(19)
(11)EP 3 085 923 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
27.05.2020 Bulletin 2020/22

(21)Application number: 16166707.6

(22)Date of filing:  22.04.2016
(51)International Patent Classification (IPC): 
F02C 3/13(2006.01)
F02C 7/18(2006.01)
F02C 7/143(2006.01)

(54)

COOLING AIR INTERCOOLING WITH DUAL PASS HEAT EXCHANGER

KÜHLLUFT ZWISCHENKÜHLUNG MIT DOPPELDURCHGANGSWÄRMETAUSCHER

REFROIDISSEMENT D'AIR DE REFROIDISSEMENT AVEC ÉCHANGEUR DE CHALEUR À DOUBLE PASSE


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 24.04.2015 US 201514695504

(43)Date of publication of application:
26.10.2016 Bulletin 2016/43

(73)Proprietor: United Technologies Corporation
Farmington, CT 06032 (US)

(72)Inventors:
  • SUCIU, Gabriel L.
    Glastonbury, CT Connecticut 06033 (US)
  • CHANDLER, Jesse M.
    South Windsor, CT Connecticut 06074 (US)
  • STAUBACH, Joseph Brent
    Colchester, CT Connecticut 06415 (US)
  • MERRY, Brian D.
    Andover, CT Connecticut 06232 (US)
  • LORD, Wesley K.
    South Glastonbury, CT Connecticut 06073 (US)

(74)Representative: Dehns 
St. Bride's House 10 Salisbury Square
London EC4Y 8JD
London EC4Y 8JD (GB)


(56)References cited: : 
EP-A1- 0 608 142
WO-A1-2014/092777
US-A- 6 134 880
EP-A2- 0 903 484
GB-A- 1 244 340
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    BACKGROUND



    [0001] This application relates to improvements in providing cooling air from a compressor section to a turbine section in a gas turbine engine.

    [0002] Gas turbine engines are known and typically include a fan delivering air into a bypass duct as propulsion air. Further, the fan delivers air into a compressor section where it is compressed. The compressed air passes into a combustion section where it is mixed with fuel and ignited. Products of this combustion pass downstream over turbine rotors driving them to rotate.

    [0003] It is known to provide cooling air from the compressor to the turbine section to lower the operating temperatures in the turbine section and improve overall engine operation. Typically, air from the downstream most end of the compressor has been tapped, passed through a heat exchanger, which may sit in the bypass duct and then delivered into the turbine section. The air from the downstream most end of the compressor section is at elevated temperatures.

    [0004] EP 0903484 A2 discloses a prior art gas turbine engine.

    [0005] EP 0608142 A1 discloses a prior art intercooling system.

    [0006] GB 1244340 discloses a front fan gas turbine engine.

    SUMMARY



    [0007] According to the invention, there is provided a gas turbine engine as set forth in claim 1.

    [0008] In an embodiment, an auxiliary fan is positioned upstream of the heat exchanger relative to the flow of bypass air.

    [0009] In another embodiment according to the any of the previous embodiments, the cooling compressor includes a centrifugal compressor impeller.

    [0010] In another embodiment according to the any of the previous embodiments, the first pass is positioned upstream of the second pass in the bypass duct.

    [0011] In an embodiment, the at least one of the more upstream locations is in a high pressure compressor.

    [0012] In another alternative embodiment, the at least one of the more upstream locations is in a low pressure compressor.

    [0013] These and other features may best be understood from the following specification and drawings, the following of which is a brief description.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0014] 
    Figure 1
    schematically shows a gas turbine engine.
    Figure 2
    shows a prior art engine.
    Figure 3
    shows one example engine.
    Figure 4
    shows a first embodiment heat exchanger.
    Figure 5
    shows a second embodiment heat exchanger.

    DETAILED DESCRIPTION



    [0015] Figure 1 schematically illustrates an example gas turbine engine 20 that includes a fan section 22, a compressor section 24, a combustor section 26 and a turbine section 28. Alternative engines might include an augmenter section (not shown) among other systems or features. The fan section 22 drives air along a bypass flow path B while the compressor section 24 draws air in along a core flow path C where air is compressed and communicated to a combustor section 26. In the combustor section 26, air is mixed with fuel and ignited to generate a high pressure exhaust gas stream that expands through the turbine section 28 where energy is extracted and utilized to drive the fan section 22 and the compressor section 24.

    [0016] Although the disclosed non-limiting embodiment depicts a turbofan gas turbine engine, it should be understood that the concepts described herein are not limited to use with turbofans as the teachings may be applied to other types of turbine engines; for example a turbine engine including a three-spool architecture in which three spools concentrically rotate about a common axis and where a low spool enables a low pressure turbine to drive a fan via a gearbox, an intermediate spool that enables an intermediate pressure turbine to drive a first compressor of the compressor section, and a high spool that enables a high pressure turbine to drive a high pressure compressor of the compressor section.

    [0017] The example engine 20 generally includes a low speed spool 30 and a high speed spool 32 mounted for rotation about an engine central longitudinal axis A relative to an engine static structure 36 via several bearing systems 38. It should be understood that various bearing systems 38 at various locations may alternatively or additionally be provided.

    [0018] The low speed spool 30 generally includes an inner shaft 40 that connects a fan 42 and a low pressure (or first) compressor section 44 to a low pressure (or first) turbine section 46. The inner shaft 40 drives the fan 42 through a speed change device, such as a geared architecture 48, to drive the fan 42 at a lower speed than the low speed spool 30. The high-speed spool 32 includes an outer shaft 50 that interconnects a high pressure (or second) compressor section 52 and a high pressure (or second) turbine section 54. The inner shaft 40 and the outer shaft 50 are concentric and rotate via the bearing systems 38 about the engine central longitudinal axis A.

    [0019] A combustor 56 is arranged between the high pressure compressor 52 and the high pressure turbine 54. In one example, the high pressure turbine 54 includes at least two stages to provide a double stage high pressure turbine 54. In another example, the high pressure turbine 54 includes only a single stage. As used herein, a "high pressure" compressor or turbine experiences a higher pressure than a corresponding "low pressure" compressor or turbine.

    [0020] The example low pressure turbine 46 has a pressure ratio that is greater than about 5. The pressure ratio of the example low pressure turbine 46 is measured prior to an inlet of the low pressure turbine 46 as related to the pressure measured at the outlet of the low pressure turbine 46 prior to an exhaust nozzle.

    [0021] A mid-turbine frame 58 of the engine static structure 36 is arranged generally between the high pressure turbine 54 and the low pressure turbine 46. The mid-turbine frame 58 further supports bearing systems 38 in the turbine section 28 as well as setting airflow entering the low pressure turbine 46.

    [0022] Airflow through the core airflow path C is compressed by the low pressure compressor 44 then by the high pressure compressor 52 mixed with fuel and ignited in the combustor 56 to produce high speed exhaust gases that are then expanded through the high pressure turbine 54 and low pressure turbine 46. The mid-turbine frame 58 includes vanes 60, which are in the core airflow path and function as an inlet guide vane for the low pressure turbine 46. Utilizing the vane 60 of the mid-turbine frame 58 as the inlet guide vane for low pressure turbine 46 decreases the length of the low pressure turbine 46 without increasing the axial length of the mid-turbine frame 58. Reducing or eliminating the number of vanes in the low pressure turbine 46 shortens the axial length of the turbine section 28. Thus, the compactness of the gas turbine engine 20 is increased and a higher power density may be achieved.

    [0023] The disclosed gas turbine engine 20 in one example is a high-bypass geared aircraft engine. In a further example, the gas turbine engine 20 includes a bypass ratio greater than about six (6:1), with an example embodiment being greater than about ten (10:1). The example geared architecture 48 is an epicyclical gear train, such as a planetary gear system, star gear system or other known gear system, with a gear reduction ratio of greater than about 2.3:1.

    [0024] In one disclosed embodiment, the gas turbine engine 20 includes a bypass ratio greater than about ten (10:1) and the fan diameter is significantly larger than an outer diameter of the low pressure compressor 44. It should be understood, however, that the above parameters are only exemplary of one embodiment of a gas turbine engine including a geared architecture and that the present disclosure is applicable to other gas turbine engines.

    [0025] A significant amount of thrust is provided by the bypass flow B due to the high bypass ratio. The fan section 22 of the engine 20 is designed for a particular flight condition -- typically cruise at about 0.8 Mach and about 35,000 feet (10,668 m). The flight condition of 0.8 Mach and 35,000 ft. (10,668 m), with the engine at its best fuel consumption - also known as "bucket cruise Thrust Specific Fuel Consumption ('TSFC')" - is the industry standard parameter of pound-mass (lbm) of fuel per hour being burned divided by pound-force (lbf) of thrust the engine produces at that minimum point.

    [0026] "Low fan pressure ratio" is the pressure ratio across the fan blade alone, without a Fan Exit Guide Vane ("FEGV") system. The low fan pressure ratio as disclosed herein according to one non-limiting embodiment is less than about 1.50. In another non-limiting embodiment the low fan pressure ratio is less than about 1.45.

    [0027] "Low corrected fan tip speed" is the actual fan tip speed in ft/sec divided by an industry standard temperature correction of [(Tram °R)/(518.7°R)]0.5 (where °R = K 9/5). The "Low corrected fan tip speed", as disclosed herein according to one non-limiting embodiment, is less than about 1150 ft/second (350.5 m/s).

    [0028] The example gas turbine engine includes the fan 42 that comprises in one non-limiting embodiment less than about twenty-six fan blades. In another non-limiting embodiment, the fan section 22 includes less than about twenty fan blades. Moreover, in one disclosed embodiment the low pressure turbine 46 includes no more than about six turbine rotors schematically indicated at 34. In another non-limiting example embodiment the low pressure turbine 46 includes about three turbine rotors. A ratio between the number of fan blades 42 and the number of low pressure turbine rotors is between about 3.3 and about 8.6. The example low pressure turbine 46 provides the driving power to rotate the fan section 22 and therefore the relationship between the number of turbine rotors 34 in the low pressure turbine 46 and the number of blades 42 in the fan section 22 disclose an example gas turbine engine 20 with increased power transfer efficiency.

    [0029] Gas turbine engines designs are seeking to increase overall efficiency by generating higher overall pressure ratios. By achieving higher overall pressure ratios, increased levels of performance and efficiency may be achieved. However, challenges are raised in that the parts and components associated with a high pressure turbine require additional cooling air as the overall pressure ratio increases.

    [0030] The example engine 20 utilizes air bleed 80 from an upstream portion of the compressor section 24 for use in cooling portions of the turbine section 28. The air bleed is from a location upstream of the downstream end 82 of the compressor section 24. The bleed air passes through a heat exchanger 84 to further cool the cooling air provided to the turbine section 54. The air passing through heat exchanger 84 is cooled by the bypass air B. That is, heat exchanger 84 is positioned in the path of bypass air B. As better described below, a booster compressor 114 helps drive the air.

    [0031] A prior art approach to providing cooling air is illustrated in Figure 2. An engine 90 incorporates a high pressure compressor 92 downstream of the low pressure compressor 94. As known, a fan 96 delivers air into a bypass duct 98 and into the low pressure compressor 94. A downstream most point 82 in the high pressure compressor 92 provides bleed air into a heat exchanger 93. The heat exchanger is in the path of the bypass air in bypass duct 98, and is cooled. This high pressure high temperature air from location 82 is delivered into a high pressure turbine 102.

    [0032] The downstream most point 82 of the high pressure compressor 82 is known as station 3. The temperature T3 and pressure P3 are both very high.

    [0033] In future engines, T3 levels are expected to approach greater than or equal to 1350°F (732.2 °C). Current heat exchanger technology is becoming a limiting factor as they are made of materials, manufacturing, and design capability which have difficulty receiving such high temperature levels.

    [0034] Figure 3 shows an engine 100 coming within the scope of this disclosure. A fan 104 may deliver air B into a bypass duct 105 and into a low pressure compressor 106. High pressure compressor 108 is positioned downstream of the low pressure compressor 106. A bleed 110 taps air from a location upstream of the downstream most end 82 of the high pressure compressor 108. This air is at temperatures and pressures which are much lower than T3/P3. The air tapped at 110 passes through a heat exchanger 112 which sits in the bypass duct 105 receiving air B. Further, the air from the heat exchanger 112 passes through a compressor 114, and then into a conduit 115 leading to a high turbine 117. This structure is all shown schematically.

    [0035] Since the air tapped at point 110 is at much lower pressures and temperatures than the Figure 2 prior art, currently available heat exchanger materials and technology may be utilized. This air is then compressed by compressor 114 to a higher pressure level such that it will be able to flow into the high pressure turbine 117.

    [0036] An auxiliary fan 116 is illustrated upstream of the heat exchanger 112. The main fan 104 may not provide sufficient pressure to drive sufficient air across the heat exchanger 112. The auxiliary fan 116 will ensure there is adequate air flow in the circumferential location of the heat exchanger 112.

    [0037] In one embodiment, the auxiliary fan 116 may be variable speed, with the speed of the fan varied to control the temperature of the air downstream of the heat exchanger 112. As an example, the speed of the auxiliary fan 116 may be varied based upon the operating power of the overall engine.

    [0038] Figure 4 shows a unique heat exchanger structure. A bypass duct 120 receives the heat exchanger 122. A drive 124 drives compressor impeller 125. Impeller 125 is a centrifugal impeller. An inlet 126 receives air, which may be from the low pressure compressor, and delivers that air into a first heat exchanger pass 128 where it is cooled by the bypass air. The air then turns through an elbow 130 into a second pass 132 before reaching the impeller 125. From the impeller 125, the air is discharged at outlet 134, and then passes to the turbine as in the above embodiments.

    [0039] Figure 5 shows another embodiment wherein the cooling compressor 140 receives relatively hot air from an intermediate location 142 in the high pressure compressor 143. The air passes through a first pass 144, an elbow 146, and then a second pass 148 before reaching the compressor 140. The air is then delivered into a conduit 150 and passes to the high pressure turbine.

    [0040] With this second embodiment, the cooling will be more effective, although the air conduits may be somewhat longer.

    [0041] In both embodiments, the first pass is radially outward and the second pass is radially inward.

    [0042] Although an example embodiment has been disclosed, a worker of ordinary skill in this art would recognize that certain modifications would come within the scope of this disclosure. For that reason, the following claims should be studied to determine the scope and content of this disclosure.


    Claims

    1. A gas turbine engine (100) comprising:

    an intercooling system;

    a main compressor section having a downstream most end (82), and more upstream locations;

    a turbine section having a high pressure turbine (117); and

    a tap (110) for tapping air at a first temperature and pressure from at least one of said more upstream locations in said main compressor section,

    the intercooling system comprising:

    a heat exchanger (112; 122) for cooling said tapped air to a second temperature cooler than the first temperature; and

    a cooling compressor (114; 140) configured to compress the cooled tapped air communicated from the heat exchanger (112; 122) to a second pressure greater than the first pressure and configured to communicate the cooling air to said high pressure turbine (117), said heat exchanger (112; 122) having at least two passes (128, 132; 144, 148);

    wherein:
    one of said passes (128; 144) is configured to pass the tapped air radially outwardly, and a second of said passes (132; 148) is configured to return the cooled tapped air radially inwardly to the cooling compressor (114; 140); and

    a main fan (104) delivers bypass air (B) into a bypass duct (105; 120) and into said main compressor section, and said heat exchanger (112; 122) is positioned within said bypass duct (105; 120) to be cooled by bypass air (B).


     
    2. The gas turbine engine (100) as set forth in claim 1, wherein an auxiliary fan (116) is positioned upstream of the heat exchanger (112; 122) relative to the flow of the bypass air (B).
     
    3. The gas turbine engine (100) as set forth in claim 1 or 2, wherein said first pass (128) is positioned upstream of said second pass (132) in said bypass duct (105; 120).
     
    4. The gas turbine engine (100) as set forth in claim 1 or 2, wherein said first pass (144) is positioned downstream of said second pass (148) in said bypass duct (105; 120).
     
    5. The gas turbine engine (100) as set forth in any preceding claim, wherein an elbow (130; 146) of the heat exchanger (112; 122) disposed between the first pass (128; 144) and the second pass (132; 148) extends radially outwardly of the bypass duct (105; 120).
     
    6. The gas turbine engine (100) as set forth in any preceding claim, wherein said cooling compressor (114; 140) includes a centrifugal compressor impeller (125).
     
    7. The gas turbine engine (100) as set forth in any preceding claim, wherein said at least one of said more upstream locations is in a high pressure compressor (108).
     
    8. The gas turbine engine (100) as set forth in any of claims 1 to 6, wherein said at least one of said more upstream locations is in a low pressure compressor (106).
     


    Ansprüche

    1. Gasturbinentriebwerk (100), umfassend:

    ein Zwischenkühlungssystem;

    einen Hauptverdichterabschnitt, der ein am weitesten stromabwärts liegendes Ende (82) und weiter stromaufwärts liegende Stellen aufweist;

    einen Turbinenabschnitt, der eine Hochdruckturbine (117) aufweist; und

    einen Hahn (110) zum Anzapfen von Luft bei einer ersten Temperatur und Druck von mindestens einer der weiter stromaufwärts liegenden Stellen in dem Hauptverdichterabschnitt,

    wobei das Zwischenkühlungssystem Folgendes umfasst:

    einen Wärmetauscher (112; 122) zum Kühlen der Zapfluft auf eine zweite Temperatur, die kühler als die erste Temperatur ist; und

    einen Kühlverdichter (114; 140), der dazu konfiguriert ist, die gekühlte Zapfluft, die von dem Wärmetauscher (112; 122) zugeführt wird, auf einen zweiten Druck größer als der erste Druck zu verdichten, und dazu konfiguriert ist, die Kühlluft der Hochdruckturbine (117) zuzuführen, wobei der Wärmetauscher (112; 122) mindestens zwei Durchgänge (128, 132; 144, 148) aufweist;

    wobei:
    einer der Durchgänge (128; 144) dazu konfiguriert ist, die Zapfluft radial nach außen durchlaufen zu lassen, und ein zweiter der Durchgänge (132; 148) dazu konfiguriert ist, die gekühlte Zapfluft radial nach innen zum Kühlverdichter (114; 140) zurückzuleiten; und
    ein Hauptgebläse (104) Bypass-Luft (B) in eine Bypass-Leitung (105; 120) und in den Hauptverdichterabschnitt leitet und der Wärmetauscher (112; 122) innerhalb der Bypass-Leitung (105; 120) positioniert ist, um durch die Bypass-Luft (B) gekühlt zu werden.


     
    2. Gasturbinentriebwerk (100) nach Anspruch 1, wobei ein Hilfsgebläse (116) stromaufwärts des Wärmetauschers (112; 122) in Bezug auf den Strom der Bypass-Luft (B) positioniert ist.
     
    3. Gasturbinentriebwerk (100) nach Anspruch 1 oder 2, wobei der erste Durchgang (128) stromaufwärts des zweiten Durchgangs (132) in der Bypass-Leitung (105; 120) positioniert ist.
     
    4. Gasturbinentriebwerk (100) nach Anspruch 1 oder 2, wobei der erste Durchgang (144) stromabwärts des zweiten Durchgangs (148) in der Bypass-Leitung (105; 120) positioniert ist.
     
    5. Gasturbinentriebwerk (100) nach einem der vorhergehenden Ansprüche, wobei sich ein Winkelstück (130; 146) des Wärmetauschers (112; 122), das zwischen dem ersten Durchgang (128; 144) und dem zweiten Durchgang (132; 148) angeordnet ist, radial nach außen der Bypass-Leitung (105; 120) erstreckt.
     
    6. Gasturbinentriebwerk (100) nach einem der vorhergehenden Ansprüche, wobei der Kühlverdichter (114; 140) ein zentrifugales Verdichterlaufrad (125) beinhaltet.
     
    7. Gasturbinentriebwerk (100) nach einem der vorhergehenden Ansprüche, wobei die mindestens eine der weiter stromaufwärts liegenden Stellen in einem Hochdruckverdichter (108) liegt.
     
    8. Gasturbinentriebwerk (100) nach einem der Ansprüche 1 bis 6, wobei die mindestens eine der weiter stromaufwärts liegenden Stellen in einem Niederdruckverdichter (106) liegt.
     


    Revendications

    1. Moteur à turbine à gaz (100) comprenant :

    un système de refroidissement ;

    une section de compresseur principale ayant une extrémité la plus en aval (82), et des emplacements plus en amont ;

    une section de turbine ayant une turbine haute pression (117) ; et

    un robinet (110) pour puiser de l'air à une première température et à une première pression à partir d'au moins l'un desdits emplacements plus en amont de ladite section de compresseur principale,

    le système de refroidissement comprenant :

    un échangeur de chaleur (112 ; 122) pour refroidir ledit air puisé à une seconde température plus froide que la première température ; et

    un compresseur de refroidissement (114 ; 140) configuré pour comprimer l'air puisé refroidi communiqué par l'échangeur de chaleur (112 ; 122) à une seconde pression supérieure à la première pression et configuré pour communiquer l'air de refroidissement à ladite turbine haute pression (117), ledit échangeur de chaleur (112 ; 122) ayant au moins deux passes (128, 132 ; 144, 148) ;

    dans lequel :

    l'une desdites passes (128 ; 144) est configurée pour faire passer l'air puisé radialement vers l'extérieur, et une seconde desdites passes (132 ; 148) est configurée pour renvoyer l'air puisé refroidi radialement vers l'intérieur vers le compresseur de refroidissement (114 ; 140) ; et

    une soufflante principale (104) fournit de l'air de dérivation (B) dans un conduit de dérivation (105 ; 120) et dans ladite section de compresseur principale, et ledit échangeur de chaleur (112 ; 122) est positionné à l'intérieur dudit conduit de dérivation (105 ; 120) pour être refroidi par l'air de dérivation (B).


     
    2. Moteur à turbine à gaz (100) selon la revendication 1, dans lequel une soufflante auxiliaire (116) est positionnée en amont de l'échangeur de chaleur (112 ; 122) par rapport au flux d'air de dérivation (B).
     
    3. Moteur à turbine à gaz (100) selon la revendication 1 ou 2, dans lequel ladite première passe (128) est positionnée en amont de ladite seconde passe (132) dans ledit conduit de dérivation (105 ; 120).
     
    4. Moteur à turbine à gaz (100) selon la revendication 1 ou 2, dans lequel ladite première passe (144) est positionnée en aval de ladite seconde passe (148) dans ledit conduit de dérivation (105 ; 120).
     
    5. Moteur à turbine à gaz (100) selon une quelconque revendication précédente, dans lequel un coude (130 ; 146) de l'échangeur de chaleur (112 ; 122) disposé entre la première passe (128 ; 144) et la seconde passe (132 ; 148) s'étend radialement vers l'extérieur du conduit de dérivation (105 ; 120) .
     
    6. Moteur à turbine à gaz (100) selon une quelconque revendication précédente, dans lequel ledit compresseur de refroidissement (114 ; 140) comprend une roue de compresseur centrifuge (125).
     
    7. Moteur à turbine à gaz (100) selon une quelconque revendication précédente, dans lequel ledit au moins un desdits emplacements plus en amont se trouve dans un compresseur haute pression (108).
     
    8. Moteur à turbine à gaz (100) selon l'une quelconque des revendications 1 à 6, dans lequel ledit au moins un desdits emplacements plus en amont se trouve dans un compresseur basse pression (106).
     




    Drawing

















    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description