(19)
(11)EP 3 080 414 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
04.11.2020 Bulletin 2020/45

(21)Application number: 14869841.8

(22)Date of filing:  25.11.2014
(51)International Patent Classification (IPC): 
F02B 17/00(2006.01)
C10L 1/04(2006.01)
(86)International application number:
PCT/US2014/067259
(87)International publication number:
WO 2015/088768 (18.06.2015 Gazette  2015/24)

(54)

HOMOGENEOUS CHARGE COMPRESSION IGNITION ENGINE FUELS AND PROCESS FOR MAKING THESE FUELS

MOTORKRAFTSTOFFE MIT HOMOGENER KOMPRESSIONSZÜNDUNG UND VERFAHREN ZUR HERSTELLUNG DIESER MOTORKRAFTSTOFFE

CARBURANTS DE MOTEUR À ALLUMAGE PAR COMPRESSION D'UNE CHARGE HOMOGÈNE ET PROCÉDÉ DE FABRICATION DE CES CARBURANTS


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 11.12.2013 US 201361914607 P
11.12.2013 US 201361914614 P
24.11.2014 US 201414551319
24.11.2014 US 201414551360

(43)Date of publication of application:
19.10.2016 Bulletin 2016/42

(73)Proprietor: Phillips 66 Company
Houston, TX 77210 (US)

(72)Inventors:
  • SHI, Yu
    Bartlesvilles, Oklahoma 74006 (US)
  • GUNTER, Garry C.
    Bartlesville, Oklahoma 74006 (US)
  • TAYLOR, Bradley M.
    Tulsa, Oklahoma 74105 (US)

(74)Representative: HGF 
Benoordenhoutseweg 46
2596 BC Den Haag
2596 BC Den Haag (NL)


(56)References cited: : 
WO-A2-2011/053651
US-A- 5 553 575
US-A1- 2009 025 279
US-B2- 6 761 745
US-A- 2 917 449
US-A1- 2006 101 712
US-A1- 2009 151 236
US-B2- 7 487 663
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    CROSS-REFERENCE TO RELATED APPLICATIONS



    [0001] This application is a PCT International application which claims the benefit of and priority to U.S. Provisional Application Ser. Nos. 61/914,607 filed December 11, 2013 and 61/914,614 filed December 11, 2013 and U.S. Application Serial Nos. 14/551,319 filed November 24, 2014 and 14/551,360 filed November 24, 2014, entitled "Homogeneous Charge Compression Ignition Engine Fuels".

    STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT



    [0002] None.

    BACKGROUND



    [0003] More stringent engine emission standards regulated by the Environmental Protection Agency (EPA) provide incentive to study and to apply advanced combustion modes in internal combustion engines. Among recently proposed advanced combustion modes, the Homogeneous Charge Compression Ignition (HCCI) engine stands out as a very promising technology with better fuel economy and lower pollutant emissions compared to conventional diesel and gasoline engines. HCCI utilize a pre-mixed homogeneous charge of air/fuel, which is auto-ignited by engine compression and burns quickly to maximize combustion efficiency. As a result, the fuel chemistry plays a dominant role in combustion phasing and engine performance.

    [0004] One of the major hurdles to creating commercially viable HCCI engines is developing technology to extend the engine high load limit. Because the chemical kinetics control combustion, the chemical properties of fuel components play a dominant role in HCCI engine performance. Combustion stability can also be a problem for HCCI engines under low load condition due to large cycle variations, i.e., during engine idling. This requires a fuel that has slow burning rate under high load but is still reactive under low load condition for HCCI engines. Accordingly, a need exists for improved hydrocarbon fuels that provide increased power and a broader operating range in HCCI engines, including increased load limit. US2006/0101712 A1 discloses a small off road engine green fuel. US2009/0025279 A1 discloses a fuel for HCCI systems.US2917449 discloses a method of upgrading a petroleum naphtha.

    BRIEF SUMMARY OF THE DISCLOSURE



    [0005] The invention generally relates to fuels and processes for making fuels that provide improved performance when combusted in a homogeneous charge compression ignition engine. The present invention provides a fuel and process for making a fuel according to the appending claims. In certain embodiments, the invention relates to a fuel for a homogeneous charge compression ignition engine that comprises a mixture of hydrocarbons, each hydrocarbon in the mixture comprising from 4 to 14 carbon atoms, at least 20 wt. % n-paraffins, at least 30 wt. % naphthenes, 20 wt. % or less of aromatic hydrocarbons and 5 wt. % or less of olefins. Optionally, at least 90 wt. % of the mixture of hydrocarbons may consist of hydrocarbons comprising from 6 to 10 carbon atoms. In certain embodiments, 15 wt. % or less, or optionally 10 wt. % or less of the hydrocarbons contain five or fewer carbon atoms.

    [0006] In certain alternative embodiments, the fuel may optionally comprise at least 25 wt. %, at least 30 wt %, or even at least 35 wt. % of n-paraffins. The fuel may optionally comprise at least 35 wt. % of naphthenes. In certain embodiments, the fuel may optionally comprise 15 wt. % or less of aromatics, or even 10 wt. % or less of aromatics.

    [0007] In certain alternative embodiments, the fuel may additionally comprise 3 wt. % or less, 2 wt. % or less, or even 1 wt. % or less of olefins. The fuel of the present invention has a dry vapor pressure equivalent of 10 psi (69 kPa) or less (as measured by method ASTM-D5191) at 37.8 °C. In various embodiments, the fuel may possess a dry vapor pressure equivalent of 9 psi (62 kPa) or less, 8 psi (55 kPa) or less, 7 psi (48 kPa) or less, or even 6 psi (41 kPa) or less. In certain embodiments, the fuel preferably contains a quantity (wt. %) of naphthenes that is greater than the quantity (wt. %) of normal paraffins.

    [0008] The present invention also relates to a process for making a fuel for a homogeneous charge compression ignition engine. The process comprises blending hydrocarbons to form a fuel mixture, where the power index of the fuel mixture when combusted in a homogeneous charge compression engine is greater than or equal to 2. The power index is defined by the equation:

    where MIMEP is the maximum indicated mean effective pressure achieved inside a homogeneous charge compression ignition engine cylinder during combustion of the fuel mixture (x) or the reference fuel (y), respectively, and an equal mass of each fuel is combusted. The variable y is a reference fuel comprising 11 wt. % n-heptane, 37 wt. % iso-octane, 32 wt. % toluene, 11 wt. % methyl-cyclohexane and 9 wt. % 1-hexene., while AREAx and AREAy represent distinct areas on a graph of load (IMEP) versus engine revolutions per minute (RPM) for the fuel mixture (x) and the reference fuel (y), respectively, each distinct area having an upper bound at the IMEP during combustion of each fuel at an RPM ranging from 1500 RPM to 2500 RPM, and having a lower boundary at the IMEP below which combustion of each fuel becomes unstable at an engine RPM ranging from 1500 RPM to 2500 RPM.

    [0009] The process comprises blending hydrocarbons into a fuel mixture that comprises hydrocarbons containing from 4 to 14 carbon atoms wherein at least 75 wt. % of the fuel mixture consists of hydrocarbons containing from 7 to 9 carbon atoms, at least 20 wt. % n-paraffins, at least 30 wt. % napthenic hydrocarbons, 20 wt. % or less of aromatic hydrocarbons and a dry vapor pressure equivalent (as measured by method ASTM-D5191) at 37.8 °C. In certain embodiments the fuel mixture comprises 5 wt. % or less of olefins. In certain embodiments of the process, at least 90 wt. % of the fuel mixture consists of hydrocarbons containing from 6 to 10 carbon atoms. In certain embodiments of the process, 15 wt. % or less, or optionally 10 wt. % or less of the hydrocarbons in the fuel mixture contain five or fewer carbon atoms.

    [0010] In certain embodiments of the process, the fuel mixture may comprise at least 25 wt. % or at least 30 wt. % of n-paraffins. In certain embodiments of the process, the fuel mixture comprises 15 wt. % or less, or even 10 wt. % or less of aromatic hydrocarbons.

    [0011] Optionally, the fuel mixture of the process may additionally comprise 3 wt. % or less, 2 wt. % or less, or even 1% or less of olefins. Optionally, the fuel mixture of the process possesses a dry vapor pressure equivalent (as measured by method ASTM-D5191) at 37.8 °C of 9 psi (62 kPa) or less, 8 psi (55 kPa) or less, 7 psi (48 kPa) or less, or even 6 psi (41 kPa) or less. In certain embodiments of the process, the quantity (wt. %) of napthenic hydrocarbons in the fuel mixture is greater than the quantity (wt. %) of normal paraffins in the fuel mixture.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0012] A more complete understanding of the present invention and benefits thereof may be acquired by referring to the follow description taken in conjunction with the accompanying drawings in which:

    FIG. 1 depicts a hypothetical speed versus load (IMEP) map of two fuels, A and B, over a range of engine speeds expressed in revolutions per minute (RPM).

    FIG. 2 comprises several graphs, each depicting a correlation between the power index for several fuel blends and the quantity of n-paraffins, naphthenes, olefins or aromatics present in each fuel blend.

    FIG. 3 is a graph that plots engine load (gross IMEP) versus negative valve overlap (NVO) as an indicator of operating range for several novel fuel blends versus certification gasoline (RD387).

    FIG. 4 is a graph depicting performance of certification gasoline (RD387) compared to several novel fuel blends with respect to negative valve overlap (NVO) during combustion in an HCCI engine.

    FIG. 5 is a graph depicting performance of several novel fuel blends with respect to combustion phasing (degrees after top dead center, or deg ATDC) during combustion in an HCCI engine.

    Figure 6 is a graph depicting the emissions index of total hydrocarbons (THC) versus the emissions index of NO (g/kg-fuel) for several novel fuel blends during combustion in an HCCI engine.

    Figure 7 is a graph depicting the emissions index of CO versus the emissions index of NO (g/kg-fuel) for several novel fuels blends during combustion in an HCCI engine.



    [0013] The invention is susceptible to various modifications and alternative forms, specific embodiments thereof are shown by way of example in the drawings. The drawings may not be to scale.

    DETAILED DESCRIPTION



    [0014] The present disclosure pertains to the properties and chemical components that make a novel fuel that improves the performance of HCCI engines. The properties include improved engine operating limits as well as increased power and efficiency. We assessed the performance of seven low-octane fuel blends and nine high-octane fuel blends on an HCCI engine utilizing a high-fidelity computer simulation tool. Each simulated fuel blend was constructed to comprise different combinations of eight chemical compounds, with each compound representing a distinct chemical genus, including n-paraffins, iso-paraffins, aromatics, naphthenes and olefins (hereinafter referred to as PIANO compounds). From this work, we derived an equation that correlates the presence of each PIANO hydrocarbon component in a fuel blend to the relative performance of that fuel blend for HCCI combustion. We then tested several hydrocarbon fuel blends in an actual HCCI engine to confirm the results of our modeling work and demonstrate that the presence of certain chemical species strongly correlates with increased fuel performance, while the presence of other chemical species inversely correlates with increased fuel performance.

    [0015] The examples are intended to be illustrative of specific embodiments in order to teach one of ordinary skill in the art how to make and use the invention. These examples should not be interpreted to limit, or define, the scope of the invention to less than is fully encompassed by the full disclosure of the invention herein and its legal equivalents.

    EXAMPLE 1



    [0016] HCCI engine combustion was modeled using the Chemkin software and the detailed gasoline mechanisms developed by Reaction Design of San Diego, CA. A single zone HCCI engine model was used to simulate HCCI engine combustion. The modeled test engine had the specifications listed in Table 1.
    Table 1: Test Engine Specifications
    Bore diameter (cm) 8.6
    Displacement volume (cm3) 500
    IVC (aTDC) -136
    EVO (aTDC) 138
    Engine connecting rod to crank radius ratio 3.326


    [0017] Test fuels were formulated to have either a high octane number (HON) corresponding to about 91 RON, or low octane number (LON) corresponding to about 60 RON. Fuels were formulated by blending eight fuel components, including n-heptane, n-hexane, iso-octane, methyl-pentane (iso-hexane), toluene, ethyl-benzene, methyl-cyclohexane (mch), and 1-hexene. The percentage of the individual chemical component was varied in the different test fuels to assist in determining the relative impact of each chemical component on HCCI engine combustion while still maintaining the targeted 91 RON and 60 RON of the surrogate fuels. The RONs of the surrogates were calculated based on the mass percentage of each fuel component and its corresponding RON. Table 2 provides the fuel composition, RON, and MON (based on linear expressions using fuel mass fractions) for the 16 gasoline surrogates studied. HON1 to HON9 represent the nine HON gasoline fuels, and LON1 to LON7 represent the seven LON fuels.
    Table 2: Hypothetical Fuel Blends Modeled
     # n-heptanen-hexanei-octanei-hexanetoluenebenzeneMCH1-hexeneRONMON
    HON1 11.0% 0.0% 37.0% 0.0% 32.0% 0.0% 11.0% 9.0% 90.3 85.7
    HON2 0.0% 15.0% 33.0% 0.0% 34.0% 0.0% 10.0% 8.0% 90.9 86.4
    HON3 10.0% 0.0% 43.0% 0.0% 29.0% 0.0% 10.0% 8.0% 91.2 87.1
    HON4 0.0% 10.0% 33.0% 0.0% 29.0% 0.0% 20.0% 8.0% 91.1 87.1
    HON5 0.0% 10.0% 33.0% 0.0% 29.0% 0.0% 10.0% 18.0% 91.3 86.0
    HON6 10.0% 0.0% 25.0% 8.0% 39.0% 0.0% 10.0% 8.0% 91.0 85.9
    HON7 0.0% 12.0% 41.0% 0.0% 25.0% 0.0% 12.0% 10.0% 90.4 86.6
    HON8 10.0% 0.0% 33.0% 0.0% 8.0% 30.0% 10.0% 9.0% 90.2 84.2
    HON9 0.0% 12.0% 41.0% 0.0% 26.0% 0.0% 12.0% 9.0% 90.8 87.0
    LON1 32.0% 0.0% 27.0% 0.0% 8.0% 0.0% 33.0% 0.0% 60.9 60.1
    LON2 0.0% 39.0% 9.0% 15.0% 7.0% 0.0% 30.0% 0.0% 60.2 59.9
    LON3 10.0% 19.0% 0.0% 34.0% 7.0% 0.0% 30.0% 0.0% 60.2 59.7
    LON4 29.0% 0.0% 17.0% 7.0% 7.0% 0.0% 40.0% 0.0% 60.0 59.3
    LON5 29.0% 0.0% 16.0% 8.0% 7.0% 0.0% 30.0% 10.0% 60.0 58.0
    LON6 29.0% 0.0% 0.0% 24.0% 17.0% 0.0% 30.0% 0.0% 60.1 58.3
    LON7 20.0% 14.0% 30.0% 0.0% 0.0% 0.0% 36.0% 0.0% 60.0 60.2


    [0018] In order to examine the fuel performance under a variety of operating conditions, six engine parameters were varied, including engine compression ratio, speed, initial temperature, initial pressure, EGR (Exhaust Gas Recirculation) rate, and equivalence ratio. Table 3 summarizes the variables and their values studied in this work, although not all data obtained are reproduced here or are necessary for a full understanding of the invention disclosed herein.
    Table 3: Computer Modeled Engine Parameters
    Compression ratio 12, 13, 14
    Engine speed (rpm) 1000, 1500, 2000
    Initial temperature (K) 375, 425, 475
    Initial pressure (atm) 1, 1.5, 2.0
    EGR (%) 30, 40, 50, 60
    Equivalence ratio 0.5, 0.6, 0.7, 0.8


    [0019] Practical HCCI engine operation is subject to different constraints. Specifically, the high load limit of engine operation is usually restricted by the maximum pressure rise rate during the combustion. A high pressure rise rate is the direct cause of engine knocking and may lead to severe mechanical damage. The Ringing Intensity Index (RII) was defined in the literature by J.A. Eng1 to quantify the knocking intensity in HCCI engines. RII is calculated using the equation:

    where


      is maximum pressure rise rate in the cylinder, kPa/msec
    β = 0.05  is a scaling factor msec2
    Pmax  is maximum pressure in the cylinder, Pa
    Tmax  is maximum temperature in the cylinder, K
    R  is the gas constant, J/kg K
    γ  is the ratio of specific heats Cp/Cv

    [0020] In our computer modeling, the limit of RII was set to 5 MW/m2 and defined the highest possible engine load condition when running with different fuel blends. The lower limit of the accessible engine load is determined by either misfire or an unstable combustion condition. In our modeling, a maximum in-cylinder temperature below 1300 K was deemed to result in a misfire. Unstable combustion was defined as that occurring later than 19 ° aTDC (after Top Dead Center) and is a typical constraint on the operability of an HCCI engine.

    [0021] It is common for HCCI fuel performance to be measured by maximum Indicated Mean Effective Pressure (IMEP) in the cylinder without violating the RII constraint (defined above). IMEP can be used as a fuel performance metric applicable to engines running with a constant speed and when the high load limit is of primary concern. However, in addition to the high load limit, the low load boundary (either misfire or unstable combustion) is also of concern when assessing the fuel performance. IMEP also does not give a full assessment of fuel performance over a range of HCCI engine speeds. Therefore, we developed a new metric, termed Power Index (PI), that can quantify HCCI fuel performance over the entire engine operating range. The engine operating range is constrained by RII, maximum in-cylinder temperature, and the maximum crank angle (expressed as degrees after top dead center) at which stable combustion can be maintained (i.e., without excessive misfire or cyclical variation). The performance of a given HCCI fuel blend typically falls within these engine operating constraints, and can be established on an engine speed-load map. Figure 1 depicts a hypothetical speed-load map of two fuels, A and B, over a range of engine speeds (expressed in revolutions per minute, or RPM). The maximum IMEP at each speed provides the upper limit, while the minimum limit at each speed is represented by the IMEP at which combustion becomes unstable due to misfire or unacceptable cyclic variation of the engine that may be caused by a lean condition or adjustments to negative valve overlap. Accordingly, we define the Power Index (PI) for a fuel as:

    where the Area represents the operating range of either the test fuel or the base fuel on the speed-load map. The high octane number fuel surrogate HON1 in Table 2 was selected as the base fuel for this modeling work, and was arbitrarily assigned a PI of 1. In alternative embodiments, an alternative base (i.e., reference) fuel may be chosen. For example, in certain embodiments, the base (reference) fuel may comprise 50 wt. % n-heptane and 50 wt. % iso-octane. In the modeling work, a larger calculated PI value was indicative of a fuel blend having better overall performance for HCCI engine combustion.

    [0022] Parametric modeling studies were conducted for each surrogate fuel blend on HCCI engine combustion based on the variables provided in Tables 1 - 3. The area of the engine speed-load map for each fuel blend was calculated and used to calculate Power Index according to the above equation. The results are provided in Table 4, and show that the calculated PI for the LON fuels were larger than the PI of the HON fuels. Indeed, the calculated PI for all HON fuels was close to the base fuel HON1, with a PI of 1. Thus, LON fuels (target RON 60) were deemed preferable as a HCCI fuel versus the HON fuels (target RON of 91).

    [0023] Table 4 summarizes the actual values of the PI and maximum engine load (IMEP) at both 1000 and 1500 RPM for each modeled fuel blend. Results were also obtained at 2000 RPM for each fuel, but are not shown.
    Table 4: Calculated Power Index and Maximum Achievable Load at 1000 RPM and 1500 RPM
    Fuel NamePower IndexMaximum load (bar) (1000 rpm)Maximum load (bar) (at 1500 rpm)
    HON1 1 6.81 6.00
    HON2 1.07 6.95 5.68
    HON3 0.97 6.75 5.98
    HON4 1.25 6.71 5.95
    HON5 0.95 6.93 5.70
    HON6 0.91 6.83 6.02
    HON7 1.10 6.90 5.67
    HON8 0.91 6.98 5.91
    HON9 1.09 6.89 6.01
    HON fuels avg. 1.03 6.86 5.88
    LON1 2.21 8.98 9.15
    LON2 2.29 8.97 9.13
    LON3 2.04 8.89 9.29
    LON4 2.34 9.73 9.27
    LON5 2.04 9.02 7.76
    LON6 2.02 9.31 6.96
    LON7 2.37 9.07 9.16
    LON fuels avg. 2.19 9.14 8.67


    [0024] The LON5 fuel was the only LON fuel containing 1-hexene, indicating that this species, and perhaps olefins in general, may have adversely affected the performance of this LON fuel blend. Meanwhile, the performance of the HON fuels appeared to be relatively insensitive to the presence of olefins.

    [0025] LON6 had the largest toluene content among all LON fuels. While not wishing to be bound by theory, this may have resulted in a lower reactivity of LON6 relative to other LON fuel blends tested, leading to a lower PI because higher intake temperature (resulting in less air/fuel charge to the cylinder according to the ideal gas law) was required to ignite the fuel blend. The LON fuel with the highest PI was LON4. This fuel blend had the highest MCH content, which is consistent with naphthenic content benefitting HCCI engine combustion.

    EXAMPLE 2



    [0026] We also modeled the effect of increased intake pressure on the properties of the different fuel blends, and the results are provided in Table 5.
    Table 5: Power Index and Maximum Achievable Load at Different Intake Pressures
    Fuel NamePower IndexMax. Load (bar) (at Pintake = 1 atm)Max. Load (bar) (at Pintake = 1.5 atm)Max. Load (bar) (at Pintake = 2 atm)
    HON1 1 3.43 5.15 6.81
    HON2 1.07 3.39 4.28 6.95
    HON3 0.97 3.33 4.73 6.75
    HON4 1.25 3.09 5.58 6.71
    HON5 0.95 3.13 4.20 6.93
    HON6 0.91 3.36 5.88 6.83
    HON7 1.10 3.11 4.49 6.90
    HON8 0.91 3.15 4.49 6.98
    HON9 1.09 3.43 5.15 6.81
    HON fuels avg. 1.03 3.26 4.78 6.86
    LON1 2.21 3.36 5.62 9.15
    LON2 2.29 3.41 7.45 9.13
    LON3 2.04 2.99 6.71 9.29
    LON4 2.34 3.11 5.83 9.73
    LON5 2.04 3.36 6.92 9.02
    LON6 2.02 3.41 6.79 9.31
    LON7 2.37 3.09 4.49 9.16
    LON fuels avg. 2.19 3.25 6.26 9.26


    [0027] Both HON and LON fuel blends achieved similar maximum load (indicated in bar) at an intake pressure of 1 atm, suggesting that HCCI engine performance was not particularly sensitive to the fuel composition at atmospheric pressure. However, at 1.5 atm intake pressure, the LON fuel blends had significantly higher maximum load (IMEP) that the HON blends (Table 4). There was also significant variation in the IMEP achieved among the different LON fuel blends, indicating that the chemical composition of each fuel blend had a significant impact on its suitability for HCCI combustion. For example, at 1.5 atm intake pressure, the LON2 fuel reached 7.45 bar maximum load, while the LON7 fuel only achieved 4.49 bars.

    EXAMPLE 3



    [0028] We examined the combustion rate for each component in a given fuel blend and plotted the results as mole fraction combusted versus engine crank angle. All fuel components except toluene were observed to rapidly decompose during an initial low temperature heat release stage, then gradually oxidize as combustion proceeded. We observed that toluene was consumed much slower than the other components, especially between the first and the second heat release stages. While not wishing to be bound by theory, the slow burning rate of toluene is theorized to help extend the combustion duration and reduce the engine ringing intensity. Thus, a small amount of aromatic species may be beneficial to HCCI engine combustion when blended into a low RON fuel.

    [0029] The results for all fuel blends were analyzed statistically to derive correlation and covariance coefficients between the power index and the quantity of various PIANO groups present in each fuel. The correlations are shown in Table 6, and graphed in Figure 2.
    Table 6: Correlation and Covariance Between Power Index and PIANO Groups
    Power indexParaffinIso-paraffinAromaticsNaphtheneOlefin
    Correlation coefficient 0.949 -0.743 -0.791 0.957 -0.932
    Covariance coefficient 0.062 -0.029 -0.026 0.066 -0.074


    [0030] The correlation coefficients between the power index and the presence of normal paraffins and naphthenes were found to be close to 1, suggesting that normal paraffinic and naphthenic compounds were significant contributors to the Power Index of the LON fuel blends. The correlation coefficient for certain components (i.e., iso-paraffins, aromatic hydrocarbons, and olefins) was negative, suggesting that these groups were not beneficial. However, this does not necessarily indicate that these compounds must be completely removed to create an optimal HCCI fuel. For example, as mentioned above, a small amount of toluene in the LON fuels helped to extend the combustion duration, and thus, lower the ringing intensity. Also, the correlation and covariance coefficients between the PI and the individual fuel component unexpectedly indicated that iso-hexane (as opposed to iso-octane) actually had a positive influence on PI, as is summarized in Table 7. MCH indicates methyl cyclo-hexane.
    Table 7: Correlation and Covariance Between Power Index and Specific Fuel Component
    Power indexn-heptanen-hexanei-octanei-hexanetolueneethyl-benzenemch1-hexene
    Correlation coefficient 0.656 0.216 -0.742 0.550 -0.844 -0.208 0.957 -0.791
    Covariance coefficient 0.048 0.014 -0.063 0.034 -0.064 -0.009 0.066 -0.026


    [0031] The correlation indicates that the diversity of the species in fuel blends is also a very important factor to Power Index. Both chemical composition and octane number are important to formulation of superior HCCI engine fuels, and the results provide support for several embodiments of the present invention.

    [0032] Statistical analysis of all computer modeling performed yielded a correlation between the Power Index and presence of four of the five PIANO groups, including n-paraffin, iso-paraffin, aromatics, and naphthene (olefin is excluded because of the permutations and combinations rule in statistical analysis). This can be expressed as:

    where the overall fit has a coefficient of determination (R2) = 0.951.

    EXAMPLE 4



    [0033] Empirical testing was performed in an actual HCCI engine to confirm the computer-modeled results discussed in the Examples 1 - 3. The University of Michigan Auto Lab performed tests utilizing a single cylinder HCCI engine having the specifications listed in Table 8. The experimental conditions under which testing was performed are listed in Table 9, while the general properties and composition of the fuel blends tested are listed in Table 10. RD387 was a commercial certified gasoline and was used as control for this work. NH-20 and NH-40 are simple control blends of 20 wt. % and 40 wt. % n-heptane mixed with RD387 certification gasoline. R9, IS5 and IS6A were non-commercial hydrocarbon test blends produced by Phillips 66 Company, Houston, Texas for these tests. Table 11 shows a detailed analysis of the composition of each test fuel by carbon number.
    Table 8: Test Engine Specifications:
    Displacement volume (cm^3) 550
    Cylinders 1
    Stroke (mm) 94.6
    Bore (mm) 86.0
    Connecting rod length (mm) 152.2
    Compression ratio 12.5
    Number of valves 4
    Piston shape Shallow bowl
    Head design Pent-roof
    Fuel delivery Direct injection
    Table 9: Experimental conditions
    Engine speed (rpm) 2000
    Intake temperature (°C) 45
    Intake pressure (bar) 1.0
    Exhaust pressure (bar) 1.05
    Coolant temperature (°C) 90
    Oil temperature (°C) 90
    Ringing index limit (MW/m2) 5
    COV of IMEP limit (%) 5
    EI-Nox limit (g/kg-fuel) 1
    Table 10: Test Fuel Specifications
     RD387NH20NH40R9IS5IS6A
    LHV (kJ/kg) 43032 43445 43649 43665 44218 45202
    Density (g/ml) 0.746 0.733 0.721 0.748 0.679 0.623
    RVP (psi) 6.400 - - 1.58 11.05 21.64
    MW (g/mol) 93.039 - 95.776 108.1 82.6 71.4
    Carbon (wt%) 86.4 - - 85.6 84.2 83.2
    Hydrogen (wt%) 13.6 - - 14.4 15.8 16.8
    H/C (molar) 1.897 1.959 2.039 2.002 2.235 2.403
    RON 90.5 75 58 50 71 95
    MON 82.6 71 56 50 69 88
    AKI ((R+M)/2) 87 73 57 50 70 92
    Aromatics (wt%) 32.3 25.8 19.4 13.5 2.5 0.0
    Paraffins (wt%) 8.1 26.5 44.9 22.6 34.2 10.4
    Iso-paraffins (wt%) 37.5 30.0 22.5 31.0 40.0 89.3
    Naphthenes (wt%) 16.9 15.1 11.3 30.4 22.2 0.0
    Olefins (wt%) 4.5 3.6 2.7 0 0 0.3
    Table 11: Composition of Each Test Fuel by Carbon Number (in wt. %)
    Carbon NumberRD387 (wt.%)IS5 (wt.%)IS6a (wt.%)R9 (wt.%)
    C4 1.7 1.8 4.1 -
    C5 17.7 34.6 95.8 0.5
    C6 12.9 38.1 - 9.9
    C7 32.3 21.3 - 21.6
    C8 20.6 3.9 - 25.2
    C9 8.5 0.2 - 8.6
    C10 3.8 - - 0.2
    C11 1.0 - - -


    [0034] We examined the maximum engine load (MIMEP) achievable for each test fuel by "mapping" the operating range of each test fuel over a range of "negative valve overlap" (NVO) settings. NVO is the duration (measured in degrees) where the exhaust valve is closed prior to opening of the intake valve. The greater the NVO duration, the more exhaust, or residual, that is retained in the cylinder to a) dilute and b) preheat the incoming air/fuel mixture. For each fuel blend tested, the energy addition per engine cycle was held constant regardless of the NVO setting for each fuel by compensating the mass flow based on lower heating value (LHV) such that J/cycle was held constant. For this work, the energy addition per cycle was made independent of engine size by dividing by cylinder displacement volume. This resulted in a new metric, termed Energy Mean Effective Pressure (EMEP):



    [0035] The operating range of the R9 test fuel was compared to RD387 gasoline and NH40, as shown in Figure 3, which plots gross IMEP versus the duration of NVO. The graph demonstrates that the amount of NVO required for stable HCCI combustion for R9 fuel was significantly less than that of NH40 fuel, even though they had similar calculated RON (refer to Table 10). This indicates that the superior properties of R9 as an HCCI fuel were not simply a consequence of its low octane number, but other physical and/or chemical properties.

    [0036] The performance of the Phillips 66 Company test fuels with respect to their NVO range is compared in Figure 4 and with respect to combustion phasing (timing advance) in Figure 5. Although Figure 4 shows test fuels IS5 and IS6A achieved slightly higher engine loads than R9 (IS6A achieved about 3% higher maximum IMEP than R9), R9 was able to sustain load (IMEP) at significantly less NVO, indicating that R9 is a more favorable HCCI fuel. Figure 5 shows that the R9 fuel blend maintained load (IMEP) at significantly later combustion phasing (defined as degrees after top dead center at which 50 wt. % of the fuel charge burns), which also favored the R9 blend as an HCCI fuel versus RD387 certification gasoline and the IS5 or IS6 blends. Overall R9 was determined to be an improved blend versus the other test fuels over a the range of operating conditions utilized.

    [0037] For each test fuel, we also measured the emissions of total hydrocarbons (THC), nitric oxide (NO), and carbon monoxide (CO) in units of g/kg-fuel during combustion in the HCCI engine, where engine load was fixed at 9 bar. Figure 6 plots the emissions index of THC versus the emissions index of NO, while Figure 7 plots the emissions index of CO versus the emissions index of NO. Both figures demonstrate the R9 fuel blend to result in the lowest emissions of NO which is important due to engine NO emissions are highly regulated in most countries. In general, the lower octane number fuels can operate with less NO emissions because of less NVO required to enable auto-ignition, but they suffer higher CO and THC emissions.

    [0038] In closing, it should be noted that the discussion of any reference is not an admission that it is prior art to the present disclosure, in particular, any reference that may have a publication date after the priority date of this application. At the same time, each and every claim below is hereby incorporated into this detailed description or specification as a additional embodiments of the present invention.

    References:



    [0039] 
    1. 1. Eng, J. A., Characterization of pressure waves in HCCI combustion, SAE Paper 2002-01-2859, (2002).



    Claims

    1. A process for making a fuel for a homogeneous charge compression ignition engine, the process comprising blending hydrocarbons to produce a fuel mixture that comprises:

    (a) a mixture of hydrocarbons, each hydrocarbon in the mixture comprising from 4 to 14 carbon atoms, wherein at least 75 wt. % of the hydrocarbons in the fuel mixture comprise from 7 to 9 carbon atoms;

    (b) at least 20 wt. % of n-paraffins;

    (c) at least 30 wt. % of napthenic hydrocarbons;

    (d) 20 wt. % or less of aromatic hydrocarbons;

    (e) a dry vapor pressure of 10 psi (69 kPa) or less as measured by method ASTM-D5191 at 37.8°C,
    wherein the fuel mixture possesses a Power Index that is greater than or equal to 2 when the fuel mixture is combusted in a homogeneous charge compression engine, the Power Index being defined by the equation:

    wherein MIMEP is defined as the maximum indicated mean effective pressure achieved inside a homogeneous charge compression ignition engine cylinder during combustion of the fuel mixture (x) or the reference fuel (y), respectively, and an equivalent mass of both fuel mixtures is combusted,

    wherein y is a reference fuel comprising 11 wt. % n-heptane, 37 wt. % iso-octane, 32 wt. % toluene, 11 wt. % methyl-cyclohexane and 9 wt. % 1-hexene,

    wherein AREAx and AREAy are defined as distinct areas on a graph of load (indicated mean effective pressure, or IMEP) versus engine revolutions per minute (RPM) for the fuel mixture (x) and the reference fuel (y), respectively, each distinct area having an upper bound at the maximum IMEP during combustion of each fuel at an RPM ranging from 1500RPM to 2500RPM, and having a lower boundary at the IMEP below which combustion of each fuel becomes unstable at an engine RPM ranging from 1500RPM to 2500RPM.


     
    2. The process according to claim 1, wherein said blending produces a fuel mixture comprising at least 90 wt. % of hydrocarbons that, in turn, comprise from 6 to 10 carbon atoms.
     
    3. The process according to any of claims 1 to 2, wherein said blending produces a fuel mixture comprising 15 wt. % or less of hydrocarbons that, in turn, comprise five or fewer carbon atoms.
     
    4. The process according to any of claims 1 to 3, wherein said blending produces a fuel mixture comprising 5 wt. % or less of olefins, optionally at least 25 wt. % of n-paraffins, and optionally 15 wt. % or less of aromatic hydrocarbons.
     
    5. The process according to any of claims 1 to 4, wherein said blending produces a fuel mixture possesses a dry vapor pressure equivalent 8 psi (55 kPa) or less.
     
    6. The process according to any of claims 1 to 5, wherein said blending produces a fuel mixture having a quantity (wt. %) of napthenic hydrocarbons that is greater than the quantity (wt. %) of normal paraffins in the fuel mixture.
     
    7. A fuel for a homogeneous charge compression ignition engine, comprising:

    (a) a mixture of hydrocarbons, each hydrocarbon in the mixture containing from 4 to 14 carbon atoms, wherein at least 75 wt. % of the hydrocarbons in the fuel mixture comprise from 7 to 9 carbon atoms;

    (b) at least 20 wt. % n-paraffins;

    (c) at least 30 wt. % naphthenes;

    (d) 20 wt. % or less of aromatic hydrocarbons;

    (f) a dry vapor pressure equivalent of 10 psi (69 kPa) or less as measured by method ASTM-D5191 at 37.8°C,
    wherein the fuel mixture possesses a Power Index that is greater than or equal to 2 when the fuel mixture is combusted in a homogeneous charge compression engine, the Power Index being defined by the equation:

    wherein MIMEP is defined as the maximum indicated mean effective pressure achieved inside a homogeneous charge compression ignition engine cylinder during combustion of the fuel mixture (x) or the reference fuel (y), respectively, and an equivalent mass of both fuel mixtures is combusted,

    wherein y is a reference fuel comprising 11 wt. % n-heptane, 37 wt. % iso-octane, 32 wt. % toluene, 11 wt. % methyl-cyclohexane and 9 wt. % 1-hexene,

    wherein AREAx and AREAy are defined as distinct areas on a graph of load (indicated mean effective pressure, or IMEP) versus engine revolutions per minute (RPM) for the fuel mixture (x) and the reference fuel (y), respectively, each distinct area having an upper bound at the maximum IMEP during combustion of each fuel at an RPM ranging from 1500RPM to 2500RPM, and having a lower boundary at the IMEP below which combustion of each fuel becomes unstable at an engine RPM ranging from 1500RPM to 2500RPM.


     
    8. The fuel of claim 7, wherein at least 90 wt. % of the mixture of hydrocarbons consists of hydrocarbons comprising from 6 to 10 carbon atoms.
     
    9. The fuel of any of claims 7 to 8, wherein 15 wt. % or less of the hydrocarbons comprise five or fewer carbon atoms.
     
    10. The fuel of any of claims 7 to 9, wherein the fuel comprises 5 wt. % or less of olefins, optionally at least 25 wt. % n-paraffins, and optionally 15 wt. % or less of aromatic hydrocarbons.
     
    11. The fuel of any of claims 7 to 10, wherein the quantity (wt. %) of naphthenes is greater than the quantity (wt. %) of normal paraffins.
     


    Ansprüche

    1. Verfahren zur Herstellung eines Kraftstoffs für einen Motor mit homogener Kompressionszündung, wobei das Verfahren das Mischen von Kohlenwasserstoffen zum Erzeugen eines Kraftstoffgemisches umfasst, das Folgendes umfasst:

    (a) ein Gemisch von Kohlenwasserstoffen, wobei jeder Kohlenwasserstoff im Gemisch 4 bis 14 Kohlenstoffatome umfasst, wobei mindestens 75 Gew.-% der Kohlenwasserstoffe im Kraftstoffgemisch 7 bis 9 Kohlenstoffatome umfassen;

    (b) mindestens 20 Gew.-% n-Paraffine;

    (c) mindestens 30 Gew.% napthenische Kohlenwasserstoffe;

    (d) 20 Gew.-% oder weniger aromatische Kohlenwasserstoffe;

    (e) einen Trockendampfdruck von 10 psi (69 kPa) oder weniger, gemessen nach der Methode ASTM-D5191 bei 37,8 ° C;
    wobei das Kraftstoffgemisch einen Leistungsindex besitzt, der größer oder gleich 2 ist, wenn das Kraftstoffgemisch in einem Motor mit homogener Kompressionszündung verbrannt wird, wobei der Leistungsindex durch folgende Gleichung definiert ist:

    wobei MIMEP als der maximal angegebene mittlere effektive Druck definiert ist, der in einem Motorzylinder mit homogener Kompressionszündung während der Verbrennung des Kraftstoffgemisches (x) bzw. des Referenzkraftstoffs (y) erreicht wird, und eine äquivalente Masse beider Kraftstoffgemische verbrannt wird;

    wobei y ein Referenzkraftstoff ist, der 11 Gew.-% n-Heptan, 37 Gew.-% Isooctan, 32 Gew.-% Toluol, 11 Gew.-% Methylcyclohexan und 9 Gew.-% 1-Hexen umfasst,

    wobei AREAx und AREAy als unterschiedliche Bereiche in einem Graph von Last (angegebener mittlerer effektiver Druck oder IMEP) gegenüber den Motorumdrehungen pro Minute (U/min) für das Kraftstoffgemisch (x) bzw. den Referenzkraftstoff (y) definiert sind, wobei jeder unterschiedliche Bereich eine Obergrenze bei der maximalen IMEP während der Verbrennung jedes Kraftstoffs bei einer Drehzahl im Bereich von 1500 U/min bis 2500 U/min aufweist und eine Untergrenze bei der IMEP aufweist, unterhalb derer die Verbrennung jedes Kraftstoffs bei einer Motordrehzahl im Bereich von 1500 U/min bis 2500 U/min instabil wird.


     
    2. Verfahren nach Anspruch 1, wobei das Mischen ein Kraftstoffgemisch erzeugt, das mindestens 90 Gew.-% Kohlenwasserstoffe umfasst, die wiederum 6 bis 10 Kohlenstoffatome umfassen.
     
    3. Verfahren nach einem der Ansprüche 1 bis 2, wobei das Mischen ein Kraftstoffgemisch erzeugt, das 15 Gew.-% oder weniger Kohlenwasserstoffe umfasst, die wiederum fünf oder weniger Kohlenstoffatome umfassen.
     
    4. Verfahren nach einem der Ansprüche 1 bis 3, wobei das Mischen ein Kraftstoffgemisch erzeugt, das 5 Gew.-% oder weniger Olefine, optional mindestens 25 Gew.-% n-Paraffine und optional 15 Gew.-% oder weniger aromatische Kohlenwasserstoffe umfasst.
     
    5. Verfahren nach einem der Ansprüche 1 bis 4, wobei das Mischen ein Kraftstoffgemisch erzeugt, das einen Trockendampfdruck besitzt, der 8 psi (55 kPa) oder weniger entspricht.
     
    6. Verfahren nach einem der Ansprüche 1 bis 5, wobei das Mischen ein Kraftstoffgemisch erzeugt, das eine Menge (Gew.-%) napthenischer Kohlenwasserstoffe aufweist, die größer ist als die Menge (Gew.-%) normaler Paraffine in dem Kraftstoffgemisch.
     
    7. Kraftstoff für einen Motor mit homogener Kompressionszündung, umfassend:

    (a) ein Gemisch von Kohlenwasserstoffen, wobei jeder Kohlenwasserstoff im Gemisch 4 bis 14 Kohlenstoffatome enthält, wobei mindestens 75 Gew.-% der Kohlenwasserstoffe im Kraftstoffgemisch 7 bis 9 Kohlenstoffatome umfassen;

    (b) mindestens 20 Gew.-% n-Paraffine;

    (c) mindestens 30 Gew.-% Naphthene;

    (d) 20 Gew.-% oder weniger aromatische Kohlenwasserstoffe;

    (f) ein Trockendampfdruckäquivalent von 10 psi (69 kPa) oder weniger, gemessen nach der Methode ASTM-D5191 bei 37,8 ° C, wobei das Kraftstoffgemisch einen Leistungsindex besitzt, der größer oder gleich 2 ist, wenn das Kraftstoffgemisch in einem Motor mit homogener Kompressionszündung verbrannt wird, wobei der Leistungsindex durch folgende Gleichung definiert ist:

    wobei MIMEP als der maximal angegebene mittlere effektive Druck definiert ist, der in einem Motorzylinder mit homogener Kompressionszündung während der Verbrennung des Kraftstoffgemisches (x) bzw. des Referenzkraftstoffs (y) erreicht wird, und eine äquivalente Masse beider Kraftstoffgemische verbrannt wird;

    wobei y ein Referenzkraftstoff ist, der 11 Gew.-% n-Heptan, 37 Gew.-% Isooctan, 32 Gew.-% Toluol, 11 Gew.-% Methylcyclohexan und 9 Gew.-% 1-Hexen umfasst,

    wobei AREAx und AREAy als unterschiedliche Bereiche in einem Graph von Last (angegebener mittlerer effektiver Druck oder IMEP) gegenüber den Motorumdrehungen pro Minute (U/min) für das Kraftstoffgemisch (x) bzw. den Referenzkraftstoff (y) definiert sind, wobei jeder unterschiedliche Bereich eine Obergrenze bei der maximalen IMEP während der Verbrennung jedes Kraftstoffs bei einer Drehzahl im Bereich von 1500 U/min bis 2500 U/min aufweist und eine Untergrenze bei der IMEP aufweist, unterhalb derer die Verbrennung jedes Kraftstoffs bei einer Motordrehzahl im Bereich von 1500 U/min bis 2500 U/min instabil wird.


     
    8. Kraftstoff nach Anspruch 7, wobei mindestens 90 Gew.-% des Kohlenwasserstoffgemisches aus Kohlenwasserstoffen besteht, die 6 bis 10 Kohlenstoffatome umfassen.
     
    9. Kraftstoff nach einem der Ansprüche 7 bis 8, wobei 15 Gew.-% oder weniger der Kohlenwasserstoffe fünf oder weniger Kohlenstoffatome umfassen.
     
    10. Kraftstoff nach einem der Ansprüche 7 bis 9, wobei der Kraftstoff 5 Gew.-% oder weniger Olefine, optional mindestens 25 Gew.-% n-Paraffine und optional 15 Gew.-% oder weniger aromatische Kohlenwasserstoffe umfasst.
     
    11. Kraftstoff nach einem der Ansprüche 7 bis 10, wobei die Menge (Gew.-%) Naphthene größer ist als die Menge (Gew.-%) normaler Paraffine.
     


    Revendications

    1. Procédé permettant la fabrication d'un carburant destiné à un moteur à allumage par compression de charge homogène, le procédé comprenant le mélange d'hydrocarbures pour produire un mélange de carburant qui comprend :

    (a) un mélange d'hydrocarbures, chaque hydrocarbure dans le mélange comprenant de 4 à 14 atomes de carbone, au moins 75 % en poids des hydrocarbures dans le mélange de carburant comprenant de 7 à 9 atomes de carbone ;

    (b) au moins 20 % en poids de n-paraffines ;

    (c) au moins 30 % en poids d'hydrocarbures naphténiques ;

    (d) 20 % poids ou moins d'hydrocarbures aromatiques ;

    (e) une pression de vapeur sèche inférieure ou égale à 10 psi (69 kPa) telle que mesurée par le procédé ASTM-D5191 à 37,8°C,
    ledit mélange de carburant possédant un indice de puissance supérieur ou égal à 2 lorsque le mélange de carburant est brûlé dans un moteur à compression de charge homogène, l'indice de puissance étant défini par l'équation :

    dans laquelle MIMEP est défini en tant que pression effective moyenne indiquée maximale obtenue à l'intérieur d'un cylindre de moteur à allumage par compression de charge homogène durant la combustion du mélange de carburant (x) ou du carburant de référence (y), respectivement, et une masse équivalente des deux mélanges de carburant étant brûlée,

    dans laquelle y est un carburant de référence comprenant 11 % en poids de n-heptane, 37 % en poids d'iso-octane, 32 % en poids de toluène, 11 % en poids de méthyl-cyclohexane et 9 % en poids de 1-hexène,

    dans laquelle AREAx et AREAy sont définies en tant que zones distinctes sur un graphique de charge (pression effective moyenne indiquée, ou IMEP) en fonction des tours par minute (RPM) du moteur pour le mélange de carburant (x) et le carburant de référence (y), respectivement, chaque zone distincte possédant une limite supérieure à l'IMEP maximale durant la combustion de chaque carburant sur une plage de RPM allant de 1500 tr/min à 2500 tr/min, et possédant une limite inférieure à l'IMEP en dessous de laquelle la combustion de chaque carburant devient instable sur une plage de RPM de moteur allant de 1500 tr/min à 2500 tr/min.


     
    2. Procédé selon la revendication 1, ledit mélange produisant un mélange de carburant comprenant au moins 90 % en poids d'hydrocarbures qui, à leur tour, comprennent de 6 à 10 atomes de carbone.
     
    3. Procédé selon l'une quelconque des revendications 1 à 2, ledit mélange produisant un mélange de carburant comprenant 15 % en poids ou moins d'hydrocarbures qui, à leur tour, comprennent cinq atomes de carbone ou moins.
     
    4. Procédé selon l'une quelconque des revendications 1 à 3, ledit mélange produisant un mélange de carburant comprenant 5 % en poids ou moins d'oléfines, éventuellement au moins 25 % en poids de n-paraffines, et éventuellement 15 % en poids ou moins d'hydrocarbures aromatiques.
     
    5. Procédé selon l'une quelconque des revendications 1 à 4, ledit mélange produisant un mélange de carburant possédant une pression de vapeur sèche équivalente inférieure ou égale à 8 psi (55 kPa).
     
    6. Procédé selon l'une quelconque des revendications 1 à 5, ledit mélange produisant un mélange de carburant possédant une quantité (% en poids) d'hydrocarbures naphténiques qui est supérieure à la quantité (% en poids) de paraffines normales dans le mélange de carburant.
     
    7. Carburant destiné à un moteur à allumage par compression de charge homogène, comprenant :

    (a) un mélange d'hydrocarbures, chaque hydrocarbure dans le mélange contenant de 4 à 14 atomes de carbone, au moins 75 % en poids des hydrocarbures dans le mélange de carburant comprenant de 7 à 9 atomes de carbone ;

    (b) au moins 20 % en poids de n-paraffines ;

    (c) au moins 30 % en poids de naphtènes ;

    (d) 20 % en poids ou moins d'hydrocarbures aromatiques ;

    (f) une pression de vapeur sèche équivalente inférieure ou égale à 10 psi (69 kPa), telle que mesurée par la méthode ASTM-D5191 à 37,8°C, ledit mélange de carburant possédant un indice de puissance supérieur ou égal à 2 lorsque le mélange de carburant est brûlé dans un moteur à compression de charge homogène, l'indice de puissance étant défini par l'équation :

    dans laquelle MIMEP est défini en tant que pression effective moyenne indiquée maximale obtenue à l'intérieur d'un cylindre de moteur à allumage par compression de charge homogène durant la combustion du mélange de carburant (x) ou du carburant de référence (y), respectivement, et une masse équivalente des deux mélanges de carburant étant brûlée,

    dans laquelle y est un carburant de référence comprenant 11 % en poids de n-heptane, 37 % en poids d'iso-octane, 32 % en poids de toluène, 11 % en poids de méthyl-cyclohexane et 9 % en poids de 1-hexène,

    dans laquelle AREAx et AREAy sont définies en tant que zones distinctes sur un graphique de charge (pression effective moyenne indiquée, ou IMEP) en fonction des tours par minute (RPM) du moteur pour le mélange de carburant (x) et le carburant de référence (y), respectivement, chaque zone distincte possédant une limite supérieure à l'IMEP maximale durant la combustion de chaque carburant sur une plage de RPM allant de 1500 tr/min à 2500 tr/min, et possédant une limite inférieure à l'IMEP en dessous de laquelle la combustion de chaque carburant devient instable sur une plage de RPM de moteur allant de 1500 tr/min à 2500 tr/min.


     
    8. Carburant selon la revendication 7, au moins 90 % en poids du mélange d'hydrocarbures étant constitué d'hydrocarbures comprenant de 6 à 10 atomes de carbone.
     
    9. Carburant selon l'une quelconque des revendications 7 à 8, 15 % en poids ou moins des hydrocarbures comprenant cinq atomes de carbone ou moins.
     
    10. Carburant selon l'une quelconque des revendications 7 à 9, ledit carburant comprenant 5 % en poids ou moins d'oléfines, éventuellement au moins 25 % en poids de n-paraffines, et éventuellement 15 % en poids ou moins d'hydrocarbures aromatiques.
     
    11. Carburant selon l'une quelconque des revendications 7 à 10, ladite quantité (% en poids) de naphtènes étant supérieure à la quantité (% en poids) de paraffines normales.
     




    Drawing


























    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description




    Non-patent literature cited in the description