1706-14 (2009)). However, the greatest concern is the emergence of drug-resistant staphylococcal strains, most notably MRSA, which has surpassed HIV as the most deadly pathogen in North America, and continues to make the management of chronic OM more difficult and expensive, resulting in a great demand for novel therapeutic interventions to treat patients with these infections. There is a great need for alternative interventional strategies, particularly for immune-compromised elderly who are the primary recipients of TJR.

[0003] Presently, there are no prophylactic treatments that can protect high-risk patients from MRSA, most notably the aging "baby boomers" who account for most of the 1.5 million TJR performed annually in the United States. A vaccine that would decrease the MRSA incidence by 50-80% would not only reduce the number one complication of joint replacement and open fracture repair procedures, but also cut the healthcare burden by a similar amount.

[0004] Studies have documented that 80% of chronic OM is caused by S. aureus. These bacteria contain several factors that make them bone pathogens including several cell-surface adhesion molecules that facilitate their binding to bone matrix (Flock et al., "Cloning and Expression of the Gene for a Fibronectin-Binding Protein from Staphylococcus aureus," EMBO J. 6(8):2351-7 (1987)), toxins capable of stimulating bone resorption (Nair et al., "Surface-Associated Proteins from Staphylococcus aureus Demonstrate Potent Bone Resorbing Activity," J. Bone Miner. Res. 10(5):726-34 (1995)), and degradation of bone by stimulating increased osteoclast activity (Marriott et al., "Osteoblasts Express the Inflammatory Cytokine Interleukin-6 in a Murine Model of Staphylococcus aureus Osteomyelitis and Infected Human Bone Tissue," Am. J. Pathol. 164(4):1399-406 (2004)). The rate-limiting step in the evolution and persistence of infection is the formation of biofilm around implanted devices (Costerton et al., "Bacterial Biofilms: A Common Cause of Persistent Infections," Science 284(5418):1318-22 (1999)). Shortly after implantation, a conditioning layer composed of host-derived extracellular matrix components (including fibrinogen, fibronectin, and collagen) forms on the surface of the implant and invites the adherence of either free-floating bacteria derived from hematogenous seeding, or bacteria from a contiguous nidus of infection such as from the skin adjacent to a wound, surgical inoculation of bacteria into bone, or trauma coincident with significant disruption of the associated soft tissue bone envelope (Darouiche, "Treatment of Infections Associated With Surgical Implants," N. Engl. J. Med. 350(14):1422-9 (2004)). Over the next few days, increased colonial adhesion, bacterial cell division, recruitment of additional planktonic organisms, and secretion of bacterial extracellular polymeric substances (such as those that form the glycocalyx) produces a bacterial biofilm. This biofilm serves as a dominant barrier to protect the bacteria from the action of antibiotics, phagocytic cells and antibodies and impairs host lymphocyte functions (Gray et al., "Effect of Extracellular Slime Substance from Staphylococcus epidermidis on the Human Cellular Immune Response," Lancet 1(8373):365-7 (1984); Johnson et al., "Interference with Granulocyte Function by Staphylococcus epidermidis Slime," Infect. Immun. 54(1):13-20 (1986); Naylor et al., "Antibiotic Resistance of Biomaterial-Adherent Coagulase-Negative and Coagulase-Positive Staphylococci," Clin. Orthop. Relat. Res. 261:126-33 (1990)).

[0005] Another recent discovery is that S. aureus not only colonizes bone matrix, but is also internalized by osteoblasts in vitro (Ellington et al., "Involvement of Mitogen-Activated Protein Kinase Pathways in Staphylococcus aureus Invasion of Normal Osteoblasts," Infect. Immun. 69(9):5235-42 (2001)) and in vivo (Reilly et al., "In Vivo Internalization of Staphylococcus aureus by Embryonic Chick Osteoblasts," Bone 26(1):63-70 (2000)). This provides yet another layer of antibody and antibiotic resistance. This phase of infection occurs under conditions of markedly reduced metabolic activity and sometimes appears as so-called small-colony variants that likely accounts for its persistence (Proctor et al., "Persistent and Relapsing Infections Associated with Small-Colony Variants of Staphylococcus aureus," Clin. Infect. Dis. 20(1):95-102 (1995)). At this point the bacteria may also express phenotypic resistance to antimicrobial treatment, also explaining the high failure rate of short courses of therapy (Chuard et al., "Resistance of Staphylococcus aureus Recovered From Infected Foreign Body in Vivo to Killing by Antimicrobials," J. Infect. Dis. 163(6):1369-73 (1991)). Due to these extensive pathogenic mechanism, OM is notorious for its tendency to recur even after years of quiescence, and it is accepted that a complete cure is an unlikely outcome (Mader and Calhoun, "Long-Bone Osteomyelitis Diagnosis and Management," Hosp. Pract. (Off Ed) 29(10):71-6, 9, 83 passim (1994)).

[0006] One of the key questions in the field of chronic OM is why current knowledge of factors that regulate chronic OM is so limited. Supposedly, the experimental tools necessary to elucidate bacterial virulence genes have been available for over a century. There are three explanations for this anomaly. First, although the total number of osteomyelitis cases is high, its incidence of 1-5% is too low for rigorous prospective clinical studies, with the possible exception of revision arthroplasty. Second, it is well known that in vitro cultures rapidly select for growth of organisms that do not elaborate an extracellular capsule, such that biofilm biology can only be studied with in vivo models (Costerton et al., "Bacterial Biofilms: A Common Cause of Persistent Infections," Science 284(5418):1318-22 (1999)). This leads to the "greatest obstacle" in this field, which is the absence of a quantitative animal model that can assess the initial planktonic growth phase of the bacteria prior to biofilm formation. To date, much of the knowledge of its pathogenesis comes from animal models (Norden, "Lessons Learned from Animal Models of Osteomyelitis," Rev. Infect. Dis. 10(1):103-10 (1988)), which have been developed for the chicken (Daum et al., "A Model of Staphylococcus aureus Bacteremia, Septic Arthritis, and Osteomyelitis in Chickens," J. Orthop. Res. 8(6):804-13 (1990)), rat (Rissing et al., "Model of Experimental Chronic Osteomyelitis in Rats," Infect. Immun. 47(3):581-6 (1985)), guinea pig (Passl et al., "A Model of Experimental Post-Traumatic Osteomyelitis in Guinea Pigs," J. Trauma 24(4):323-6 (1984)), rabbit (Worlock et al., "An Experimental Model of Post-Traumatic Osteomyelitis in Rabbits," Br. J. Exp. Pathol. 69(2):235-44 (1988)), dog (Varshney et al., "Experimental Model of Staphylococcal Osteomyelitis in Dogs," Indian J. Exp. Biol. 27(9):816-9 (1989)), sheep (Kaarsemaker et al., "New Model for Chronic Osteomyelitis With Staphylococcus aureus in Sheep," Clin. Orthop. Relat. Res. 339:246-52 (1997)) and most recently mouse (Marriott et al., "Osteoblasts Express the Inflammatory Cytokine Interleukin-6 in a Murine Model of Staphylococcus aureus Osteomyelitis and Infected Human Bone Tissue," Am. J. Pathol. 164(4):1399-406 (2004)). While these models have been used to confirm the importance of bacterial adhesins identified from in vitro assays (Chuard et al., "Susceptibility of Staphylococcus aureus Growing on Fibronectin-Coated Surfaces to Bactericidal Antibiotics," Antimicrob. Agents Chemother. 37(4):625-32 (1993); Buxton et al., "Binding of a Staphylococcus aureus Bone Pathogen to Type I Collagen," Microb. Pathog. 8(6):441-8 (1990); Switalski et al., "A Collagen Receptor on Staphylococcus aureus Strains Isolated From Patients With Septic Arthritis Mediates Adhesion to Cartilage," Mol. Microbiol. 7(1):99-107 (1993)), they do not have an outcome measure of in vivo growth, bacterial load, or osteolysis. Thus, they cannot be efficiently used to assess drug effects, bacterial mutants, and the role of host factors with transgenic mice.

[0007] Based on over 150 years of research, a clear paradigm to explain staphylococcal pathogenesis has emerged. This model also applies to OM. The initial step of infection occurs when a unicellular bacterium invades the body. At this point the microbe must respond to environmental changes and express virulence genes that will help it defeat innate immunity and provide it with adhesin receptors to attach to the host. The bacterium is also dependent on the stochastic availability of host adhesion targets from necrotic tissue or a foreign body such as an implant for adherence and surface colonization to occur. Successful completion of these steps leads to an exponential biofilm growth phase, which ceases at the point of nutrient exhaustion and/or the development of adaptive immunity. Following the exponential growth phase the bacteria persist under dormant growth conditions within a multilayered biofilm until quorum sensing-driven changes in gene expression allow for portions of the biofilm to detach as planktonic cells or mobile segments of biofilm patches (Yarwood, et al., "Quorum Sensing in Staphylococcus aureus Biofilms," J. Bact. 186(6): 1838-1850 (2004)). However, at this point the infection is now chronic and cannot be eradicated by drugs or host immunity. Thus, the focus in this field has been on cell surface extracellular matrix components that specifically interact with a class of bacterial adhesins known as MSCRAMMs (microbial surface components recognizing adhesive matrix molecules) (Patti et al., "MSCRAMM-Mediated Adherence of Microorganisms to Host Tissues," Annu. Rev. Microbiol. 48:585-617 (1994)). In fact, essentially all anti-S. aureus vaccines developed to date have been directed against MSCRAMMs that are important for host tissue colonization and invasion. The goal of these vaccines is to generate antibodies that bind to these bacterial surface antigens, thereby inhibiting their attachment to host tissue and suppressing the biofilm formation which serves as a long term reservoir of infection. By opsonizing the bacterial surface, these antibodies can also mediate S. aureus clearance by phagocytic cells. Unfortunately, S. aureus has many adhesins, such that inhibition of one or more may not be sufficient to prevent bacterial attachment. Furthermore, bacterial clearance by phagocytic cells may be limited in avascular tissue such as bone such that an antibody alone may need additional anti-microbial mechanisms of action to significantly reduce the in vivo planktonic growth of S. aureus and prevent the establishment of chronic OM or reinfection during revision total joint replacement surgery.

[0008] While PCT Publication Nos. WO2011/140114 and WO2013/066876 to Schwarz et al. describe several monoclonal antibodies (hereinafter "mAbs") that bind specifically to Staphylococcus glucosaminidase and inhibit in vivo growth of a Staphylococcus strain, there remains a need to identify additional mAbs that bind specifically to a different Staphylococcus target and inhibit its function.

[0009] The disclosed invention is directed to overcoming these and other deficiencies in the art.

[0010] Sugai et al. (1995, Journal of Bacteriology, 177(6):1491-6) discloses the identification of endo-beta-N-acetylglucosaminidase and N-acetylmuramyl-L-alanine amidase as cluster-dispersing enzymes in Staphylococcus aureus. Sugai et al. (1997, Journal of Bacteriology, 179(9):2958-62) discloses localized perforation of the cell wall by a major autolysin: atl gene products and the onset of penicillin-induced lysis of Staphylococcus aureus. Bose et al. (2012, PLoS One, 7(7):e42244) discloses the contribution of the Staphylococcus aureus Atl AM and GL murein hydrolase activities in cell division, autolysis and biofilm formation.

SUMMARY OF THE DISCLOSURE



[0011] The invention is as defined in the claims and relates to an isolated humanized monoclonal antibody, or antigen binding portion thereof, that binds specifically to a Staphylococcus spp. autolysin N-acetylmuramoyl-L-alanine amidase (Amd) catalytic domain and comprises the complementarity determining region sequences of the VH domain of SEQ ID NO: 11 and of the VL domain of SEQ ID NO: 37. A first aspect of the present disclosure relates to a monoclonal antibody or binding portion thereof that binds specifically to a Staphylococcus spp. autolysin N-acetylmuramoyl-L-alanine amidase catalytic domain or cell wall binding domain.

[0012] A second aspect of the present disclosure relates to a cell line that expresses a monoclonal antibody or binding portion thereof as disclosed herein.

[0013] A third aspect of the present disclosure relates to a pharmaceutical composition that includes a carrier and one or more monoclonal antibodies or monoclonal antibody binding portions as disclosed herein.

[0014] A fourth aspect of the present disclosure relates to a method of introducing an orthopedic implant or medical device into a patient that involves administering to a patient in need of an orthopedic implant an effective amount of a monoclonal antibody or monoclonal antibody binding portion according to the first aspect as disclosed herein, a pharmaceutical composition according to the third aspect as disclosed herein, or a combination thereof, and introducing the orthopedic implant, tissue graft, or medical device into the patient.

[0015] A fifth aspect of the present disclosure relates to a method of treating or preventing a Staphylococcus infection that includes administering to a patient susceptible to or having a Staphylococcus infection an effective amount of a monoclonal antibody or monoclonal antibody binding portion according to the first aspect as disclosed herein, a pharmaceutical composition according to the third aspect as disclosed herein, or a combination thereof.

[0016] A sixth aspect of the present disclosure relates to a method of treating osteomyelitis that involves administering to a patient having a Staphylococcus bone or joint infection an effective amount of a monoclonal antibody or monoclonal antibody binding portion according to the first aspect as disclosed herein, a pharmaceutical composition according to the third aspect as disclosed herein, or a combination thereof.

[0017] A seventh aspect of the present disclosure relates to a method of determining the presence of Staphylococcus in a sample that involves exposing a sample to a monoclonal antibody or binding portion according to the first aspect as disclosed herein, and detecting whether an immune complex forms between the monoclonal antibody or binding portion and Staphylococcus or a Staphylococcus amidase present in the sample, whereby the presence of the immune complex after said exposing indicates that presence of Staphylococcus in the sample.

[0018] Staphylococcus N-acetylmuramoyl-L-alanine amidase (hereinafter "Amd" or "amidase") has several properties that make it an attractive target for passive immunization. The amidase is involved in multiple crucial cell functions including bacterial cell adhesion, cell division, secretion and biofilm glycocalyx formation through its mediation of autolysis which produces glycocalyx extracellular DNA; it is highly conserved among S. aureus clinical isolates; it is the target of vancomycin and it expressed throughout the cell cycle. Further, because Amd is displayed on the cell wall, it is accessible to antibodies present in the extracellular milieu.

[0019] The monoclonal antibodies and binding portions thereof, as well as pharmaceutical compositions containing the same, are therapeutic agents suitable for immunotherapy in patients with or at risk for infection by Staphylococcus strains. The power of these monoclonal antibodies is derived from their multiple activities that will hinder growth, adhesion, and immune evasion by Staphylococcus strains. First, as antibodies, they will promote phagocytosis by neutrophils at the site of incipient Staphylococcus infections. Second, as inhibitors of the Staphylococcus amidase, an enzyme with multiple roles in Staphylococcus survival and surface colonization, these antibodies potentially hinder one or both of cell division and biofilm formation. Finally, as demonstrated herein, the disclosed antibodies reduce Staphylococcus spread, as evidenced by the formation of fewer abscesses, and afford macrophage invasion of abscesses, which promotes the formation of sterile abscesses and accelerates bone healing.

BRIEF DESCRIPTION OF THE DRAWINGS



[0020] 

Figure 1 is a schematic illustration of the domain structure of S. aureus bifunctional autolysin (AtlA), which is representative of all Staphylococcus spp. bifunctional autolysin proteins. Bifunctional autolysin is synthesized as a 1276 amino acid pre-pro-enzyme. The 31-amino acid signal peptide (aa 1-31) is removed during secretion and the 167-amino acid pro-peptide (aa 32-197) is removed when the autolysin is inserted into the cell wall. After cell division, the mature autolysin is cleaved at amino acid 775 to yield independent AmdR1R2 (N-acetylmuramoyl-L-alanine amidase, or amidase (Amd); aa 198-775) and R3Gmd (endo-β-N-acetylglucosaminidase (Gmd); aa 776-1276).

Figure 2 is a graph showing inhibition of Amd enzymatic activity eight anti-Amd monoclonal antibodies and an isoytpe-matched antibody of irrelevant specificity. Recombinant Amd (rAmd) was prepared in E. coli (His-AmdR1R2-B in Table 1). rAmd (1.5 µg/mL) was mixed in PBS with a turbid suspension of peptidoglycan prepared from S. aureus cell walls and its lytic activity was measured by the reduction in turbidity (measured as A490) following incubation for 60 minutes at 37° C (Δ60). For the inhibition test, the concentration of rAmd was sufficient to reduce the A490 by 70%. Purified anti-Amd mAbs were added to the rAmd at the indicated concentrations and then lysis of peptidoglycan by the Mab:rAmd mixture was measured. Percent inhibition was calculated as: 100 x (1-(Δ60A490 inhibitor/Δ60A490 no inhibitor control)).

Figure 3 is an image of S. aureus precipitation by representative anti-Amd antibodies. When S. aureus cells are cultured in the presence of most Staphylococcus-specific mAbs they form into large clusters that fall out of suspension yielding a relatively clear supernatant. USA300LAC S. aureus were cultured in TSB at 37°C for eight hours in the presence of the indicated anti-Amd mAbs, each at 25 µg/mL. The sample containing no antibody (No Ab) and an irrelevant isotype-matched antibody (Isotype control) had turbid supernatants without evident cell pellets; mAbs Amd1.1, Amd1.6, Amd1.8, Amd1.11, and Amd1.16 had clear supernatants and cell pellets. Other mAbs producing clear supernatants and cell pellets are listed in Table 2, infra, as are mAbs that failed to precipitate S. aureus from suspension.

Figure 4 illustrates the biomolecular interaction analysis of immobilized mAb Amd1.6 with soluble Amd. The affinity of the interaction between mAb Amd1.6 and soluble Amd was measured on a Biacore T-200. Rabbit anti-mouse Fc IgG was immobilized on the surface of a CM-5 biosensor chip and used to capture mAb Amd1.6 which then captured Amd from a flowing field. The mass of Amd bound by mAb Amd1.6 is measured in Resonance Units (y-axis) against time on the x-axis. The capture (association, t = 0 to 120 sec) and release (dissociation, t = 120 to 420 sec) phases are presented. The experiment was repeated with concentrations of Amd varying in two-fold increments from 1.56 to 25 nM. Measurements were made according the manufacturer's instructions and kinetic data were analyzed using biomolecular interaction analysis (BIA) evaluation software (version 3.1) from Biacore AB.

Figure 5 is a graph illustrating the inhibitory effect of anti-Amd antibodies on in vitro biofilm formation as compared to the Amd, Gmd and autolysin deletion mutant strains. A biofilm assay utilizing Calgary plates was performed by coating the plate and lid pegs with human plasma for 16 hours at 4°C. S. aureus was then seeded at OD 600nm of 0.05 in the presence or absence of 25 µg/mL anti-Amd (Amd1.6), anti-Gmd (1C11) and combination of anti-Amd + anti-Gmd (Amd1.6 + 1C11) mAbs. Biofilm formation was allowed for 24 hours at 37°C. After washing, biofilms were stained with crystal violet and biofilm content was measured by spectrophotometry at 595 nm. As a positive control for biofilm inhibition, UAMS-1 deficient strain for amidase (Δamd), glucosaminidase (Δgma) or autolysin (Δatl) were seeded at same OD. Results are reported as the amount of biofilm formation (i.e., crystal violet staining) as a percentage of the wild type (WT), untreated UAMS-1 culture (A); * p < 0.05 compared to WT.

Figures 6A-E illustrate the effect of passive immunization with anti-Amd monoclonal antibodies and a combination of anti-Amd and anti-Gmd monoclonal antibodies on biofilm formation on implants in vivo as compared to autolysin deficiency. Six-to-ten week old, female Balb/c mice (n ≥ 3) were passively immunized intraperitoneally with anti-Amd (Amd1.6), a combination of anti-Amd and anti-Gmd (Amd1.6 + 1C11) or an IgG isotype-matched control mAb at a dose of 40 mg/kg. One day later each mouse was infected with a trans-tibial stainless steel pin contaminated with USA300 LAC CA-MRSA strain or its isogenic Δatl mutant. The pins were left in place to allow the biofilm-based infection to mature. On Day 14 post-infection the pins were removed and examined by scanning electron microscopy (SEM). Representative micrographs showing the extent of biofilm formation on the infected implants (pins) are shown: IgG control (Figure 6A); anti-Amd (Amd1.6, Figure 6B); anti-Amd + anti-Gmd (Amd1.6 + 1C11, Figure 6C); and infected with Δatl mutant (Figure 6D). The percentage of the region of interest (the 0.5 x 2.0 mm face of the flat pin) covered with biofilm was quantified with NIH software (Image J) and shown in Figure 6E; * p ≤ 0.05.

Figures 7A-C illustrate the effect of passive immunization with anti-Amd, anti-Gmd, and a combination of anti-Amd and anti-Gmd monoclonal antibodies on the reduction in the amount of bone damage. Female Balb/c mice (n= 5) were passively immunized with PBS or anti-Gmd (1C11), anti-Amd (1.6) or a combination (1C11+1.6) at a 40mg/kg dose i.p. as previously described (Varrone et al., "Passive Immunization With Anti-Glucosaminidase Monoclonal Antibodies Protects Mice From Implant-Associated Osteomyelitis by Mediating Opsonophagocytosis of Staphylococcus aureus Megaclusters," J Orthop Res 32(10):1389-96 (2014)). Twenty-four hours later all mice received a trans-tibial pin contaminated with USA300 LAC::lux, and bioluminescent imaging was performed on Day 3 to confirm the infection (Figure 7A). The mice were euthanized 14 days after infection, and the tibiae were harvested for microCT analysis. Representative 3D renderings of the infected tibiae are shown from the medial and lateral side (Figure 7B) to illustrate the relative level of osteolysis in each group (B) of the tibias. The osteolytic volume in each tibia was quantified using the formula: Osteolytic volume (mm3) = [medial osteolytic area + lateral osteolytic area (mm2)] X cortical thickness (mm) (*p < 0.05 vs. PBS). The results are illustrated graphically in Figure 7C.

Figures 8A-C illustrate the effects of passive immunization with Amd1.6, which show significantly reduced bacterial spread as evidenced by the formation of fewer abscesses in the medullary canal. 6-10 week old, female Balb/c mice (n = 5) were immunized intraperitoneally with PBS (negative control), anti-Gmd mAb 1C11, anti-Amd mAb Amd1.6 or a combination (1C11+Amd1.6) at a total dose of 40 mg/kg. Twenty-four hours later each mouse had inserted through its right tibia a pin contaminated with USA300 LAC::lux, a bioluminescent CA-MRSA strain. The resulting infection was allowed to progress for fourteen days when the animals were sacrificed and the infected tibiae were harvested, fixed, decalcified and sectioned for histological analysis. Representative infected tibiae stained with Orange G/alcian blue (ABG/OH) are depicted for (Figure 8A) untreated controls and (Figure 8B) mice treated with the combination of anti-Gmd 1C11 and anti-Amd Amd1.6. The number of abscesses observed in each group of mice is presented in (Figure 8C). *, p ≤ 0.05; **, p ≤ 0.01.

Figures 9A-H illustrate the effect of passive immunization with anti-Amd, anti-Gmd, and a combination of anti-Amd and anti-Gmd monoclonal antibodies in preventing formation of staphylococcal abscess communities (SACs), which leads to sterile abscesses. Mice (n = 5) were immunized i.p. with PBS (negative control) or mAbs 1C11, Amd1.6 or a combination (1C11+Amd1.6) at a 40 mg/kg dose. Twenty-four hours later all mice received a trans-tibial pin contaminated with USA300 LAC::lux bioluminescent CA-MRSA strain. Representative infected tibias from Day 14 post-infection are shown for histology sections that were Gram-stained to reveal the bacteria. PBS-treated tibias show typical SAC pathology, containing a central nidus of bacteria surrounded by an eosinophilic pseudocapsule within the abscess area (Figures 9A-B) that are absent in mice treated with the following mAbs: 1C11 (Figures 9C-D), Amd1.6 (Figures 9E-F), and combination 1C11+Amd1.6 (Figures 9G-H).

Figures 10A-H illustrate the effect of passive immunization with anti-Amd, anti-Gmd, and a combination of anti-Amd and anti-Gmd monoclonal antibodies on recruitment of macrophage-like cells within the abscess. Six-to-ten week old female Balb/c mice (n = 5) were immunized i.p. with PBS or mAb 1C11, Amd1.6 or a combination (1C11 + Amd1.6) at a 40 mg/kg dose. Twenty-four hours later all mice received an trans-tibial pin contaminated with USA300 LAC::lux bioluminescent CA-MRSA strain. Representative infected tibias from Day 14 post-infection are shown for histology sections that were stained with Orange G/alcian blue (ABG/OH). Passive immunization with anti-Amd, anti-Gmd, and a combination of anti-Amd and anti-Gmd mAbs recruits macrophage-like cells to the center of abscess (Figures 10C-H, arrowheads) while the PBS immunized mice do not show macrophage-like cell recruitment within the abscess (Figures 10A-B) and display cells that morphologically resemble neutrophils. Multiple abscesses are present in PBS treated tibias (Figure 10A) in the medullary canal and soft tissue around the bone, compared to a single abscess in Amd1.6 and combination 1C11+Amd1.6 treated mice (Figures 10E and 10G, respectively), or two abscess structures in 1C11 treated mice (Figure 10C).

Figures 11A-E illustrate the effect of passive immunization with a combination of anti-Amd and anti-Gmd monoclonal antibodies, which accelerates bone healing by recruiting M2 macrophages within the sterile abscess. Six-to-ten week old female Balb/c mice (n = 5) were immunized i.p. with PBS or mAb 1C11, Amd1.6 or a combination (1C11 + Amd1.6) at a 40 mg/kg dose. Twenty-four hours later all mice received an trans-tibial pin contaminated with USA300 LAC::lux bioluminescent CA-MRSA strain. Representative tibias from Day 14 post-surgery are shown for histology sections that were stained with Orange G/alcian blue (ABG/OH) (Figures 11A-C). Remarkable healing is evident in mice immunized with the mAbs comparable to those receiving a sterile pin control (Figures 11A-C). To determine correlation of healing with macrophage phenotype associated with remodeling and wound healing process, immunohistochemistry was performed with anti-Arginase-1 antibody to stain M2 macrophages. M2 macrophages are recruited to the center of the abscess (brown staining) on mice that were passively immunized (Figure 11E), but excluded from abscess center on negative control PBS group (Figure 11D).


DETAILED DESCRIPTION



[0021] Disclosed herein are one or more monoclonal antibodies or binding portions thereof that binds specifically to a Staphylococcus spp. autolysin N-acetylmuramoyl-L-alanine amidase (Amd) catalytic domain or cell wall binding domain.

[0022] As used herein, the term "antibody" is meant to include immunoglobulins derived from natural sources or from recombinant sources, as well as immunoreactive portions (i.e. antigen binding portions) of immunoglobulins. The monoclonal antibodies disclosed herein may exist in or can be isolated in a variety of forms including, for example, substantially pure monoclonal antibodies, antibody fragments or binding portions, chimeric antibodies, and humanized antibodies (Ed Harlow and David Lane, USING ANTIBODIES: A LABORATORY MANUAL (Cold Spring Harbor Laboratory Press, 1999)).

[0023] The monoclonal antibodies disclosed herein are characterized by specificity for binding to Staphylococcus N-acetylmuramoyl-L-alanine-amidase or fragments thereof. The antibody specifically binds to an epitope, typically though not exclusively an immuno-dominant epitope, in the amidase sub-unit of Staphylococcus autolysin (Atl). These monoclonal antibodies may inhibit in vivo growth of a Staphylococcus strain. Alternatively, these monoclonal antibodies may inhibit biofilm establishment on metal, plastic and/or organic surfaces. Still further, one or more monoclonal antibodies can be used together to inhibit both in vivo growth of a Staphylococcus strain and biofilm establishment on metal, plastic and/or organic surfaces.

[0024] In accordance with this and all other aspects disclosed herein, the Staphylococcus strain is a strain that is, or can be, pathogenic to humans or animals. The Staphylococcus can be either coagulase-positive or coagulase-negative. Exemplary Staphylococcus strains include, without limitation, S. aureus, S. epidermidis, S. lugdunensis, S. saprophyticus, S. haemolyticus, S. caprae, and S. simiae. The monoclonal antibodies disclosed herein may be effective against antibiotic-resistant strains of Staphylococcus, including methicillin-resistant or vancomycin-resistant strains.

[0025] The epitope of the amidase subunit (that is bound by the mAb or binding fragment thereof) may be an immuno-dominant epitope. Immuno-dominant antigen is a part of the antigenic determinant that is most easily recognized by the immune system and thus exerts the most influence on the specificity of the induced antibody. An "immuno-dominant epitope" refers to the epitope on an antigen that selectively provokes an immune response in a host organism to the substantial exclusion of other epitopes on that antigen.

[0026] Usually, the antigen likely to carry an immuno-dominant epitope can be identified by selecting antigens on the outer surface of the pathogenic organism. For example, most simple organisms, such as fungi, bacteria and viruses have one or two proteins that are exposed on the outer surface of the pathogenic organism. These outer surface proteins are most likely to carry the appropriate antigen. The proteins most likely to carry an immuno-dominant epitope can be identified in a Western assay in which total protein is run on a gel against serum from an organism infected with the pathogenic organism. Bound antibodies from the serum are identified by labeled anti-antibodies, such as in one of the well-known ELISA techniques. The immuno-dominant epitope can be identified by examining serum from a host organism infected with the pathogenic organism. The serum is evaluated for its content of antibodies that bind to the identified antigens that are likely to cause an immune response in a host organism. If an immuno-dominant epitope is present in these antigens, substantially all antibodies in the serum will bind to the immuno-dominant epitope, with little binding to other epitopes present in the antigen.

[0027] AtlA is one of the catalytically distinct peptidoglycan hydrolases in Staphylococcus aureus that is required to digest the cell wall during mitosis (Baba and Schneewind, "Targeting of Muralytic Enzymes to the Cell Division Site of Gram-Positive Bacteria: Repeat Domains Direct Autolysin to the Equatorial Surface Ring of Staphylococcus aureus," EMBO. J. 17(16):4639-46 (1998)). In addition to being an essential gene for growth, scanning electron microscopy studies have demonstrated that anti-AtlA antibodies bound to S. aureus during binary fission localize to regions of the bacteria that are not covered by the cell wall (Yamada et al., "An Autolysin Ring Associated With Cell Separation of Staphylococcus aureus," J. Bacteriol. 178(6): 1565-71 (1996)).

[0028] The AtlA enzyme is comprised of an amidase (62kD) and glucosaminidase (53kD), which are produced from the same AtlA precursor protein via a cleavage process (Baba and Schneewind, "Targeting of Muralytic Enzymes to the Cell Division Site of Gram-Positive Bacteria: Repeat Domains Direct Autolysin to the Equatorial Surface Ring of Staphylococcus aureus," Embo. J. 17(16):4639-46 (1998); Komatsuzawa et al., "Subcellular Localization of the Major Autolysin, ATL and Its Processed Proteins in Staphylococcus aureus," Microbiol Immunol. 41:469-79 (1997); Oshida et al., "A Staphylococcus aureus Autolysin That Has an N-acetylmuramoyl-L-alanine Amidase Domain and an Endo-beta-N-acetylglucosaminidase Domain: Cloning, Sequence Analysis, and Characterization," Proc. Nat'l. Acad. Sci. U.S.A. 92(1):285-9 (1995)). The autolysin is held to the cell wall by three ∼150 amino acid cell wall binding domains, which are designated as R1, R2, and R3. In the final maturation step, proteolytic cleavage separates the amidase domain and its associated R1 and R2 domains (collectively, "Amd") from the glucosaminidase and its associated N-terminal R3 domain (collectively, "Gmd"). See Figure 1.

[0029] Exemplary encoded consensus protein and encoding open reading frame sequences for His-Amd are identified as SEQ ID NOS: 1 and 2 below.







[0030] The Staphylococcus Amd can be synthesized by solid phase or solution phase peptide synthesis, recombinant expression, or can be obtained from natural sources. Automatic peptide synthesizers are commercially available from numerous suppliers, such as Applied Biosystems, Foster City, California. Standard techniques of chemical peptide synthesis are well known in the art (see e.g., SYNTHETIC PEPTIDES: A USERS GUIDE 93-210 (Gregory A. Grant ed., 1992)). Protein or peptide production via recombinant expression can be carried out using bacteria, such as E. coli, yeast, insect or mammalian cells and expression systems. Procedures for recombinant protein/peptide expression are well known in the art and are described by Sambrook et al, Molecular Cloning: A Laboratory Manual (C.S.H.P. Press, NY 2d ed., 1989).

[0031] Recombinantly expressed peptides can be purified using any one of several methods readily known in the art, including ion exchange chromatography, hydrophobic interaction chromatography, affinity chromatography, gel filtration, and reverse phase chromatography. The peptide is preferably produced in purified form (preferably at least about 80% or 85% pure, more preferably at least about 90% or 95% pure) by conventional techniques. Depending on whether the recombinant host cell is made to secrete the peptide into growth medium (see U.S. Patent No. 6,596,509 to Bauer et al.), the peptide can be isolated and purified by centrifugation (to separate cellular components from supernatant containing the secreted peptide) followed by sequential ammonium sulfate precipitation of the supernatant. The fraction containing the peptide is subjected to gel filtration in an appropriately sized dextran or polyacrylamide column to separate the peptides from other proteins. If necessary, the peptide fraction may be further purified by HPLC and/or dialysis.

[0032] The monoclonal antibodies or binding portions may bind specifically to an epitope of the Amd catalytic domain. As used herein, the Amd catalytic domain is at least 70% identical to amino acids 9-252 of SEQ ID NO: 1, or at least 75% or 80% identical to amino acids 9-252 of SEQ ID NO: 1, or even at least 85% or 90% identical to amino acids 9-252 of SEQ ID NO: 1. The amidase catalytic domain may be at least 95% identical to amino acids 9-252 of SEQ ID NO: 1.

[0033] The monoclonal antibody or binding portion may be produced by a hybridoma cell line designated as Amd1.6, Amd1.10, Amd1.13, Amd1.16, Amd1.17, Amd2.1, or Amd2.2.

[0034] The monoclonal antibody or binding portion may bind to an epitope wholly or partly within the Amd R1 or R2 cell wall binding domain. As used herein, the R1 or R2 cell wall binding domains are at least 70% identical to amino acids 253-399 or 421-568 of SEQ ID NO: 1, respectively; or at least 75% or 80% identical to amino acids 253-399 or 421-568 of SEQ ID NO: 1, respectively; or even at least 85% or 90% identical to amino acids 253-399 or 421-568 of SEQ ID NO: 1, respectively. The cell wall binding domains may be at least 95% identical to amino acids 253-399 or 421-568 of SEQ ID NO: 1, respectively.

[0035] The monoclonal antibody or binding portion may be produced by a hybridoma cell line designated Amd1.1, Amd1.2, Amd1.5, Amd1.7, Amd1.8, Amd1.9, Amd1.11, Amd1.12, Amd1.14, Amd1.15, Amd2.4, or Amd2.5.

[0036] The monoclonal antibody disclosed herein may bind to the Amd catalytic domain or cell wall binding domain with an affinity greater than 10-8 M or 10-9 M, but preferably greater than 10-10M.

[0037] As noted above, the monoclonal antibodies or binding portions may also inhibit in vivo growth of Staphylococcus. Inhibition of in vivo growth of Staphylococcus can be measured according to a number of suitable standards. The in vivo growth of Staphylococcus may be assessed according to a bioluminescence assay. By way of example, bioluminescent S. aureus (Xen 29; ATCC 12600) (Francis et al., "Monitoring Bioluminescent Staphylococcus aureus Infections in Living Mice Using a Novel luxABCDE Construct," Infect. Immun. 68(6):3594-600 (2000); see also Contag et al., "Photonic Detection of Bacterial Pathogens in Living Hosts," Mol. Microbiol. 18(4):593-603 (1995)) is used to dose a transtibial implant with 500,000 CFU prior to surgical implant. Five week old female BALB/cJ mice can receive an intraperitoneal injection of saline or 1 mg of purified antibody/antibody fragment in 0.25 ml saline 3 days prior to surgery. The mice can be imaged to assess bioluminescence on various days (e.g., 0, 3, 5, 7, 11, and 14) and a comparison of BLI images can be compared to assess whether the antibody inhibits in vivo growth of S. aureus relative to the saline control or a control mouse injected with a placebo antibody.

[0038] The in vivo growth of Staphylococcus can be assessed according to biofilm formation. By way of example, female Balb/c mice can be passively immunized intraperitoneally with antibody/antibody fragment or control at a dose of 40 mg/kg, and one day later each mouse can be infected with a trans-tibial stainless steel pin contaminated with a MRSA strain. On day 14 post-infection the pins can be removed and examined by scanning electron microscopy (SEM), and the percentage of a region of interest (e.g., 0.5 x 2.0 mm face of the flat pin) covered with biofilm can be quantified with NIH software (Image J).

[0039] The Osteolytic Volume of infected bone can be measured using MicroCT imaging. By way of example, female Balb/c mice can be passively immunized intraperitoneally with antibody/antibody fragment or control at a dose of 40 mg/kg, and one day later each mouse can be infected with a trans-tibial stainless steel pin contaminated with a MRSA strain. After 14 days, the mice can be euthanized and the tibia harvested. Using the resulting images, the lesion area can be measured in two different views (e.g., medial and lateral), which are added together and multiplied by the cortical thickness (see Varrone et al., "Passive Immunization With Anti-Glucosaminidase Monoclonal Antibodies Protects Mice From Implant-Associated Osteomyelitis by Mediating Opsonophagocytosis of Staphylococcus aureus Megaclusters," J Orthop Res 32(10):1389-96 (2014)).

[0040] In vivo growth of Staphylococcus can be assessed by the presence (including frequency) or absence of Staphylococcus abscess communities (SACs) in the medullary canal or soft tissue surrounding the bone. By way of example, female Balb/c mice can be passively immunized intraperitoneally with antibody/antibody fragment or control at a dose of 40 mg/kg, and one day later each mouse can be infected with a trans-tibial stainless steel pin contaminated with a MRSA strain. After 14 days, the mice can be euthanized and the tibia and associated soft tissue harvested. Histological samples can be prepared and stained with Orange G/alcian blue (ABG/OH), and then the presence or absence of abscesses can be determined upon analysis of the histologic samples.

[0041] The monoclonal antibody or binding portion may comprise a VH domain comprising one of the following amino acid sequences (CDR domains underlined):

where X can be any amino acid. This amino acid sequence is encoded by the following nucleotide sequence (SEQ ID NO: 6):

where each N can be A, T, C, or G, as long as the nucleic acid molecule encodes the amino acid sequence of SEQ ID NO: 5.



This amino acid sequence is encoded by the following nucleotide sequence (SEQ ID NO: 8):

where each N can be A, T, C, or G, as long as the nucleic acid molecule encodes the amino acid sequence of SEQ ID NO: 7.

This amino acid sequence is encoded by the following nucleotide sequence (SEQ ID NO: 10):

where each N can be A, T, C, or G, as long as the nucleic acid molecule encodes the amino acid sequence of SEQ ID NO: 9.

This amino acid sequence is encoded by the following nucleotide sequence (SEQ ID NO: 12):



where each N can be A, T, C, or G, as long as the nucleic acid molecule encodes the amino acid sequence of SEQ ID NO: 11.

This amino acid sequence is encoded by the following nucleotide sequence (SEQ ID NO: 14):

where each N can be A, T, C, or G, as long as the nucleic acid molecule encodes the amino acid sequence of SEQ ID NO: 13.

This amino acid sequence is encoded by the following nucleotide sequence (SEQ ID NO: 16):



This amino acid sequence is encoded by the following nucleotide sequence (SEQ ID NO: 18):

where each N can be A, T, C, or G, as long as the nucleic acid molecule encodes the amino acid sequence of SEQ ID NO: 17.

This amino acid sequence is encoded by the following nucleotide sequence (SEQ ID NO: 20):

where each N can be A, T, C, or G, as long as the nucleic acid molecule encodes the amino acid sequence of SEQ ID NO: 19.

This amino acid sequence is encoded by the following nucleotide sequence (SEQ ID NO: 22):

where each N can be A, T, C, or G, as long as the nucleic acid molecule encodes the amino acid sequence of SEQ ID NO: 21.

This amino acid sequence is encoded by the following nucleotide sequence (SEQ ID NO: 24):

where each N can be A, T, C, or G, as long as the nucleic acid molecule encodes the amino acid sequence of SEQ ID NO: 23.

This amino acid sequence is encoded by the following nucleotide sequence (SEQ ID NO: 26):



where X can be any amino acid. This amino acid sequence is encoded by the following nucleotide sequence (SEQ ID NO: 28):

where each N can be A, T, C, or G, as long as the nucleic acid molecule encodes the amino acid sequence of SEQ ID NO: 27.

This amino acid sequence is encoded by the following nucleotide sequence (SEQ ID NO: 30):



This amino acid sequence is encoded by the following nucleotide sequence (SEQ ID NO: 32):



[0042] The monoclonal antibody or binding portion may comprise a VL domain comprising one of the following amino acid sequences (CDR domains underlined):

This amino acid sequence is encoded by the following nucleotide sequence (SEQ ID NO: 34):

where each N can be A, T, C, or G, as long as the nucleic acid molecule encodes the amino acid sequence of SEQ ID NO: 33.

This amino acid sequence is encoded by the following nucleotide sequence (SEQ ID NO: 36):



This amino acid sequence is encoded by the following nucleotide sequence (SEQ ID NO: 38):



This amino acid sequence is encoded by the following nucleotide sequence (SEQ ID NO: 40):





This amino acid sequence is encoded by the following nucleotide sequence (SEQ ID NO: 42):



This amino acid sequence is encoded by the following nucleotide sequence (SEQ ID NO: 44):



This amino acid sequence is encoded by the following nucleotide sequence (SEQ ID NO: 46):



This amino acid sequence is encoded by the following nucleotide sequence (SEQ ID NO: 48):





This amino acid sequence is encoded by the following nucleotide sequence (SEQ ID NO: 50):



This amino acid sequence is encoded by the following nucleotide sequence (SEQ ID NO: 52):



where X can be any amino acid. This amino acid sequence is encoded by the following nucleotide sequence (SEQ ID NO: 54):

where each N can be A, T, C, or G, as long as the nucleic acid molecule encodes the amino acid sequence of SEQ ID NO: 53.

This amino acid sequence is encoded by the following nucleotide sequence (SEQ ID NO: 56):



This amino acid sequence is encoded by the following nucleotide sequence (SEQ ID NO: 58):



This amino acid sequence is encoded by the following nucleotide sequence (SEQ ID NO: 60):



This amino acid sequence is encoded by the following nucleotide sequence (SEQ ID NO: 62):



This amino acid sequence is encoded by the following nucleotide sequence (SEQ ID NO: 64):



[0043] Also encompassed by this disclosure are Amd antibodies, and Amd binding portions thereof, that bind to the same epitope of Amd as one or more of the disclosed anti-Amd antibodies. Additional antibodies and Amd binding antibody portions can therefore be identified based on their ability to cross-compete (e.g., to competitively inhibit the binding of, in a statistically significant manner) with the disclosed antibodies in Amd binding assays. The ability of a test antibody to inhibit the binding of an anti-Amd reference antibody disclosed herein to an Amd protein (e.g., an Amd protein or polypeptide having at least part of the sequence of SEQ ID NO: 1, such as the catalytic domain or amino acids 9-252 of SEQ ID NO: 1 or the cell wall binding domain) demonstrates that the test antibody can compete with the reference antibody for binding to Amd. Such an antibody may, according to non-limiting theory, bind to the same or a related (e.g., a structurally similar or spatially proximal) epitope on the Amd protein as the reference antibody with which it competes. The antibody that binds to the same epitope on Amd as a reference antibody disclosed herein may be a humanized antibody. The antibody that binds to the same epitope on Amd as a reference antibody disclosed herein may be a human antibody. The Amd-binding antibodies and Amd binding antibody portions can also be other mouse or chimeric Amd-binding antibodies and Amd binding antibody portions which bind to the same epitope as the reference antibody.

[0044] The capacity to block or compete with the reference antibody binding indicates that an Amd-binding test antibody or Amd-binding antibody portion binds to the same or similar epitope as that defined by the reference antibody, or to an epitope which is sufficiently proximal to the epitope bound by the reference Amd-binding antibody. Such antibodies are especially likely to share the advantageous properties identified for the reference antibody.

[0045] The capacity to block or compete with the reference antibody may be determined using techniques known in the art such as a competition binding assay. With a competition binding assay, the antibody or Amd-binding antibody portion under test is examined for ability to inhibit specific binding of the reference antibody to an Amd protein or a portion of an Amd protein (e.g., the catalytic domain or amino acids 9-252 of SEQ ID NO: 1, or the cell wall binding domain). A test antibody competes with the reference antibody for specific binding to the Amd protein or portion thereof, as antigen, if an excess of the test antibody substantially inhibits binding of the reference antibody. Substantial inhibition means that the test antibody reduces specific binding of the reference antibody usually by at least 10%, 25%, 50%, 75%, or 90%.

[0046] Known competition binding assays can be generally applied or routinely adapted to assess competition of an Amd-binding antibody or Amd-binding antibody portion with the reference Amd-binding antibody for binding to an Amd protein or portion thereof. Such competition binding assays include, but are not limited to solid phase direct or indirect radioimmunoassay (RIA), solid phase direct or indirect enzyme immunoassay (EIA), sandwich competition assay (see Stähli et al., "Distinction of Epitopes by Monoclonal Antibodies," Methods in Enzymology 92:242-253, (1983)); solid phase direct biotin-avidin EIA (see Kirkland et al., "Analysis of the Fine Specificity and Cross-reactivity of Monoclonal Anti-lipid A Antibodies," J. Immunol. 137:3614-3619 (1986)); solid phase direct labeled assay, solid phase direct labeled sandwich assay (Ed Harlow and David Lane, USING ANTIBODIES: A LABORATORY MANUAL (Cold Spring Harbor Laboratory Press, 1999)); solid phase direct label RIA using 1-125 label (see Morel et al., "Monoclonal Antibodies to Bovine Serum Albumin: Affinity and Specificity Determinations," Molec,. Immunol. 25:7-15 (1988)); solid phase direct biotin-avidin EIA (Cheung et al., "Epitope-Specific Antibody Response to the Surface. Antigen of Duck Hepatitis B Virus in Infected Ducks," Virology 176:546-552 (1990)); and direct labeled RIA (Moldenhauer et al., "Identity of HML-1 Antigen on Intestinal Intraepithelial T Cells and of B-ly7 Antigen on Hairy Cell Leukaemia," Scand. J. Immunol. 32:77-82 (1990)). Typically, such an assay involves the use of purified antigen bound to a solid surface or cells bearing either of these, an unlabeled test Amd-binding antibody and a labeled reference antibody. Competitive inhibition is measured by determining the amount of label bound to the solid surface or cells in the presence of the test antibody. Usually the test antibody is present in excess. Antibodies and antigen binding antibody portions identified by competition assay (competing antibodies) include antibodies and antigen binding antibody portions that bind to the same epitope as the reference antibody and antibodies binding to an adjacent epitope sufficiently proximal to the epitope bound by the reference antibody for steric hindrance to occur.

[0047] The antibody, or Amd binding portion thereof, may bind specifically to Amd and cross compete with an anti-Amd antibody described herein. The antibody, or Amd binding portion thereof, may bind specifically to Amd and cross compete with an anti-Amd antibody selected from Amd1.1, Amd1.2, Amd1.5, Amd1.6, Amd1.7, Amd1.8, Amd1.9, Amd1.10, Amd1.11, Amd1.12, Amd1.13, Amd1.14, Amd1.15, Amd1.16, Amd1.17, Amd2.1, Amd2.2, Amd2.4, and Amd2.5. The antibody, or Amd binding portion thereof, may bind specifically to Amd and cross compete with antibody Amd1.6. The antibody, or Amd binding portion thereof, may bind specifically to Amd and cross compete with antibody Amd2.1. The antibody, or Amd binding portion thereof, may bind specifically to Amd, cross compete with one or more of the above anti-Amd antibodies, and inhibit Amd catalytic activity.

[0048] The antibody, or Amd binding portion thereof, may bind to the same epitope as an antibody described herein. The antibody, or Amd binding portion thereof, may bind to the same epitope as an antibody selected from Amd1.1, Amd1.2, Amd1.5, Amd1.6, Amd1.7, Amd1.8, Amd1.9, Amd1.10, Amd1.11, Amd1.12, Amd1.13, Amd1.14, Amd1.15, Amd1.16, Amd1.17, Amd2.1, Amd2.2, Amd2.4, and Amd2.5. The antibody, or Amd binding portion thereof, may bind to the same epitope as antibody Amd1.6. The antibody, or Amd binding portion thereof, may bind to the same epitope as antibody Amd2.1. The antibody, or Amd binding portion thereof, may bind to the same epitope as one or more of the above anti-Amd antibodies and inhibit Amd catalytic activity.

[0049] The antibody, or Amd binding portion thereof, may bind specifically to Amd and cross compete with an anti-Amd antibody that binds a Staphylococcus spp. Amd catalytic domain. The antibody, or Amd binding portion thereof, may bind specifically to Amd and cross compete with an anti-Amd antibody selected from Amd1.6, Amd1.10, Amd1.13, Amd1.16, Amd1.17, Amd2.1, and Amd2.2. The antibody, or Amd binding portion thereof, may bind specifically to Amd, cross compete with one or more of the above-identified anti-Amd antibodies, and inhibit Amd catalytic activity.

[0050] The antibody, or Amd binding portion thereof, may bind to the same epitope of an Amd catalytic domain as an antibody described herein. The antibody, or Amd binding portion thereof, may bind to the same epitope of an Amd catalytic domain as an antibody selected from Amd1.6, Amd1.10, Amd1.13, Amd1.16, Amd1.17, Amd2.1, and Amd2.2. The antibody, or Amd binding portion thereof, may bind to the same epitope as one or more of the above-identified anti-Amd antibodies and inhibit Amd catalytic activity.

[0051] The antibody, or Amd binding portion thereof, bind specifically to Amd and cross compete with an anti-Amd antibody that binds a Staphylococcus spp. Amd cell wall binding domain. The antibody, or Amd binding portion thereof, may bind specifically to Amd and cross compete with an anti-Amd antibody described herein that binds a cell wall binding domain. The antibody, or Amd binding portion thereof, may bind specifically to Amd and cross compete with an antibody selected from Amd1.1, Amd1.2, Amd1.5, Amd1.7, Amd1.8, Amd1.9, Amd1.11, Amd1.12, Amd1.14, Amd1.15, Amd2.4, and Amd2.5.

[0052] The antibody, or Amd binding portion thereof, may bind to the same epitope of an Amd cell wall binding domain as an anti-Amd antibody described herein. The antibody, or Amd binding portion thereof, may bind to the same epitope of an Amd cell wall binding domain as an antibody selected from Amd1.1, Amd1.2, Amd1.5, Amd1.7, Amd1.8, Amd1.9, Amd1.11, Amd1.12, Amd1.14, Amd1.15, Amd2.4, and Amd2.5.

[0053] Antibodies disclosed herein may also be synthetic antibodies. A synthetic antibody is an antibody which is generated using recombinant DNA technology, such as, for example, an antibody expressed by a bacteriophage. Alternatively, the synthetic antibody is generated by the synthesis of a DNA molecule encoding the antibody, followed by the expression of the antibody (i.e., synthesis of the amino acid specifying the antibody) where the DNA or amino acid sequence has been obtained using synthetic DNA or amino acid sequence technology which is available and well known in the art.

[0054] The synthetic antibody may be generated using one or more of the CDRs of a heavy chain variable domain as identified above, combinations of CDRs from different heavy chain variable domains as identified above, one or more of the CDRs of a light chain variable domain as identified, or combinations of CDRs from different light chain variable domains as identified above. By way of example, Amd1.6 and Amd2.1 include the following CDRs:
Source & CDRSequenceSEQ ID NO:
Amd1.6 VH, CDR1 GYSFTNYW 65
Amd1.6 VH, CDR2 IYPGNSDT 66
Amd1.6 VH, CDR3 DDYSRFSY 67
Amd1.6 VL, CDR1 QSVSND 68
Amd1.6 VL, CDR2 YTS 69
Amd2.1 VH, CDR1 GFTFSSYA 70
Amd2.1 VH, CDR2 ISSGGSXT 71
Amd2.1 VH, CDR3 VGLYYDYYYSMDY 72
Amd2.1 VL, CDR1 QSLLYSGNQKNY 73
Amd2.1 VL, CDR2 WAS 74
In Amd2.1 VH, CDR2 (SEQ ID NO: 71), X can be any amino acid.

[0055] The monoclonal antibody or binding portion may be partially humanized or fully human.

[0056] Humanized antibodies are antibodies that contain minimal sequences from non-human (e.g. murine) antibodies within the variable regions. Such antibodies are used therapeutically to reduce antigenicity and human anti-mouse antibody responses when administered to a human subject. In practice, humanized antibodies are typically human antibodies with minimum to no non-human sequences. A human antibody is an antibody produced by a human or an antibody having an amino acid sequence corresponding to an antibody produced by a human.

[0057] An antibody can be humanized by substituting the complementarity determining region (CDR) of a human antibody with that of a non-human antibody (e.g. mouse, rat, rabbit, hamster, etc.) having the desired specificity, affinity, and capability (Jones et al., "Replacing the Complementarity-Determining Regions in a Human Antibody With Those From a Mouse," Nature 321:522-525 (1986); Riechmann et al., "Reshaping Human Antibodies for Therapy," Nature 332:323-327 (1988); Verhoeyen et al., "Reshaping Human Antibodies: Grafting an Antilysozyme Activity," Science 239:1534-1536 (1988)). The humanized antibody can be further modified by the substitution of additional residues either in the Fv framework region and/or within the replaced non-human residues to refine and optimize antibody specificity, affinity, and/or capability.

[0058] Humanized antibodies can be produced using various techniques known in the art. Immortalized human B lymphocytes immunized in vitro or isolated from an immunized individual that produce an antibody directed against a target antigen can be generated (see e.g. Reisfeld et al., MONOCLONAL ANTIBODIES AND CANCER THERAPY 77 (Alan R. Liss ed., 1985) and U.S. Patent No. 5,750,373 to Garrard). Also, the humanized antibody can be selected from a phage library, where that phage library expresses human antibodies (Vaughan et al., "Human Antibodies with Sub-Nanomolar Affinities Isolated from a Large Non-immunized Phage Display Library," Nature Biotechnology, 14:309-314 (1996); Sheets et al., "Efficient Construction of a Large Nonimmune Phage Antibody Library: The Production of High-Affinity Human Single-Chain Antibodies to Protein Antigens," Proc. Nat'l. Acad. Sci. U.S.A. 95:6157-6162 (1998); Hoogenboom et al., "By-passing Immunisation. Human Antibodies from Synthetic Repertoires of Germline VH Gene Segments Rearranged in vitro," J. Mol. Biol. 227:381-8 (1992); Marks et al., "By-passing Immunization. Human Antibodies from V-gene Libraries Displayed on Phage," J. Mol. Biol. 222:581-97 (1991)). Humanized antibodies can also be made in transgenic mice containing human immunoglobulin loci that are capable upon immunization of producing the full repertoire of human antibodies in the absence of endogenous immunoglobulin production. This approach is described in U.S. Patent Nos. 5,545,807 to Surani et al.; 5,545,806 to Lonberg et al.; 5,569,825 to Lonberg et al.; 5,625,126 to Lonberg et al.; 5,633,425 to Lonberg et al.; and 5,661,016 to Lonberg et al..

[0059] The humanized monoclonal antibody may be IgG1, IgG2, IgG3 class or IgG4 class. The IgG3 class is particularly preferred because of its diminished Protein A binding (see Natsume et al., "Engineered Antibodies of IgG1/IgG3 Mixed Isotype with Enhanced Cytotoxic Activities," Cancer Res 68(10):3863-72 (2008)).

[0060] Circulating half-life of these antibody classes can be enhanced with modifications to the Fc domains, such as the N434A and T307A/E380A/N434A substitutions described by Petkova et al. ("Enhanced Half-life of Genetically Engineered Human IgG1 Antibodies in a Humanized FcRn Mouse Model: Potential Application in Humorally Mediated Autoimmune Disease," International Immunology 18(12):1759-1769 (2006)) or the N297Q substitution described by Balsitis et al. ("Lethal Antibody Enhancement of Dengue Disease in Mice Is Prevented by Fc Modification," PloS Pathogens 6(2): e1000790 (2010)).

[0061] The heavy and light chain sequences identified above as SEQ ID NOS: 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, and 63, respectively, can be used to identify codon-optimized DNA sequences, which can be introduced into suitable expression systems for the production of recombinant, chimeric antibodies in accordance with the present disclosure. Alternatively, the DNA sequences identified above can be used for the preparation of suitable expression systems for the production of recombinant, chimeric antibodies in accordance with the present disclosure.

[0062] In addition to whole antibodies, the present disclosure encompasses Amd binding portions of such antibodies. Such Amd binding portions include, without limitation, the monovalent Fab fragments, Fv fragments (e.g., single-chain antibody, scFv), single variable VH and VL domains, and the bivalent F(ab')2 fragments, Bis-scFv, diabodies, triabodies, and minibodies. These antibody fragments can be made by conventional procedures, such as proteolytic fragmentation procedures, as described in James Goding, MONOCLONAL ANTIBODIES: PRINCIPLES AND PRACTICE 98-118 (Academic Press, 1983); Ed Harlow and David Lane, ANTIBODIES: A LABORATORY MANUAL (Cold Spring Harbor Laboratory, 1988); Houston et al., "Protein Engineering of Antibody Binding Sites: Recovery of Specific Activity in an Anti-Digoxin Single-Chain Fv Analogue Produced in Escherichia coli," Proc. Natl. Acad. Sci. USA 85:5879-5883 (1988); Bird et al, "Single-Chain Antigen-Binding Proteins," Science 242:423-426 (1988), or other methods known in the art.

[0063] The antibody, or Amd binding portion thereof, may comprise a framework in which amino acids have been substituted into the antibody framework from the respective human VH or VL germline sequences. Example 6, infra, identifies germline sequences for a number of antibodies described herein.

[0064] It may further be desirable, especially in the case of antibody fragments, to modify the antibody to increase its serum half-life. This can be achieved, for example, by incorporation of a salvage receptor binding epitope into the antibody fragment by mutation of the appropriate region in the antibody fragment or by incorporating the epitope binding site into a peptide tag that is then fused to the antibody fragment at either end or in the middle (e.g., by DNA or peptide synthesis).

[0065] Antibody mimics are also suitable for use in accordance with the present disclosure. A number of antibody mimics are known in the art including, without limitation, those known as adnectins or monobodies, which are derived from the tenth human fibronectin type III domain (10Fn3) (Koide et al., "The Fibronectin Type III Domain as a Scaffold for Novel Binding Proteins," J. Mol. Biol. 284:1141-1151 (1998); Koide et al., "Probing Protein Conformational Changes in Living Cells by Using Designer Binding Proteins: Application to the Estrogen Receptor," Proc. Natl. Acad. Sci. USA 99:1253-1258 (2002)); and those known as affibodies, which are derived from the stable alpha-helical bacterial receptor domain Z of staphylococcal protein A (Nord et al., "Binding Proteins Selected from Combinatorial Libraries of an alpha-helical Bacterial Receptor Domain," Nature Biotechnol. 15(8):772-777 (1997)).

[0066] In preparing these antibody mimics the CDRs of the VH and/or VL chains can be spliced or grafted into the variable loop regions of these antibody mimics. The grafting can involve a deletion of at least two amino acid residues up to substantially all but one amino acid residue appearing in a particular loop region along with the substitution of the CDR sequence. Insertions can be, for example, an insertion of one CDR at one loop region, optionally a second CDR at a second loop region, and optionally a third CDR at a third loop region. Any deletions, insertions, and replacements on the polypeptides can be achieved using recombinant techniques beginning with a known nucleotide sequence (see infra).

[0067] Methods for monoclonal antibody production may be achieved using the techniques described herein or others well-known in the art (MONOCLONAL ANTIBODIES - PRODUCTION, ENGINEERING AND CLINICAL APPLICATIONS (Mary A. Ritter and Heather M. Ladyman eds., 1995)). Generally, the process involves obtaining immune cells (lymphocytes) from the spleen of a mammal which has been previously immunized with the antigen of interest (i.e., Staphylococcus N-acetylmuramoyl-L-alanine amidase or peptide fragments thereof).

[0068] The antibody-secreting lymphocytes are then fused with myeloma cells or transformed cells, which are capable of replicating indefinitely in cell culture, thereby producing an immortal, immunoglobulin-secreting cell line. Fusion with mammalian myeloma cells or other fusion partners capable of replicating indefinitely in cell culture is achieved by standard and well-known techniques, for example, by using polyethylene glycol (PEG) or other fusing agents (Milstein and Kohler, "Derivation of Specific Antibody-Producing Tissue Culture and Tumor Lines by Cell Fusion," Eur. J. Immunol. 6:511 (1976)). The immortal cell line, which is preferably murine, but may also be derived from cells of other mammalian species, is selected to be deficient in enzymes necessary for the utilization of certain nutrients, to be capable of rapid growth, and have good fusion capability. The resulting fused cells, or hybridomas, are cultured, and the resulting colonies screened for the production of the desired monoclonal antibodies. Colonies producing such antibodies are cloned, and grown either in vivo or in vitro to produce large quantities of antibody.

[0069] Thus, a second aspect of present disclosure relates to a cell line that expresses a monoclonal antibody or binding portion disclosed herein. The monoclonal antibody disclosed herein may be produced by a hybridoma cell line designated Amd1.1, Amd1.2, Amd1.3, Amd1.5, Amd1.6, Amd1.7, Amd1.8, Amd1.9, Amd1.10, Amd1.11, Amd1.12, Amd1.13, Amd1.14, Amd1.15, Amd1.16, Amd1.17, Amd2.1, Amd2.2, Amd2.4, and Amd2.5.

[0070] As noted above, monoclonal antibodies can be made using recombinant DNA methods as described in U.S. Patent 4,816,567 to Cabilly et al.. The polynucleotides encoding a monoclonal antibody are isolated from mature B-cells or hybridoma cells, for example, by RT-PCR using oligonucleotide primers that specifically amplify the genes encoding the heavy and light chains of the antibody. The isolated polynucleotides encoding the heavy and light chains are then cloned into suitable expression vectors, which when transfected into host cells such as E. coli cells, simian COS cells, Chinese hamster ovary (CHO) cells, or myeloma cells that do not otherwise produce immunoglobulin protein, generate host cells that express and secrete monoclonal antibodies. Also, recombinant monoclonal antibodies or fragments thereof of the desired species can be isolated from phage display libraries (McCafferty et al., "Phage Antibodies: Filamentous Phage Displaying Antibody Variable Domains," Nature 348:552-554 (1990); Clackson et al., "Making Antibody Fragments using Phage Display Libraries," Nature 352:624-628 (1991); and Marks et al., "By-Passing Immunization. Human Antibodies from V-Gene Libraries Displayed on Phage," J. Mol. Biol. 222:581-597 (1991)).

[0071] Still a further aspect relates to a DNA construct comprising a DNA molecule that encodes an antibody or binding portion disclosed herein, a promoter-effective DNA molecule operably coupled 5' of the DNA molecule, and a transcription termination DNA molecule operably coupled 3' of the DNA molecule. The present disclosure also encompasses an expression vector into which the DNA construct is inserted. A synthetic gene for the polypeptides can be designed such that it includes convenient restriction sites for ease of mutagenesis and uses specific codons for high-level protein expression (Gribskov et al., "The Codon Preference Plot: Graphic Analysis of Protein Coding Sequences and Prediction of Gene Expression," Nucl. Acids. Res. 12:539-549 (1984)).

[0072] The gene may be assembled as follows: first the gene sequence can be divided into parts with boundaries at designed restriction sites; for each part, a pair of oligonucleotides that code opposite strands and have complementary overlaps of about 15 bases can be synthesized; the two oligonucleotides can be annealed and single strand regions can be filled in using the Klenow fragment of DNA polymerase; the double-stranded oligonucleotide can be cloned into a vector, such as, the pET3a vector (Novagen) using restriction enzyme sites at the termini of the fragment and its sequence can be confirmed by a DNA sequencer; and these steps can be repeated for each of the parts to obtain the whole gene. This approach takes more time to assemble a gene than the one-step polymerase chain reaction (PCR) method (Sandhu et al., "Dual Asymetric PCR: One-Step Construction of Synthetic Genes," BioTech. 12:14-16 (1992)). Mutations could likely be introduced by the low fidelity replication by Taq polymerase and would require time-consuming gene-editing. Recombinant DNA manipulations can be performed according to SAMBROOK & RUSSELL, MOLECULAR CLONING: A LABORATORY MANUAL (2d ed. 1989), unless otherwise stated. To avoid the introduction of mutations during one-step PCR, high fidelity/low error polymerases can be employed as is known in the art.

[0073] Desired mutations can be introduced to the polypeptide sequence(s) using either cassette mutagenesis, oligonucleotide site-directed mutagenesis techniques (Deng & Nickoloff, "Site-Directed Mutagenesis of Virtually any Plasmid by Eliminating a Unique Site," Anal. Biochem. 200:81-88 (1992)), or Kunkel mutagenesis (Kunkel et al., "Rapid and Efficient Site-Specific Mutagenesis Without Phenotypic Selection," Proc. Natl. Acad. Sci. USA 82:488-492 (1985); Kunkel et al., "Rapid and Efficient Site-Specific Mutagenesis Without Phenotypic Selection," Methods Enzymol. 154:367-382 (1987)).

[0074] Both cassette mutagenesis and site-directed mutagenesis can be used to prepare specifically desired nucleotide coding sequences. Cassette mutagenesis can be performed using the same protocol for gene construction described above and the double-stranded DNA fragment coding a new sequence can be cloned into a suitable expression vector. Many mutations can be made by combining a newly synthesized strand (coding mutations) and an oligonucleotide used for the gene synthesis. Regardless of the approach utilized to introduce mutations into the nucleotide sequence encoding a polypeptide according to the present disclosure, sequencing can be performed to confirm that the designed mutations (and no other mutations) were introduced by mutagenesis reactions.

[0075] In contrast, Kunkel mutagenesis can be utilized to randomly produce a plurality of mutated polypeptide coding sequences which can be used to prepare a combinatorial library of polypeptides for screening. Basically, targeted loop regions (or C-terminal or N-terminal tail regions) can be randomized using the NNK codon (N denoting a mixture of A, T, G, C, and K denoting a mixture of G and T) (Kunkel et al., "Rapid and Efficient Site-Specific Mutagenesis Without Phenotypic Selection," Methods Enzymol. 154:367-382 (1987)).

[0076] Regardless of the approach used to prepare the nucleic acid molecules encoding the antibody or Amd binding portion, the nucleic acid can be incorporated into host cells using conventional recombinant DNA technology. Generally, this involves inserting the DNA molecule into an expression system to which the DNA molecule is heterologous (i.e., not normally present). The heterologous DNA molecule is inserted into the expression system or vector in sense orientation and correct reading frame. The vector contains the necessary elements (promoters, suppressers, operators, transcription termination sequences, etc.) for the transcription and translation of the inserted protein-coding sequences. A recombinant gene or DNA construct can be prepared prior to its insertion into an expression vector. For example, using conventional recombinant DNA techniques, a promoter-effective DNA molecule can be operably coupled 5' of a DNA molecule encoding the polypeptide and a transcription termination (i.e., polyadenylation sequence) can be operably coupled 3' thereof.

[0077] In accordance with this aspect, the polynucleotides are inserted into an expression system or vector to which the molecule is heterologous. The heterologous nucleic acid molecule is inserted into the expression system or vector in proper sense (5'→3') orientation relative to the promoter and any other 5' regulatory molecules, and correct reading frame. The preparation of the nucleic acid constructs can be carried out using standard cloning methods well known in the art as described by SAMBROOK & RUSSELL, MOLECULAR CLONING: A LABORATORY MANUAL (Cold Springs Laboratory Press, 2001). U.S. Patent No. 4,237,224 to Cohen and Boyer, also describes the production of expression systems in the form of recombinant plasmids using restriction enzyme cleavage and ligation with DNA ligase.

[0078] Suitable expression vectors include those which contain replicon and control sequences that are derived from species compatible with the host cell. For example, if E. coli is used as a host cell, plasmids such as pUC19, pUC18 or pBR322 may be used. When using insect host cells, appropriate transfer vectors compatible with insect host cells include, pVL1392, pVL1393, pAcGP67 and pAcSecG2T, which incorporate a secretory signal fused to the desired protein, and pAcGHLT and pAcHLT, which contain GST and 6xHis tags (BD Biosciences, Franklin Lakes, NJ). Viral vectors suitable for use in carrying out this aspect include, adenoviral vectors, adeno-associated viral vectors, vaccinia viral vectors, nodaviral vectors, and retroviral vectors. Other suitable expression vectors are described in SAMBROOK AND RUSSELL, MOLECULAR CLONING: A LABORATORY MANUAL (Cold Springs Laboratory Press, 2001). Many known techniques and protocols for manipulation of nucleic acids, for example in preparation of nucleic acid constructs, mutagenesis, sequencing, introduction of DNA into cells and gene expression, and analysis of proteins, are described in detail in CURRENT PROTOCOLS IN MOLECULAR BIOLOGY (Fred M. Ausubel et al. eds., 2003).

[0079] Different genetic signals and processing events control many levels of gene expression (e.g., DNA transcription and messenger RNA ("mRNA") translation) and subsequently the amount of antibodies or antibody fragments that are produced and expressed by the host cell. Transcription of DNA is dependent upon the presence of a promoter, which is a DNA sequence that directs the binding of RNA polymerase, and thereby promotes mRNA synthesis. Promoters vary in their "strength" (i.e., their ability to promote transcription). For the purposes of expressing a cloned gene, it is desirable to use strong promoters to obtain a high level of transcription and, hence, expression. Depending upon the host system utilized, any one of a number of suitable promoters may be used. For instance, when using E. coli, its bacteriophages, or plasmids, promoters such as the T7 phage promoter, lac promoter, trp promoter, recA promoter, ribosomal RNA promoter, the PR and PL promoters of coliphage lambda and others, including but not limited, to lacUV5, ompF, bla, lpp, and the like, may be used to direct high levels of transcription of adjacent DNA segments. Additionally, a hybrid trp-lacUV5 (tac) promoter or other E. coli promoters produced by recombinant DNA or other synthetic DNA techniques may be used to provide for transcription of the inserted gene. When using insect cells, suitable baculovirus promoters include late promoters, such as 39K protein promoter or basic protein promoter, and very late promoters, such as the p10 and polyhedron promoters. In some cases it may be desirable to use transfer vectors containing multiple baculoviral promoters. Common promoters suitable for directing expression in mammalian cells include, without limitation, SV40, MMTV, metallothionein-1, adenovirus Ela, CMV, immediate early, immunoglobulin heavy chain promoter and enhancer, and RSV-LTR. The promoters can be constitutive or, alternatively, tissue-specific or inducible. In addition, in some circumstances inducible (TetOn) promoters can be used.

[0080] Translation of mRNA in prokaryotes depends upon the presence of the proper prokaryotic signals, which differ from those of eukaryotes. Efficient translation of mRNA in prokaryotes requires a ribosome binding site called the Shine-Dalgarno ("SD") sequence on the mRNA. This sequence is a short nucleotide sequence of mRNA that is located before the start codon, usually AUG, which encodes the amino-terminal methionine of the protein. The SD sequences are complementary to the 3'-end of the 16S rRNA (ribosomal RNA) and promote binding of mRNA to ribosomes by duplexing with the rRNA to allow correct positioning of the ribosome. For a review on maximizing gene expression, see Roberts and Lauer, "Maximizing Gene Expression on a Plasmid Using Recombination in vitro," Methods in Enzymology, 68:473-82 (1979).

[0081] The present disclosure also includes a host cell transformed with the DNA construct disclosed herein. The host cell can be a prokaryote or a eukaryote. Host cells suitable for expressing the polypeptides disclosed herein include any one of the more commonly available gram negative bacteria. Suitable microorganisms include Pseudomonas aeruginosa, Escherichia coli, Salmonella gastroenteritis (typhimirium), S. typhi, S. enteriditis, Shigella flexneri, S. sonnie, S. dysenteriae, Neisseria gonorrhoeae, N. meningitides, Haemophilus influenzae, H. pleuropneumoniae, Pasteurella haemolytica, P. multilocida, Legionella pneumophila, Treponema pallidum, T. denticola, T. orales, Borrelia burgdorferi, Borrelia spp., Leptospira interrogans, Klebsiella pneumoniae, Proteus vulgaris, P. morganii, P. mirabilis, Rickettsia prowazeki, R.typhi, R. richettsii, Porphyromonas (Bacteriodes) gingivalis, Chlamydia psittaci, C. pneumoniae, C. trachomatis, Campylobacter jejuni, C. intermedis, C. fetus, Helicobacter pylori, Francisella tularenisis, Vibrio cholerae, Vibrio parahaemolyticus, Bordetella pertussis, Burkholderie pseudomallei, Brucella abortus, B. susi, B. melitensis, B. canis, Spirillum minus, Pseudomonas mallei, Aeromonas hydrophila, A. salmonicida, and Yersinia pestis.

[0082] In addition to bacteria cells, animal cells, in particular mammalian and insect cells, yeast cells, fungal cells, plant cells, or algal cells are also suitable host cells for transfection/transformation of the recombinant expression vector carrying an isolated polynucleotide molecule of the type disclosed herein. Mammalian cell lines commonly used in the art include Chinese hamster ovary cells, HeLa cells, baby hamster kidney cells, COS cells, and many others. Suitable insect cell lines include those susceptible to baculoviral infection, including Sf9 and Sf21 cells.

[0083] Methods for transforming/transfecting host cells with expression vectors are well-known in the art and depend on the host system selected, as described in SAMBROOK & RUSSELL, MOLECULAR CLONING: A LABORATORY MANUAL (Cold Springs Laboratory Press, 2001). For bacterial cells, suitable techniques include calcium chloride transformation, electroporation, and transfection using bacteriophage. For eukaryotic cells, suitable techniques include calcium phosphate transfection, DEAE-Dextran, electroporation, liposome-mediated transfection, and transduction using retrovirus or any other viral vector. For insect cells, the transfer vector containing the polynucleotide construct is co-transfected with baculovirus DNA, such as AcNPV, to facilitate the production of a recombinant virus. Subsequent recombinant viral infection of Sf cells results in a high rate of recombinant protein production. Regardless of the expression system and host cell used to facilitate protein production, the expressed antibodies, antibody fragments, or antibody mimics can be readily purified using standard purification methods known in the art and described in PHILIP L.R. BONNER, PROTEIN PURIFICATION (Routledge 2007).

[0084] The polynucleotide(s) encoding a monoclonal antibody can further be modified using recombinant DNA technology to generate alternative antibodies. For example, the constant domains of the light and heavy chains of a mouse monoclonal antibody can be substituted for those regions of a human antibody to generate a humanized (or chimeric) antibody, as discussed above. Alternatively, the constant domains of the light and heavy chains of a mouse monoclonal antibody can be substituted for a non-immunoglobulin polypeptide to generate a fusion antibody. The constant regions may be truncated or removed to generate the desired antibody fragment of a monoclonal antibody. Furthermore, site-directed or high-density combinatorial mutagenesis of the variable region can be used to optimize specificity and affinity of a monoclonal antibody.

[0085] A further aspect relates to a pharmaceutical composition comprising a carrier and one or more monoclonal antibodies or one or more Amd binding portions thereof in accordance with the present disclosure. This pharmaceutical composition may contain two or more antibodies or binding fragments where all antibodies or binding fragments recognize the same epitope. Alternatively, the pharmaceutical composition may contain an antibody or binding fragment mixture where one or more antibodies or binding fragments recognize one epitope of Staphylococcus Amd and one or more antibodies or binding fragments recognize a different epitope of Staphylococcus Amd. For example, the mixture may contain one or more antibodies that bind specifically to an R1 or R2 domain of Staphylococcus Amd in combination with any other antibody that binds to Amd, such as an antibody that binds to the catalytic domain of Amd. The pharmaceutical composition may further contain a pharmaceutically acceptable carrier or other pharmaceutically acceptable components as described infra. Preferably, the carrier is an aqueous solution.

[0086] A pharmaceutical composition containing the antibodies disclosed herein can be administered to a subject having or at risk of having Staphylococcus infection. Various delivery systems are known and can be used to administer the antibodies disclosed herein. Methods of introduction include but are not limited to intradermal, intramuscular, intraperitoneal, intravenous, subcutaneous, intranasal, epidural, and oral routes. The therapeutic agent can be administered, for example by infusion or bolus injection, by absorption through epithelial or mucocutaneous linings (e.g., oral mucosa, rectal and intestinal mucosa, and the like) and can be administered together with other biologically active agents, such as chemotherapeutic agents, antibiotic agents, or other immunotherapeutic agents. Administration can be systemic or local, i.e., at a site of Staph infection or directly to a surgical or implant site.

[0087] The pharmaceutical composition may also include a second therapeutic agent to the patient, wherein the second therapeutic agent is an antibiotic agent or immunotherapeutic agent. Exemplary antibiotic agents include, without limitation, vancomycin, tobramycin, cefazolin, erythromycin, clindamycin, rifampin, gentamycin, fusidic acid, minocycline, co-trimoxazole, clindamycin, linezolid, quinupristin-dalfopristin, daptomycin, tigecycline, dalbavancin, telavancin, oritavancin, ceftobiprole, ceftaroline, iclaprim, the carbapenem CS-023/RO-4908463, and combinations thereof. Exemplary immunotherapeutic agents include, without limitation, tefibazumab, BSYX-A110, Aurexis™, and combinations thereof. The above lists of antibiotic agents and immunotherapeutic agents are intended to be non-limiting examples; thus, other antibiotic agents or immunotherapeutic agents are also contemplated. Combinations or mixtures of the second therapeutic agent can also be used for these purposes. These agents can be administered contemporaneously or as a single formulation.

[0088] The immunotherapeutic agent may include a second monoclonal antibody or binding portion thereof that binds specifically to a Staphylococcus glucosaminidase (Gmd) and inhibits in vivo growth of a Staphylococcus strain. Preferably, the second monoclonal antibody is produced by a hybridoma cell line designated 1C11, 1E12, 2D11, 3A8, 3H6, or 4A12, a humanized variant thereof, or a binding portion thereof (PCT Publication Nos. WO2011/140114 and WO2013/066876 to Schwarz et al.). Also in accordance with this aspect, the humanized variant of the second monoclonal antibody is preferably IgG1, IgG2, IgG3, or IgG4 class.

[0089] The binding portion of the second monoclonal antibody may comprise a Fab fragment, Fv fragment, single-chain antibody, a VH domain, or a VL domain.

[0090] The pharmaceutical composition typically includes one or more pharmaceutical carriers (e.g., sterile liquids, such as water and oils, including those of petroleum, animal, vegetable or synthetic origin, such as peanut oil, soybean oil, mineral oil, sesame oil and the like). Water is a more typical carrier when the pharmaceutical composition is administered intravenously. Saline solutions and aqueous dextrose and glycerol solutions can also be employed as liquid carriers, particularly for injectable solutions. Suitable pharmaceutical excipients include, for example, starch, glucose, lactose, sucrose, gelatin, malt, rice, flour, chalk, silica gel, sodium stearate, glycerol monostearate, talc, sodium chloride, dried skim milk, glycerol, propylene glycol, water, ethanol, and the like. The composition, if desired, can also contain minor amounts of wetting or emulsifying agents, or pH buffering agents. These compositions can take the form of solutions, suspensions, emulsion, tablets, pills, capsules, powders, sustained-release formulations and the like. The composition can be formulated as a suppository, with traditional binders and carriers such as triglycerides. Oral formulations can include standard carriers such as pharmaceutical grades of mannitol, lactose, starch, magnesium stearate, sodium saccharine, cellulose, magnesium carbonate, etc. Examples of suitable pharmaceutical carriers are described in "Remington's Pharmaceutical Sciences" by E. W. Martin. Such compositions will contain a therapeutically effective amount of the nucleic acid or protein, typically in purified form, together with a suitable amount of carrier so as to provide the form for proper administration to the patient. The formulations correspond to the mode of administration.

[0091] Effective doses of the compositions for the treatment of the above-described bacterial infections may vary depending upon many different factors, including mode of administration, target site, physiological state of the patient, other medications administered, and whether treatment is prophylactic or therapeutic. In prophylactic applications, a relatively low dosage is administered at relatively infrequent intervals over a long period of time. Some patients continue to receive treatment for the rest of their lives. In therapeutic applications, a relatively high dosage at relatively short intervals is sometimes required until progression of the disease is reduced or terminated, and preferably until the patient shows partial or complete amelioration of symptoms of disease. Thereafter, the patient can be administered a prophylactic regime. For prophylactic treatment against Staphylococcus bacterial infection, it is intended that the pharmaceutical composition(s) disclosed herein can be administered prior to exposure of an individual to the bacteria and that the resulting immune response can inhibit or reduce the severity of the bacterial infection such that the bacteria can be eliminated from the individual. For example, the monoclonal antibody or the pharmaceutical composition can be administered prior to, during, and/or immediately following a surgical procedure, such as joint replacement or any surgery involving a prosthetic implant.

[0092] For passive immunization with an antibody or binding fragment disclosed herein, the dosage ranges from about 0.0001 to about 100 mg/kg, and more usually about 0.01 to about 10 mg/kg, of the host body weight. For example, dosages can be about 1 mg/kg body weight or about 10 mg/kg body weight, or within the range of about 1 to about 10 mg/kg. An exemplary treatment regime entails administration once per every two weeks or once a month or once every 3 to 6 months. In some methods, two or more monoclonal antibodies with different binding specificities are administered simultaneously, in which case the dosage of each antibody administered falls within the ranges indicated. Antibody is usually administered on multiple occasions. Intervals between single dosages can be daily, weekly, monthly, or yearly. In some methods, dosage is adjusted to achieve a plasma antibody concentration of 1-1000 µg/ml and in some methods 25-300 µg/ml. Alternatively, antibody can be administered as a sustained release formulation, in which case less frequent administration is required. Dosage and frequency vary depending on the half-life of the antibody in the patient. In general, human antibodies show the longest half-life, followed by humanized antibodies, chimeric antibodies, and nonhuman antibodies.

[0093] A further aspect relates to a method of introducing an orthopedic implant, tissue graft or medical device into a patient that includes administering to a patient in need of such an implant an effective amount of a monoclonal antibody, binding portion, or pharmaceutical composition disclosed herein, and introducing the orthopedic implant or medical device into the patient.

[0094] As used herein, "introducing" a medical device is defined as introducing or installing the device or graft for the first time, as well as resurfacing or otherwise modifying a previously installed device or graft, replacing - in whole or in part - a previously installed device or graft, or otherwise surgically modifying a previously installed device or graft.

[0095] The method of introducing an orthopedic implant, medical device or graft may include administering to the patient in need of the orthopedic implant, medical device or graft an effective amount of a monoclonal antibody or binding fragment or a pharmaceutical composition containing the same, systemically or directly to the site of implantation. Alternatively, or in addition, the orthopedic implant, medical device or graft can be coated or treated with the monoclonal antibody or binding fragment or a pharmaceutical composition containing the same before, during, or immediately after implantation thereof at the implant site.

[0096] The orthopedic implant can be any type of implant that is susceptible to Staphylococcus infection, such as a joint prosthesis, graft or synthetic implant. Exemplary joint prostheses includes, without limitation, a knee prosthesis, hip prosthesis, finger prosthesis, elbow prosthesis, shoulder prosthesis, temperomandibular prosthesis, and ankle prosthesis. Other prosthetics can also be used. Exemplary grafts or synthetic implants include, without limitation, a vascular graft, a heart valve implant, an artificial intervertebral disk, meniscal implant, or a synthetic or allograft anterior cruciate ligament, medial collateral ligament, lateral collateral ligament, posterior cruciate ligament, Achilles tendon, and rotator cuff. Other grafts or implants can also be used.

[0097] The medical device can be any medical device that is susceptible to Staphylococcus infection. Exemplary medical devices include, without limitation, a cardiac pacemaker, cerebrospinal fluid shunt, dialysis catheter, or prosthetic heart valve.

[0098] In accordance with this aspect, a second therapeutic agent may also be administered to the patient. The second therapeutic agent may be an antibiotic agent or immunotherapeutic agent. Exemplary antibiotic agents and immunotherapeutic agents are described above.

[0099] The method of introducing an orthopedic implant or medical device may be intended to encompass the process of installing a revision total joint replacement. Where infection, particularly Staphylococcus sp. infection of an original joint replacement occurs, the only viable treatment is a revision total joint replacement. In this scenario, the infected joint prosthesis is first removed and then the patient is treated for the underlying infection. Treatment of the infection occurs over an extended period of time (i.e. 6 months), during which time the patient is immobile (or has only limited mobility) and receives high doses of antibiotics to treat the underlying infection and optionally one or more monoclonal antibodies or binding portions, or pharmaceutical compositions disclosed herein. Upon treatment of the underlying infection, the new joint prosthesis is installed. Immediately prior (i.e., within the two weeks preceding new joint prosthesis installation) and optionally subsequent to installation of the new joint prosthesis, the patient is administered one or more monoclonal antibodies or binding portions, or pharmaceutical compositions disclosed herein. This treatment can be repeated one or more times during the post-installation period. Antibiotic treatment may be administered in combination with or concurrently with the one or more monoclonal antibodies or binding portions, or pharmaceutical compositions disclosed herein. These treatments are effective to prevent infection or reinfection during the revision total joint replacement.

[0100] Another aspect relates to a method of treating or preventing a Staphylococcus infection that involves administering to a patient susceptible to or having a Staphylococcus infection an effective amount of a monoclonal antibody, a monoclonal antibody binding portion, or pharmaceutical composition disclosed herein, or a combination thereof.

[0101] In treating Staphylococcus infection, the administration of the monoclonal antibody, monoclonal antibody binding portion, pharmaceutical composition, or combination thereof, may be repeated. The initial and repeated administrations can be concurrent with or in sequence relative to other therapies and carried out systemically or carried out directly to a site of the Staphylococcus infection, or both.

[0102] The method of treating Staphylococcus infection can be used to treat Staphylococcus infection at sites which include, without limitation, infection of the skin, muscle, cardiac, respiratory tract, gastrointestinal tract, eye, kidney and urinary tract, and bone or joint infections.

[0103] This method may be carried out to treat osteomyelitis by administering an effective amount of the monoclonal antibody or binding fragment thereof or the pharmaceutical composition to a patient having a Staphylococcus bone or joint infection. Administration of these agents or compositions can be carried out using any of the routes described supra; in certain scenarios, administration directly to the site of the bone or joint infection can be performed.

[0104] In each of the preceding scenarios, a second therapeutic agent may also be administered to the patient. The second therapeutic agent may be an antibiotic agent or immunotherapeutic agent. Exemplary antibiotic agents and immunotherapeutic agents are described above.

[0105] The methods of treatment as disclosed herein can be used to treat any patient in need, including humans and non-human mammals, however, the methods are particularly useful for immuno-compromised patients of any age, as well as patients that are older than 50 years of age.

[0106] In the preceding scenarios, the preventative or therapeutic methods of treatment can reduce the rate of infection, the severity of infection, the duration of infection, or any combination thereof. In certain scenarios, the preventative or therapeutic methods of treatment can reduce or altogether eliminate the total number of SRCs or abscesses, and/or increase the number of sterile SRCs or abscesses (assuming SRCs or abscesses are present). In certain scenarios, partial or complete healing of an osteolytic lesion is contemplated, as indicated by a reduction in lesion size or volume.

[0107] Another aspect relates to a method of determining presence of Staphylococcus in a sample that involves exposing a sample to a monoclonal antibody or binding portion disclosed herein and detecting whether an immune complex forms between the monoclonal antibody or binding portion and Staphylococcus or a Staphylococcus amidase present in the sample, whereby presence of the immune complex after said exposing indicates the presence of Staphylococcus in the sample.

[0108] The sample can be a blood sample, a serum sample, a plasma sample, a mucosa-associated lymphoid tissue (MALT) sample, a cerebrospinal fluid sample, an articular liquid sample, a pleural liquid sample, a saliva sample, a urine sample, or a tissue biopsy sample.

[0109] Detecting formation of an immune complex can be performed by well known methods in the art. The detecting may be carried out using an immunoassay. The immunoassay method used may be a known immunoassay method, and for example, common immunoassay methods such as latex agglutination methods, turbidimetric methods, radioimmunoassay methods (for example, RIA and RIMA), enzyme immunoassay methods (for example, ELISA and EIA), gel diffusion precipitation reaction, flow cytometry, immunoelectrophoresis (for example Western blotting), dot blot methods, immunodiffusion assay, protein A immunoassay, fluorescent immunoassay (for example, FIA and IFMA), immunochromatography methods and antibody array methods may be mentioned, with no limitation to these. These immunoassay methods are themselves known in the field, and can be easily carried out by a person skilled in the art.

[0110] The monoclonal antibody or binding portion can be directly labeled by various methods known in the art. The label serves as reagent means for determining the extent to which the monoclonal antibody or binding portion is bound by analyte in the immunoassay. The label can be, without limitation, a radioisotope, enzyme, chromophore, fluorophore, light-absorbing or refracting particle. Preferably, the label is a radiolabel, fluorophore, or chemiluminescent label. It is preferable to label the antibody or binding portion as extensively as possible without destroying its immunoreactivity.

EXAMPLES



[0111] The examples below are intended to exemplify the practicing the disclosed subject matter, but are by no means intended to limit the scope of the subject-matter, which in the broadest sense is as defined in the claims.

Example 1 - Preparation of Antigen



[0112] A recombinant form of the entire amidase domain of S. aureus autolysin that includes a hexa-histidine sequence near its N-terminus (His-Amd) was prepared. The open reading frame for His-Amd was designed by collecting known sequences of S. aureus autolysin, determining the consensus protein sequence using Geneious™ software, and then optimizing codon usage for expression in E. coli. The encoded consensus protein and encoding open reading frame sequences for His-Amd are identified as SEQ ID NOS: 1 and 2 below.







[0113] The DNA molecule encoding His-Amd was synthesized de novo by DNA2.0 (Menlo Park, CA), and then inserted into the pJexpress E. coli expression vector.

[0114] His-Amd protein expressed in E. coli was primarily in the form of insoluble inclusion bodies which were harvested and solubilized in PBS with 8M urea. After further purification by metal chelation chromatography on TALON resin, the His-Amd was renatured by an extensive process of dialysis against phosphate buffered saline (PBS) containing 1 mM Zn2+ and stepwise reductions in the level of urea.

[0115] The Amd catalytic domain (His-Amd-cat) was prepared in an identical manner except that the portion of the open reading frame encoding the R1 and R2 domains was omitted (see Figure 1). The encoded consensus protein and encoding open reading frame sequences for His-Amd-cat are identified as SEQ ID NOS: 3 and 4 below.




Example 2 - Inoculation of Mice and Preparation of Hybridomas



[0116] For the initial hybridoma fusion (Fusion #1), six female Balb/c mice were immunized two times with 75 µg of His-AmdR1R2, in the Sigma Adjuvant System (Sigma, Cat. No. S6322) by intraperitoneal injection at seven-week intervals. Two of the mice with the highest titers in ELISA on immobilized His-AmdR1R2 were selected for hybridoma fusion. Each mouse received a final immunization of 350 µg of His-AmdR1R2, i.p., four days prior to sacrifice and hybridoma fusion.

[0117] For the second hybridoma fusion (Fusion #2), Balb/c mice were immunized two times: first dose with 120 µg of His-AmdR1R2-B from GenScript (Lot Number 222933S05/P20011303) in Sigma Adjuvant System (Sigma, Cat. No. S6322), and a second immunization with 100 µg of His-AmdR1R2-B conjugated with Keyhole limpet hemocyanin (KLH) (Imject EDC mcKLH Spin Kit; Thermo Scientific; Cat # 77671) at twelve-week intervals. Two of the mice with the highest titers in ELISA on immobilized His-AmdR1R2 were selected for hybridoma fusion. Each mouse received a final immunization of 100 µg of His-AmdR1R2, i.p., four days prior to sacrifice and hybridoma fusion.

[0118] Hybridomas were prepared from splenocytes by conventional methods.

Example 3 - Characterization of Monoclonal Antibodies



[0119] New monoclonal antibodies were screened on multiple related proteins to determine that they recognized native Amd (and not just the recombinant form) and whether their epitope was present on the catalytic (C) or cell wall binding domain (R1, R2 or R3). The proteins used for screening the monoclonal antibodies are identified in Table 1 below.
Table 1: Proteins Used for Screening the Monoclonal Antibodies
Protein/Antigen NameRegion of Autolysin/Sequence Description
His-AmdRl R2 MGHHHHHH - Autolysin aa 198 to 775
His-Amdcat MGHHHHHH - Autolysin aa 198 to 441
Native Amd Mixture of S. aureus UAMS-1 Δspa proteins including full length autolysin (aa 198-1276), Amd (aa 198 to 775), and Gmd (aa 776-1276)
His-AmdR1R2-B MGHHHHHH - Autolysin aa 198 to 775 - BirA biotinylation site
His-R3Gmd-B MGHHHHHH - Autolysin aa 776 to 1276 - BirA biotinylation site


[0120] Screening assays were carried out by ELISA using the proteins identified in Table 1 as capture antigen. ELISA tests were performed using widely practiced conventions. Specifically, antigens were adsorbed onto the wells of NUNC Maxisorp microtiter plates. Each antigen was prepared as a solution in phosphate-buffered saline (PBS) at 2 µg/mL and 100 µL was added to assigned microtiter wells and antigens were allowed to adsorb for either 1 hour at RT or overnight at 4 °C. Wells were blocked by the addition of 200 µL of 3% bovine serum albumin (BSA), without removal of the coating antigen, and incubated for either 1 hour at RT or overnight at 4 °C. Coated and blocked plates were then washed 3X with PBS supplemented with 0.05% Tween 20 (PBS-T) and either used immediately or stored at 4 °C.

[0121] Cell-free hybridoma culture supernatants were added to assigned wells and incubated for 1 hour at RT and then washed six times with PBS-T. The secondary antibody, horseradish peroxidase-conjugated goat anti-mouse IgG (Southern Biotechnology) was then added, 100 µL per well at 0.1-0.5 µg/mL in PBS-T, and incubated 1 hour at RT. Microtiter plates were again washed six times with PBS-T and then developed by the addition of 100 µL of either 3,3',5,5'-Tetramethylbenzidine (TMB) or 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS). The results of these ELISA are shown in Table 2 below.
Table 2. Summary of Successfully Cloned and Characterized anti-Amd mAbs
Anti-Amd mAbHeavy Chain ClassAmidase Domain C or R1R2IP with native AmidasePrecipitation of S. aureusKDAmidase Enzyme Inhibition
1.1 IgG1 R1R2 Yes Yes 2.5 nM No
1.2 IgG1 R1R2 Yes Yes ND No
1.4 IgG1 R1R2 Yes Yes ND ND
1.5 IgG1 R1R2 Yes Yes ND No
1.6 IgG1 C Yes Yes 2.1 nM Yes
1.7 IgG1 R1R2 Yes Yes ND No
1.8 IgG1 R1R2 Yes Yes 2.6 nM No
1.9 IgG1 R1R2 Yes Yes 2.6 nM No
1.10 IgG1 C No ND ND ND
1.11 IgG1 R1R2 Yes Yes 3.4 nM No
1.12 IgG1 R1R2 No No ND ND
1.13 IgG1 C Yes No ND ND
1.14 IgG1 R1R2 No ND ND ND
1.15 IgG1 R1R2 Yes Yes ND ND
1.16 IgG1 C Yes Yes 2.6 nM No
1.17 IgG1 C Yes No ND No
2.1 IgG1 C Yes Yes 4.9 nM Yes
2.2 IgG1 C Yes Yes 1.4 nM No
2.4 IgG1 R1R2 Yes Yes 1.9 nM No
2.5 IgG1 R1R2 Yes Yes 6.3 nM No
ND = Not Determined.

Example 4 - Inhibition of Amd Catalytic Activity in vitro



[0122] An attribute that may contribute to the potency of a therapeutic monoclonal antibody is its direct inhibition of the activity of an enzyme essential for bacterial growth and survival such as amidase. Some of the anti-Amd mAbs were tested for inhibition of amidase activity by measuring the extent to which they inhibited the ability of amidase to clarify a turbid suspension of S. aureus peptidoglycan. Results for eight antibodies from Fusion #1 are presented in Figure 2. MAb Amd1.6 was a potent inhibitor of amidase activity while the others were not, with the possible exception of Amd1 . 16, which appeared to be a low affinity inhibitor. Results for all of the antibodies are summarized in Table 2.

Example 5 - The Majority of Anti-Amd mAbs Precipitate S. aureus



[0123] Another attribute likely to be important for the potency of therapeutic monoclonal antibodies is the recognition of antigenic structures (epitopes) accessible from the outside of the intact bacterial cell. A visible manifestation of this recognition is the antibody-mediated clustering of individual bacteria into large aggregates that precipitate from suspension yielding a cell-rich pellet and a less turbid supernatant. Many of the candidate mAbs formed conspicuous precipitates as depicted in Figure 3. A summary of the precipitation activity of the candidate mAbs from fusions 1 and 2 is in Table 2.

Example 6 - Uniqueness of Each mAb and Identification of Germ Line Assignments Based on Sequencing



[0124] Gene assignments were identified by matching nucleotide sequences for anti-Amd heavy and light chains with the files of known murine V-region sequences in IgBLAST at the National Center for Biotechnology Information. The results of this analysis are presented in Table 3 below. Each of the antibodies from Fusion #1 was unique except possibly for Amd1 . 1 and 1.4 which were derived from the same germ-line VH gene segments. Two of the antibodies from Fusion#2 share heavy chain VH and JH gene segments with mAbs isolated in Fusion #1 (mAb Amd2.4 with mAb Amd1.11; mAb Amd 2.2 with mAb Amd1.7). In each case the light chains are distinct.
Table 3: Most Probable Germ Line VH, JH, VL and JL Gene Segments
HybridomaGerm Line VHGerm Line JHGerm Line VLGerm Line JL
Amd 1.1 IGHV14-3 (7) IGHJ4 (0) IGKV4-50 (6) IGKJ2 (0)
Amd 1.2 IGHV1-14 (4) IGHJ2 (0) IGKV5-43 (0) IGKJ2 (0)
Amd 1.4 IGHV14-3 (6) IGHJ4 (0) NA NA
Amd 1.5 IGHV14-1 (11) IGHJ4 (0) NA NA
Amd 1.6 IGHV1-5 (8) IGHJ3 (0) IGKV6-32 (3) IGKJ1 (0)
Amd 1.7 IGHV1S29 (7) IGHJ2 (0) IGKV6-32 (3) IGKJ1 (0)
Amd 1.8 NA NA IGKV5-39 (2) IGKJ2 (0)
Amd 1.9 IGHV5S12 (5) IGHJ2 (0) IGKV12-46 (8) IGKJ1 (0)
Amd1.10 NA NA IGKV4-68 (0) IGKJ2 (0)
Amd 1.11 IGHV9-3-1 (2) IGHJ4 (0) IGKV5-48 (0) IGKJ5 (0)
Amd 1.12 IGHV1-54 (3) IGHJ4 (0) IGKV12-44 (6) IGKJ2 (0)
Amd 1.13 IGHV1-82 (7) IGHJ4 (0) IGKV8-19 (1) IGKJ4 (0)
Amd1.15 NA NA IGKV6-17 (7) IGKJ4 (0)
Amd 1.16 IGHV1-80 (6) IGHJ4 (0) NA NA
Amd 1.17 IGHV5-4 (2) IGHJ2 (0) IGKV1-117(1) IGKJ1 (0)
Amd2.1 IGHV5S12 (5) IGHJ4 (0) IGKV8-19 (4) IGKJ5 (0)
Amd2.2 IGHV1S29 (5) IGHJ2 (0) IGKV4-86 (1) IGKJ5 (0)
Amd 2.4 IGHV9-3-1 (1) IGHJ4 (0) IGKV4-63 (7) IGKJ2 (0)
Amd2.5 NA NA IGKV12-41 (9) IGKJ2 (0)
Numbers in parentheses are the number of non-synonymous base changes observed between the anti-Amd sequence and the putative germ line precursor. NA = sequencing was unsuccessful.

Example 7 - Measurement of the Affinity of anti-Amd mAbs for S. aureus Amidase



[0125] An essential attribute of an antibacterial antibody is high affinity for the bacterial antigen. The higher the affinity, the lower the dose required for prophylaxis or therapy. While some therapeutic antibodies have affinities, expressed as KD, in the range of 10 nM (KA = 108 M-1) it is generally desirable to have antibodies with KD ∼ 1 nM (KA ∼ 109 M-1). The affinity of immobilized anti-Amd mAbs for soluble His-AmdR1R2-B was measured using surface plasmon resonance technology on a Biacore T-200. Representative data for mAb Amd1.6 is presented in Figure 4. While its average affinity for Amd is about 2.1 nM, Figure 4 illustrates a measured affinity of about 1 nM. Measured affinities for the other candidate mAbs are listed in Table 2.

Example 8 - Anti-Amd mAb Amdl.6 Inhibits in vitro Biofilm Formation by S. aureus Strain UAMS-1



[0126] Amd has been reported to be involved in the formation of biofilms (Bose et al., "Contribution of the Staphylococcus aureus Atl AM and GL Murein Hydrolase Activities in Cell Division, Autolysis, and Biofilm Formation," PLoS One 7:e42244 (2012); Chen et al., "Secreted Proteases Control Autolysin-mediated Biofilm Growth of Staphylococcus aureus," J Biol Chem. 288:29440-29452 (2013); Houston et al., "Essential Role for the Major Autolysin in the Fibronectin-binding Protein-mediated Staphylococcus aureus Biofilm Phenotype," Infect Immun.79:1153-1165 (2011)). Biofilm formation is a process believed to be central to the persistence of S. aureus infections in vivo, especially those associated with orthopedic implants (Ehrlich and Arciola, "From Koch's Postulates to Biofilm Theory: The Lesson of Bill Costerton," Internat'l J Artificial Organs 35:695-699 (2012)). To measure the ability of anti-Amd mAb1.6 to inhibit biofilm formation, S. aureus strain UAMS-1 was grown in Calgary plates (Ceri et al., "The Calgary Biofilm Device: New Technology for Rapid Determination of Antibiotic Susceptibilities of Bacterial Biofilms," J Clin Microbiol. 37:1771-1776 (1999)), which are specifically designed for measuring biofilm formation. Deletion mutants in the autolysin gene (Δatl) and in its Amd (Δamd) and Gmd (Δgmd) subdomains each formed substantially less biofilm than the WT UAMS-1 (20-35% of WT). Amd1.6 alone or in combination with the anti-Gmd mAb 1C11 (see PCT Publication Nos. WO2011/140114 to Schwarz et al.) reduced biofilm formation by more than 50% while an isotype-matched mAb of irrelevant specificity had no effect (Figure 5). Inhibition of the extracellular Amd by exogenous anti-Amd mAb is nearly as effective as deletion of the autolysin gene.

Example 9 - Anti-Amd mAb Amd1.6 Reduces Biofilm Formation in an in vivo Model of Implant-associated Osteomyelitis



[0127] Because implant-associated biofilms are thought to be a major source of persistence infection in orthopaedic indications, the ability to reduce the extent of biofilm formation on model implants can be interpreted as a measure of the potential clinical benefit of anti-Amd prophylaxis. Using a murine model of implant-associated osteomyelitis in which model implant with a defined region of interest, a 0.5 x 2.0 mm flat face on the implant, the area that was covered with biofilm during a 14-day infection with S. aureus was measured. The maximum extent of infection is around 40-50% as observed in Figure 6A where the mice had been treated with an isotype-matched antibody of irrelevant specificity. MAb Amd1.6, alone or in combination with the anti-Gmd mAb 1C11, reduced the formation of biofilm by about 50% relative to control (Figures 6B, 6C, 6E). This degree of reduction in biofilm formation is comparable to that resulting from a genetic deficiency in the autolysin gene (Δatl) (Figures 6B, 6D, 6E), indicating that in terms of biofilm formation the internal genetic deletion and interference by the exogenous anti-Amd antibody are functionally equivalent.

Example 10 - Passive Immunization with Anti-Amd mAb Amd1.6 Reduces the Volume of Bone Lysis Resulting from the S. aureus Infection



[0128] One of the characteristic features of S. aureus infections in bone is the lysis of bone resulting from the inflammatory response elicited by the infecting bacteria. Consequently, reduction in the volume of bone that is lysed (the Osteolytic Volume) is taken as a measure of limitation of the infection. To learn if anti-Amd mAb Amd1.6 would limit bone damage, groups of five 6-10 week old, female Balb/c mice were immunized intraperitoneally with PBS (untreated control), anti-Gmd mAb 1C11, anti-Amd mAb Amd1.6, or a combination (1C11+Amd1.6) at a total dose of 40 mg/kg. Twenty-four hours later each mouse had inserted through its right tibia a pin contaminated with USA300 LAC::lux, a bioluminescent CA-MRSA strain.

[0129] Bioluminescent imaging of all mice was performed on Days 0, 3, 5, 7, 10, and 14 using the Xenogen IVIS Spectrum imaging system (Caliper Life Sciences, Hopkinton, MA), and the peak BLI on Day 3 was quantified as previously described (Li et al., "Quantitative Mouse Model of Implant-associated Osteomyelitis and the Kinetics of Microbial Growth, Osteolysis, and Humoral Immunity," J Orthop Res 26:96-105 (2008)). A representative BLI from each treatment group is illustrated in Figure 7A, indicated that bacterial load was present in each treatment group.

[0130] The resulting infection was allowed to progress for fourteen days when the animals were sacrificed and the infected tibiae were harvested for analysis by microCT as previously described (Li et al., "Effects of Antiresorptive Agents on Osteomyelitis: Novel Insights into the Pathogenesis of Osteonecrosis of the Jaw," Ann N Y Acad Sci 1192:84-94 (2010)). In the untreated control, bone lysis on both the medial and lateral sides was extensive (Figures 7B); Osteolytic Volume averaged over 0.4 mm3. Reductions in Osteolytic Volume were measured in all three groups of antibody-treated mice (Figure 7C). In one individual receiving the combination therapy, the Osteolytic Volume was calculated to be 0, indicating a complete healing of the infected implant site. The effect of the combined antibody therapy in this individual is equivalent to both a sterile pin and an infected pin that was cured with effective antibiotic therapy (i.e., gentamicin treatment in Li et al., "Quantitative Mouse Model of Implant-Associated Osteomyelitis and the Kinetics of Microbial Growth, Osteolysis, and Humoral Immunity," J Orthop Res 26:96-105 (2008)). It is believed that this individual represents the first ever successful healing of an infected implant site in the absence of antibiotic therapy.

Example 11 - Passive Immunization with Anti-Amd mAb Amdl.6 Significantly Reduces Bacterial Spread



[0131] The formation of abscesses is another indication of the severity of infection. The number of abscesses formed was measured in the same mice examined in Example 10. Histological sections were stained with Orange G/alcian blue (ABG/OH) which reveals abscesses as circular fields of inflammatory host cells delimited by an unstained zone and, sometimes, a densely red staining nidus at its center. Typically, the nidus is the Staphylococcal abscess community (SAC); the inflammatory cells are neutrophils, mostly dead near the center and mostly alive near the perimeter and the unstained zone is a capsule formed from fibrin. In the untreated mice multiple abscesses formed (Figure 8A) with an average of nearly 4.5 per tibia (Figure 8C). In contrast mAb Amd1.6-treated mice averaged only two abscesses as did those treated with the anti-Gmd mAb 1C11 or with the combination (Figures 8B, 8C).

Example 12 - Passive Immunization with Anti-Amd mAb Amdl.6 Alone or in Combination with Anti-Gmd 1C11 Promotes the Formation of Sterile Abscesses and Accelerates Bone Healing



[0132] Detailed examination of the same histological sections presented in Figures 8B revealed unexpected findings. Consistently, intramedullary gram-stained abscesses were only found in tibiae of the PBS-treated mice (Figures 9A-B), while the lesions in the tibiae of the anti-Atl treated mice were characteristic of sterile abscesses that did not contain gram-positive bacteria (Figures 9C-H). Moreover, while the lesions in the tibiae of the placebo treated mice had clear histologic features of Staphylococci abscess communities (SACs) (Cheng et al., "Genetic Requirements for Staphylococcus aureus Abscess Formation and Persistence in Host Tissues," FASEB J 23(10):3393-3404 (2009); Cheng et al., "Contribution of Coagulases Towards Staphylococcus aureus Disease and Protective Immunity," PLoS Pathog 6(8):e1001036 (2010)), no SACs were observed in the tibiae of anti-Atl treated mice (compare Figures 10A-B with Figures 10C-H). Finally, and most surprisingly, it was discovered that combined anti-Amd and anti-Gmd passive immunization not only clears the MRSA infection (confirmed to be metabolically active on day 3; Figure 7A) by day 14, but also allows for bone healing that has never been documented to occur in this murine model of implant-associated osteomyelitis (compare Figures 11A-C). Specifically, osseus integration of the S. aureus contaminated implant is documented in Figure 11B, which displays a similar level of new bone formation around the pin and cortex as that observed in a sterile pin control (Figure 11C). Using arginase-1-positive staining, the presence or absence of tissue healing M2 macrophages was also analyzed. M2 macrophages, which are unable to enter the SAC in the tibia of PBS treated mice (Figure 11D), extensively invade the sterile abscesses in the tibia of combined anti-Amd and anti-Gmd treated mice to facilitate classical tissue healing (Figure 11E) (Murray and Wynn, "Protective and Pathogenic Functions of Macrophage Subsets," Nat Rev Immunol 11(11):723-737 (2011)).

Example 13 - Generation of Humanized Anti-Amd mAb Amd1.6



[0133] The variable regions of the light and heavy chains of the Amd1.6 antibody will be PCR amplified using primers to permit cloning into the human antibody expression vectors described by Tiller et al. ("Efficient Generation of Monoclonal Antibodies from Single Human B Cells by Single Cell RT-PCR and Expression Vector Cloning," J. Immunol. Methods 329(1-2):112-24 (2008)). Plasmids containing the Amd1.6 light and heavy chain variable regions and human kappa and IgG1 constant regions will be prepared and co-transfected into HEK293 cells. After 3 days, the medium will be removed from the cells and assayed for the presence of human IgG and for binding to immobilized Amd protein by ELISA. Bound antibody will be detected using a goat anti-Human IgG antibody coupled to horseradish peroxidase and 3,3',5,5' tetramethylbenzidene substrate.

[0134] To establish that the human:mouse chimeric Amd1.6 reacted with Amd as well as the parental mouse Amd1.6, each will be tested for its ability to inhibit the enzymatic activity of His-Amd.

[0135] The humanized Amd1.6 antibody can be utilized in a phase I clinical trial in elderly patients (>65 yrs) undergoing primary total joint replacement. The humanized Amd1.6 antibody will be used alone and in combination with a humanized 1C11 anti-Gmd antibody as described in U.S. Patent Application Publ. No. 20130110249.

Example 14 - Generation of Humanized Anti-Amd mAb Amd2.1



[0136] The variable regions of the light and heavy chains of the Amd2.1 antibody will be PCR amplified using primers to permit cloning into the human antibody expression vectors described by Tiller et al. ("Efficient Generation of Monoclonal Antibodies from Single Human B Cells by Single Cell RT-PCR and Expression Vector Cloning," J. Immunol. Methods 329(1-2):112-24 (2008)). Plasmids containing the Amd2.1 light and heavy chain variable regions and human kappa and IgG1 constant regions will be prepared and co-transfected into HEK293 cells. After 3 days, the medium will be removed from the cells and assayed for the presence of human IgG and for binding to immobilized Amd protein by ELISA. Bound antibody will be detected using a goat anti-Human IgG antibody coupled to horseradish peroxidase and 3,3',5,5' tetramethylbenzidene substrate.

[0137] To establish that the human:mouse chimeric Amd2.1 reacted with Amd as well as the parental mouse Amd2.1, each will be tested for its ability to inhibit the enzymatic activity of His-Amd.

[0138] The humanized Amd2.1 antibody can be utilized in a phase I clinical trial in elderly patients (>65 yrs) undergoing primary total joint replacement. The humanized Amd2.1 antibody will be used alone and in combination with a humanized 1C11 anti-Gmd antibody as described in U.S. Patent Application Publ. No. 20130110249.

SEQUENCE LISTING



[0139] 

<110> University of Rochester
Daiss, John L.
Schwarz, Edward
Varrone, John J.
Brodell, James Jr.
Bello-Irizarry, Sheila N.

<120> PASSIVE IMMUNIZATION FOR STAPHYLOCOCCUS INFECTIONS

<130> 29556.3431 (6-2200)

<150> 61/915,953
<151> 2013-12-13

<160> 74

<170> PatentIn version 3.5

<210> 1
<211> 585
<212> PRT
<213> Artificial

<220>
<223> His-labeled, N-acetylmuramoyl-L-alanine amidase from Staphylococcus aureus

<400> 1





<210> 2
<211> 1755
<212> DNA
<213> Artificial

<220>
<223> Nucleic acid encoding His-labeled, N-acetylmuramoyl-L-alanine amidase from Staphylococcus aureus

<400> 2

<210> 3
<211> 251
<212> PRT
<213> Artificial

<220>
<223> His-labeled, N-acetylmuramoyl-L-alanine amidase catalytic domain from Staphylococcus aureus

<400> 3



<210> 4
<211> 753
<212> DNA
<213> Artificial

<220>
<223> Nucleic acid encoding His-labeled, N-acetylmuramoyl-L-alanine amidase catalytic domain from Staphylococcus aureus

<400> 4

<210> 5
<211> 111
<212> PRT
<213> Mus musculus

<220>
<221> misc_feature
<222> (83)..(83)
<223> Xaa can be any naturally occurring amino acid

<400> 5



<210> 6
<211> 425
<212> DNA
<213> Mus musculus

<220>
<221> misc_feature
<222> (248)..(248)
<223> n is a, c, g, or t

<220>
<221> misc_feature
<222> (330)..(330)
<223> n is a, c, g, or t

<220>
<221> misc_feature
<222> (416)..(416)
<223> n is a, c, g, or t

<400> 6

<210> 7
<211> 116
<212> PRT
<213> Mus musculus

<400> 7

<210> 8
<211> 460
<212> DNA
<213> Mus musculus

<220>
<221> misc_feature
<222> (1)..(1)
<223> n is a, c, g, or t

<220>
<221> misc_feature
<222> (449)..(449)
<223> n is a, c, g, or t

<400> 8



<210> 9
<211> 118
<212> PRT
<213> Mus musculus

<400> 9

<210> 10
<211> 464
<212> DNA
<213> Mus musculus

<220>
<221> misc_feature
<222> (450)..(454)
<223> n is a, c, g, or t

<400> 10



<210> 11
<211> 112
<212> PRT
<213> Mus musculus

<400> 11

<210> 12
<211> 444
<212> DNA
<213> Mus musculus

<220>
<221> misc_feature
<222> (420)..(420)
<223> n is a, c, g, or t

<220>
<221> misc_feature
<222> (431)..(431)
<223> n is a, c, g, or t

<220>
<221> misc_feature
<222> (438)..(438)
<223> n is a, c, g, or t

<400> 12

<210> 13
<211> 112
<212> PRT
<213> Mus musculus

<400> 13

<210> 14
<211> 433
<212> DNA
<213> Mus musculus

<220>
<221> misc_feature
<222> (423)..(423)
<223> n is a, c, g, or t

<400> 14

<210> 15
<211> 111
<212> PRT
<213> Mus musculus

<400> 15

<210> 16
<211> 422
<212> DNA
<213> Mus musculus

<400> 16

<210> 17
<211> 119
<212> PRT
<213> Mus musculus

<400> 17

<210> 18
<211> 482
<212> DNA
<213> Mus musculus

<220>
<221> misc_feature
<222> (1)..(2)
<223> n is a, c, g, or t

<400> 18

<210> 19
<211> 119
<212> PRT
<213> Mus musculus

<400> 19



<210> 20
<211> 469
<212> DNA
<213> Mus musculus

<220>
<221> misc_feature
<222> (1)..(2)
<223> n is a, c, g, or t

<220>
<221> misc_feature
<222> (457)..(457)
<223> n is a, c, g, or t

<400> 20

<210> 21
<211> 113
<212> PRT
<213> Mus musculus

<400> 21



<210> 22
<211> 434
<212> DNA
<213> Mus musculus

<220>
<221> misc_feature
<222> (1)..(2)
<223> n is a, c, g, or t

<400> 22

<210> 23
<211> 114
<212> PRT
<213> Mus musculus

<400> 23



<210> 24
<211> 434
<212> DNA
<213> Mus musculus

<220>
<221> misc_feature
<222> (425)..(425)
<223> n is a, c, g, or t

<400> 24

<210> 25
<211> 108
<212> PRT
<213> Mus musculus

<400> 25



<210> 26
<211> 417
<212> DNA
<213> Mus musculus

<400> 26

<210> 27
<211> 113
<212> PRT
<213> Mus musculus

<220>
<221> misc_feature
<222> (48)..(48)
<223> Xaa can be any naturally occurring amino acid

<400> 27



<210> 28
<211> 340
<212> DNA
<213> Mus musculus

<220>
<221> misc_feature
<222> (141)..(143)
<223> n is a, c, g, or t

<400> 28

<210> 29
<211> 114
<212> PRT
<213> Mus musculus

<400> 29



<210> 30
<211> 343
<212> DNA
<213> Mus musculus

<400> 30

<210> 31
<211> 121
<212> PRT
<213> Mus musculus

<400> 31



<210> 32
<211> 364
<212> DNA
<213> Mus musculus

<400> 32

<210> 33
<211> 98
<212> PRT
<213> Mus musculus

<400> 33



<210> 34
<211> 324
<212> DNA
<213> Mus musculus

<220>
<221> misc_feature
<222> (1)..(1)
<223> n is a, c, g, or t

<400> 34

<210> 35
<211> 99
<212> PRT
<213> Mus musculus

<400> 35



<210> 36
<211> 331
<212> DNA
<213> Mus musculus

<400> 36

<210> 37
<211> 103
<212> PRT
<213> Mus musculus

<400> 37

<210> 38
<211> 355
<212> DNA
<213> Mus musculus

<400> 38

<210> 39
<211> 103
<212> PRT
<213> Mus musculus

<400> 39

<210> 40
<211> 323
<212> DNA
<213> Mus musculus

<400> 40



<210> 41
<211> 99
<212> PRT
<213> Mus musculus

<400> 41

<210> 42
<211> 336
<212> DNA
<213> Mus musculus

<400> 42



<210> 43
<211> 98
<212> PRT
<213> Mus musculus

<400> 43

<210> 44
<211> 313
<212> DNA
<213> Mus musculus

<400> 44

<210> 45
<211> 99
<212> PRT
<213> Mus musculus

<400> 45

<210> 46
<211> 326
<212> DNA
<213> Mus musculus

<400> 46

<210> 47
<211> 100
<212> PRT
<213> Mus musculus

<400> 47



<210> 48
<211> 336
<212> DNA
<213> Mus musculus

<400> 48

<210> 49
<211> 98
<212> PRT
<213> Mus musculus

<400> 49



<210> 50
<211> 327
<212> DNA
<213> Mus musculus

<400> 50

<210> 51
<211> 105
<212> PRT
<213> Mus musculus

<400> 51

<210> 52
<211> 327
<212> DNA
<213> Mus musculus

<400> 52

<210> 53
<211> 98
<212> PRT
<213> Mus musculus

<220>
<221> misc_feature
<222> (63).. (63)
<223> Xaa can be any naturally occurring amino acid

<400> 53

<210> 54
<211> 331
<212> DNA
<213> Mus musculus

<220>
<221> misc_feature
<222> (1)..(1)
<223> n is a, c, g, or t

<220>
<221> misc_feature
<222> (224)..(224)
<223> n is a, c, g, or t

<400> 54

<210> 55
<211> 107
<212> PRT
<213> Mus musculus

<400> 55

<210> 56
<211> 344
<212> DNA
<213> Mus musculus

<400> 56

<210> 57
<211> 113
<212> PRT
<213> Mus musculus

<400> 57

<210> 58
<211> 340
<212> DNA
<213> Mus musculus

<400> 58

<210> 59
<211> 106
<212> PRT
<213> Mus musculus

<400> 59

<210> 60
<211> 319
<212> DNA
<213> Mus musculus

<400> 60



<210> 61
<211> 107
<212> PRT
<213> Mus musculus

<400> 61

<210> 62
<211> 321
<212> DNA
<213> Mus musculus

<400> 62

<210> 63
<211> 107
<212> PRT
<213> Mus musculus

<400> 63

<210> 64
<211> 322
<212> DNA
<213> Mus musculus

<400> 64

<210> 65
<211> 8
<212> PRT
<213> Artificial

<220>
<223> Amd1.6Vh, CDR1

<400> 65

<210> 66
<211> 8
<212> PRT
<213> Artificial

<220>
<223> Amd1.6Vh, CDR2

<400> 66

<210> 67
<211> 8
<212> PRT
<213> Artificial

<220>
<223> Amd1.6Vh, CDR3

<400> 67

<210> 68
<211> 6
<212> PRT
<213> Artificial

<220>
<223> Amd1.6V1, CDR1

<400> 68

<210> 69
<211> 3
<212> PRT
<213> Artificial

<220>
<223> Amd1.6V1, CDR2

<400> 69

<210> 70
<211> 8
<212> PRT
<213> Artificial

<220>
<223> Amd2.1Vh, CDR1

<400> 70

<210> 71
<211> 8
<212> PRT
<213> Artificial

<220>
<223> Amd2.1Vh, CDR2

<220>
<221> misc_feature
<222> (7)..(7)
<223> Xaa can be any naturally occurring amino acid

<400> 71

<210> 72
<211> 13
<212> PRT
<213> Artificial

<220>
<223> Amd2.1Vh, CDR3

<400> 72

<210> 73
<211> 12
<212> PRT
<213> Artificial

<220>
<223> Amd2.1V1, CDR1

<400> 73

<210> 74
<211> 3
<212> PRT
<213> Artificial

<220>
<223> Amd2.1V1, CDR2

<400> 74




Claims

1. An isolated humanized monoclonal antibody, or antigen binding portion thereof, that binds specifically to a Staphylococcus spp. autolysin N-acetylmuramoyl-L-alanine amidase (Amd) catalytic domain and comprises the complementarity determining region sequences of the VH domain of SEQ ID NO: 11 and of the VL domain of SEQ ID NO: 37.
 
2. The monoclonal antibody or antigen binding portion according to claim 1, which binds Amd comprising the amino acid sequence of SEQ ID NO: 1.
 
3. The monoclonal antibody or antigen binding portion according to claim 1, wherein the monoclonal antibody or antigen binding portion inhibits biofilm establishment of a Staphylococcus strain on metal, plastic, and organic surfaces.
 
4. The monoclonal antibody or antigen binding portion according to claim 1, that inhibits Amd catalytic activity.
 
5. The monoclonal antibody or antigen binding portion according to claim 1, which comprises the VH sequences of SEQ ID NOS: 65-67 and the VL sequences of SEQ ID NOS: 68 and 69.
 
6. The antigen binding portion according to claim 1, wherein the antigen binding portion comprises a Fab fragment, Fv fragment, or single-chain Fv antibody.
 
7. The antigen binding portion according to claim 1.
 
8. The monoclonal antibody according to claim 1 or antigen binding portion according to claim 7, wherein the humanized monoclonal antibody is IgG1, IgG2, IgG3, or IgG4 class.
 
9. A pharmaceutical composition comprising a carrier and one or more monoclonal antibodies or one or more antigen binding portions according to claim 1.
 


Ansprüche

1. Isolierter humanisierter monoklonaler Antikörper oder ein Antigen-Bindungsabschnitt davon, der speziell an eine katalytische Domäne Staphylococcus spp. Autolysin N-Acetylmuramoyl-L-Alaninamidase (Amd) bindet und die komplementaritätsbestimmenden Regionssequenzen der VH-Domäne von SEQ ID NO: 11 und der VL-Domäne von SEQ ID NO: 37 umfasst.
 
2. Monoklonaler Antikörper oder Antigen-Bindungsabschnitt nach Anspruch 1, der Amd bindet, der die Aminosäuresequenz von SEQ ID NO: 1 umfasst.
 
3. Monoklonaler Antikörper oder Antigen-Bindungsabschnitt nach Anspruch 1, wobei der monoklonale Antikörper oder der Antigen-Bindungsabschnitt die Biofilmbildung eines Staphylococcus- Stammes auf Metall-, Kunststoff- und organischen Oberflächen hemmt.
 
4. Monoklonaler Antikörper oder Antigen-Bindungsabschnitt nach Anspruch 1, der die katalytische Aktivität von Amd hemmt.
 
5. Monoklonaler Antikörper oder Antigen-Bindungsabschnitt nach Anspruch 1, der die VH-Sequenzen von SEQ ID NOS: 65-67 und die VL-Sequenzen von SEQ ID NOS: 68 und 69 umfasst.
 
6. Antigen-Bindungsabschnitt nach Anspruch 1, wobei der Antigen-Bindungsabschnitt ein Fab-Fragment, ein Fv-Fragment oder einen einkettigen Fv-Antikörper umfasst.
 
7. Antigen-Bindungsabschnitt nach Anspruch 1.
 
8. Monoklonaler Antikörper nach Anspruch 1 oder Antigen-Bindungsabschnitt nach Anspruch 7, wobei der humanisierte monoklonale Antikörper einer IgG1-, IgG2-, IgG3- oder IgG4-Klasse entspricht.
 
9. Pharmazeutische Zusammensetzung, die eine Trägersubstanz und einen oder mehrere monoklonale Antikörper oder einen oder mehrere Antigen-Bindungsabschnitte nach Anspruch 1 umfasst.
 


Revendications

1. Anticorps monoclonal humanisé isolé, ou fraction de liaison à l'antigène de celui-ci, qui se lie plus particulièrement à un domaine catalytique de l'autolysine N-acétylmuramoyl-L-alanine amidase (Amd) de Staphylococcus spp. et comprend les séquences de régions déterminant la complémentarité du domaine VH de la SEQ d'ID N° : 11 et du domaine VL de la SEQ d'ID N° : 37.
 
2. Anticorps monoclonal ou fraction de liaison à l'antigène selon la revendication 1, qui se lie à l'Amd comprenant la séquence d'acides aminés de la SEQ d'ID N° : 1.
 
3. Anticorps monoclonal ou fraction de liaison à l'antigène selon la revendication 1, l'anticorps monoclonal ou la fraction de liaison à l'antigène inhibant la formation de biofilm d'une souche de Staphylococcus sur des surfaces métalliques, plastiques et organiques.
 
4. Anticorps monoclonal ou fraction de liaison à l'antigène selon la revendication 1, qui inhibe l'activité catalytique de Amd.
 
5. Anticorps monoclonal ou fraction de liaison à l'antigène selon la revendication 1, qui comprend les séquences VH des SEQ d'ID N° : 65 à 67 et les séquences VL des SEQ d'ID N° : 68 et 69.
 
6. Fraction de liaison à l'antigène selon la revendication 1, la fraction de liaison à l'antigène comprenant un fragment Fab, un fragment Fv ou un anticorps Fv à chaîne unique.
 
7. Fraction de liaison à l'antigène selon la revendication 1.
 
8. Anticorps monoclonal selon la revendication 1 ou fraction de liaison à l'antigène selon la revendication 7, l'anticorps monoclonal humanisé étant de classe IgG1, IgG2, 1gG3 ou IgG4.
 
9. Composition pharmaceutique comprenant un support et au moins un anticorps monoclonal, ou au moins une fraction de liaison à l'antigène selon la revendication 1.
 




Drawing
































Cited references

REFERENCES CITED IN THE DESCRIPTION



This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description




Non-patent literature cited in the description