(19)
(11)EP 3 089 298 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
12.12.2018 Bulletin 2018/50

(21)Application number: 14891203.3

(22)Date of filing:  05.05.2014
(51)International Patent Classification (IPC): 
H02G 15/14(2006.01)
H02G 15/18(2006.01)
H01B 13/00(2006.01)
H02G 15/007(2006.01)
H01B 7/14(2006.01)
(86)International application number:
PCT/ES2014/070384
(87)International publication number:
WO 2015/169976 (12.11.2015 Gazette  2015/45)

(54)

REINFORCEMENT ARRANGEMENT FOR SUBMARINE CABLE JUNCTIONS

VERSTÄRKUNGSANORDNUNG FÜR UNTERWASSERKABELVERBINDUNGEN

IMPLANTATION DE RENFORCEMENT POUR RACCORDS DE CÂBLES SOUS-MARINS


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(43)Date of publication of application:
02.11.2016 Bulletin 2016/44

(73)Proprietor: GRUPO GENERAL CABLE SISTEMAS, S.L.U.
08036 Barcelona (ES)

(72)Inventors:
  • GUIX DÍAZ, Enric
    E-08036 Barcelona (ES)
  • ISUS FEU, Daniel
    E-08036 Barcelona (ES)

(74)Representative: Ponti & Partners, S.L.P 
C. de Consell de Cent 322
08007 Barcelona
08007 Barcelona (ES)


(56)References cited: : 
EP-A2- 1 880 841
GB-A- 2 059 691
JP-B2- 3 307 437
US-A- 3 312 777
US-A- 5 281 763
WO-A1-2012/118380
JP-A- H07 156 143
US-A- 2 967 795
US-A- 4 621 168
US-A- 5 281 763
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    Object of the invention:



    [0001] One of the objects of the present invention, as expressed in the title of this specification, refers to a reinforcement device used in submarine cable connections, with a novel design that makes the connections between two ends of cable very strong and flexible when they are subjected to the mechanical stress or pressure that these cables are often subjected to in the locations where they are placed.

    [0002] Another aim of the invention is a method or procedure for applying the present reinforcement device to the connections of submarine cables.

    Technical field of the invention:



    [0003] The field of application of the invention is in the sector of submarine power cables for the transport of electrical energy, and especially in the area of protective elements used to protect the connections of cables placed on the seabed.

    Background of the invention:



    [0004] It is known that in order to install long lengths of submarine power cable, shorter sections of the aforementioned cables must be joined together, necessarily leading to the existence of connections or splicing between these sections. The splices must be protected in order to be able to withstand deep underwater conditions, which imply significant mechanical stress, thus keeping breakage from occurring at these connection points.

    [0005] In this sense, the state of the art includes the existence of different types of devices, such as connectors, waterproof plugs, casings, and frames, and methods that are used to reinforce and protect the connections of the submarine cables. Patent US4644097 is for armoured submarine cable, wherein the armouring surrounds connections of cores of cables on the outside, and the layer of armouring includes at least one section of heavy armour that includes at least one layer of heavy metal wiring, and a section of light armour, which comprises ends, with a transition area where both sections come together, so that the rigidity and flexibility of the cable can be controlled.

    [0006] Other devices available on the market include armouring that uses copper shells to secure the splice between the cores of the cables.

    [0007] These devices have the disadvantage of increasing both the diameter of the cross section and the weight of the splicing, and in general they don't bear mechanical stress very well, and therefore their structures tend to break, and in most cases, they are expensive to manufacture.

    [0008] WO 2012/118380 A1 describes a reinforcement arrangement with the following elements: at least one heavy gauge metallic conductor (2); said conductor (2) are embedded in at least an insulating matrix (4), which matrix (4) is able to transmit shear forces arising in said cable (1); and a braided carbon fibre sleeve (8) of predetermined length that is glued onto the external surface of the cable (1) and extends in both directions from the centre of a cable joint splice, which braided carbon fibre sleeve (8) is kept in tension during the gluing process until hardening thereof. This application also describes a specific method to prepare and make a glued joint reinforcement in a cable joint. This braided sleeve (8) is a flexible sleeve, made preferably by a weave composed of crossing threads of carbon fibre which during tension thereof, tends to decrease the diameter of the sleeve and straighten the angle of the weave in the longitudinal direction of the cable. Firstly at least one braided carbon fibre sleeve is manually slid onto the cable and temporarily parked at a location a predetermined distance away from the join. Once the inner conductor joint is done, the braided sleeve (8) is manually slid and stretched over the inner conductor splice area. This braided sleeve (8) is tauten and it is adapted to the external surface of the inner conductor splice and it is glued with an epoxy layer.

    [0009] EP 1880841 A2 refers to a fibre-metal hybrid laminated material for naval construction, formed by alternate layers of steel and compound material of polymeric compound reinforced with fibreglass. By means of combining these materials, the positioning and the precise orientation of each layer, the bonding of the different layers together using elastic structural adhesives and the assembly of the panels, a final product with superior features is achieved. The result is a lighter, resistant, tough and safe material that can be designed to measure to meet the specific requirements of each area of the structure.

    [0010] US 5281763 A deals with a method of blocking an electric power cable joint against the ingress of water or other moisture, and to a moisture-blocked cable joint. The joint may be an in-line joint, between two cables, or it may be a branch joint, between two, three or more cables. In the case of a branch joint, the main cable may be unbroken and have a branch cable leading therefrom, or the joint may be between two main cables and a branch cable. It has a connector ring (14) or crimps (40); a sealing mastic (16, 18), or water-impervious mastic tape (43); and a heat recoverable fabric sleeve (22), or (46). Heat is applied to the sleeve (46) to effect its recovery and to cause the mastic (43) to soften, conform and seal around the crimp region. The felt (38) will prevent migration of the mastic (43) along the cables (30), (32) .

    [0011] JP H07 156143 A deals with a fiber premolded body to be manufactured by an FW method so that a deviation is not allowed to occur on a fiber of the fiber premolded body. It describes a fiber-reinforced resin premolded body 1 which is constituted by a reinforcing fiber (3) which is in a cloth form are wound up at a necessary angle around the outer circumferential surface of a mandrel or a core put over a mandrel or a core comprised of a solid body by a filament winding method while immersing them into a sizing agent solutions (9A, 9B).

    [0012] US 3312777 A describes an armored electrical cable breakout. This type of cable joint is formed by a generally T-shaped joint, since the joint has to be done between a vertical suspended cable (10) in the water and laterally extending conductors (12, 13, 14). It describes a protective saddle (29) formed by a semi-cylindrical shield (30), made of a metal sheet material, which partially surrounds the outer insulation (24) of the main conductors, see figure 3. This shield has also a central opening with a conning tower (31) and a passage (34) to permit the passage of the secondary conductors (27, 28), see figure 2.

    [0013] However, none of the cited patent documents alone or in combination describes a reinforcement arrangement and method for its application over the conductive joint of two sections of a power cable, wherein the reinforcement arrangement has a high homogeneity and reliability and which is created for each specific diameter of power cable splice.

    Description of the invention:



    [0014] These disadvantages are overcome by the placement of reinforcement for the connections of submarine cables in the present invention, which is made using a body arranged in the area where the cable is connected, acting as insulation and very secure reinforcement, able to bear great mechanical stress. They don't break and they allow for a lightening of the weight of the cable in the connections or splicing, as well as being strongly resistant to corrosion and fatigue. They also allow a reduction in the cost of the devices that are usually used to reinforce this type of connections.

    [0015] The reinforcement arrangement applicable to the connections of two sections of a power cable is defined in claim 1.

    [0016] A power cable is a single electric cable used to transmit electrical current at medium, high or extra-high voltage level and it may be installed inside a submarine energy cable, such as inside an umbilical cable, wherein the power cable ends includes an inner conducting core ends of copper or aluminium with one or more concentric polymeric and metallic layers that constitute insulation, screens and covers, and wherein the connections of the conducting cores ends are made by welding so forming a conducting cores welded joint area.

    [0017] The reinforcement arrangement of the present invention is characterised in that comprises a cylindrical body formed by two bodies with a half-round shape or more than two bodies with round shapes, that are placed joined together and concentrically forming a cylindrical body upon the conducting cores welded area of the cable and on the adjacent area of the outside covering of the cable; wherein:
    • the round bodies being joined to the outer part of the cable splice through a structural adhesive;
    • each round bodies being made from at least one sheet, which is made from:
      • a material reinforced with fibres of great mechanical strength which are selected from the group of: carbon fibres, fibreglass, aramid fibres, fibres, graphene metallic fibres, and synthetic fibres, and also
      • comprises a resin made up of a polymeric matrix, loads, and additives for joining the fibers of great mechanical strength and also for being capable of shaping the structure of the round body;
    • the at least one sheet is shaped to have the round structure of the round bodies; and
    • the cylindrical body is of a thickness varying from 0.5 mm to 20 mm.


    [0018] The present invention refers to a reinforcement arrangement used in the connection of two ends of a submarine cable, said cables including a copper or aluminium conducting core with one or more polymeric and metallic layers that constitute insulation, screens and covers, wherein said cores are joined by known methods. The arrangement consists of reinforcement on a body that is placed in a radial manner on the area of the connection of the cable and on the adjacent area of the outer covering of the cable; the body is made up of a material reinforced with fibres of great mechanical strength, joined to the outer part of the cable by a mechanical attachment element, so that the area of the connection of the cable bears a breaking load in a range of 96% to 100% of the breaking load of the cable without any connection. Said body makes the connection or splice of the cables very sturdy and elastic, suitable for bearing the mechanical stress or pressure that these connections are subject to in the areas where they are placed.

    [0019] The arrangement of reinforcement can comprise more than two bodies made up of said material reinforced with fibres of great mechanical strength, these bodies being placed concentrically in a radial direction.

    [0020] The body can have a structure chosen to be half-round, braided mesh, lengthwise fibres, or a combination of the above. These arrangements are suitable for guaranteeing withstanding the high levels of mechanical stress that said connections are subject to.

    [0021] The fibres of great mechanical strength are chosen from the group made up of carbon fibres, fibreglass, aramid fibres, metallic fibres, graphene fibres, and synthetic fibres, wherein the body reinforced with said fibres additionally comprises a resin made up of a polymeric matrix, loads and additives, which are necessary to shape said body.

    [0022] The fibres can be arranged in the body of the reinforcement device in the same direction or in different directions, which will be in function of the mechanical strength desired and the stress that the reinforcement of the invention must bear.

    [0023] Preferably, the body of the reinforcement arrangement of the invention will be made up of more than one sheet of a material reinforced with fibres of great mechanical strength, wherein the direction of the fibres between each sheet can be arranged in alternating directions or not, in this manner increasing the mechanical strength of the arrangement.

    [0024] Alternatively, the various sheets can decrease in length in the axial direction of the cable as they are placed in a radial direction, comprising a last upper sheet that covers all of the sheets underneath.

    [0025] The body of the reinforcement arrangement will have a thickness defined by its outside diameter, varying from 0.5 mm. to 20 mm. in thickness, which guarantees that the reinforcement structure will weigh less and thus be easier to handle when it is put in place in the workplace.

    [0026] For its part, the mechanical attaching element used to join the body to the outer part of the cable on the connection area is a structural adhesive.

    [0027] Preferably, the body of the reinforcement arrangement of the invention comprises a structure in a half-round shape wherein each half-round shape comprises more than one sheet of carbon fibres arranged in such a manner that the direction of the carbon fibres alternate between sheets; these sections should be arranged in a radial direction on the outside and facing each other on the connection area of the cable, said half-round shapes being joined to the cable through a structural adhesive, so that the connection area of the cable is suitable for bearing a breaking load of more than the 100% of the breaking load of the cable without the connection.

    [0028] Optionally, the arrangement of the reinforcement of the invention may be accompanied by other reinforcement elements such as shells, armouring, or mesh, arranged in a radial manner on the body in such a way that they exert additional pressure on the reinforcement arrangement and they make it possible to increase the strength of the structure.

    [0029] According to another aspect of the present invention, a method is provided to apply to an arrangement to reinforce the connection of two ends of power cables, each of them including a conducting core of copper or aluminium, with one or more polymeric and metallic layers that constitute insulation, screens, and covers. The method includes the stages of the preparation of the surface of the cable to be reinforced, and of the preparation and application of a body made up of at least one sheet of a material reinforced with fibres of great mechanical strength.

    [0030] The first phase of the preparation of the surface of the cable to be reinforced comprises the operations of: sanding of the surface of the cable, pneumatic cleaning, blazing of the surface, and application of a polarizing agent to said surface.

    [0031] The stage of preparation and application of the body made up of at least one sheet of a material reinforced with fibres of great mechanical strength includes the following steps:
    1. a) shaping of the body comprising at least one sheet of a material reinforced with fibres of great mechanical strength wherein said structure is chosen from: half-round, braided mesh, lengthwise fibres, or a combination of the above.
    2. b) placement of the body on the connection area of the cable through the application of a mechanical attaching element.
    3. c) the attachment of these sections onto the cable using a means of holding in place, such as bands, springs, or others, in such a manner that the body of the reinforcement device is kept under pressure on the connection area of the cable.


    [0032] Additionally, the method for the application of the reinforcement may include the application of thermoretractable bands and thermal treatments at temperatures of 50°C to 500°C, which makes the reinforcement strong and impermeable.

    [0033] Other details and characteristics will be shown in the course of the description below, which refers to the drawings that go with this report, in which one practical form of the invention is shown for the purposes of illustration, not limitation.

    Description of the figures:



    [0034] 

    Figure no. 1 is an upper plan view of the reinforcement arrangement of the invention.

    Figure no. 2 is an exploded view of a form of the arrangement of the invention.

    Figure no. 3 is a cutaway view according to direction B-B' of figure no. 1; it illustrates a form of the invention in which the arrangement of the reinforcement includes the body with a half-round shape.

    Figure no. 4 is a cutaway view illustrating a form of the invention showing two bodies with a half-round shape arranged in a radial manner.

    Figure no. 5 is a cutaway view of a form of the invention wherein the body is made up of more than one sheet reinforced with fibres of great mechanical strength.

    Figure no. 6 illustrates a variation in the arrangement of these sheets reinforced with fibres of great mechanical strength.

    Figure no. 7 is a cutaway view showing another form of the invention in which more than one sheet are arranged in such a manner that said sheets decrease in length in the axial direction of the cable as they are arranged in a radial direction.


    Preferable embodiment of the invention:



    [0035] The referred invention, as is shown in figures no. 1 and no. 2, refers to an arrangement of reinforcement (10) applicable to connections of submarine power cables, wherein the cable includes a conducting core (11,11') of copper or aluminium with one or more (12,12') polymeric and metallic layers that constitute insulation, screens and covering, wherein the connections between the conducting cores are made using known methods, such as welding, for example.

    [0036] The arrangement comprises a body (14) that is arranged in a radial manner on the connection area of the cable and on the adjacent area of the outer covering of the cable.

    [0037] The body (14) is made up of a material reinforced with fibres of great mechanical strength, joined to the outer part of the cable by way of a mechanical attaching element.

    [0038] The reinforcement arrangement gives the splicing of the cables reinforcement that is very strong, able to withstand very great mechanical stress, pressure, and force, which these cables are normally subject to in the settings where they are used; on the other hand, this reinforcement is also light and elastic, facilitating the handling of the splicing while they are being placed on the seabed. Specifically, the arrangement allows the connection area of the cable to bear a breaking load in a range of 96% to 100% of the breaking load of the cable without the connection.

    [0039] The body (14) of the reinforcement arrangement (10) can have a structure chosen to be half-round, braided mesh, lengthwise fibres, or a combination of the above. Figure No. 3 shows the form when the body includes a half-round (14',14")structure.

    [0040] Additionally, the reinforcement arrangement in question, as is shown in figure no. 4, can include more than two bodies (14,15) made up of a material reinforced with fibres of great mechanical strength, these bodies being placed concentrically in a radial direction. Specifically, figure no. 4 illustrates the form of the invention when both bodies (14,15) have a half-round shape. However, as has been mentioned, the bodies can have different shapes and can be combined to achieve a reinforcement arrangement that allows the connection area to bear great mechanical stress.

    [0041] The connection of the body (14) to the connection area of the cables and between the different bodies (14,15) is done using a mechanical attaching element, preferably a structural adhesive.

    [0042] In order to be able to bear greater mechanical stress and tensions, the body (14) reinforced with very strong fibres can comprise the fibres arranged in the same direction or in different directions.

    [0043] Additionally, in another form of the invention, as is shown in figure no. 5, the body (14) can be made up of more than one sheets (16) reinforced with fibres of great mechanical strength, wherein these sheets can be arranged with each other in such a way that the direction of these fibres alternates in different directions between the sheets or not, as is shown in figure no. 6.

    [0044] Figure no. 6 shows one of the possible forms that the sheets can be placed in to shape the body (14); in this example, there are: an inner sheet (17) that covers the connection area of the cable, more than one middle sheet (18) and an outer sheet (19) that covers the inner sheets. This distribution makes the reinforcement arrangement very strong under mechanical stress and tensions, and therefore the connection areas of the conducting cables (11,11') are reinforced, and the cables with the reinforcement arrangement are suitable for bearing a breaking load of between 96% and 100% of the breaking load of the cable without the connection.

    [0045] Additionally, as is shown in figure no. 7, the various sheets (16) can be placed in an arrangement in which the aforementioned sheets decrease in length in the axial direction of the cable as they are arranged in a radial direction, including a final upper sheet (19) that covers all of the lower ones.

    [0046] With the reinforcement arrangement of the invention the splicing of the cables gets very strong reinforcement, which can withstand the high levels of mechanical stress, pressure, and force that the aforementioned cables are subject to in the settings where they are used. Also, thanks to the materials used, the reinforcement is light and small, with a thickness that may vary from 0.5 mm. to 20 mm., and with an elasticity that facilitates the handling of splices during the process of placing the cables underwater.

    [0047] The present invention being described sufficiently in relation to the example of the form set out herein, it is easy to understand that any changes in details that are deemed suitable can be made, as long as the essence of the invention, which is summarised in the following claims, is not altered.


    Claims

    1. Reinforcement arrangement (10) applicable to the connections of two sections of a power cable, which power cable is a single electric cable used to transmit electrical current at medium, high or extra-high voltage level and it may be installed inside a submarine energy cable, such as inside an umbilical cable, wherein each power cable end includes an inner conducting core end (11,11') of copper or aluminium with one or more concentric polymeric and metallic layers that constitute insulation, screens and covers (12,12'), and wherein the connections of the conducting core ends (11,11') are made by welding so forming a conducting cores welded area, characterised in that:

    - the reinforcement arrangement (10) comprises a cylindrical body (14) formed by two bodies with a half-round shape (14', 14'') or more than two bodies with round shapes, that are placed joined together and concentrically form a cylindrical body upon the conducting cores welded area of the cable and on the adjacent area of the outside covering of the cable (12,12'); wherein:

    - the round bodies (14', 14") are joined to the outer part of the cable splice through a structural adhesive;

    - each round body (14', 14") is made from at least one sheet, which:

    - is made from a material reinforced with fibres of great mechanical strength which are selected from the group of: carbon fibres, fibreglass, aramid fibres, fibres, graphene metallic fibres, and synthetic fibres, and also

    - comprises a resin made up of a polymeric matrix, loads, and additives for joining the fibers of great mechanical strength and also for being capable of shaping the structure of the round body;

    - the at least one sheet is shaped to have the round structure of the round bodies (14', 14''); and

    - the cylindrical body (14) is of a thickness varying from 0.5 mm to 20 mm.


     
    2. Reinforcement arrangement (10) according to claim 1, wherein it comprises more than one concentric bodies (14, 15) made up of a material reinforced with the fibres of great mechanical strength, said bodies (14, 15) being arranged concentrically in a radial direction.
     
    3. Reinforcement arrangement (10) according to any one of the previous claims, wherein the body reinforced with fibres of great mechanical strength includes the fibres arranged in the same direction or in different directions.
     
    4. Reinforcement arrangement (10) according to any one of the previous claims, wherein the body comprises a plurality of sheets of a material reinforced with the fibres of great mechanical strength arranged in such a manner that the direction of these fibres alternate in different directions or not between the sheets, and wherein the body is of a thickness varying from 0.5 mm to 20 mm.
     
    5. Reinforcement arrangement (10) according to claim 4, wherein the plurality of sheets (17, 18, 19) decrease in length in the axial direction of the cable as they are arranged in a radial direction, including a final upper sheet (19) that covers all of the lower ones.
     
    6. Reinforcement arrangement (10) according to claim 1, wherein the body includes a structure with a half-round shape wherein each half round comprises more than one sheet of carbon fibres arranged in such a manner that the direction of these carbon fibres alternates between sheets, these sections being arranged in a radial manner outside and facing each other on the connection area of the cable, and joined together and to the cable using a structural adhesive.
     
    7. Reinforcement arrangement (10) according to any one of the previous claims, wherein it comprises additional reinforcement elements such as shells, armouring or mesh, arranged in a radial manner on the body in such a way that they place additional pressure on the same.
     
    8. A method for the application of a reinforcement arrangement (10) defined according to any one of the claims 1 to 7 in a power cable joint, wherein it comprises the stages of preparation of the surface of the cable to be reinforced, and the preparation and application of the bodies (14, 14') made up each one of at least one sheet of a material reinforced with fibres of great mechanical strength which are selected from the group of carbon fibres, fibreglass, aramid fibres, fibres, graphene metallic fibres, and synthetic fibres.
     
    9. A method according to claim 8, wherein the first stage of preparation of the surface of the cable to be reinforced comprises the operations of sanding the surface of the cable, pneumatic cleaning, the blazing of the surface, and the application of a polarizing agent to the aforementioned surface.
     
    10. A method according to claim 9, wherein the stage of preparation and application of the bodies (14, 14') made up of at least one sheet of a material reinforced with the fibres of great mechanical strength includes the following steps:

    a) shaping of the round bodies (14, 14') comprising at least one sheet of the material reinforced with fibres of great mechanical strength which are selected from the group of carbon fibres, fibreglass, aramid fibres, fibres, graphene metallic fibres, and synthetic fibres, the fobres being joined with a resin made up of a polymeric matrix, loads, and additives; wherein said round structure of the bodies (14, 14') is chosen from: two bodies with a half-round shape (14', 14'') or more than two bodies with round shapes, so that when the bodies (14', 14'') are joined together forms the cylindrical body (14).

    b) placement of the round bodies (14, 14') on the connection area of the cable through the application of a mechanical attaching element.

    c) the holding of these sections onto the cable using means of attachment such as bands, springs, or others, in such a manner that the body of the reinforcement arrangement is held against the connection area of the cable.


     
    11. A method according to claim 8, wherein it additionally comprises the application of thermoretractable bands and thermal treatments at temperatures of 50º to 500º Celsius.
     


    Ansprüche

    1. Verstärkungsanordnung (10), die auf die Verbindungen von zwei Abschnitten eines Stromkabels anwendbar ist, wobei das Stromkabel ein einzelnes elektrisches Kabel ist, das zum Übertragen von elektrischem Strom bei mittlerem, hohem oder extra hohem Spannungspegel verwendet wird, und dasselbe in einem unterseeischen Energiekabel eingebaut sein kann, beispielsweise in einem Versorgungskabel, wobei jedes Stromkabelende ein Ende eines inneren leitenden Kerns (11, 11') aus Kupfer oder Aluminium mit einer oder mehreren konzentrischen Polymer- und Metallschichten umfasst, die eine Isolierung, Abschirmungen und Abdeckungen (12, 12') bilden, und wobei die Verbindungen der Enden des leitenden Kerns (11, 11') durch Schweißen hergestellt werden, wodurch ein Schweißbereich der leitenden Kerne gebildet wird, dadurch gekennzeichnet, dass:

    die Verstärkungsanordnung (10) einen zylindrischen Körper (14) aufweist, der durch zwei Körper mit einer halbrunden Form (14', 14") oder mehr als zwei Körper mit runden Formen gebildet ist, die miteinander verbunden platziert sind und konzentrisch einen zylindrischen Körper auf dem Schweißbereich der leitenden Kerne des Kabels und auf dem benachbarten Bereich der Außenummantelung des Kabels (12, 12') bilden; wobei:

    die runden Körper (14', 14") mit dem äußeren Teil der Kabelspleißung durch einen Strukturklebstoff verbunden sind;

    jeder runde Körper (14', 14") aus zumindest einer Lage hergestellt ist, die:

    aus einem Material hergestellt ist, das mit Fasern hoher mechanischer Festigkeit verstärkt ist, die ausgewählt sind aus der Gruppe von: Kohlenstofffasern, Faserglas, Aramidfasern, Fasern, Graphen-Metallfasern und synthetischen Fasern, und außerdem

    ein Harz aufweist, das aus einer Polymermatrix, Lasten und Zusatzstoffen zum Verbinden der Fasern hoher mechanischer Stärke besteht und außerdem in der Lage ist, die Struktur des runden Körpers zu formen;

    die zumindest eine Lage dahin gehend geformt ist, die runde Struktur der runden Körper (14', 14") aufzuweisen; und

    der zylindrische Körper (14) eine Dicke aufweist, die von 0,5 mm bis 20 mm variiert.


     
    2. Verstärkungsanordnung (10) gemäß Anspruch 1, wobei dieselbe mehr als einen konzentrischen Körper (14, 15) aufweist, die aus einem Material bestehen, das mit den Fasern hoher mechanischer Stärke verstärkt ist, wobei die Körper (14, 15) in einer Radialrichtung konzentrisch angeordnet sind.
     
    3. Verstärkungsanordnung (10) gemäß einem der vorhergehenden Ansprüche, bei der Körper, der mit Fasern hoher mechanischer Stärke verstärkt ist, die Fasern umfasst, die in derselben Richtung oder in unterschiedlichen Richtungen angeordnet sind.
     
    4. Verstärkungsanordnung (10) gemäß einem der vorhergehenden Ansprüche, bei der der Körper eine Mehrzahl von Lagen eines Materials, das mit den Fasern hoher mechanischer Stärke verstärkt ist, derart angeordnet aufweist, dass die Richtung dieser Fasern zwischen den Lagen in unterschiedlichen Richtungen wechselt oder nicht, und bei der der Körper eine Dicke aufweist, die von 0,5 mm bis 20 mm variiert.
     
    5. Verstärkungsanordnung (10) gemäß Anspruch 4, bei der die Mehrzahl von Lagen (17, 18, 19) längenmäßig in der Achsenrichtung des Kabels abnimmt, während diese in einer Radialrichtung angeordnet sind, einschließlich einer letzten oberen Lage (19), die alle unteren Lagen bedeckt.
     
    6. Verstärkungsanordnung (10) gemäß Anspruch 1, bei der der Körper eine Struktur mit einer halbrunden Form umfasst, wobei jedes Halbrund mehr als eine Lage Kohlenstofffasern aufweist, die derart angeordnet sind, dass die Richtung dieser Kohlenstofffasern zwischen den Lagen wechselt, wobei diese Abschnitte auf eine radiale Weise außerhalb und einander zugewandt auf dem Verbindungsbereich des Kabels angeordnet sind und miteinander und mit dem Kabel unter Verwendung eines Strukturklebstoffs verbunden sind.
     
    7. Verstärkungsanordnung (10) gemäß einem der vorhergehenden Ansprüche, wobei dieselbe zusätzliche Verstärkungselemente wie beispielsweise Hüllen, Bewehrung oder Gitternetze aufweist, die auf eine radiale Weise derart auf dem Körper angeordnet sind, dass sie zusätzlichen Druck auf denselben ausüben.
     
    8. Ein Verfahren für die Anwendung einer Verstärkungsanordnung (10), die gemäß einem der Ansprüche 1 bis 7 definiert ist, in einer Stromkabelverbindung, wobei dasselbe die Stufen einer Vorbereitung der Oberfläche des zu verstärkenden Kabels und die Vorbereitung und Anwendung der Körper (14, 14') aufweist, die jeweils aus zumindest einer Lage eines Materials bestehen, das mit Fasern hoher mechanischer Festigkeit verstärkt ist, die aus der Gruppe von Kohlenstofffasern, Faserglas, Aramidfasern, Fasern, Graphen-Metallfasern und synthetischen Fasern ausgewählt sind.
     
    9. Ein Verfahren gemäß Anspruch 8, bei dem die erste Stufe der Vorbereitung der Oberfläche des zu verstärkenden Kabels folgende Vorgänge aufweist: Sanden der Oberfläche des Kabels, pneumatisches Reinigen, Blazing der Oberfläche und Aufbringen eines Polarisierungsmittels auf die zuvor erwähnte Oberfläche.
     
    10. Ein Verfahren gemäß Anspruch 9, bei dem die Stufe der Vorbereitung und Anwendung der Körper (14, 14'), die aus zumindest einer Lage eines Materials bestehen, das mit den Fasern hoher mechanischer Stärke verstärkt ist, die folgenden Schritte umfasst:

    a) Formen der runden Körper (14, 14'), die zumindest eine Lage des Materials aufweisen, das mit Fasern hoher mechanischer Stärke verstärkt ist, die aus der Gruppe von Kohlenstofffasern, Faserglas, Aramidfasern, Fasern, Graphen-Metallfasern und synthetischen Fasern ausgewählt sind, wobei die Fasern mit einem Harz verbunden sind, das aus einer Polymermatrix, Lasten und Zusatzstoffen besteht; wobei die runde Struktur der Körper (14, 14') ausgewählt ist aus: zwei Körpern mit einer halbrunden Form (14', 14") oder mehr als zwei Körpern mit runden Formen, so dass, wenn die Körper (14', 14") miteinander verbunden werden, der zylindrische Körper (14) gebildet wird.

    b) Platzieren der runden Körper (14, 14') auf dem Verbindungsbereich des Kabels durch die Anwendung eines mechanischen Befestigungselements.

    c) Halten dieser Abschnitte auf dem Kabel unter Verwendung einer Befestigungseinrichtung, beispielsweise von Bändern, Federn oder anderen, derart, dass der Körper der Verstärkungsanordnung gegen den Verbindungsbereich des Kabels gehalten wird.


     
    11. Ein Verfahren gemäß Anspruch 8, wobei dasselbe zusätzlich die Anwendung von unter Wärmeeinwirkung schrumpfenden Bändern und von Wärmebehandlungen bei Temperaturen von 50° bis 500° Celsius aufweist.
     


    Revendications

    1. Agencement de renforcement (10) applicable sur des raccordements de deux sections d'un câble d'alimentation, lequel câble d'alimentation est un câble électrique unique utilisé pour transmettre le courant électrique à un niveau de tension moyen, élevé ou très élevé et il peut être installé à l'intérieur d'un câble d'alimentation sous-marin, tel qu'à l'intérieur d'un câble ombilical, dans lequel chaque extrémité de câble d'alimentation comprend une extrémité de noyau conducteur interne (11, 11') en cuivre ou en aluminium avec une ou plusieurs couches polymères et métalliques concentriques qui constituent l'isolation, des blindages et des recouvrements (12, 12'), et dans lequel les raccordements des extrémités de noyau conducteur (11, 11') sont réalisés par soudage formant ainsi une zone soudée de noyaux conducteurs, caractérisé en ce que :

    l'agencement de renforcement (10) comprend un corps cylindrique (14) formé par deux corps avec une forme semi-arrondie (14', 14") ou plus de deux corps avec des formes rondes, qui sont placés ensemble et forment de manière concentrique un corps cylindrique sur la zone soudée de noyaux conducteurs du câble et sur la zone adjacente du recouvrement extérieur du câble (12, 12') ; dans lequel :

    les corps arrondis (14', 14") sont assemblés sur la partie externe de l'épissure de câble par le biais d'un adhésif structurel ;

    chaque corps rond (14', 14") est réalisé à partir d'au moins une feuille qui :

    est réalisée à partir d'un matériau renforcé avec des fibres de forte résistance mécanisme qui sont sélectionnées dans le groupe comprenant : les fibres de carbone, les fibres de verre, les fibres d'aramide, les fibres, les fibres métalliques de graphène et les fibres synthétiques, et également

    comprend une résine composée avec une matrice polymère, des charges, et des additifs pour assembler les fibres de forte résistance mécanique et également pour pouvoir former la structure du corps rond ;

    la au moins une feuille est formée pour avoir la structure ronde des corps ronds (14', 14") ; et

    le corps cylindrique (14) a une épaisseur allant de 0,5 mm à 20 mm.


     
    2. Agencement de renforcement (10) selon la revendication 1, dans lequel il comprend plus d'un corps concentrique (14, 15) composé avec un matériau renforcé avec des fibres de forte résistance mécanique, lesdits corps (14, 15) étant agencés de manière concentrique dans une direction radiale.
     
    3. Agencement de renforcement (10) selon l'une quelconque des revendications précédentes, dans lequel le corps renforcé avec des fibres de forte résistance mécanique comprend les fibres agencés dans la même direction ou dans des directions différentes.
     
    4. Agencement de renforcement (10) selon l'une quelconque des revendications précédentes, dans lequel le corps comprend une pluralité de feuilles d'un matériau renforcé avec des fibres de forte résistance mécanique agencées de sorte que la direction de ces fibres alternent dans différentes directions ou pas entre les feuilles, et dans lequel le corps a une épaisseur allant de 0,5 mm à 20 mm.
     
    5. Agencement de renforcement (10) selon la revendication 4, dans lequel la pluralité de feuilles (17, 18, 19) diminuent en longueur dans la direction axiale du câble lorsqu'elles sont agencées dans une direction radiale, comprenant une feuille supérieure finale (19) qui recouvre toutes les feuilles plus basses.
     
    6. Agencement de renforcement (10) selon la revendication 1, dans lequel le corps comprend une structure avec une forme semi-arrondie, dans lequel chaque demi-rond comprend plus d'une feuille de fibres de carbone agencées de sorte que la direction de ces fibres de carbone alternent entre les feuilles, ces sections étant agencées d'une manière radiale à l'extérieur et se faisant face sur la zone de raccordement du câble, et assemblées entre elles et au câble à l'aide d'un adhésif structurel.
     
    7. Agencement de renforcement (10) selon l'une quelconque des revendications précédentes, dans lequel il comprend des éléments de renforcement supplémentaires tels que des coques, un blindage ou une maille, agencés d'une manière radiale sur le corps de sorte qu'ils placent une pression supplémentaire sur ce dernier.
     
    8. Procédé pour l'application d'un agencement de renforcement (10) selon l'une quelconque des revendications 1 à 7 dans un joint de câble d'alimentation, dans lequel il comprend les étapes de préparation de la surface du câble à renforcer, et la préparation et l'application des corps (14, 14') composés chacun avec au moins une feuille d'un matériau renforcé avec des fibres de forte résistance mécanique qui sont sélectionnées dans le groupe comprenant les fibres de carbone, les fibres de verre, les fibres d'aramide, les fibres, les fibres métalliques de graphène et les fibres synthétiques.
     
    9. Procédé selon la revendication 8, dans lequel la première étape de préparation de la surface du câble à renforcer comprend les opérations consistant à sabler la surface du câble, nettoyer par voie pneumatique, le griffage de la surface et l'application d'un agent polarisant sur la surface mentionnée ci-dessus.
     
    10. Procédé selon la revendication 9, dans lequel l'étape de préparation et d'application des corps (14, 14') composés avec au moins une feuille de matériau renforcé avec les fibres de forte résistance mécanique comprend les étapes suivantes consistant à :

    a) former les corps ronds (14, 14') comprenant au moins une feuille du matériau renforcé avec des fibres de forte résistance mécanique qui sont sélectionnées dans le groupe comprenant les fibres de carbone, les fibres de verre, les fibres d'aramide, les fibres, les fibres métalliques de graphène et les fibres synthétiques, les fibres étant assemblées avec une résine composée d'une matrice polymère, de charges et d'additifs ; dans lequel ladite structure ronde des corps (14, 14') est choisie parmi :

    deux corps avec une forme semi-arrondie (14', 14") ou plus de deux corps avec des formes rondes, de sorte que lorsque les corps (14', 14") sont assemblés ensemble, forment le corps cylindrique (14),

    b) placer les corps ronds (14, 14') sur la zone de raccordement du câble par le biais de l'application d'un élément de fixation mécanique,

    c) supporter ces sections sur le câble à l'aide de moyens de fixation tels que des bandes, des ressorts ou autres, de sorte que le corps de l'agencement de renforcement est maintenu contre la zone de raccordement du câble.


     
    11. Procédé selon la revendication 8, dans lequel il comprend, en outre, l'application de bandes thermorétractables et de traitements thermiques à des températures de 50° à 500° Celsius.
     




    Drawing














    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description