(19)
(11)EP 3 081 380 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
09.09.2020 Bulletin 2020/37

(21)Application number: 14869932.5

(22)Date of filing:  21.07.2014
(51)International Patent Classification (IPC): 
B41F 19/06(2006.01)
B44B 5/00(2006.01)
F15B 11/072(2006.01)
B41F 16/00(2006.01)
B44B 5/02(2006.01)
F15B 3/00(2006.01)
(86)International application number:
PCT/CN2014/000691
(87)International publication number:
WO 2015/085648 (18.06.2015 Gazette  2015/24)

(54)

INNER-CIRCULATION HIGH-SPEED HYDRAULIC SYSTEM, HYDRAULIC PLATFORM, AND HYDRAULIC PLATFORM ASSEMBLY

SCHNELLES INNENZIRKULATIONSHYDRAULIKSYSTEM, HYDRAULISCHE PLATTFORM UND HYDRAULISCHE PLATTFORMANORDNUNG

SYSTÈME HYDRAULIQUE À GRANDE VITESSE À CIRCULATION INTERNE, PLATE-FORME HYDRAULIQUE, ET ENSEMBLE PLATE-FORME HYDRAULIQUE


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 12.12.2013 CN 201310682896

(43)Date of publication of application:
19.10.2016 Bulletin 2016/42

(73)Proprietor: Shanghai Eternal Machinery Co., Ltd.
Shanghai 201814 (CN)

(72)Inventor:
  • TSENG, Whah
    Shanghai 201814 (CN)

(74)Representative: Dr. Weitzel & Partner 
Patent- und Rechtsanwälte mbB Friedenstrasse 10
89522 Heidenheim
89522 Heidenheim (DE)


(56)References cited: : 
EP-A2- 2 130 686
CN-Y- 2 206 205
CN-Y- 201 020 918
DE-A1-102006 045 258
US-A- 3 875 365
CN-U- 203 784 023
CN-Y- 2 329 466
DE-A1-102006 008 464
JP-A- S6 176 369
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    FIELD OF THE INVENTION



    [0001] The present invention is generally related to a hydraulic system, a hydraulic platform and a hydraulic platform assembly used in stamping processes. The present invention relates to an inner-circulating high speed hydraulic system which performs hydraulic actions in high speed with inner circulation, and also relates to an inner-circulating high speed hydraulic platform and an inner-circulating high speed hydraulic platform assembly comprising the inner-circulating high speed hydraulic system. Reference is made to US 3 875 365 A comprising the essentials of the preamble of claim 1. See also DE 10 2006 008 464 A1.

    BACKGROUND



    [0002] In stamping processes for packaging and printing industry, a stamping platform of a platen foil stamping machine is desired to maintain a constant paper-pressing time regardless of speeds, and set adaptive pressing times according to different requirements of products to be stamped, thereby achieving hot stamping pictures with high quality. At present, for a mechanical moving-platform consisting of crank shaft and swing-rod transmission mechanism, the dwell time for pressing at a stop point on the platform varies with changing speeds due to its inherent structure. Thus, it is difficult to guarantee quality of prints. While for hydraulic platforms consisting of conventional hydraulic servo systems, its hydraulic system mainly comprises a hydraulic valve, a hydraulic cylinder, a servo valve, an energy storage system, and lines. Such kind of a conventional hydraulic system has numerous components and complicated structures, causing a relatively high maintenance cost and defects of low efficiency and loud noise. Current hydraulic systems in the art can hardly provide hydraulic actions with high speed, high pressure and high precision at the same time. Thus, further improvements are needed.

    [0003] Accordingly, it is desired to improve moving-platform systems in stamping processes, enabling the moving-platform systems to accurate control the dwell time for pressing at upper and lower stop points of platforms, adjust the length of the dwell time as required, and provide hydraulic actions with high speed, high pressure and high precision at the same time.

    SUMMARY



    [0004] Aiming at the above defects, an objective of the present invention is to provide an inner-circulating high speed hydraulic system with simple structure, high efficiency and high precision, an inner-circulating high speed hydraulic platform and an inner-circulating high speed hydraulic platform assembly comprising the inner-circulating high speed hydraulic system by combining servo motor technology with inner-circulating pressing technology.

    [0005] Based on the above objective, the present invention firstly provides an inner-circulating hydraulic moving platform stamping system according to claim 1.

    [0006] Preferably, the hydraulic system further comprises a moving platen lifting component connected to the moving platen, and comprising: a lifting servo motor and a lifting mechanism, wherein the lifting mechanism may be driven by the lifting servo motor so that the moving platen may have lifting motion according to a preset lifting curve.

    [0007] By using the lifting mechanism, the stroke and the stop positions of the moving platen might be accurately controlled.

    [0008] Preferably, the lifting mechanism comprises a lifting ball screw and a lifting nut engaged with the lifting ball screw for moving, wherein the lifting ball screw is connected to the lifting servo motor while the lifting nut is connected to the moving platen.

    [0009] Preferably, a driving mechanism may be disposed between the pressure servo motor and the pressure plunger.

    [0010] Preferably, the driving mechanism comprises a pressure ball screw and a pressure nut engaged with the pressure ball screw for moving, wherein the pressure ball screw is connected to the pressure servo motor while the pressure nut is connected to the pressure plunger.

    [0011] Preferably, the pressure plunger may be directly driven by a linear servo motor.

    [0012] Preferably, the present invention further provides an inner-circulating hydraulic moving platform, comprising: an upper fixed platform on which at least one aforementioned inner-circulating high speed hydraulic system is connected; a moving platen lifting assembly connected to an actuating element, comprising a lifting servo motor and a lifting mechanism driven by the lifting servo motor to facilitate the actuating element to perform lifting motion; and a control system for controlling the above components to act in proper time and controlling the servo motors in the inner-circulating high speed hydraulic system to operate synchronously.

    [0013] Preferably, the lifting mechanism comprises a lifting ball screw and a lifting nut engaged with the lifting ball screw for moving, wherein the lifting ball screw is connected to the lifting servo motor while the lifting nut is connected to the moving platen.

    [0014] Preferably, the control system comprises a controller and drivers corresponding to the pressure servo motors of the at least one inner-circulating high speed hydraulic system as well as a driver corresponding to the lifting servo motor, wherein the controller is configured to: send actuating commands to the driver corresponding to the lifting servo motor so that the hydraulic plunger is driven to move downward, which in turn brings the actuating element to move downward; when the actuating element stops moving downward, the controller may receive an in-position signal from the driver of the lifting servo motor and send commands to each driver of the pressure servo motors for synchronously running so as to synchronously drive each pressure plunger entering into high pressure oil chambers and sealing the radial holes; send commands to each driver of the pressure servo motors for synchronously reverse running so as to synchronously drive each pressure plunger to synchronously exit the high pressure oil chambers upward; and send commands to the driver of the lifting servo motor for driving the hydraulic plunger to move reversely, which in turn brings the actuating element to move upward.

    [0015] Preferably, controlling pressure servo motors for synchronously running includes any of parallel control, master-slave control, cross-coupling control, virtual line-shaft control, and relative coupling control.

    [0016] Preferably, the controller is a PLC or a motion controller.

    [0017] Preferably, the present invention further provides an inner-circulating hydraulic moving platform assembly, comprising: an aforementioned inner-circulating high speed hydraulic platform; a moving platen connected to the actuating element; an upper fixed platform with which the moving platen may contact with zero speed and press against tightly when the actuating element reciprocates to the upper stop point; a lower fixed platform with which the moving platen may contact with zero speed and press against tightly when the actuating element reciprocates to the lower stop point; and a connecting mechanism for connecting and fixing the upper fixed platform and the lower fixed platform, wherein housings of hydraulic cylinder components are fixed to the upper fixed platform, wherein the high pressure cylinder is contained in a via formed in the upper fixed platform and fixed to said upper fixed platform.

    [0018] Preferably, the connecting mechanism comprises a right wallboard and a left wallboard which are connected between the upper and lower fixed platform.

    [0019] Preferably, the present invention further provides another inner-circulating hydraulic moving platform, comprising:

    a lower fixed platform, connected thereon with:

    at least one inner-circulating high speed hydraulic system, comprising:

    a hydraulic cylinder component, including a high pressure cylinder, a hydraulic plunger, and a housing, wherein an axial hole disposed at the bottom of the high pressure cylinder may communicate with a chamber in the lower portion of the hydraulic plunger, wherein at least one radial hole intersecting with the axial hole is also disposed near the bottom of the high pressure cylinder, wherein the plunger reciprocates in the high pressure cylinder, wherein the housing contains the high pressure cylinder and forms a sealed inner-circulating oil chamber outside, wherein the inner-circulating oil chamber may communicate with the axial hole via the at least one radial hole and further in turn communicate with the chamber in the lower portion of the hydraulic plunger, wherein a compressed air inlet is disposed on the housing and an upper end of the hydraulic plunger is connected to a actuating element; and

    a pressure valve component, comprising a pressure servo motor and a pressure plunger driven by the pressure servo motor to move up and down within the axial hole disposed at the bottom of the high pressure cylinder;

    a moving platen lifting component connected to the actuating element and comprising a lifting servo motor and a lifting mechanism, wherein the lifting mechanism may be driven by the lifting servo motor to enable the actuating element to perform lifting motion; and

    a control system for controlling the above components to act in proper time and controlling the servo motors in the inner-circulating high speed hydraulic system to operate synchronously.



    [0020] Preferably, the lifting mechanism comprises a lifting ball screw and a lifting nut engaged with the lifting ball screw for moving, wherein the lifting ball screw is connected to the lifting servo motor while the lifting nut is connected to the moving platen.

    [0021] Preferably, the control system comprises a controller and drivers corresponding to the pressure servo motors of the at least one inner-circulating high speed hydraulic system as well as a driver corresponding to the lifting servo motor, wherein the controller is configured to send actuating commands to the driver corresponding to the lifting servo motor so that the hydraulic plunger is driven to move upward, which in turn brings the actuating element to move upward; when the actuating element stops moving upward, the controller may receive an in-position signal from the driver of the lifting servo motor and send commands to each driver of the pressure servo motors for synchronously running so as to synchronously drive each pressure plunger synchronously entering into high pressure oil chambers and sealing the radial holes; send commands to each driver of the pressure servo motors for synchronously reverse running so as to synchronously drive each pressure plunger to synchronously exit the high pressure oil chambers downward; and send commands to the driver of the lifting servo motor for driving the hydraulic plunger to move reversely, which in turn brings the actuating element to move downward.

    [0022] Preferably, controlling pressure servo motors for synchronously running includes any of parallel control, master-slave control, cross-coupling control, virtual line-shaft control, and relative coupling control.

    [0023] Preferably, the controller is a PLC or a motion controller.

    [0024] Preferably, the connecting mechanism comprises a right wallboard and a left wallboard which are connected between the lower and upper fixed platforms.

    [0025] The inner-circulating high speed hydraulic system in the present invention combines servo motor technology with inner-circulating pressing technology. By means of the hydraulic system in the present invention, hydraulic pumps, servo valves, energy storage systems and all hydraulic lines in conventional hydraulic systems may be eliminated. As the present system does not need all lines and servo valves in conventional technologies, hydraulic loss is very little and operational efficiency is much higher than existing technologies.

    [0026] Further, with the inner-circulating high speed hydraulic platform in the present invention, inner-circulation and pressurization of hydraulic oil are achieved while number of components is merely one third of that in conventional moving-platform. A stamping process with a high speed of 8000 sheets/hour and a positional repeatability of ±0.01mm is able to be realized. Furthermore, accurate control on dwell time for pressing at upper and lower stop points of platforms and adjustment to lengths of dwell time are enabled. Thus, a high quality stamping process is accomplished. Meanwhile, the inner-circulating high speed hydraulic platform is also highly applicable in other stamping devices requiring high speed, high pressure and high precision.

    [0027] The inner-circulating high speed hydraulic platform assembly in the present invention has a compact structure with decreased overall height, and is easy for transportation.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0028] Other features and advantages of the present invention will become more obvious from the detailed description set forth below when taken in conjunction with the drawings. In the drawings:

    Figure 1 illustrates a perspective view of an inner-circulating high speed hydraulic platform according to a first embodiment of the present invention, wherein a support for fixing the inner-circulating high speed hydraulic platform to a stamping machine, a control system, a moving platen and a lower fixed platform are omitted for clarity;

    Figure 2 is a static section view of an inner-circulating high speed hydraulic system according to a first embodiment of the present invention;

    Figure 3 is a section view of an inner-circulating high speed hydraulic system in a pressured state according to the first embodiment of the present invention;

    Figure 4 is a section view of an inner-circulating high speed hydraulic system in a pressure-released state according to the first embodiment of the present invention;

    Figures 5-7 are section views of an inner-circulating high speed hydraulic platform comprising four inner-circulating high speed hydraulic systems in various states according to the present invention;

    Figure 8 illustrates a perspective view of an inner-circulating high speed hydraulic platform according to a second embodiment of the present invention, wherein a support for fixing the inner-circulating high speed hydraulic platform to a stamping machine, a control system, a moving platen and an upper fixed platform are omitted for clarity; and

    Figures 9-11 are section views of an inner-circulating high speed hydraulic platform in various states according to the second embodiment of the present invention.


    DETAILED DESCRIPTION



    [0029] Figure 1 shows a perspective view of an inner-circulating high speed hydraulic platform according to a first embodiment of the present invention. The inner-circulating high speed hydraulic platform mainly comprises: an upper fixed platform 13, a moving platen lifting component, a plurality of inner-circulating high speed hydraulic systems (for example, 2, 3, and 5 and specifically 4 in the present embodiment) mounted to the upper fixed platform 13, and a control system (not shown). The moving platen lifting component is used for pushing a moving platen 16 to move toward a lower fixed platform 17 and contact the lower fixed platform 17 with zero speed (See figure 2). The inner-circulating high speed hydraulic systems are used for supplying fluids to the hydraulic system when pushing the moving platen 16 toward the lower fixed platform 17 and applying pressure on the lower fixed platform 17 after the moving platen 16 contacting with the lower fixed platform 17. The control system is used for sending corresponding commands to the respective components according to action requirements and receiving related feedback information so as to ensure reliable operation of the inner-circulating high speed hydraulic platform with high speed, high pressure and high precision.

    [0030] In this embodiment, the inner-circulating high speed hydraulic platform comprises four identical inner-circulating high speed hydraulic systems. However, it should be understood that the present invention is not limited to four identical inner-circulating high speed hydraulic systems, but may have any appropriate number of systems, such as 2, 3. Those four identical inner-circulating high speed hydraulic systems have same structures and operational processes. Herein, only one of the systems is described in details with reference to figures 2-4.

    [0031] Figure 2 shows a stationary state of an inner-circulating high speed hydraulic system as well as a moving platen lifting component according to a first embodiment of the present invention. The inner-circulating high speed hydraulic system includes a hydraulic cylinder component and a pressure valve component.

    [0032] The hydraulic cylinder component includes: a high pressure cylinder 11, a hydraulic plunger 15, and a housing 6. An axial hole, disposed on the top of the high pressure cylinder 11, may communicate with a chamber on the top of the hydraulic plunger 15. At least one radial hole(s) 12 intersecting with the axial hole is also disposed near the top of the high pressure cylinder 11. The plunger 15 reciprocates in the high pressure cylinder 11 and the lower end of the plunger 15 may connect to an actuating element, which in a preferred embodiment is a moving platen 16. The housing 6 contains the high pressure cylinder and forms a sealed inner-circulating oil chamber outside. The inner-circulating oil chamber may communicate with the axial hole with the aforementioned at least one radial hole 12 and in turn communicate with the top of the hydraulic plunger 15. In addition, a compressed air inlet 7 is disposed in the upper portion of the housing 6 for introducing compressed air.

    [0033] A pressure valve component comprising a pressure servo motor 5 and a pressure plunger 10 is disposed on the top of the hydraulic cylinder component. The pressure plunger 10 may be driven by the pressure servo motor 5 to move up and down within an axial hole disposed on the top of the high pressure cylinder 11. In this embodiment, a driving mechanism may be disposed between the pressure servo motor 5 and the pressure plunger 10. The driving mechanism comprises a pressure ball screw 8 and a pressure nut 9 engaged with the pressure ball screw 8 for moving. The pressure ball screw 8 is connected to the pressure servo motor 5 and supported by a bearing to rotate. The pressure nut 9 is connected to a pressure plunger 10.

    [0034] It should be understood that the pressure plunger 10 may be directly driven by a linear servo motor 5, if desired.

    [0035] The functions of the pressure valve component are as follows. The pressure servo motor 5 enables the pressure plunger 10 to appropriately turn off hydraulic oil in at least one radial hole 12 of the hydraulic cylinder component according to command(s) received from the control system, which in turn enables the pressure plunger 10 to move into the high pressure oil chamber 22 at the top of the hydraulic plunger 15. When the pressure plunger continues to move downward, the low pressure hydraulic oil 21 in the top of the hydraulic plunger 15 will be compressed, which will increase the pressure in the seal chamber (up to 400kg/cm2) and generate a significant thrust on the hydraulic plunger 15. Provided that the moving distance of the pressure plunger 10 toward the hydraulic plunger 15 is controlled, the generated thrust of the hydraulic plunger 15 and its highly precise position (for example, with a positional repeatability of ±0.01mm) may be controlled.

    [0036] Figure 2 also shows a moving platen lifting component. The moving platen lifting component is connected to said moving platen 16, comprising: a lifting servo motor 20 and a lifting mechanism. The lifting mechanism may be driven by the lifting servo motor 20, causing the moving platen 16 to perform lifting motion according to a preset lifting curve. In this embodiment, the lifting mechanism comprises a lifting ball screw 18 and a lifting nut 19 engaged with the lifting ball screw 18 for moving. The lifting ball screw 18 is connected to the lifting servo motor 20 while the lifting nut 19 is connected to the moving platen 16.

    [0037] The moving platen lifting component enables the moving platen 16 to approach the fixed platform with high speed and zero-speed contact with the fixed platform with high precision and press it tightly. Meanwhile, the hydraulic plunger 15 fixed on the moving platen 16 is pulled to have the high pressure hydraulic cylinder 11 thereon oil supplied or discharged.

    [0038] Hereinafter, the action process of the hydraulic system according to a preferred embodiment of the present invention will be described with respect to figures 2-4.

    [0039] In figure 2, the hydraulic system is in a stationary state. In this state, low pressure compressed air enters an inner-circulating oil chamber via a compressed air inlet 7, causing the hydraulic oil 20 to flow into the top of the hydraulic plunger 15 through radial holes 12 along direction A so that the hydraulic plunger 15 is enabled to generate a low pressure thrust downward. At this time, the moving platen lifting component is constrained by a static torque generated from the servo motor 20, which in turn constrains the moving platen 16 and the hydraulic plunger 15 to maintain in a stationary state as shown in figure 2. This state is referred as "origin state " for the hydraulic system in the present invention.

    [0040] With reference to figure 3, the hydraulic oil 21 propelled by the low pressure compressed air flows into the top of the hydraulic plunger 15 through the radial holes 12. At this time, the lifting servo motor 20 rotates according to the command sent from the control system, causing the lifting ball screw 18 to engage with the lifting ball nut 19, which in turn propels the moving platen 16 fixed to the hydraulic plunger 15 to move toward the lower fixed platform 17 according to a preset downward curve for approaching and pressing the lower fixed platform 17 without shocks. Thus, the action of "oil supplying with low pressure" is completed. Subsequently, the pressure servo motor 5 is initiated to drive the pressure ball screw 8 to rotate so that the pressure nut 9 propels the pressure plunger 10 to move downward in the figure. During the movement of the pressure plunger 10, it will firstly turn off the radial hole 12 at the top of the hydraulic plunger 15 so as to form a sealed "high pressure cylinder" on the top of the hydraulic plunger 15. When the pressure plunger 10 continues to move downward, the hydraulic oil in the sealed high pressure cylinder is compressed to generate a high pressure(for example, 400kg/cm2) within the high pressure cylinder, which in turn enables the hydraulic plunger 15 to generate a huge thrust. Provided that the rotation angle of the pressure servo motor 5 is changed, the moving position of the pressure plunger 10 might be changed and accordingly the thrust and position of the hydraulic plunger might also be changed.

    [0041] With reference to figure 4, when the moving platen 16 is required to move upward back to the stationary state as shown in figure 2, the pressure servo motor 5 drives the pressure ball screw to rotate reversely. Then the pressure nut 9 will bring the pressure plunge 10 to move upward. When the pressure plunger 10 arrives at a position at which the radial hole 12 begins to be exposed, high pressure oil in said "high pressure cylinder" will discharge oil to the inter-circulating chamber along the direction B.

    [0042] At this time, the lifting servo motor 20 rotates reversely, bringing the moving platen 16 together with the cylinder plunger 15 to move upward so that the hydraulic oil 21 may be completely discharged via the radial holes 12. Thus, all actions within a stroke are completed. Then, the platform returns back to the state shown in figure 2, waiting for next active command.

    [0043] Figures 5-7 are section views of an inner-circulating high speed hydraulic platform comprising 4 inner-circulating high speed hydraulic systems (only two systems are shown in the figures while others are covered) in various states according to the present invention.

    [0044] In addition to the inner-circulating high speed hydraulic platform, a lower fixed platform 17, a right wallboard 14 and a left wallboard 14A are also illustrated in figures 5-7, wherein a platform supporting system consisting of an upper fixed platform 13, the lower fixed platform 17, the right wallboard 14 and the left wallboard 14A is used for fixing the inner-circulating high speed hydraulic platform to a device it applied, such as a stamping machine . The right wallboard 14 and the left wallboard 14A are vertically connected between the upper fixed platform 13 and the lower fixed platform 17 so that the relative positions of the upper and lower fixed platform 13, 17 are fixed and a space for containing the housing of the high pressure oil chamber 22 and the moving platen 16 reciprocating therein is formed. Furthermore, housings 6 of the hydraulic cylinder components are connected to the upper fixed platform 13 through fixtures such as bolt or rivet. The cylinder of the high pressure oil chamber 22 is contained in a via formed in the upper fixed platform 13 and also fixed to the upper fixed platform 13. Undoubtedly, it should be understood that the housings 6 of the hydraulic cylinder components or the cylinder of the high pressure oil chamber 22 may also be formed with the upper fixed platform 13 integrally. The inner-circulating high speed hydraulic platform and the supporting system connected as above form an integral inner-circulating high speed hydraulic platform assembly. In this way, the so-constructed inner-circulating high speed hydraulic platform assembly has a compact structure and decreases the overall height of the assembly, and is easy for transportation.

    [0045] Further, figures 5-7 show a control system of the inner-circulating high speed hydraulic platform. With reference to figure 5, the control system comprises a controller 1, a driver 3 for the servo motor 20 corresponding to the moving platen lifting component, and drivers (only two drivers 2 and 4 are shown in the figure) for the servo motors 5 corresponding to the hydraulic cylinder components. According to the action requirements, the control system is used for sending corresponding commands to the servo motor 5 of the pressure valve components of the hydraulic cylinder components, the servo motor 20 of the moving platen lifting component, and other actuators, as well as receiving related feedback information therefrom, to ensure reliable operation of the inner-circulating high speed hydraulic platform with high speed, high pressure and high precision.

    [0046] Next, the operational process of the inner-circulating high speed hydraulic platform under the control of the control system will be descried with reference to figures 5-7.

    [0047] Figure 5 shows states of the respective components when the platform begins to move downward. When the moving platen 16 begins to press downward, a driving command for driving servo motor 20 to rotate is sent from the controller 1 to the driver 3 according to the preset action program. The rotation brings the lifting ball screw 18 to rotate and thus brings the engaged lifting nut 19 to follow an acceleration and deceleration curve preset by controller 1, causing the moving platen 16 to approach the lower fixed platform 17 with zero speed and press the lower fixed platform 17, i.e., arriving a state as shown in figure 6. With the downward movement of the moving platen 16, the compressed air is enabled to compress hydraulic oil 21 through compressed air inlets 7 of the inner-circulating high speed hydraulic system, causing the hydraulic oil 21 to rapidly enter the high pressure oil chamber 11 via the holes 12, thereby completing a downward stroke of the platform for oil supplying.

    [0048] With reference to figure 6, when the lifting servo motor 20 arrives zero speed, the driver 3 may send an in-position signal to the controller 1 which simultaneously sends commands to drivers 2 and 4 for synchronously rotating the pressure servo motors 5. At this time, the pressure servo motors 5 operate synchronously and drive each pressure ball screw 3, thereby bring each pressure nut 9 to move linearly and propel the pressure plungers 10, which may firstly seal the holes 12 and compress the hydraulic oil in each high pressure cylinder 11 at the same time, thereby generate high pressure. It should be understood that the approach for synchronizing pressure servo motors 5 may use any method well known in the art, such as parallel control, master-slave control, cross-coupling control, virtual line-shaft control, relative coupling control.

    [0049] With reference to figure 7, after all actions shown in figure 6 are completed, the controller 1 firstly may send rotation command to drivers 2 and 4. At this time, the pressure servo motors 5 also rotate according to the lifting curve preset by controller 1, bringing each pressure ball screw 8, respectively, to drive each pressure nut 9 and thus propel the pressure plungers 10 to make upward linear movement. When the plungers move and then stop at the position as shown in figure 7, the controller 1 may promptly send commands to the driver 3 for rotating the lifting servo motor 20. At this time, the lifting servo motors 20 drive the lifting servo ball screws 18, which in turn enable the lifting nuts 19 to bring the moving planet 16 and the hydraulic plunger 15 to move upward. At this time, the hydraulic oil 21 in the high pressure cylinder 11 is discharged back into the inner-circulating oil chamber through the holes 12. At this moment, all actions in the upward and downward strokes have been completed.

    [0050] Although the present invention is described with reference to a first embodiment of an inner-circulating high speed hydraulic platform comprising four inner-circulating high speed hydraulic systems, the number of the inner-circulating high speed hydraulic systems in the present invention is not limited to four, but may be any number more than one.

    [0051] It should be understood that the controller described herein may be implemented as a well known controller in the art, such as PLC and motion controller.

    [0052] Descriptions regarding "upward/upper" and "downward/lower" used herein are not intended to limit the direction of components in figures during usage. It will be understood by those skilled in the art that the above system may be used inversely by modification, as will be describe with respect to the second embodiment below.

    [0053] Figure 8 shows a perspective view of an inner-circulating high speed hydraulic platform according to a second embodiment of the present invention. The inner-circulating high speed hydraulic platform mainly comprises: a lower fixed platform 13', a moving platen lifting component, a plurality of inner-circulating high speed hydraulic systems (for example, 2, 3 and specifically 4 in the present embodiment) mounted to the lower fixed platform 13', and a control system (not shown). The moving platen lifting component is used for pushing a moving platen 16 to move toward an upper fixed platform 17' and contact it with zero speed (See, figure 9). The inner-circulating high speed hydraulic systems are used for supplying fluid to the hydraulic system when pushing the moving platen 16 toward the upper fixed platform 17' and applying pressure on the upper fixed platform 17' after contacting the moving platen 16. The control system is used for sending corresponding commands to components according to action requirements and receiving related feedback information so as to ensure reliable operation of the inner-circulating high speed hydraulic platform with high speed, high pressure and high precision.

    [0054] Figures 9-11 are section views of an inner-circulating high speed hydraulic platform comprising 4 inner-circulating high speed hydraulic systems (only two systems are shown in the figures while others are covered) in various states according to the present invention.

    [0055] In this embodiment, the inner-circulating high speed hydraulic platform comprises four identical inner-circulating high speed hydraulic systems. However, it should be understood that the present invention is not limited to four identical inner-circulating high speed hydraulic systems but may take any appropriate number of systems, such as 2, 3. The four inner-circulating high speed hydraulic systems may have similar structure and operational process to those of the first embodiment. Herein, only one of the systems is described in details with reference to figure 9.

    [0056] Taking the hydraulic cylinder component shown in the left side of the figure 9 as an example, it comprises a high pressure cylinder 11, a hydraulic plunger 15, and a housing 6. An axial hole, disposed at the bottom of the high pressure cylinder 11, may communicate with a chamber on the bottom of the hydraulic plunger 15. At least one radial hole(s) 12 intersecting with the axial hole is also disposed near the bottom of the high pressure cylinder 11. The plunger 15 reciprocates in the high pressure cylinder 15, the upper end of which may connect to an actuating element, which in the preferred embodiment is a moving platen 16. The housing 6 contains the high pressure cylinder 11 and form a sealed inner-circulating chamber outside. The inner-circulating chamber may communicate with the axial hole via the aforementioned at least one radial hole 12 and in turn communicate with the bottom of the hydraulic plunger 15. In addition, a compressed air inlet 7 is disposed at the top of the housing 6 for introducing compressed air.

    [0057] A pressure valve component comprising a pressure servo motor 5 and a pressure plunger 10 is disposed at the bottom of the hydraulic cylinder component. The pressure plunger 10 may be driven by the pressure servo motor 5 to move up and down within an axial hole disposed at the bottom of the high pressure cylinder 11. In this embodiment, a driving mechanism may be disposed between the pressure servo motor 5 and the pressure plunger 10. The driving mechanism comprises a pressure ball screw 8 and a pressure nut 9 which is engaged with the pressure ball screw 8 for moving. The pressure ball screw 8 is connected to the pressure servo motor 5 and supported by a bearing to rotate. The pressure nut 9 is connected to a pressure plunger 10.

    [0058] It should be understood that the pressure plunger 10 may be directly driven by a linear servo motor 5, if desired.

    [0059] The functions of the pressure valve component are as follows. The pressure servo motor 5 enables the pressure plunger 10 to appropriately turn off hydraulic oil in at least one radial hole 12 of the hydraulic cylinder component according to command(s) received from the control system, which in turn enables the pressure plunger 10 to move into the high pressure chamber 22 at the bottom of the hydraulic plunger 15. When the pressure plunger 10 continues to move upward, the low pressure hydraulic oil 21 at the bottom of the hydraulic plunger 15 will be compressed, which will increase the pressure in the sealed chamber (up to 400kg/cm2) and cause a significant thrust on the hydraulic plunger 15. Provided that the moving distance of the pressure plunger 10 toward the top of the hydraulic plunger 15 is controlled, the generated thrust of the hydraulic plunger 15 and its highly precise position (for example, with a positional repeatability of ±0.01mm) may be controlled.

    [0060] Figure 9 also show a moving platen lifting component. The moving platen lifting component is connected to said moving platen 16, comprising: a lifting servo motor 20 and a lifting mechanism. The lifting mechanism may be driven by the lifting servo motor 20, causing the moving platen 16 to perform lifting movement according to a preset lifting curve. In this embodiment, the lifting mechanism comprises a lifting ball screw 18 and a lifting nut 19 engaged with the lifting ball screw 18 for moving. The lifting ball screw 18 is connected to the lifting servo motor 20 while the lifting nut 9 is connected to the moving platen 16.

    [0061] The moving platen lifting component enables the moving platen 16 to approach the fixed platen with high speed and zero-speed contact with the fixed platen with high precision and press it tightly. Meanwhile, the hydraulic plunger 15 fixed on the moving platen 16 is pulled to have the high pressure hydraulic cylinder 11 thereon oil supplied or discharged.

    [0062] Hereinafter, the action process of the hydraulic system according to a preferred embodiment of the present invention will be described with respect to figures 9-11.

    [0063] In figure 9, the hydraulic system is in a static state. In this state, low pressure compressed air enters an inner-circulating oil chamber via a compressed air inlet 7, causing the hydraulic oil 20 to flow into the bottom of the hydraulic plunger 15 through the radial holes 12 along direction A so that the hydraulic plunger 15 is enabled to generate an upward low pressure thrust. At this time, the moving platen lifting component is constrained by a static torque generated from the servo motor 20, which in turn constrains the moving platen 16 and the hydraulic plunger 15 to maintain in a static state as shown in figure 9. This state is referred as "state of origin" for the hydraulic system in the present invention.

    [0064] With reference to figure 10, the hydraulic oil 21 propelled by the low pressure compressed air flows into the bottom of the hydraulic plunger 15 through the radial hole 12. At this time, the lifting servo motor 20 rotates according to the commands sent from the control system, causing the lifting ball screw 18 to engage with the lifting ball nut 19, which in turn propels the moving platen 16 fixed to the hydraulic plunger 15 to move toward the upper fixed platform 17' according to a preset downward curve for approaching and tightly pressing the upper fixed platform 17' without shock. Thus, the action of "oil supplying with low pressure" is completed. Subsequently, the pressure servo motor 5 is initiated to drive the pressure ball screw 8 to rotate so that the pressure nut 9 propels the pressure plunger 10 to move upward in the figure. During the movement of the pressure plunger 10, it will firstly turn off the radial hole 12 at the bottom of the hydraulic plunger 15 so as to form a sealed "high pressure cylinder" below the bottom of the hydraulic plunger 15. When the pressure plunger 10 continues to move upward, the hydraulic oil in the sealed high pressure cylinder is compressed to generate a high pressure (for example, 400kg/cm2), which in turn enables the hydraulic plunger 15 to generate a huge thrust. Provided that the rotation angle of the pressure servo motor 5 is changed, the moving position of the pressure plunger 10 might be changed, and accordingly the thrust and position of the hydraulic plunger might also be changed.

    [0065] With reference to figure 11, when the moving platen 16 is required to move downward to return to the stationary state as shown in figure 9, the pressure servo motor 5 drives the pressure ball screw to rotate reversely. Then the pressure nut 9 will bring the pressure plunge 10 to move downward. When the pressure plunger 10 moves to a position at which the radial hole 12 begins to be exposed, high pressure oils in said "high pressure cylinder" will discharge oil to the inter-circulating chamber.

    [0066] At this time, the lifting servo motor 20 rotates reversely, bringing the moving platen 16 together with the cylinder plunger 15 to move downward so that the hydraulic oil 21 may be completely discharged via the radial hole 12. Thus, all actions within a stroke are completed. Then, the platform returns back to the state shown in figure 9 waiting for next action command.

    [0067] In addition to the inner-circulating high speed hydraulic platform, an upper fixed platform 17', a right wallboard 14 and a left wallboard 14A are also illustrated in figures 9-11, wherein a platform supporting system consisting of an lower fixed platform 13', the upper fixed platform 17', the right wallboard 14 and the left wallboard 14A is used for fixing the inner-circulating high speed hydraulic platform to a device, such as a stamping machine, to which it applied. The right wallboard 14 and the left wallboard 14A are vertically connected between the lower fixed platform 13' and the upper fixed platform 17' so that the relative positions of the lower and upper fixed platform 13', 17' are fixed and a space for containing the housing of the high pressure oil chamber 22 and the moving platen 16 reciprocating therein is formed. Furthermore, housings 6 of the hydraulic cylinder component are connected to the lower fixed platform 13' through fixtures such as bolt or rivet. The pressure valve component passes through a via formed in the lower fixed platform 13' and is also fixed to the lower fixed platform 13'. Undoubtedly, it should be understood that the housings 6 of the hydraulic cylinder component or the cylinder of the high pressure oil chamber 22may also be formed with the lower fixed platform 13' integrally. The inner-circulating high speed hydraulic platform and the supporting system connected as above form an integral inner-circulating high speed hydraulic platform assembly. In this way, the so-constructed inner-circulating high speed hydraulic platform assembly has a compact structure, decreases the overall height of the assembly, and thereby is easy for transportation.

    [0068] Further, figures 9-11 also show a control system of the inner-circulating high speed hydraulic platform. With reference to figure 9, the control system of the present invention comprises a controller 1, a driver 3 for the servo motor 20 corresponding to the moving platen lifting component, and drivers (only two drivers 2 and 4 are shown in the figure) for the servo motor 5 corresponding to the hydraulic cylinder components. According to the action requirements, the control system is used for sending corresponding commands to the servo motor 5 of the pressure valve components of the hydraulic cylinder components, the servo motor 20 of the moving platen lifting component, and other actuators, as well as receiving related feedback information therefrom, to ensure reliable operation of the inner-circulating high speed hydraulic platform with high speed, high pressure and high precision.

    [0069] Next, the operational process of the inner-circulating high speed hydraulic platform under the control of the control system will be descried with reference to figures 9-11.

    [0070] Figure 9 shows states of components when the platform begins to move upward. When the moving platen 16 begins to press upward, a driving command for driving servo motor 20 to rotate is sent from the controller 1 to the driver 3 according to the preset action program. The rotation brings the lifting ball screw 18 to rotate and thus brings the engaged lifting ball nut 19 to follow an acceleration and deceleration curve preset by controller 1, causing the moving platen 16 to approach the upper fixed platform 17' with zero speed and tightly press the upper fixed platform 17', i.e., arriving a state as shown in figure 10. With the upward movement of the moving platen 16, the compressed air is enabled to compress hydraulic oil 21 through compressed air inlets 7 of the inner-circulating high speed hydraulic system, causing hydraulic oil 21 to rapidly enter a high pressure oil chamber 11 through the holes 12, thereby completing an upward stroke of the platform for oil supplying.

    [0071] With reference to figure 10, when the lifting servo motor 20 arrives zero speed, the driver 3 sends an in-position signal to the controller 1 which simultaneously sends commands to drivers 2 and 4 for synchronously rotating the pressure servo motors 5. At this time, the pressure servo motors 5 operate synchronously and drive each pressure ball screw 3, respectively to bring each pressure nut 9 to move linearly and propel the pressure plungers 10, which may firstly seal the holes 12 and compress the hydraulic oil in each high pressure cylinder 11 at the same time, thereby generating high pressure. It should be understood that the approach for synchronizing pressure servo motors 5 may use any method well known in the art, such as parallel control, master-slave control, cross-coupling control, virtual line-shaft control, relative coupling control.

    [0072] With reference to figure 11, after all actions shown in figure 10 are completed, the controller 1 firstly sends rotation commands to drivers 2 and 4. At this time, the pressure servo motors 5 also rotate according to the lifting curve preset by controller 1, bringing each pressure ball screw 8, respectively, to drive each pressure nut 9 and propel the pressure plungers 10 to make downward linear movement. When the pressure plungers 10 move and stop the position as shown in figure 11, the controller may send commands to the driver 3 for rotating the lifting servo motor 20. At this time, the lifting servo motors 20 drive the lifting servo ball screws 18 to enable the lifting nuts 19 to bring the moving planet 16 and the hydraulic plunger 15 to move downward. At this time, the hydraulic oil 21 in the high pressure cylinder 11 is discharged back into the inner-circulating oil chamber through the holes 12. At this moment, all actions in the downward strokes have been completed.

    [0073] Although the present invention is described with reference to a second embodiment of an inner-circulating high speed hydraulic platform comprising four inner-circulating high speed hydraulic systems, the number of the inner-circulating high speed hydraulic systems in the present invention is not limited to four, but may be any number more than one.

    [0074] It should be understood that the controller described herein may be implemented as a well known controller in the art, such as PLC and motion controller.

    [0075] Descriptions regarding "upward/upper" and "downward/lower" used herein are not intended to limit the direction of components in figures during usage.

    [0076] The inner-circulating hydraulic moving platform of anyone of the claims 7 to 14 may comprise anyone of the following features, either separately, i.e. with one of the following features only, or with several of the following features:
    • the lifting mechanism comprises a lifting ball screw and a lifting nut engaged with the lifting ball screw for moving, wherein the lifting ball screw is connected to the lifting servo motor while the lifting nut is connected to the moving platen;
    • the control system comprises a controller, drivers corresponding to the pressure servo motors of the at least one inner-circulating hydraulic system, and a driver corresponding to the lifting servo motor,
      wherein the controller is configured to:

      send actuating commands to the driver corresponding to the lifting servo motor so that the hydraulic plunger is driven to move upward, which in turn drives the actuating element to move upward;

      when the actuating element stops moving upward, the controller receives an in-position signal from the driver of the lifting servo motor and send commands to each driver of the pressure servo motors for synchronously running to synchronously drive each pressure plunger to enter into oil chambers and seal the radial hole;

      send commands to each driver of the pressure servo motors for synchronously reverse running to synchronously drive each pressure plunger exiting the oil chambers downward; and

      send commands to the driver of the lifting servo motor for driving the hydraulic plunger to move reversely, which in turn brings the actuating element to move downward;

    • controlling the pressure servo motors for synchronous running includes any of parallel control, master-slave control, cross-coupling control, virtual line-shaft control, and relative coupling control;
    • the controller is a PLC or a motion controller;
    • a moving platen connected to the actuating element; a connecting mechanism connecting and fixing the lower fixed platform and the upper fixed platform;
      an upper fixed platform with which the moving platen contacts with zero speed and tightly press against when the actuating element reciprocates to an upper stop point;
      wherein housings of the hydraulic cylinder are fixed to the lower fixed platform, wherein a pressure valve component passes through a via formed in the lower fixed platform and is fixed to the lower fixed platform;
    • the connecting mechanism comprises a right wallboard and a left wallboard which are connected between the lower fixed platform and the upper fixed platform.



    Claims

    1. An inner-circulating hydraulic moving platform stamping system comprising:
    a hydraulic cylinder component, including a cylinder (11), a hydraulic plunger (15), and a housing (6), wherein an axial hole disposed at the top of the cylinder (11) communicates with a chamber on the top of the hydraulic plunger (15), wherein at least one radial hole (12) intersecting with the axial hole is also disposed near the top of the cylinder (11), wherein the hydraulic plunger (15) reciprocates in the cylinder (11), wherein the housing (6) contains the cylinder (11) and forms a sealed inner-circulating oil chamber outside, wherein the inner-circulating oil chamber communicates with the axial hole (12) via said radial hole and in turn communicates with the top of the hydraulic plunger (15), wherein a compressed air inlet (7) is disposed in the upper portion of the housing (6) and a lower end of the hydraulic plunger (15) is connected to an actuating element; characterized by the inner-circulating hydraulic moving platform stamping system further comprising a pressure valve component, comprising a pressure servo motor (5) and a pressure plunger (10) driven by the pressure servo motor (5) to move up and down within the axial hole disposed at the top of the cylinder (11), and wherein the actuating element is a moving platen (16) of a moving platform.
     
    2. The inner-circulating hydraulic moving platform system of claim 1, characterized in that, the hydraulic system also comprises a moving platen lifting component connected to the moving platen (16), the moving platen lifting component includes a lifting servo motor (20) and a lifting mechanism, wherein the lifting mechanism is driven by the lifting servo motor (20) so that the moving platen (16) makes a lifting movement according to a preset lifting curve.
     
    3. The inner-circulating hydraulic moving platform system of claim 2, characterized in that, the lifting mechanism comprises a lifting ball screw (18) and a lifting nut (19) engaged with the lifting ball screw (18) for moving, wherein the lifting ball screw (18) is connected to the lifting servo motor (20) while the lifting nut (19) is connected to the moving platen (16).
     
    4. The inner-circulating hydraulic moving platform system of claim 1, characterized in that, a driving mechanism is disposed between the pressure servo motor (5) and the pressure plunger (10).
     
    5. The inner-circulating hydraulic moving platform system of claim 4, characterized in that, the driving mechanism comprises a pressure ball screw (8) and a pressure nut (9) engaged with the pressure ball screw (8) for moving, wherein the pressure ball screw (8) is connected to the pressure servo motor (5) while the pressure nut (9) is connected to the pressure platen (10).
     
    6. The inner-circulating hydraulic moving platform system of claim 1, characterized in that, the pressure plunger (10) is directly driven by a linear servo motor.
     
    7. An inner-circulating hydraulic moving platform, comprising:

    an upper fixed platform (13) which connects with an inner-circulating hydraulic moving platform system as claimed in claim 1; a moving platen lifting component connected to an actuating element and comprising a lifting servo motor (20) and a lifting mechanism, wherein the lifting mechanism is driven by the lifting servo motor (20) to enable the actuating element to perform lifting movement; and

    a control system for controlling the above components to act in proper time and controlling the servo motors (5, 20) in the inner-circulating high speed hydraulic system to operate synchronously.


     
    8. The inner-circulating hydraulic moving platform of claim 7, characterized in that, the lifting mechanism comprises a lifting ball screw (18) and a lifting nut (19) engaged with the lifting ball screw (18) for moving, wherein the lifting ball screw (18) is connected to the lifting servo motor (20) while the lifting nut (19) is connected to the moving platen (16).
     
    9. The inner-circulating hydraulic moving platform of claim 7, characterized in that, the control system comprises a controller (1), drivers (2, 4) corresponding to the pressure servo motors (5,20) of the at least one inner-circulating hydraulic moving platform system, and a driver (3) corresponding to the lifting servo motor (20), wherein the controller (1) is configured to:

    send actuating commands to the driver (3) corresponding to the lifting servo motor (20) so that the hydraulic plunger (15) is driven to move downward, which in turn brings the actuating element to move downward;

    when the actuating element stops moving downward, the controller (1) receives an in-position signal from the driver (3) of the lifting servo motor (20) and sends commands to each driver (2, 4) of the pressure servo motors (5, 20) for synchronously running so as to synchronously drive each pressure plunger (10) to enter into oil chambers and seal the radial hole (12);

    sends commands to each driver (2,4) of the pressure servo motors (5, 20) for synchronously reverse running so as to synchronously drive each pressure plunger (10) to exit the oil chambers upward; and

    sends commands to the driver (3) of the lifting servo motor (20) for driving the hydraulic plunger (15) to move reversely, which in turn brings the actuating element to move upward.


     
    10. The inner-circulating hydraulic moving platform of claim 9, characterized in that, the controlling pressure servo motors (5, 20) for synchronous operation include any of parallel control, master-slave control, cross-coupling control, virtual line-shaft control, and relative coupling control.
     
    11. The inner-circulating hydraulic moving platform of claim 9, characterized in that, the actuating element is a PLC or a motion controller.
     
    12. An inner-circulating hydraulic moving platform assembly, comprising:

    the inner-circulating hydraulic moving platform as claimed in claim 7;

    a moving platen (16) connected to the actuating element;

    a connecting mechanism connecting and fixing the upper fixed platform (13) and the lower fixed platform (17);

    a lower fixed platform (17) with which the moving platen (16) contacts with zero speed and tightly press when the actuating element reciprocates to the lower stop point;

    housings (6) of the hydraulic cylinder (11) fixed to the upper fixed platform (13), wherein the cylinder of the oil chamber (22) is contained in a via formed in the upper fixed platform (13) and also fixed to the upper fixed platform (13).


     
    13. The inner-circulating hydraulic moving platform assembly of claim 12, characterized in that, the connecting mechanism comprises a right wallboard (14) and a left wallboard (14A) which are connected between the upper fixed platform (13) and lower fixed platform (17).
     
    14. The inner-circulating hydraulic moving platform of claim 7, comprising:
    a lower fixed platform (13'), the lower fixed platform (13') is connected with:

    at least one inner-circulating hydraulic moving platform system, comprising:

    a hydraulic cylinder component, including a cylinder (11), a hydraulic plunger (15), and a housing (6), wherein an axial hole disposed at the bottom of the cylinder (11) communicates with a chamber on the bottom of the hydraulic plunger (15), wherein at least one radial hole (12) intersecting with the axial hole is also disposed near the bottom of the cylinder (11), wherein the hydraulic plunger (15) reciprocates in the cylinder (11), wherein the housing (6) contains the cylinder (11) and forms a sealed inner-circulating oil chamber outside, wherein the inner-circulating oil chamber communicates with the axial hole (12) via said radial hole and in turn communicates with the bottom of the hydraulic plunger (15), wherein a compressed air inlet (7) is disposed on the upper portion of the housing (6) and an upper end of the hydraulic plunger (15) is connected to an actuating element; and

    a pressure valve component, comprising a pressure servo motor (5) and a pressure plunger (10) driven by the pressure servo motor (5) to move up and down within the axial hole disposed at the bottom of the cylinder (11);

    a moving platen component connected to the actuating element and comprising a lifting servo motor (6) and a lifting mechanism, wherein the lifting mechanism is driven by the lifting servo motor (6) to enable the actuating element to perform lifting movement; and

    a control system for controlling the above components to act in proper time and controlling the servo motors (5, 20) in the inner-circulating hydraulic moving platform system to operate synchronously.


     


    Ansprüche

    1. Stanzsystem mit einer hydraulisch bewegten Plattform mit innerer Zirkulation, umfassend:
    eine Hydraulikzylinderkomponente, einschließend einen Zylinder (11), einen Hydraulikkolben (15) und ein Gehäuse (6), wobei eine Axialbohrung, die oben an dem Zylinder (11) angeordnet ist, mit einer Kammer oben an dem Hydraulikkolben (15) kommuniziert, wobei mindestens eine Radialbohrung (12), welche die Axialbohrung schneidet, auch in der Nähe der Oberseite des Zylinders (11) angeordnet ist, wobei sich der Hydraulikkolben (15) in dem Zylinder (11) hin- und herbewegt, wobei das Gehäuse (6) den Zylinder (11) enthält und eine abgedichtete Außenseite einer Ölkammer mit innerer Zirkulation bildet, wobei die Ölkammer mit innerer Zirkulation mit der Axialbohrung (12) über die Radialbohrung kommuniziert und wiederum mit der Oberseite des Hydraulikkolbens (15) kommuniziert, wobei ein Drucklufteinlass (7) in dem oberen Teil des Gehäuses (6) angeordnet ist und ein unteres Ende des Hydraulikkolbens (15) mit einem Betätigungselement verbunden ist; dadurch gekennzeichnet, dass das Stanzsystem mit einer hydraulisch bewegten Plattform mit innerer Zirkulation ferner Folgendes umfasst:
    eine Druckventilkomponente, umfassend einen Druckservomotor (5) und einen Druckkolben (10), der von dem Druckservomotor (5) angetrieben wird, um sich in der Axialbohrung, die oben an dem Zylinder (11) angeordnet ist, nach oben und unten zu bewegen, und wobei das Betätigungselement eine bewegliche Aufspannplatte (16) einer beweglichen Plattform ist.
     
    2. System mit einer hydraulisch bewegten Plattform mit innerer Zirkulation nach Anspruch 1, dadurch gekennzeichnet, dass, das hydraulische System außerdem eine Hubkomponente einer beweglichen Aufspannplatte umfasst, die mit der beweglichen Aufspannplatte (16) verbunden ist, wobei die Hubkomponente einer beweglichen Aufspannplatte einen Hubservomotor (20) und ein Hubwerk einschließt, wobei das Hubwerk von dem Hubservomotor (20) so angetrieben wird, dass die bewegliche Aufspannplatte (16) eine Hubbewegung gemäß einer vorgegebenen Hubkurve ausführt.
     
    3. System mit einer hydraulisch bewegten Plattform mit innerer Zirkulation nach Anspruch 2, dadurch gekennzeichnet, dass das Hubwerk ein Kugelgewinde (18) zum Heben und eine Hubmutter (19) umfasst, die in das Kugelgewinde (18) zum Heben zum Bewegen eingreift, wobei das Kugelgewinde (18) zum Heben mit dem Hubservomotor (20) verbunden ist, während die Hubmutter (19) mit der beweglichen Aufspannplatte (16) verbunden ist.
     
    4. System mit einer hydraulisch bewegten Plattform mit innerer Zirkulation nach Anspruch 1, dadurch gekennzeichnet, dass ein Antriebsmechanismus zwischen dem Druckservomotor (5) und dem Druckkolben (10) angeordnet ist.
     
    5. System mit einer hydraulisch bewegten Plattform mit innerer Zirkulation nach Anspruch 4, dadurch gekennzeichnet, dass der Antriebsmechanismus ein Druckkugelgewinde (8) und eine Druckmutter (9) umfasst, die in das Druckkugelgewinde (8) zum Bewegen eingreift, wobei das Druckkugelgewinde (8) mit dem Druckservomotor (5) verbunden ist, während die Druckmutter (9) mit der Druckaufspannplatte (10) verbunden ist.
     
    6. System mit einer hydraulisch bewegten Plattform mit innerer Zirkulation nach Anspruch 1, dadurch gekennzeichnet, dass der Druckkolben (10) direkt von einem Linearservomotor angetrieben wird.
     
    7. Hydraulisch bewegte Plattform mit innerer Zirkulation, umfassend:

    eine obere feste Plattform (13), die mit einem System mit einer hydraulisch bewegten Plattform mit innerer Zirkulation nach Anspruch 1 verbindet; eine Hubkomponente einer beweglichen Aufspannplatte, die mit einem Betätigungselement verbunden ist und umfassend einen Hubservomotor (20) und ein Hubwerk, wobei das Hubwerk von dem Hubservomotor (20) angetrieben wird, um zu ermöglichen, dass das Betätigungselement die Hubbewegung ausführt; und

    ein Steuersystem zum Steuern der oben stehenden Komponenten, damit sie zur richtigen Zeit agieren und Steuern der Servomotoren (5, 20) in dem hydraulischen Hochgeschwindigkeitssystem mit innerer Zirkulation, damit sie synchron arbeiten.


     
    8. Hydraulisch bewegte Plattform mit innerer Zirkulation nach Anspruch 7, dadurch gekennzeichnet, dass das Hubwerk ein Kugelgewinde (18) zum Heben und eine Hubmutter (19) umfasst, die in das Kugelgewinde (18) zum Heben zum Bewegen eingreift, wobei das Kugelgewinde (18) zum Heben mit dem Hubservomotor (20) verbunden ist, während die Hubmutter (19) mit der beweglichen Aufspannplatte (16) verbunden ist.
     
    9. Hydraulisch bewegte Plattform mit innerer Zirkulation nach Anspruch 7, dadurch gekennzeichnet, dass das Steuersystem eine Steuerung (1), Steuerglieder (2, 4), die den Druckservomotoren (5, 20) des mindestens einen Systems mit einer hydraulisch bewegten Plattform mit innerer Zirkulation entsprechen, und ein Steuerglied (3) umfasst, das dem Hubservomotor (20) entspricht, wobei die Steuerung (1) zu Folgendem konfiguriert ist:

    Senden von Betätigungsbefehlen an das Steuerglied (3), das dem Hubservomotor (20) entspricht, sodass der Hydraulikkolben (15) angetrieben wird, um sich nach unten zu bewegen, wodurch wiederum das Betätigungselement dazu gebracht wird, sich nach unten zu bewegen;

    wenn das Betätigungselement aufhört, sich nach unten zu bewegen, empfängt die Steuerung (1) ein Signal "in Position" von dem Steuerglied (3) des Hubservomotors und sendet Befehle an jedes Steuerglied (2, 4) der Druckservomotoren (5, 20), damit sie synchron laufen, um jeden Druckkolben (10) synchron anzutreiben, damit er in Ölkammern eintritt und die Radialbohrung (12) abdichtet;

    Senden von Befehlen an jedes Steuerglied (2, 4) der Druckservomotoren (5, 20) zum synchronen Rückwärtslauf, um jeden Druckkolben (10) synchron anzutreiben, damit der die Ölkammern nach oben verlässt; und

    Senden von Befehlen an das Steuerglied (3) des Hubservomotors (20) um den Hydraulikkolben (15) anzutreiben, damit er sich rückwärts bewegt, wodurch wiederum das Betätigungselement dazu gebracht wird, sich nach oben zu bewegen.


     
    10. Hydraulisch bewegte Plattform mit innerer Zirkulation nach Anspruch 9, dadurch gekennzeichnet, dass das Steuern der Druckservomotoren (5, 20) für einen synchronen Betrieb beliebiges von einer Parallelsteuerung, Master-Slave-Steuerung, Kreuzkopplungssteuerung, virtuellen Transmissionswellensteuerung und relativen Kopplungssteuerung einschließt.
     
    11. Hydraulisch bewegte Plattform mit innerer Zirkulation nach Anspruch 9, dadurch gekennzeichnet, dass das Betätigungselement eine PLC oder eine Bewegungssteuerung ist.
     
    12. Baugruppe einer hydraulisch bewegten Plattform mit innerer Zirkulation, umfassend:

    die hydraulisch bewegte Plattform mit innerer Zirkulation nach Anspruch 7;

    bewegliche Aufspannplatte (16), die mit dem Betätigungselement verbunden ist;

    einen Verbindungsmechanismus, der die obere feste Plattform (13) und die untere feste Plattform (17) verbindet und fixiert;

    eine untere feste Plattform (17), welche die bewegliche Aufspannplatte (16) mit einer Geschwindigkeit von null berührt und fest drückt, wenn sich das Betätigungselement zu dem unteren Anschlagpunkt hin- und herbewegt;

    Gehäuse (6) des Hydraulikzylinders (11), der an der oberen festen Plattform (13) fixiert ist,

    wobei der Zylinder der Ölkammer (22) in einer Durchkontaktierung enthalten ist, die in der oberen festen Plattform (13) gebildet wird und auch an der oberen festen Plattform (13) fixiert ist.


     
    13. Baugruppe einer hydraulisch bewegten Plattform mit innerer Zirkulation nach Anspruch 12, dadurch gekennzeichnet, dass der Verbindungsmechanismus eine rechte Wandplatte (14) und eine linke Wandplatte (14A) umfasst, die zwischen der oberen festen Plattform (13) und der unteren festen Plattform (17) verbunden sind.
     
    14. Hydraulisch bewegte Plattform mit innerer Zirkulation nach Anspruch 7, umfassend:
    eine untere feste Plattform (13'), wobei die untere feste Plattform (13') mit Folgendem verbunden ist:

    mindestens einem System mit einer hydraulisch bewegten Plattform mit innerer Zirkulation, umfassend:

    eine Hydraulikzylinderkomponente, einschließend einen Zylinder (11), einen Hydraulikkolben (15) und ein Gehäuse (6), wobei eine Axialbohrung, die unten an dem Zylinder (11) angeordnet ist, mit einer Kammer unten an dem Hydraulikkolben (15) kommuniziert, wobei mindestens eine Radialbohrung (12), welche die Axialbohrung schneidet, auch in der Nähe der Unterseite des Zylinders (11) angeordnet ist, wobei sich der Hydraulikkolben (15) in dem Zylinder (11) hin- und herbewegt, wobei das Gehäuse (6) den Zylinder (11) enthält und eine abgedichtete Außenseite einer Ölkammer mit innerer Zirkulation bildet, wobei die Ölkammer mit innerer Zirkulation mit der Axialbohrung (12) über die Radialbohrung kommuniziert und wiederum mit der Unterseite des Hydraulikkolbens (15) kommuniziert, wobei ein Drucklufteinlass (7) in dem oberen Teil des Gehäuses (6) angeordnet ist und ein oberes Ende des Hydraulikkolbens (15) mit einem Betätigungselement verbunden ist; und

    eine Druckventilkomponente, umfassend einen Druckservomotor (5) und einen Druckkolben (10), der von dem Druckservomotor (5) angetrieben wird, um sich in der Axialbohrung, die unten an dem Zylinder (11) angeordnet ist, nach oben und unten zu bewegen;

    eine Komponente einer beweglichen Aufspannplatte, die mit dem Betätigungselement verbunden ist und umfassend einen Hubservomotor (20) und ein Hubwerk, wobei das Hubwerk von dem Hubservomotor (6) so angetrieben wird, dass es dem Betätigungselement die Ausführung einer Hubbewegung ermöglicht; und

    ein Steuersystem zum Steuern der oben stehenden Komponenten, damit sie zur richtigen Zeit agieren und Steuern der Servomotoren (5, 20) in dem System mit einer hydraulisch bewegten Plattform mit innerer Zirkulation, damit sie synchron arbeiten.


     


    Revendications

    1. Système d'estampage à plateforme mobile hydraulique à circulation interne comprenant :
    un composant de vérin hydraulique, comportant un cylindre (11), un plongeur hydraulique (15), et un boîtier (6), dans lequel un trou axial disposé au sommet du cylindre (11) communique avec une chambre au sommet du plongeur hydraulique (15), dans lequel au moins un trou radial (12) en intersection avec le trou axial est également disposé à proximité du sommet du cylindre (11), dans lequel le plongeur hydraulique (15) effectue un va-et-vient dans le cylindre (11), dans lequel le boîtier (6) contient le cylindre (11) et forme une chambre d'huile à circulation interne étanche à l'extérieur, dans lequel la chambre d'huile à circulation interne communique avec le trou axial (12) via ledit trou radial et à son tour communique avec le sommet du plongeur hydraulique (15), dans lequel une entrée d'air comprimé (7) est disposée dans la portion supérieure du boîtier (6) et une extrémité inférieure du plongeur hydraulique (15) est raccordée à un élément d'actionnement ; caractérisé en ce que le système d'estampage à plateforme mobile hydraulique à circulation interne comprend en outre un composant de soupape de pression, comprenant un servomoteur de pression (5) et un plongeur de pression (10) entraîné par le servomoteur de pression (5) pour se déplacer vers le haut et vers le bas au sein du trou axial disposé au sommet du cylindre (11), et dans lequel l'élément d'actionnement est un plateau mobile (16) d'une plateforme mobile.
     
    2. Système de plateforme mobile hydraulique à circulation interne selon la revendication 1, caractérisé en ce que, le système hydraulique comprend également un composant d'élévation de plateau mobile raccordé au plateau mobile (16), le composant d'élévation de plateau mobile comporte un servomoteur d'élévation (20) et un mécanisme d'élévation, dans lequel le mécanisme d'élévation est entraîné par le servomoteur d'élévation (20) de sorte que le plateau mobile (16) effectue un déplacement en élévation selon une courbe d'élévation prédéfinie.
     
    3. Système de plateforme mobile hydraulique à circulation interne selon la revendication 2, caractérisé en ce que, le mécanisme d'élévation comprend une vis à billes d'élévation (18) et un écrou d'élévation (19) engagés avec la vis à billes d'élévation (18) pour un déplacement, dans lequel la vis à billes d'élévation (18) est raccordée au servomoteur d'élévation (20) tandis que l'écrou d'élévation (19) est raccordé au plateau mobile (16).
     
    4. Système de plateforme mobile hydraulique à circulation interne selon la revendication 1, caractérisé en ce que, un mécanisme d'entraînement est disposé entre le servomoteur de pression (5) et le plongeur de pression (10).
     
    5. Système de plateforme mobile hydraulique à circulation interne selon la revendication 4, caractérisé en ce que, le mécanisme d'entraînement comprend une vis à billes de pression (8) et un écrou de pression (9) engagé avec la vis à billes de pression (8) pour un déplacement, dans lequel la vis à billes de pression (8) est raccordée au servomoteur de pression (5) tandis que l'écrou de pression (9) est raccordé au plateau de pression (10).
     
    6. Système de plateforme mobile hydraulique à circulation interne selon la revendication 1, caractérisé en ce que, le plongeur de pression (10) est entraîné directement par un servomoteur linéaire.
     
    7. Plateforme mobile hydraulique à circulation interne, comprenant :

    une plateforme fixe supérieure (13) qui se raccorde à un système de plateforme mobile hydraulique à circulation interne selon la revendication 1 ; un composant d'élévation de plateau mobile raccordé à un élément d'actionnement et comprenant un servomoteur d'élévation (20) et un mécanisme d'élévation, dans laquelle le mécanisme d'élévation est entraîné par le servomoteur d'élévation (20) pour permettre à l'élément d'actionnement de réaliser un déplacement en élévation ; et

    un système de commande pour commander les composants ci-dessus pour agir en temps approprié et commander les servomoteurs (5, 20) dans le système hydraulique à grande vitesse à circulation interne pour fonctionner de manière synchrone.


     
    8. Plateforme mobile hydraulique à circulation interne selon la revendication 7, caractérisée en ce que, le mécanisme d'élévation comprend une vis à billes d'élévation (18) et un écrou d'élévation (19) engagé avec la vis à billes d'élévation (18) pour un déplacement, dans laquelle la vis à billes d'élévation (18) est raccordée au servomoteur d'élévation (20) tandis que l'écrou d'élévation (19) est raccordé au plateau mobile (16).
     
    9. Plateforme mobile hydraulique à circulation interne selon la revendication 7, caractérisée en ce que, le système de commande comprend un dispositif de commande (1), des dispositifs d'entraînement (2, 4) correspondant aux servomoteurs de pression (5, 20) de l'au moins un système de plateforme mobile hydraulique à circulation interne, et un dispositif d'entraînement (3) correspondant au servomoteur d'élévation (20), dans laquelle le dispositif de commande (1) est configuré pour :

    envoyer des ordres d'actionnement au dispositif d'entraînement (3) correspondant au servomoteur d'élévation (20) de sorte que le plongeur hydraulique (15) soit entraîné en déplacement vers le bas, ce qui provoque un déplacement vers le bas de l'élément d'actionnement ;

    lorsque l'élément d'actionnement arrête le déplacement vers le bas, le dispositif de commande (1) reçoit un signal d'état en position depuis le dispositif d'entraînement (3) du servomoteur d'élévation (20) et envoie des ordres à chaque dispositif d'entraînement (2, 4) des servomoteurs de pression (5, 20) pour un fonctionnement synchrone de façon à entraîner de manière synchrone chaque plongeur de pression (10) pour entrer dans des chambres d'huile et rendre étanche le trou radial (12) ;

    envoie des ordres à chaque dispositif d'entraînement (2, 4) des servomoteurs de pression (5, 20) pour un fonctionnement inverse synchrone de façon à entraîner de manière synchrone chaque plongeur de pression (10) pour sortir des chambres d'huile vers le haut ; et

    envoie des ordres au dispositif d'entraînement (3) du servomoteur d'élévation (20) pour entraîner le plongeur hydraulique (15) en déplacement inverse, ce qui provoque un déplacement vers le haut de l'élément d'actionnement.


     
    10. Plateforme mobile hydraulique à circulation interne selon la revendication 9, caractérisée en ce que, la commande des servomoteurs de pression (5, 20) pour un fonctionnement synchrone comporte l'une quelconque parmi une commande parallèle, une commande maître-esclave, une commande à couplage croisé, une commande d'arbre virtuel, et une commande à couplage relatif.
     
    11. Plateforme mobile hydraulique à circulation interne selon la revendication 9, caractérisée en ce que, l'élément d'actionnement est un PLC ou un dispositif de commande de mouvement.
     
    12. Ensemble de plateforme mobile hydraulique à circulation interne, comprenant :

    la plateforme mobile hydraulique à circulation interne selon la revendication 7 ;

    un plateau mobile (16) raccordé à l'élément d'actionnement ;

    un mécanisme de raccordement raccordant et fixant la plateforme fixe supérieure (13) et la plateforme fixe inférieure (17) ;

    une plateforme fixe inférieure (17) avec laquelle le plateau mobile (16) est en contact avec une vitesse nulle et une pression forte lorsque l'élément d'actionnement effectue un va-et-vient jusqu'au point d'arrêt inférieur ;

    des boîtiers (6) du vérin hydraulique (11) fixés à la plateforme fixe supérieure (13),

    dans lequel le cylindre de la chambre d'huile (22) est contenu dans un trou de raccordement formé dans la plateforme fixe supérieure (13) et également fixé à la plateforme fixe supérieure (13).


     
    13. Ensemble de plateforme mobile hydraulique à circulation interne selon la revendication 12, caractérisé en ce que, le mécanisme de raccordement comprend un panneau de paroi droit (14) et un panneau de paroi gauche (14A) qui sont raccordés entre la plateforme fixe supérieure (13) et la plateforme fixe inférieure (17).
     
    14. Plateforme mobile hydraulique à circulation interne selon la revendication 7, comprenant :
    une plateforme fixe inférieure (13'), la plateforme fixe inférieure (13') est raccordée à :
    au moins un système de plateforme mobile hydraulique à circulation interne, comprenant :

    un composant de vérin hydraulique, comportant un cylindre (11), un plongeur hydraulique (15), et un boîtier (6), dans laquelle un trou axial disposé au bas du cylindre (11) communique avec une chambre au bas du plongeur hydraulique (15), dans laquelle au moins un trou radial (12) en intersection avec le trou axial est également disposé à proximité du bas du cylindre (11), dans laquelle le plongeur hydraulique (15) effectue un va-et-vient dans le cylindre (11), dans laquelle le boîtier (6) contient le cylindre (11) et forme une chambre d'huile à circulation interne étanche à l'extérieur, dans laquelle la chambre d'huile à circulation interne communique avec le trou axial (12) via ledit trou radial et à son tour communique avec le bas du plongeur hydraulique (15), dans laquelle une entrée d'air comprimé (7) est disposée sur la portion supérieure du boîtier (6) et une extrémité supérieure du plongeur hydraulique (15) est raccordée à un élément d'actionnement ; et

    un composant de soupape de pression, comprenant un servomoteur de pression (5) et un plongeur de pression (10) entraîné par le servomoteur de pression (5) pour se déplacer vers le haut et vers le bas au sein du trou axial disposé au bas du cylindre (11) ;

    un composant de plateau mobile raccordé à l'élément d'actionnement et comprenant un servomoteur d'élévation (6) et un mécanisme d'élévation, dans laquelle le mécanisme d'élévation est entraîné par le servomoteur d'élévation (6) pour permettre à l'élément d'actionnement de réaliser un déplacement en élévation ; et

    un système de commande pour commander les composants ci-dessus pour agir en temps approprié et commander les servomoteurs (5, 20) dans le système de plateforme mobile hydraulique à circulation interne pour fonctionner de manière synchrone.


     




    Drawing






































    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description