(19)
(11)EP 3 088 871 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
17.04.2019 Bulletin 2019/16

(21)Application number: 14874921.1

(22)Date of filing:  25.12.2014
(51)International Patent Classification (IPC): 
G01N 21/65(2006.01)
G01J 3/44(2006.01)
G01J 3/02(2006.01)
G01J 3/28(2006.01)
(86)International application number:
PCT/CN2014/094968
(87)International publication number:
WO 2015/096779 (02.07.2015 Gazette  2015/26)

(54)

RAMAN SPECTRUM DETECTION METHOD

RAMAN-SPEKTRUMSDETEKTIONSVERFAHREN

PROCÉDÉ DE DÉTECTION DE SPECTRE RAMAN


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 27.12.2013 CN 201310740981

(43)Date of publication of application:
02.11.2016 Bulletin 2016/44

(73)Proprietor: Nuctech Company Limited
TongFang Building, Shuangqinglu, Haidian District Beijing 100084 (CN)

(72)Inventors:
  • ZHAO, Ziran
    Beijing 100084 (CN)
  • ZHANG, Jianhong
    Beijing 100084 (CN)
  • WANG, Hongqiu
    Beijing 100084 (CN)
  • WANG, Weiwei
    Beijing 100084 (CN)
  • WANG, Zhiming
    Beijing 100084 (CN)
  • YI, Yumin
    Beijing 100084 (CN)

(74)Representative: Isarpatent 
Patent- und Rechtsanwälte Behnisch Barth Charles Hassa Peckmann & Partner mbB Friedrichstrasse 31
80801 München
80801 München (DE)


(56)References cited: : 
EP-A1- 2 525 704
CN-A- 102 590 175
US-A1- 2001 034 478
US-A1- 2008 100 835
CN-A- 101 692 045
DE-A1-102005 009 195
US-A1- 2006 275 541
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    BACKGROUND OF THE INVENTION


    Field of the invention



    [0001] The present disclosure relates to the technical field of Raman spectroscopic inspection, and in particular, to a method for identifying an object using Raman spectroscopy.

    Description of the Related Art



    [0002] Raman spectrum is a molecule vibration spectrum, which may reflect fingerprints of molecules and may be used for inspection of a matter. The Raman spectroscopy inspects and identifies a substance by detecting Raman spectra produced by Raman scattering effects of an exciting light by an object to be inspected. The Raman spectroscopy has been widely applied in fields such as liquid security inspection, jewel detection, explosive detection, drug detection, medicine detection and the like.

    [0003] The Raman spectroscopy has a problem of interference of a fluorescence signal in matter inspection. The Raman scattering section of a molecule is significantly smaller than its fluorescence scattering section. Thus, when the fluorescence from a molecule of an object to be detected or the fluorescence from a package of an object to be detected is stronger, the Raman spectrum only occupies a tiny portion of a detected signal. When the Raman spectrum collected in test is relatively weak, it may typically be enhanced by increasing an exposure time. However, in order to protect a spectroscope, the intensity of Raman spectrum collected in each test will be limited to a threshold, and the spectrum will not be displayed in entirety if its intensity exceeds the threshold. Therefore, when the fluorescence interference is large, the collected Raman spectroscopic signal will be too weak to identify the matter.

    [0004] At present, a main method of suppressing the fluorescence interference is to use a laser having a long wavelength and a weak fluorescence effect, such as 1064nm laser, or to add a fluorescence Quencher, or to use a Raman enhance technology. The Raman spectroscopic signal collected by a long wavelength laser is often very weak and thus the detection time is long. In this way, it is very difficult to be used to detect the matter having low Raman effect. The fluorescence Quencher may introduce a strong Raman spectroscopic signal itself, which will adversely influence the accuracy of Raman spectrum data. The Raman enhance technology generally cannot eliminate the fluorescence interference from packages. In practice, the fluorescence interference from strong fluorescence matter or packages is very common. Thus, research for eliminating or reducing the adverse effects of fluorescence in Raman spectroscopy is very significant for expanding applications of the Raman spectroscopy.

    [0005] US2008/0100835A1 proposed an apparatus for performing Raman analysis which include a laser source module, a beam delivery and signal collection module, a spectrum analysis module, and a digital signal processing module. The spectrum analysis module demultiplexes the Raman scattered light into discrete Raman bands of interest, detects the presence of signal energy in each of the Raman bands, and produces a digital signal that is representative of the signal energy present in each of the Raman bands. US2006/0275541A1 proposed systems and methods for rapid detection and identification of low concentrations of chemicals and biomaterials using surface enhanced Raman spectroscopy.

    [0006] An iterative method of calculating the fluorescence background signal is furthermore disclosed in DE 10 2005 009195 A1.

    SUMMARY OF THE INVENTION



    [0007] An object of the present invention is to provide a Raman spectroscopic inspection method, which may efficiently eliminate the fluorescence interference in a Raman spectroscopic signal of an object to be inspected so as to detect and identify the object to be inspected correctly.

    [0008] An embodiment of the present invention provides a Raman spectroscopic inspection method, comprising the steps of claim 1.

    [0009] In an embodiment, the number of the numerical sample points meets the requirement of the sampling theorem.

    [0010] In an embodiment, the method, before the step (a), further comprises:

    (a00) measuring the Raman spectrum of the object to be inspected in advance to collect a single Raman spectroscopic signal; and

    (a01) judging a Raman characterizing intensity in the collected single Raman spectroscopic signal, and if the Raman characterizing intensity is enough to recognize a Raman characteristic, then identifying the object to be detected directly on basis of the collected single Raman spectroscopic signal without performing the subsequent steps, otherwise, if the Raman characterizing intensity is not enough to recognize the Raman characteristic, then continuing to perform the step (a).



    [0011] In an embodiment, in the step (a01), the judgment of the Raman characterizing intensity is done by searching a Raman characterizing peak in the single Raman spectroscopic signal; and if the Raman characterizing peak is found, then determining the Raman characterizing intensity is enough to recognize the Raman characteristic, otherwise, if the Raman characterizing peak is not found, then determining the Raman characterizing intensity is not enough to recognize the Raman characteristic.

    [0012] In an embodiment, in the step (a01), the judgment of the Raman characterizing intensity is done by searching a Raman characterizing peak in the single Raman spectroscopic signal; and if the Raman characterizing peak is found and a ratio of an intensity of the Raman characterizing peak to an average intensity of the single Raman spectroscopic signal is greater than a predetermined first threshold, then determining the Raman characterizing intensity is enough to recognize the Raman characteristic, otherwise, if the Raman characterizing peak is not found, or the ratio of the intensity of the Raman characterizing peak to the average intensity of the Raman spectroscopic signal is not greater than the predetermined first threshold although it is found, then determining the Raman characterizing intensity is not enough to recognize the Raman characteristic.

    [0013] In an embodiment, the method, between the step (b) and the step (c), further comprises:
    (b1) judging a Raman characterizing intensity in the superposition signal, and if the Raman characterizing intensity is enough to recognize a Raman characteristic, then identifying the object to be inspected directly on basis of the superposition signal without performing the subsequent steps, otherwise, if the Raman characterizing intensity is not enough to recognize the Raman characteristic, then continuing to perform the step (c).

    [0014] In an embodiment, in the step (b1), the judgment of the Raman characterizing intensity is done by searching a Raman characterizing peak in the superposition signal; and if the Raman characterizing peak is found, then determining the Raman characterizing intensity is enough to recognize the Raman characteristic, otherwise, if the Raman characterizing peak is not found, then determining the Raman characterizing intensity is not enough to recognize the Raman characteristic.

    [0015] In an embodiment, in the step (b1), the judgment of the Raman characterizing intensity is done by searching a Raman characterizing peak in the superposition signal; and if the Raman characterizing peak is found and a ratio of an intensity of the Raman characterizing peak to an average intensity of the superposition signal is greater than a predetermined second threshold, then determining the Raman characterizing intensity is enough to recognize the Raman characteristic, otherwise, if the Raman characterizing peak is not found, or the ratio of the intensity of the Raman characterizing peak to the average intensity of the superposition signal is not greater than the predetermined second threshold although it is found, then determining the Raman characterizing intensity is not enough to recognize the Raman characteristic..

    [0016] In any of the above embodiments, the Raman spectroscopic signal that may correctly characterize the property of an object to be inspected may be acquired by removing the interference caused by a fluorescence signal from a Raman spectroscopic signal of the object. It may inspect correctly the characteristics of the Raman spectrum of the object so as to identify the object efficiently.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0017] 

    Fig.1 shows a schematic flow chart of a Raman spectroscopic inspection method according to an embodiment of the present invention;

    Fig. 2 shows a schematic flow chart of filtering out a fluorescence interference signal from a superposition signal according to an embodiment of the present invention;

    Fig. 3 shows a schematic flow chart of a Raman spectroscopic inspection method according to another embodiment of the present invention;

    Fig. 4 shows schematically a single Raman spectroscopic signal of a first inspection example using a Raman spectroscopic inspection method according to an embodiment of the present invention;

    Fig. 5a-5b show schematically a single Raman spectroscopic signal and a superposition signal of a second inspection example using a Raman spectroscopic inspection method according to an embodiment of the present invention; and

    Fig. 6a-6c show schematically a single Raman spectroscopic signal, a superposition signal and the superposition signal, from which a fluorescence interference signal has been filtered out, of a third inspection example using a Raman spectroscopic inspection method according to an embodiment of the present invention.


    DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS OF THE INVENTION



    [0018] Exemplary embodiments of the present invention will be described hereinafter in detail with reference to the attached drawings, wherein the like reference numerals refer to the like elements. The present invention may, however, be embodied in many different forms and should not be construed as being limited to the embodiment set forth herein; rather, these embodiments are provided so that the present invention will be thorough and complete, and will fully convey the concept of the disclosure to those skilled in the art.

    [0019] When a Raman spectroscopy is used to inspect an object, it may be interfered by fluorescence. The fluorescence may be produced by the object to be inspection itself, or may be produced by other matters such as package matters or enhancing agents mixed in the object. The fluorescence spectrum may cover a frequency range of the Raman spectrum. Thus, in the Raman spectroscopic inspection, the Raman spectroscopic signal collected from the object may contain the fluorescence signal. When the fluorescence signal is strong, a characterizing peak may not be correctly extracted from the Raman spectroscopic signal to identify the object to be inspected. Therefore, removing such interference is very important for inspecting and identifying the object accurately and effectively.

    [0020] Fig.1 shows a schematic flow chart of a Raman spectroscopic inspection method according to an embodiment of the present invention. The method 10 may include: step 100 of measuring a Raman spectrum of an object to be inspected successively to collect a plurality of Raman spectroscopic signals; step 200 of superposing the plurality of Raman spectroscopic signals to form a superposition signal; step 300 of filtering out a fluorescence interfering signal from the superposition signal; and step 400 of identifying the object to be inspected on basis of the superposition signal from which the fluorescence interfering signal has been filtered out.

    [0021] In the prior art, signal intensity of the Raman spectrum may generally be enhanced by increasing the exposure time. However, in a practical Raman spectroscopic instrument, the Raman spectroscopic signal collected at a single time is limited to avoid adverse influence on the life of the instrument due to too large light power or too long work time. In the embodiment of the present invention, the Raman spectrum of the object to be inspected is successively measured and the collected plurality of Raman spectroscopic signals may be superposed to enhance the intensity of signal, thus, the above adverse influence may be avoided. The term of "plurality of " may for example represent two, three, four, five, ten, fifteen, fifty and the like.

    [0022] As an example, as shown in Fig. 2, the step of filtering out a fluorescence interfering signal from the superposition signal may comprise the following steps: step 310 of acquiring a plurality of numerical sample points of the superposition signal, the number of the numerical sample points meeting the requirement of the sampling theorem; step 320 of calculating the fluorescence interfering signal by iteration on basis of the plurality of numerical sample points of the superposition signal; and step 330 of subtracting the fluorescence interfering signal from the superposition signal.

    [0023] In order to calculate the fluorescence interference signal, the superposition signal needs to be in a discrete numerical form. If the superposition signal is a continuous simulation curve, then it needs to be converted into the discrete numerical form by a sampling process. However, in practice, the superposition signal is often in the discrete numerical form. In this case, it only needs to acquire numerical sample points directly. In order to ensure fidelity of the discrete signals, the number of the sample points should meet the requirement of the sampling theorem.

    [0024] The fluorescence signal changes slowly and smoothly in comparison with the Raman characterizing signal. According to the invention the fluorescence interference signal is calculated by iteration as follow:
    assuming that {yn} is a sequence of numerical sample points of the superposition signal, yn(i) is a value of the ith numerical sample point in {yn}, and {yn+1} is the sequence which is calculated out after one iteration and yn+1(i) is a value of the ith numerical sample point in {yn+1}, then

    where m is a positive integer and has an initial value of 1, wherein the above iteration is performed repeatedly until m meets a predetermined threshold, where m is added by 1 per iteration. By the above iterative calculation, the fluorescence interference signal can be obtained.

    [0025] In the above equation (1), "min[..., ...]" represents an operation of selecting minimum. Obviously, the serial number of the numerical point in each iterative calculation should meet the condition that i-m >0 and i+m is not greater than the total length of the sequence {yn}. If a numerical point does not meet the condition, it may maintain its original value constantly in the iterative calculation.

    [0026] In an example, the predetermined threshold of m is determined depending on the smoothness of the superposition signal. For example, when two points spaced by 2×m in a sequence of iterative result have a width of wave number which is greater than a minimum peak width but smaller than a fluorescence envelope width, it may be determined that m meets the predetermined threshold.

    [0027] In an example, in order to further improve the calculation accuracy, the superposition signal may be subject to a logarithm treatment or a square treatment before the above iterative calculation is performed.

    [0028] Although in the above example, the calculation of the fluorescence interference signal is explained with reference to the iterative method as shown in equation (1), it should be understood that it is not necessary. The methods for solving a smooth spectrum signal in the art may also be used to solve the above fluorescence interference signal, but the method may be more complex and cause a low calculation efficiency.

    [0029] In another embodiment, the Raman spectroscopic inspection method 10' according to an embodiment of the present invention may further comprise an optional step, as indicated by the dashed part in Fig. 3. For example, the method may, before the step 100, further comprises: step 001 of measuring the Raman spectrum of the object to be inspected in advance to collect a single Raman spectroscopic signal; and step 002 of judging a Raman characterizing intensity in the collected single Raman spectroscopic signal. If the Raman characterizing intensity judged in the step 002 is enough to recognize a Raman characteristic, then identify the object to be inspected directly on basis of the collected single Raman spectroscopic signal without performing the subsequent steps; otherwise, if the Raman characterizing intensity is not enough to recognize the Raman characteristic, then continue to perform the step 100. It may improve the inspection efficiency by omitting the subsequent steps of performing successive measurements and filtering out the fluorescence interference in case that the fluorescence interference signal is weak for the object to be inspected and will not destroy the Raman spectroscopy.

    [0030] As an example, in the step 001, the judgment of the Raman characterizing intensity may be done by searching a Raman characterizing peak in the single Raman spectroscopic signal; and if the Raman characterizing peak is found, then determining the Raman characterizing intensity is enough to recognize the Raman characteristic, otherwise, if the Raman characterizing peak is not found, then determining the Raman characterizing intensity is not enough to recognize the Raman characteristic.

    [0031] As another example, in the step 001, the judgment of the Raman characterizing intensity may also be done by searching a Raman characterizing peak in the single Raman spectroscopic signal; and if the Raman characterizing peak is found and a ratio of an intensity of the Raman characterizing peak to an average intensity of the single Raman spectroscopic signal is greater than a predetermined first threshold, then determining the Raman characterizing intensity is enough to recognize the Raman characteristic, otherwise, if the Raman characterizing peak is not found, or the ratio of the intensity of the Raman characterizing peak to the average intensity of the single Raman spectroscopic signal is not greater than the predetermined first threshold although it is found, then determining the Raman characterizing intensity is not enough to recognize the Raman characteristic.

    [0032] The above average intensity of the single Raman spectroscopic signal characterizes a combination of the characterizing intensity of the Raman spectrum and the intensity of the fluorescence interference signal. Thus, the ratio of the intensity of the Raman characterizing peak to the average intensity of the Raman spectroscopic signal reflects the contrast relation between the characterizing intensity of the Raman spectrum and the intensity of the fluorescence interference signal. The first threshold may be determined depending on instrument accuracy, calculation errors and the like, for example, it may be determined as 0.5, 1, 3 and the like.

    [0033] The Raman spectroscopic inspection method, as shown in Fig. 3, between the step 200 and the step 300, may optionally further comprise: step 201 of judging a Raman characterizing intensity in the superposition signal. If the Raman characterizing intensity judged in the step 201 is enough to recognize a Raman characteristic, then identify the object to be inspected directly on basis of the superposition signal without performing the subsequent steps; otherwise, if the Raman characterizing intensity is not enough to recognize the Raman characteristic, then continue to perform the step 300. In the case that the Raman characterizing intensity and the intensity of the fluorescence interference signal are both weak, the Raman characteristic, for example the Raman characterizing peak, in the Raman spectroscopic signal may be detected correctly after enhancing the total intensity of the Raman spectroscopic signal by means of successive measurements and signal superposition. In this way, by means of the above step 201, calculation of the fluorescence interference signal may be avoided to improve the calculation efficiency.

    [0034] As an example, in the step 201, the judgment of the Raman characterizing intensity may be done by searching a Raman characterizing peak in the superposition signal; and if the Raman characterizing peak is found, then determining the Raman characterizing intensity is enough to recognize the Raman characteristic, otherwise, if the Raman characterizing peak is not found, then determining the Raman characterizing intensity is not enough to recognize the Raman characteristic.

    [0035] As another example, in the step 201, the judgment of the Raman characterizing intensity may also be done by searching a Raman characterizing peak in the superposition signal; and if the Raman characterizing peak is found and a ratio of an intensity of the Raman characterizing peak to an average intensity of the superposition signal is greater than a predetermined second threshold, then determining the Raman characterizing intensity is enough to recognize the Raman characteristic, otherwise, if the Raman characterizing peak is not found, or the ratio of the intensity of the Raman characterizing peak to the average intensity of the superposition signal is not greater than the predetermined second threshold although it is found, then determining the Raman characterizing intensity is not enough to recognize the Raman characteristic.

    [0036] Similar to the above step 002, the above average intensity of the Raman spectroscopic signal characterizes a combination of the characterizing intensity of the Raman spectrum and the intensity of the fluorescence interference signal. Thus, the ratio of the intensity of the Raman characterizing peak to the average intensity of the Raman spectroscopic signal reflects the contrast relation between the characterizing intensity of the Raman spectrum and the intensity of the fluorescence interference signal. The second threshold may be determined depending on instrument accuracy, calculation errors and the like, for example, it may be determined as 0.5, 1, 3 and the like. The above second threshold may be same to the first threshold, or may be different from the first threshold.

    [0037] In the above embodiments, the average intensity may be such as an arithmetical mean or a geometrical mean of the signal intensity.

    [0038] Fig. 4 shows schematically a first example of an inspecting process using a Raman spectroscopic inspection method according to an embodiment of the present invention. In the example, the object to be inspected is anhydrous ethyl alcohol.

    [0039] During inspection, a laser irradiates the anhydrous ethyl alcohol to acquire a Raman spectroscopic signal. The exposure time of the laser is one second, as illustrated in Fig. 4. As in the example, the fluorescence interference signal has a weak intensity in contrast to the characterizing peak in the Raman spectroscopic signal, the object to be inspected may be identified directly on basis of a single Raman spectroscopic signal. For example, it may be performed by using the above steps 001, 002. Of course, in this case, the above steps of performing successive measurements and filtering out the fluorescence interference signal can be performed without influencing the measurement results adversely.

    [0040] Figs 5a-5b show schematically a second example of a inspecting process using a Raman spectroscopic inspection method according to an embodiment of the present invention. In the example, the object to be inspected is a water solution with 5% alcohol.

    [0041] During inspection, a laser irradiates the water solution with 5% alcohol to acquire a Raman spectroscopic signal, as illustrated in Fig. 5a. The exposure time of the laser is one second. As seen from Fig. 5a, the Raman spectroscopic signal has a weak intensity as a whole, and both the Raman characteristic and the fluorescence interference signal have weak intensities. In this case, the water solution with 5% alcohol is measured successively for twelve times and the detected Raman spectroscopic signals are superposed to obtain the superposition signal, as shown in Fig. 5b. In the circumstance shown in Fig. 5b, the Raman characterizing peaks at 879cm-1, 1046cm-1, 1084cm-1 can be detected already. Therefore, for this case, the object to be inspected may be identified directly on basis of the superposition signal without the subsequent steps 300 and 400, as shown in Fig. 3. Of Course, if the steps 300 and 400 are performed, the measurement results will not be influenced adversely, but will cause the loss of computation efficiency.

    [0042] Figs 6a-6c show schematically a third example of a inspecting process using a Raman spectroscopic inspection method according to an embodiment of the present invention. In the example, the object to be inspected is rhodamine 6G disposed in a transparent glass bottle.

    [0043] In the inspection, a single Raman spectroscopic signal is acquired by an exposure time of one second, as shown in Fig. 6a. As seen from Fig. 6a, no clear Raman characterizing peaks may be observed in the Raman spectroscopic signal. Ten Raman spectroscopic signals are obtained by successive measurements at ten times and superposed to acquire a result shown in Fig. 6b. From Fig. 6b, still no clear Raman characterizing peaks may be observed in the superposed Raman spectroscopic signal. Thus, the superposition signal cannot still be used to identify the object to be inspected. After the fluorescence signal is filtered out from the superposition signal, the resultant superposition signal is shown in Fig. 6c. In Fig. 6c, clear Raman characterizing peaks at 476cm-1, 610cm-1, 776cm-1, 914cm-1, 1122cm-1, 1176cm-1, 1304cm-1, 1360cm-1, 1504cm-1, 1642cm-1 may be observed. It can be determined accurately that the object to be inspected is rhodamine 6G by identifying the object using the signal as shown Fig. 6c.

    [0044] By comparing Figs. 6a-6c with one another, it can be seen that the characterizing peaks of the Raman spectroscopic signal of the object to be inspected are almost masked when the fluorescence interference signal is very strong. However, the characterizing peaks of the Raman spectroscopic signal of the object may be correctly found by the Raman spectroscopic inspection method according to embodiments of the present invention such that the object to be inspected may be identified correctly and efficiently.

    [0045] Although the present invention has been explained with reference to the drawings, the embodiments shown in the drawings are only illustrative, instead of limiting the present invention.


    Claims

    1. A Raman spectroscopic inspection method, comprising:

    (a) measuring a Raman spectrum of an object to be inspected successively to collect a plurality of Raman spectroscopic signals;

    (b) superposing the plurality of Raman spectroscopic signals to form a superposition signal;

    (c) filtering out a fluorescence interfering signal from the superposition signal; and

    (d) identifying the object to be inspected on basis of the superposition signal from which the fluorescence interfering signal has been filtered out,

    characterized in that the step (c) comprises:

    (c1) acquiring a plurality of numerical sample points of the superposition signal;

    (c2) calculating the fluorescence interfering signal by iteration on basis of the plurality of numerical sample points of the superposition signal; and

    (c3) subtracting the fluorescence interfering signal from the superposition signal, and wherein in the step (c2), the calculating the fluorescence interfering signal by iteration comprises:
    for a sequence of numerical sample points {yn} of the superposition signal, wherein yn(i) is a value of the ith numerical sample point in {yn}, and {yn+1} is the sequence of sample points which is calculated out after one iteration and y (i) is the ith sample point in {yn+1}; calculating

    where m is a positive integer, and wherein the above iteration is performed repeatedly until m meets a predetermined threshold, where m is added by 1 per iteration.


     
    2. The Raman spectroscopic inspection method according to claim 1, wherein
    the number of the numerical sample points meets the requirement of the sampling theorem.
     
    3. The Raman spectroscopic inspection method according to claim 1 or 2, wherein the method, before the step (a), further comprises:

    (a00) measuring the Raman spectrum of the object to be inspected in advance to collect a single Raman spectroscopic signal; and

    (a01) judging a Raman characterizing intensity in the collected single Raman spectroscopic signal, and if the Raman characterizing intensity is enough to recognize a Raman characteristic, then identifying the object to be inspected directly on basis of the collected single Raman spectroscopic signal without performing the subsequent steps, otherwise, if the Raman characterizing intensity is not enough to recognize the Raman characteristic, then continuing to perform the step (a).


     
    4. The Raman spectroscopic inspection method according to claim 3, wherein in the step (a01), the judgment of the Raman characterizing intensity is done by searching a Raman characterizing peak in the single Raman spectroscopic signal; and if the Raman characterizing peak is found, then determining the Raman characterizing intensity is enough to recognize the Raman characteristic, otherwise, if the Raman characterizing peak is not found, then determining the Raman characterizing intensity is not enough to recognize the Raman characteristic.
     
    5. The Raman spectroscopic inspection method according to claim 3, wherein in the step (a01), the judgment of the Raman characterizing intensity is done by searching a Raman characterizing peak in the single Raman spectroscopic signal; and if the Raman characterizing peak is found and a ratio of an intensity of the Raman characterizing peak to an average intensity of the single Raman spectroscopic signal is greater than a predetermined first threshold, then determining the Raman characterizing intensity is enough to recognize the Raman characteristic, otherwise, if the Raman characterizing peak is not found, or the ratio of the intensity of the Raman characterizing peak to the average intensity of the single Raman spectroscopic signal is not greater than the predetermined first threshold although it is found, then determining the Raman characterizing intensity is not enough to recognize the Raman characteristic.
     
    6. The Raman spectroscopic inspection method according to one of claims 1-5, wherein the method, between the step (b) and the step (c), further comprises:
    (b1) judging a Raman characterizing intensity in the superposition signal, and if the Raman characterizing intensity is enough to recognize a Raman characteristic, then identifying the object to be inspected directly on basis of the superposition signal without performing the subsequent steps, otherwise, if the Raman characterizing intensity is not enough to recognize the Raman characteristic, then continuing to perform the step (a).
     
    7. The Raman spectroscopic inspection method according to claim 6, wherein in the step (b1), the judgment of the Raman characterizing intensity is done by searching a Raman characterizing peak in the superposition signal; and if the Raman characterizing peak is found, then determining the Raman characterizing intensity is enough to recognize the Raman characteristic, otherwise, if the Raman characterizing peak is not found, then determining the Raman characterizing intensity is not enough to recognize the Raman characteristic.
     
    8. The Raman spectroscopic inspection method according to claim 6, wherein in the step (b1), the judgment of the Raman characterizing intensity is done by searching a Raman characterizing peak in the superposition signal; and if the Raman characterizing peak is found and a ratio of an intensity of the Raman characterizing peak to an average intensity of the superposition signal is greater than a predetermined second threshold, then determining the Raman characterizing intensity is enough to recognize the Raman characteristic, otherwise, if the Raman characterizing peak is not found, or the ratio of the intensity of the Raman characterizing peak to the average intensity of the superposition signal is not greater than the predetermined second threshold although it is found, then determining the Raman characterizing intensity is not enough to recognize the Raman characteristic.
     


    Ansprüche

    1. Raman-spektroskopisches Inspektionsverfahren, umfassend:

    (a) sukzessives Messen eines Ramanspektrums eines zu inspizierenden Objekts, um mehrere Raman-spektroskopische Signale zu erfassen;

    (b) Übereinanderlegen der mehreren Raman-spektroskopischen Signale, um ein Überlagerungssignal zu bilden;

    (c) Herausfiltern eines Fluoreszenzinterferenzssignals aus dem Überlagerungssignal; und

    (d) Identifizieren des zu inspizierenden Objekts anhand des Überlagerungssignals, aus dem das Fluoreszenzinterferenzssignal herausgefiltert wurde,

    dadurch gekennzeichnet, dass der Schritt (c) Folgendes umfasst:

    (c1) Erfassen mehrerer numerischer Abtastpunkte des Überlagerungssignals;

    (c2) Berechnen des Fluoreszenzinterferenzssignals durch Iteration anhand der mehreren numerischen Abtastpunkte des Überlagerungssignals; und

    (c3) Subtrahieren des Fluoreszenzinterferenzssignals von dem Überlagerungssignal, und

    wobei in Schritt (c2) das Berechnen des Fluoreszenzinterferenzssignals durch Iteration Folgendes umfasst:
    für eine Sequenz numerischer Abtastpunkte {yn} des Überlagerungssignals, wobei yn(i) ein Wert des i-ten numerischen Abtastpunktes in {yn} ist und {yn+1} die Sequenz von Abtastpunkten ist, die nach einer einzelnen Iteration herausberechnet wird, und yn+1(i) der i-te Abtastpunkt in {yn+1} ist, Berechnen von

    wobei m eine positive ganze Zahl ist, und wobei die oben erwähnte Iteration wiederholt ausgeführt wird, bis m eine vorgegebene Schwelle erfüllt, wobei für jede Iteration zu m 1 addiert wird.
     
    2. Raman-spektroskopisches Inspektionsverfahren nach Anspruch 1, wobei
    die Anzahl der numerischen Abtastpunkte die Anforderung des Abtasttheorems erfüllt.
     
    3. Raman-spektroskopisches Inspektionsverfahren nach Anspruch 1 oder 2, wobei das Verfahren, vor dem Schritt (a), des Weiteren Folgendes umfasst:

    (a00) Messen des Ramanspektrums des zu inspizierenden Objekts im Voraus, um ein einzelnes Raman-spektroskopische Signal zu erfassen; und

    (a01)Beurteilen einer Raman-charakterisierenden Intensität in dem erfassten einzelnen Raman-spektroskopischen Signal, und wenn die Raman-charakterisierende Intensität ausreicht, um eine Raman-Charakteristik zu erkennen, dann Identifizieren des zu inspizierenden Objekts direkt anhand des erfassten einzelnen Raman-spektroskopischen Signals ohne Ausführen der anschließenden Schritte, anderenfalls, wenn die Raman-charakterisierende Intensität nicht ausreicht, um die Raman-Charakteristik zu erkennen, Fortfahren mit der Ausführung von Schritt (a) .


     
    4. Raman-spektroskopisches Inspektionsverfahren nach Anspruch 3, wobei in Schritt (a01) die Beurteilung der Raman-charakterisierenden Intensität durch Suchen einer Raman-charakterisierenden Spitze in dem einzelnen Raman-spektroskopischen Signal erfolgt; und wenn die Raman-charakterisierende Spitze gefunden wird, Bestimmen, dass die Raman-charakterisierende Intensität ausreicht, um die Raman-Charakteristik zu erkennen, anderenfalls, wenn die Raman-charakterisierende Spitze nicht gefunden wird, Bestimmen, dass die Raman-charakterisierende Intensität nicht ausreicht, um die Raman-Charakteristik zu erkennen.
     
    5. Raman-spektroskopisches Inspektionsverfahren nach Anspruch 3, wobei in Schritt (a01) die Beurteilung der Raman-charakterisierenden Intensität durch Suchen einer Raman-charakterisierenden Spitze in dem einzelnen Raman-spektroskopischen Signal erfolgt; und wenn die Raman-charakterisierende Spitze gefunden wird und ein Verhältnis einer Intensität der Raman-charakterisierenden Spitze zu einer durchschnittlichen Intensität des einzelnen Raman-spektroskopische Signals größer ist als eine vorgegebene erste Schwelle, Bestimmen, dass die Raman-charakterisierende Intensität ausreicht, um die Raman-Charakteristik zu erkennen, anderenfalls, wenn die Raman-charakterisierende Spitze nicht gefunden wird, oder das Verhältnis der Intensität der Raman-charakterisierenden Spitze zu der durchschnittlichen Intensität des einzelnen Raman-spektroskopische Signals nicht größer ist als die vorgegebene erste Schwelle, obgleich sie gefunden wird, Bestimmen, dass die Raman-charakterisierende Intensität nicht ausreicht, um die Raman-Charakteristik zu erkennen.
     
    6. Raman-spektroskopisches Inspektionsverfahren nach einem der Ansprüche 1-5, wobei das Verfahren zwischen dem Schritt (b) und dem Schritt (c) des Weiteren Folgendes umfasst:
    (b1) Beurteilen einer Raman-charakterisierenden Intensität in dem Überlagerungssignal, und wenn die Raman-charakterisierende Intensität ausreicht, um eine Raman-Charakteristik zu erkennen, Identifizieren des zu inspizierenden Objekts direkt anhand des Überlagerungssignals ohne Ausführen der anschließenden Schritte, anderenfalls, wenn die Raman-charakterisierende Intensität nicht ausreicht, um die Raman-Charakteristik zu erkennen, Fortfahren mit der Ausführung von Schritt (a) .
     
    7. Raman-spektroskopisches Inspektionsverfahren nach Anspruch 6, wobei in Schritt (b1) die Beurteilung der Raman-charakterisierenden Intensität durch Suchen einer Raman-charakterisierenden Spitze in dem Überlagerungssignal erfolgt; und wenn die Raman-charakterisierende Spitze gefunden wird, Bestimmen, dass die Raman-charakterisierende Intensität ausreicht, um die Raman-Charakteristik zu erkennen, anderenfalls, wenn die Raman-charakterisierende Spitze nicht gefunden wird, Bestimmen, dass die Raman-charakterisierende Intensität nicht ausreicht, um die Raman-Charakteristik zu erkennen.
     
    8. Raman-spektroskopisches Inspektionsverfahren nach Anspruch 6, wobei in Schritt (b1) die Beurteilung der Raman-charakterisierenden Intensität durch Suchen einer Raman-charakterisierenden Spitze in dem Überlagerungssignal erfolgt; und wenn die Raman-charakterisierende Spitze gefunden wird und ein Verhältnis einer Intensität der Raman-charakterisierenden Spitze zu einer durchschnittlichen Intensität des Überlagerungssignals größer ist als eine vorgegebene zweite Schwelle, Bestimmen, dass die Raman-charakterisierende Intensität ausreicht, um die Raman-Charakteristik zu erkennen, anderenfalls, wenn die Raman-charakterisierende Spitze nicht gefunden wird, oder das Verhältnis der Intensität der Raman-charakterisierenden Spitze zu der durchschnittlichen Intensität des Überlagerungssignals nicht größer ist als die vorgegebene zweite Schwelle, obgleich sie gefunden wird, Bestimmen, dass die Raman-charakterisierende Intensität nicht ausreicht, um die Raman-Charakteristik zu erkennen.
     


    Revendications

    1. Procédé de contrôle par spectroscopie Raman, comprenant les étapes suivantes :

    (a) mesurer un spectre Raman d'objet à contrôler successivement pour recueillir une pluralité de signaux de spectroscopie Raman ;

    (b) superposer la pluralité de signaux de spectroscopie Raman pour former un signal de superposition ;

    (c) éliminer par filtrage un signal fluorescent brouilleur, du signal de superposition ; et

    (d) identifier l'objet à contrôler sur la base du signal de superposition duquel le signal fluorescent brouilleur a été éliminé par filtrage,

    caractérisé en ce que l'étape (c) comprend les étapes suivantes :

    (c1) acquérir une pluralité de points échantillons numériques du signal de superposition ;

    (c2) calculer le signal fluorescent brouilleur par itération sur la base de la pluralité de points échantillons numériques du signal de superposition ; et

    (c3) soustraire le signal fluorescent brouilleur, du signal de superposition, et

    dans lequel à l'étape (c2), le calcul du signal fluorescent brouilleur par itération comprend l'étape suivante :
    pour une suite de points échantillons numériques {yn} du signal de superposition, où yn(i) est une valeur de l'iième point échantillon numérique de {yn}, et {yn+1} est la suite de points échantillons qui est calculée après une itération et yn+1(i) est l'iième point échantillon de {yn+1} ; calculer :

    où m est un nombre entier positif, et dans lequel l'itération ci-dessus est effectuée de façon répétée jusqu'à ce que m satisfasse à un seuil prédéterminé, où m est incrémenté de 1 par itération.
     
    2. Procédé de contrôle par spectroscopie Raman selon la revendication 1, dans lequel :
    le nombre de points échantillons numériques satisfait à l'exigence du théorème d'échantillonnage.
     
    3. Procédé de contrôle par spectroscopie Raman selon la revendication 1 ou 2, dans lequel avant l'étape (a), le procédé comprend en outre les étapes suivantes :

    (a00) mesurer à l'avance le spectre Raman de l'objet à contrôler pour recueillir un unique signal de spectroscopie Raman ; et

    (a01) évaluer une intensité caractéristique Raman dans l'unique signal de spectroscopie Raman recueilli, et si l'intensité caractéristique Raman est suffisante pour reconnaître une caractéristique Raman, identifier l'objet à contrôler directement sur la base de l'unique signal de spectroscopie Raman recueilli, sans exécuter les étapes suivantes, à défaut, si l'intensité caractéristique Raman n'est pas suffisante pour reconnaître la caractéristique Raman, continuer d'exécuter l'étape (a).


     
    4. Procédé de contrôle par spectroscopie Raman selon la revendication 3, dans lequel à l'étape (a01), l'évaluation de l'intensité caractéristique Raman est réalisée par recherche d'un pic caractéristique Raman dans l'unique signal de spectroscopie Raman ; et si le pic caractéristique Raman est trouvé, détermination de ce que l'intensité caractéristique Raman est suffisante pour reconnaître la caractéristique Raman, à défaut, si le pic caractéristique Raman n'est pas trouvé, détermination de ce que l'intensité caractéristique Raman n'est pas suffisante pour reconnaître la caractéristique Raman.
     
    5. Procédé de contrôle par spectroscopie Raman selon la revendication 3, dans lequel à l'étape (a01), l'évaluation de l'intensité caractéristique Raman est réalisée par recherche d'un pic caractéristique Raman dans l'unique signal de spectroscopie Raman ; et si le pic caractéristique Raman est trouvé et qu'un rapport d'une intensité du pic caractéristique Raman à une intensité moyenne de l'unique signal de spectroscopie Raman soit supérieur à un premier seuil prédéterminé, détermination de ce que l'intensité caractéristique Raman est suffisante pour reconnaître la caractéristique Raman, à défaut, si le pic caractéristique Raman n'est pas trouvé ou que le rapport de l'intensité du pic caractéristique Raman à l'intensité moyenne de l'unique signal de spectroscopie Raman ne soit pas supérieur au premier seuil prédéterminé, bien qu'il ait été trouvé, détermination de ce que l'intensité caractéristique Raman n'est pas suffisante pour reconnaître la caractéristique Raman.
     
    6. Procédé de contrôle par spectroscopie Raman selon l'une des revendications 1 à 5, dans lequel le procédé comprend, entre l'étape (b) et l'étape (c), l'étape suivante :
    (b1) évaluer une intensité caractéristique Raman dans le signal de superposition, et si l'intensité caractéristique Raman est suffisante pour reconnaître une caractéristique Raman, identifier l'objet à contrôler directement sur la base du signal de superposition, sans exécuter les étapes suivantes, à défaut, si l'intensité caractéristique Raman n'est pas suffisante pour reconnaître la caractéristique Raman, continuer d'exécuter l'étape (a).
     
    7. Procédé de contrôle par spectroscopie Raman selon la revendication 6, dans lequel à l'étape (b1), l'évaluation de l'intensité caractéristique Raman est réalisée par recherche d'un pic caractéristique Raman dans le signal de superposition ; et si le pic caractéristique Raman est trouvé, détermination de ce que l'intensité caractéristique Raman est suffisante pour reconnaître la caractéristique Raman, à défaut, si le pic caractéristique Raman n'est pas trouvé, détermination de ce que l'intensité caractéristique Raman n'est pas suffisante pour reconnaître la caractéristique Raman.
     
    8. Procédé de contrôle par spectroscopie Raman selon la revendication 6, dans lequel à l'étape (b1), l'évaluation de l'intensité caractéristique Raman est réalisée par recherche d'un pic caractéristique Raman dans le signal de superposition ; et si le pic caractéristique Raman est trouvé et qu'un rapport d'une intensité du pic caractéristique Raman à une intensité moyenne de l'unique signal de spectroscopie Raman soit supérieur à un second seuil prédéterminé, détermination de ce que l'intensité caractéristique Raman est suffisante pour reconnaître la caractéristique Raman, à défaut, si le pic caractéristique Raman n'est pas trouvé ou que le rapport de l'intensité du pic caractéristique Raman à l'intensité moyenne du signal de superposition ne soit pas supérieur au second seuil prédéterminé, bien qu'il ait été trouvé, détermination de ce que l'intensité caractéristique Raman n'est pas suffisante pour reconnaître la caractéristique Raman.
     




    Drawing




















    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description