(19)
(11)EP 3 081 358 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
12.12.2018 Bulletin 2018/50

(21)Application number: 16165232.6

(22)Date of filing:  14.04.2016
(51)International Patent Classification (IPC): 
B29B 17/00(2006.01)

(54)

METHODS TO REPROCESS CROSS-LINKED FOAM

VERFAHREN ZUR WIEDERVERWERTUNG VON VERNETZTEM SCHAUM

PROCÉDÉS DE RECUPERATION D'UNE MOUSSE RETICULÉE


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 16.04.2015 US 201562148321 P

(43)Date of publication of application:
19.10.2016 Bulletin 2016/42

(73)Proprietor: Inteva Products, LLC
Troy, MI 48084 (US)

(72)Inventors:
  • LYONS, Kevin Mark
    Troy, MI 48084 (US)
  • GASSMAN, Kenneth Alan
    Troy, MI 48084 (US)
  • HE, Xinhua
    Troy, MI 48084 (US)

(74)Representative: Delorme, Nicolas et al
Cabinet Germain & Maureau BP 6153
69466 Lyon Cedex 06
69466 Lyon Cedex 06 (FR)


(56)References cited: : 
EP-A1- 2 138 292
WO-A1-92/13696
EP-A2- 0 749 818
JP-A- 2000 140 794
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    BACKGROUND



    [0001] Recycling polymeric materials is becoming increasingly important and economically valuable. There has been considerable progress in recycling thermoplastic polymeric materials but recycling cross-linked (also known as thermoset) materials still poses significant challenges. Once a polymer is cross-linked it will not melt again and this feature has been a key obstacle to recycling cross-linked materials. Additionally, cross-linked materials, particularly cross-linked foamed materials, are frequently bonded to thermoplastics. Attempts to reuse these materials have typically involved separating the thermoplastic from the cross-linked foam - a time consuming and labor intensive process. Recycling a cross-linked material has involved various chemical methods of reducing the number of cross links. These methods are generally expensive and can negatively impact the environment. When these methods are applied to cross-linked foam there is the additional issue of gas release from the foam cells which can negatively impact the final product. Even when the cross-linked material is processed sufficiently for reuse, residual cross linking agents can also affect the final product negatively.

    [0002] There remains a need in the art for a method of reprocessing cross-linked materials, especially foamed cross-linked material.

    BRIEF DESCRIPTION



    [0003] Described herein is a method of making a melt-processable material according to claim 1. This method is characterised in that the processed cross-linked polymeric foam has an average particle size less than or equal to the average cell size of the cross-linked polymeric foam.

    [0004] In another embodiment, a method of making a melt-processable material according to claim 7. This method is an alternative solution to the method of claim 1 and it is also characterised in that the processed cross-linked polymeric foam has an average particle size less than or equal to the average cell size of the cross-linked polymeric foam.

    [0005] The above described and other features are exemplified by the following detailed description.

    DETAILED DESCRIPTION



    [0006] Disclosed herein is a method of reprocessing a cross-linked foam. A cross-linked foam is defined herein as a foamed material which has at least 10% cross-linking level. Materials having a cross linking level less than 10% typically melt and would not be appropriate for use in the method and materials described herein. Cross-linked foams can be reprocessed individually or when bonded to a thermoplastic. Exemplary cross-linked foams include cross-linked vinyl polymers such as polyethylene, polypropylene, and polystyrene as well as cross-linked polyurethane and cross-linked synthetic elastomers. The cross-linked foams can comprise residual blowing agent, residual cross linking agent, or both. The cross-linked foam may be an open cell foam or a closed cell foam. The cross-linked foam can be industrial waste (also known as scrap or offal), post-consumer waste, or a combination thereof.

    [0007] In some embodiments the cross-linked foam is bonded to one or more thermoplastic materials. Exemplary thermoplastic materials include non-cross-linked vinyl polymers such as polyethylene, polypropylene, polyvinyl chloride, polyester, non-vulcanized rubber, and synthetic elastomer. The bonded material can be in any form such as a single layer or multi-layer sheet, the foam surrounded by thermoplastic in a design required shape, foam adhered to thermoplastic in a design required shape, or a combination thereof. The weight ratio of cross-linked foam to thermoplastic in the bonded material to be reprocessed varies from 1 to 99 to 99:1. Within this range the ratio can be 10 to 90 to 90 to 10. Additionally the bonded material to be reprocessed can be industrial scrap, post-consumer waste, or a combination thereof.

    [0008] Prior to melt mixing, the cross-linked polymeric foam (alone or bonded to a thermoplastic material) is processed into a form that is suitable for feeding to a melt processor. Suitable melt processors include extruders, both single screw extruders and multiple screw extruders. In addition to this requirement, and dependent on the target application of the melt-processable material, the cross-linked foam material may require more stringent processing to achieve the desired level of trapped gas in the melt-processable material. For example, a sheet application may require the processed cross-linked foam to have an average particle size that is less than or equal to the average cell size of the cross-linked polymeric foam. Tailored properties (e.g., hardness) are possible based on the average particle size of the processed cross-linked foam material. A processed cross-linked foam having a larger average particle size may result in a softer feel or unique haptics/appearance due to the higher level of trapped gases remaining in the melt during processing. Conversely, an extremely demanding application may require the processed cross-linked foam material to have a very small average particle size to ensure negligible levels of trapped gases are present during thermal processing. Processing includes any process that can attain the appropriate particle size such as shredding, grinding, cryo-grinding or a combination thereof. In addition to these exemplary processes, separation, consolidation (i.e., densification), or mixing (e.g., with an abrasive particle to aid in the size reduction) may also be used.

    [0009] The processed cross-linked foam has domain size, under melt mixing conditions, less than or equal to the processing spaces of the melt processor. Domain size is defined as the volume occupied by a discrete portion of the processed cross-linked foam material. This domain may or may not comprise a trapped gas. The domain may or may not have a regular shape under melt mixing conditions. Additionally the domain may deform under melt mixing conditions to allow passage through the processing spaces. Processing spaces are defined as those spaces in which the melt mixed material moves through. For example, in an extruder the processing spaces would include the barrel (particularly the spaces between the screw(s) and the barrel), a melt filter (if used) and holes in the die (if used). The domain size under melt mixing conditions is less than or equal to the smallest processing spaces of the melt processor in order to prevent clogging and blockages.

    [0010] When the processed material is a processed cross-linked polymeric foam material, thermoplastic materials and optional compatibilizer(s) are combined with the processed cross-linked polymeric foam material in the melt processor. The desired characteristics of the melt-processable materials will ultimately depend on the specific material system. The additional materials should be readily melt-processable and, ideally, fully compatible with all present materials. For example, a propylene-ethylene copolymer would be a suitable thermoplastic polymer to be added to a system containing cross-linked polypropylene foam or a cross-linked polypropylene foam bonded to a polyethylene skin. A compatibilizer is defined herein as an additive which facilitates the distribution of the processed cross-linked polymeric foam throughout the matrix of the melt-processable polymeric material and stabilizes the morphology of the final product. The choice of a compatibilizer is dependent upon the composition of the processed polymeric foam and the composition of the matrix of the final product. Such a choice is within the abilities of a man of ordinary skill in the art. Polymeric compatibilizers include block/graft copolymers, polymers with polar side groups, and reactive functional polymers. Also contemplated are reactive compounds which aid in the in-situ formation of copolymers. Examples include dicarboxylic acids, dianhydrides, diamines and the like.

    [0011] The processed cross-linked polymeric foam may be included in the melt mixing composition in an amount of 1 to 99 weight percent, based on the total weight of the melt mixing composition. Within this range the processed cross-linked polymeric foam may be present in an amount of 5 to 95 weight percent. Similarly, the processed cross-linked polymeric foam may be present in the melt processable material in an amount of 1 to 99 weight percent, based on the total weight of the melt processable material. Within this range the processed cross-linked polymeric foam may be present in an amount of 5 to 95 weight percent.

    [0012] When the processed material comprises a processed thermoplastic material no additional material may be required although additional thermoplastic may be added. If additional thermoplastic is included in the composition it may be the same as or different from the processed thermoplastic material. For example, if the processed thermoplastic material is a polyethylene the additional thermoplastic material may be polyethylene, polypropylene, or a polyolefin copolymer. A compatibilizer, as described above, may also be included in the melt mixing composition.

    [0013] During melt mixing, the melt processor design and/or conditions are chosen to minimize or eliminate the effects of any residual blowing agents, cross linking agents, or a combination thereof. The melt mixing composition may also include rheology modifiers to assist with extraction of volatiles during the melt mixing process. Modifying the rheology of the melt mixing composition can facilitate removal of volatiles through the use of vacuum. Rheology modifiers may also increase the viscosity and/or melt strength of the composition after the removal of the volatiles. Common rheology modifiers include commercially available plasticizers that enhance the fluidity of a material. Certain classes of plasticizers include linear or branched phthalates, trimellitates, adipates, polymerics, and terephthalates. Processing conditions that will have an effect on the quality of the final material include, but are not limited to: screw design, screw speed, barrel temperature profile, die design, pellet size, use of an underwater pelletizer, cutter design and cutting speed, etc.

    [0014] It is also contemplated that the processed polymeric material may be melt mixed to form a pelletized processed polymeric material and the pelletized processed polymeric material may be melt mixed with an additional thermoplastic material. Similarly a processed cross-linked polymeric foam may be melt mixed with a first thermoplastic to form a pelletized material which is then melt mixed with a second thermoplastic to form the melt-processable material. Rheology modifiers and compatibilizers can be added during any melt mixing step.

    [0015] The invention is further illustrated by the following non-limiting examples.

    EXAMPLES


    Example 1



    [0016] In this example a bilaminate comprising 20 weight percent cross-linked polypropylene/polyethylene foam, based on the weight of the bilaminate, bonded to thermoplastic polyolefin sheets, 80 weight percent based on the weight of the bilaminate, was used. The material was trimmings from a thermoforming process. The foam was 2.5 millimeters (mm) in thickness and had a density of 4.2 pounds per cubic foot (67.3 kilograms per cubic meter (kg/m3)) The material was shredded to a size less than or equal to 0.25 inches (6.35 millimeters (mm)). The polypropylene/polyethylene foam was approximately 40% cross-linked.

    [0017] The shredded feedstock was fed directly into a twin screw extruder (TSE) equipped with an under-water pelletizer. The screw speed and temperature of the TSE were held constant at 300 rotations per minute (RPM) and 200°C, respectively. This first pass through the TSE was to simply convert the shredded feedstock into pellet form (for ease of handling).

    [0018] The pelletized material was melt mixed with an ethylene/propylene copolymer. The ethylene/propylene copolymer was present in an amount of 25 parts per hundred parts by weight of the pelletized material. The extruder employed vacuum assisted venting (vacuum pressure = 50 to 60 millibar). The size of the pellets was adjusted via the cutter speed setting. Small pellets (approximately 6.0 mm) were chosen to reduce the diffusion length of gases at the center of the pellet (i.e., facilitating release of gas). The screw speed and temperature during the second melt mixing were held constant at 150 rotations per minute (RPM) and 200°C, respectively. The specific gravity of the pellets obtained from the second melt mixing was measured to be 0.91 grams per cubic centimeter (g/cc) (a 65% increase compared to the pellets obtained from the first melt mixing).

    Example 2



    [0019] The same bilaminate used in Example 1 was shredded to a size less than or equal to 0.4375 inch (11.11 mm) and fed into a chamber capable of further reducing the feedstock size and densifying the material. The chamber was heated and equipped with a rotating blade at the bottom for size reduction purposes. This chamber was held at 250 to 260°F (121 to 127°C) and the blade was held at a speed of 800 to 900 RPM. The chamber was connected to a single screw extruder (SSE) and continuously fed the SSE with pre-densified material. The temperature of the intake zone of the SSE ranged from 260 to 280°F (127 to 138°C).

    [0020] During the SSE processing, the screw speed was held constant at 150 RPM and the temperatures ranged from 390 to 425°F (199 to 218°C) across the length of the barrel. Vacuum assisted venting was also used to effectively extract all volatiles from the polymer melt. No compatibilizer or other additives were used during this trial. The final specific gravity of the pellets was measured to be 0.92 to 0.93 g/cc.

    [0021] The invention concerns a method of making a melt-processable material comprising: processing a polymeric material comprising a thermoplastic material and a cross-linked polymeric foam to form a processed polymeric material comprising a processed thermoplastic material and a processed cross-linked polymeric foam wherein the processed polymeric material has an average particle size suitable for feeding to a melt processor; feeding the processed polymeric material to the melt processor; and melt mixing a composition comprising the processed polymeric material in the melt processor at a temperature sufficient to melt the processed thermoplastic material wherein the processed cross-linked foam has a domain size, under melt mixing conditions, less than or equal to the processing spaces of the melt processor.

    [0022] Preferably, the method further exhibits the following features, alone or in combination thereof:
    • the polymeric material comprises the thermoplastic material bonded to the cross-linked polymeric foam;
    • the polymeric material is industrial waste, post-consumer waste, or a combination thereof;
    • the processed cross-linked polymeric foam has an average particle size less than or equal to the average cell size of the cross-linked polymeric foam ;
    • the melt mixing composition further comprises an additional thermoplastic, a compatibilizer or a combination thereof.


    [0023] The invention further concerns a method of making a melt-processable material comprising: processing a cross-linked polymeric foam to form a processed cross-linked polymeric foam material wherein the processed cross-linked polymeric foam material has an average particle size suitable for feeding to a melt processor; feeding the processed cross-linked polymeric foam to the melt processor; and melt mixing a composition comprising a thermoplastic material and the processed cross-linked polymeric foam material in the melt processor wherein the processed cross-linked foam material has a domain size, under melt mixing conditions, less than or equal to the processing spaces of the melt processor.

    [0024] Preferably, the method further exhibits the following features, alone or in combination thereof:
    • the polymeric material is industrial waste, post-consumer waste, or a combination thereof;
    • the processed cross-linked polymeric foam has an average particle size less than or equal to the average cell size of the cross-linked polymeric foam;
    • the melt mixing composition further comprises an additional thermoplastic, a compatibilizer or a combination thereof;
    • the cross-linked polymeric foam is an open cell foam ;
    • the cross-linked polymeric foam is a closed cell foam ;
    • the melt processor comprises an extruder.



    Claims

    1. A method of making a melt-processable material comprising:

    processing a polymeric material comprising a thermoplastic material and a cross-linked polymeric foam to form a processed polymeric material comprising a processed thermoplastic material and a processed cross-linked polymeric foam wherein the processed polymeric material has an average particle size suitable for feeding to a melt processor and the processed cross-linked polymeric foam has an average particle size less than or equal to the average cell size of the cross-linked polymeric foam;

    feeding the processed polymeric material to the melt processor; and

    melt mixing a composition comprising the processed polymeric material in the melt processor at a temperature sufficient to melt the processed thermoplastic material wherein the processed cross-linked foam has a domain size, under melt mixing conditions, less than or equal to the processing spaces of the melt processor, the domain size being the volume occupied by a discrete portion of the processed cross-linked foam material.


     
    2. The method of claim 1, wherein the polymeric material comprises the thermoplastic material bonded to the cross-linked polymeric foam.
     
    3. The method of claim 1 or 2, wherein the polymeric material is industrial waste, post-consumer waste, or a combination thereof.
     
    4. The method of any of the preceding claims, wherein the melt mixing composition further comprises an additional thermoplastic, a compatibilizer or a combination thereof.
     
    5. The method of any of the preceding claims, wherein the melt mixing composition further comprises a rheology modifier.
     
    6. The method of any of the preceding claims, wherein processed cross-linked polymeric foam is present in an amount of 1 to 99 weight percent, based on the total weight of the melt mixing composition.
     
    7. A method of making a melt-processable material comprising:

    processing a cross-linked polymeric foam to form a processed cross-linked polymeric foam material wherein the processed cross-linked polymeric foam material has an average particle size suitable for feeding to a melt processor and the processed cross-linked polymeric foam has an average particle size less than or equal to the average cell size of the cross-linked polymeric foam;

    feeding the processed cross-linked polymeric foam to the melt processor; and

    melt mixing a composition comprising a thermoplastic material and the processed cross-linked polymeric foam material in the melt processor wherein the processed cross-linked foam material has a domain size, under melt mixing conditions, less than or equal to the processing spaces of the melt processor, the domain size being the volume occupied by a discrete portion of the processed cross-linked foam material.


     
    8. The method of claim 7, wherein the polymeric material is industrial waste, post-consumer waste, or a combination thereof.
     
    9. The method of claim 7 or 8, wherein the melt mixing composition further comprises an additional thermoplastic, a compatibilizer or a combination thereof.
     
    10. The method of any of the preceding claims, wherein the cross-linked polymeric foam is an open cell foam.
     
    11. The method of any of claims 1 to 9, wherein the cross-linked polymeric foam is a closed cell foam.
     
    12. The method of any of the preceding claims wherein the melt processor comprises an extruder.
     


    Ansprüche

    1. Verfahren zur Herstellung eines schmelzverarbeitbaren Materials, umfassend:

    Verarbeiten eines polymeren Materials, das ein thermoplastisches Material und einen vernetzten polymeren Schaum umfasst, um ein verarbeitetes polymeres Material zu bilden, das ein verarbeitetes thermoplastisches Material und einen verarbeiteten vernetzten polymeren Schaum umfasst, wobei das verarbeitete polymere Material eine durchschnittliche Partikelgröße aufweist, die zum Zuführen zu einem Schmelzprozessor geeignet ist, und der verarbeitete vernetzte polymere Schaum eine durchschnittliche Partikelgröße von kleiner als oder gleich der durchschnittlichen Zellengröße des vernetzten polymeren Schaums aufweist;

    Zuführen des verarbeiteten polymeren Materials zum Schmelzprozessor; und

    Schmelzmischen einer Zusammensetzung, die das verarbeitete polymere Material umfasst, im Schmelzprozessor bei einer Temperatur, die ausreichend ist, um das verarbeitete thermoplastische Material zu schmelzen, wobei der verarbeitete vernetzte Schaum unter Schmelzmischbedingungen eine Domänengröße von kleiner als oder gleich den Verarbeitungsräumen des Schmelzprozessors aufweist, wobei die Domänengröße das Volumen ist, das von einem diskreten Teil des verarbeiteten vernetzten Schaummaterials eingenommen wird.


     
    2. Verfahren nach Anspruch 1, wobei das polymere Material das an den vernetzten polymeren Schaum gebundene thermoplastische Material umfasst.
     
    3. Verfahren nach Anspruch 1 oder 2, wobei das polymere Material Industrieabfall, Abfall nach Gebrauch, oder eine Kombination davon ist.
     
    4. Verfahren nach einem der vorstehenden Ansprüche, wobei die Schmelzmischzusammensetzung weiter einen zusätzlichen Thermoplast, ein Kompatibilisierungsmittel, oder eine Kombination davon umfasst.
     
    5. Verfahren nach einem der vorstehenden Ansprüche, wobei die Schmelzmischzusammensetzung weiter ein Rheologiemodifizierungsmittel umfasst.
     
    6. Verfahren nach einem der vorstehenden Ansprüche, wobei verarbeiteter vernetzter polymerer Schaum, basierend auf dem Gesamtgewicht der Schmelzmischzusammensetzung, in einer Menge von 1 bis 99 Gewichtsprozent vorliegt.
     
    7. Verfahren zur Herstellung eines schmelzverarbeitbaren Materials, umfassend:

    Verarbeiten eines vernetzten polymeren Schaums, um ein verarbeitetes vernetztes polymeres Schaummaterial zu bilden, wobei das verarbeitete vernetzte polymere Schaummaterial eine durchschnittliche Partikelgröße aufweist, die zum Zuführen zu einem Schmelzprozessor geeignet ist, und der verarbeitete vernetzte polymere Schaum eine durchschnittliche Partikelgröße von kleiner als oder gleich der durchschnittlichen Zellengröße des vernetzten polymeren Schaums aufweist;

    Zuführen des verarbeiteten vernetzten polymeren Schaums zum Schmelzprozessor; und

    Schmelzmischen einer Zusammensetzung, die ein thermoplastisches Material und das verarbeitete vernetzte polymere Schaummaterial umfasst, im Schmelzprozessor, wobei das verarbeitete vernetzte Schaummaterial unter Schmelzmischbedingungen eine Domänengröße von kleiner als oder gleich den Verarbeitungsräumen des Schmelzprozessors aufweist, wobei die Domänengröße das Volumen ist, das von einem disktreten Teil des verarbeiteten vernetzten Schaummaterials eingenommen wird.


     
    8. Verfahren nach Anspruch 7, wobei das polymere Material Industrieabfall, Abfall nach Gebrauch, oder eine Kombination davon ist.
     
    9. Verfahren nach Anspruch 7 oder 8, wobei die Schmelzmischzusammensetzung weiter einen zusätzlichen Thermoplast, ein Kompatibilisierungsmittel, oder eine Kombination davon umfasst.
     
    10. Verfahren nach einem der vorstehenden Ansprüche, wobei der vernetzte polymere Schaum ein offenzelliger Schaum ist.
     
    11. Verfahren nach einem der Ansprüche 1 bis 9, wobei der vernetzte polymere Schaum ein geschlossenzelliger Schaum ist.
     
    12. Verfahren nach einem der vorstehenden Ansprüche, wobei der Schmelzprozessor einen Extruder umfasst.
     


    Revendications

    1. Procédé de fabrication d'un matériau pouvant être traité par fusion comprenant le fait :

    de traiter un matériau polymère comprenant un matériau thermoplastique et une mousse polymère réticulée pour former un matériau polymère traité comprenant un matériau thermoplastique traité et une mousse polymère réticulée traitée, où le matériau polymère traité a une taille moyenne de particules convenant à son introduction dans un dispositif de traitement par fusion et la mousse polymère réticulée traitée a une taille moyenne de particules inférieure ou égale à la taille moyenne de cellule de la mousse polymère réticulée ;

    d'introduire le matériau polymère traité dans le dispositif de traitement par fusion ; et

    de mélanger à l'état fondu une composition comprenant le matériau polymère traité dans le dispositif de traitement par fusion à une température suffisante pour faire fondre le matériau thermoplastique traité, où la mousse réticulée traitée a une taille de domaine, dans des conditions de mélange à l'état fondu, inférieure ou égale à celle des espaces de traitement du dispositif de traitement par fusion, la taille de domaine étant le volume occupé par une partie distincte du matériau en mousse réticulé traité.


     
    2. Procédé de la revendication 1, dans lequel le matériau polymère comprend le matériau thermoplastique lié à la mousse polymère réticulée.
     
    3. Procédé de la revendication 1 ou 2, dans lequel le matériau polymère est un déchet industriel, un déchet post-consommation ou une combinaison de ceux-ci.
     
    4. Procédé de l'une des revendications précédentes, dans lequel la composition de mélange à l'état fondu comprend en outre un thermoplastique supplémentaire, un agent de compatibilité ou une combinaison de ceux-ci.
     
    5. Procédé de l'une des revendications précédentes, dans lequel la composition de mélange à l'état fondu comprend en outre un modificateur de rhéologie.
     
    6. Procédé de l'une des revendications précédentes, dans lequel une mousse polymère réticulée traitée est présente en une quantité allant de 1 à 99 pour cent en poids, par rapport au poids total de la composition de mélange à l'état fondu.
     
    7. Procédé de fabrication d'un matériau pouvant être traité par fusion comprenant le fait :

    de traiter une mousse polymère réticulée pour former un matériau en mousse polymère réticulé traité, où le matériau en mousse polymère réticulé traité a une taille moyenne de particules convenant à son introduction dans un dispositif de traitement par fusion et la mousse polymère réticulée traitée a une taille moyenne de particules inférieure ou égale à la taille moyenne de cellule de la mousse polymère réticulée ;

    d'introduire la mousse polymère réticulée traitée dans le dispositif de traitement par fusion ; et

    de mélanger à l'état fondu une composition comprenant un matériau thermoplastique et le matériau en mousse polymère réticulé traité dans le dispositif de traitement par fusion, où le matériau en mousse réticulé traité a une taille de domaine, dans des conditions de mélange à l'état fondu, inférieure ou égale à celle des espaces de traitement du dispositif de traitement par fusion, la taille de domaine étant le volume occupé par une partie distincte du matériau en mousse réticulé traité.


     
    8. Procédé de la revendication 7, dans lequel le matériau polymère est un déchet industriel, un déchet post-consommation ou une combinaison de ceux-ci.
     
    9. Procédé de la revendication 7 ou 8, dans lequel la composition de mélange à l'état fondu comprend en outre un thermoplastique supplémentaire, un agent de compatibilité ou une combinaison de ceux-ci.
     
    10. Procédé de l'une des revendications précédentes, dans lequel la mousse polymère réticulée est une mousse à cellules ouvertes.
     
    11. Procédé de l'une des revendications 1 à 9, dans lequel la mousse polymère réticulée est une mousse à cellules fermées.
     
    12. Procédé de l'une des revendications précédentes, dans lequel le dispositif de traitement par fusion comprend une extrudeuse.