(19)
(11)EP 3 089 401 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
22.07.2020 Bulletin 2020/30

(21)Application number: 15748885.9

(22)Date of filing:  15.01.2015
(51)International Patent Classification (IPC): 
H04L 12/28(2006.01)
H04L 12/43(2006.01)
H04L 29/08(2006.01)
H04L 12/423(2006.01)
H04L 12/851(2013.01)
H04L 12/42(2006.01)
H04L 12/403(2006.01)
H04L 7/00(2006.01)
H04L 12/805(2013.01)
H04L 12/911(2013.01)
(86)International application number:
PCT/JP2015/050899
(87)International publication number:
WO 2015/122232 (20.08.2015 Gazette  2015/33)

(54)

CONTROL APPARATUS, DEVELOPMENT SUPPORT APPARATUSES, CONTROL METHOD

STEUERUNGSVORRICHTUNG, ENTWICKLUNGSUNTERSTÜTZUNGSVORRICHTUNGEN UND STEUERUNGSVERFAHREN

APPAREIL DE COMMANDE, APPAREILS D'AIDE AU DÉVELOPPEMENT ET PROCÉDÉ DE COMMANDE


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 14.02.2014 JP 2014026821

(43)Date of publication of application:
02.11.2016 Bulletin 2016/44

(73)Proprietor: Omron Corporation
Kyoto-shi, Kyoto 600-8530 (JP)

(72)Inventor:
  • KIRIBUCHI, Takeshi
    Kyoto-shi Kyoto 600-8530 (JP)

(74)Representative: Horn Kleimann Waitzhofer Patentanwälte PartG mbB 
Ganghoferstrasse 29a
80339 München
80339 München (DE)


(56)References cited: : 
JP-A- 2006 319 381
JP-A- 2011 512 094
US-A1- 2011 019 698
JP-A- 2010 287 959
US-A1- 2008 013 563
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    FIELD



    [0001] The present invention relates to a control system for controlling a target, a development support apparatus and a controller for the control system, and a control method.

    BACKGROUND



    [0002] Machines and equipment used at many production sites are typically controlled by a control system including, for example, programmable logic controllers (PLCs). The control system uses remote devices installed at separate positions in the field, and provides command values to these remote devices and collect field information from each remote device. The command values and the field information are transmitted with a field network.

    [0003] The control system includes remote devices with different capabilities. For these remote devices, command values may be updated in periods optimum for their capabilities.

    [0004] Techniques for transmitting data with networks have been developed to optimize data sequences in the order of priorities in correspondence with bandwidths (e.g., Japanese Unexamined Patent Application Publication No. 2012-094944, or Patent Literature 1). Further, Patent Literature 2 discloses a clock synchronization system for a communication network comprising a clock master side device and a clock slave side device. At reception of the synchronization information transmitted from the clock master side device, the clock slave side device associates the synchronization information with the timestamp information at the time of detection of the synchronization information. Based on the timestamp information associated with the currently received synchronization information, the timestamp information associated with at least one synchronization information up to the synchronization information received last time and transmission period information of the synchronization information, a calculation/decision unit decides whether or not a predetermined condition is met. When the condition is met, the calculation/decision unit supplies the currently received synchronization information to a clock synchronization technique function unit, which performs clock correction using the synchronization information. When the condition is not met, the calculation/decision unit discards the synchronization information currently received.

    CITATION LIST


    PATENT LITERATURE



    [0005] 

    Patent Literature 1: Japanese Unexamined Patent Application Publication No. 2012-094944

    Patent Literature 2: US 2011/0019698 describes detecting if a predetermined condition regarding the transmission period of the synchronization information is met; Patent Literature 3: US 2008/013563 describes a reception device for receiving multicast data of a first multicast group with respect to a first channel; a storage device for storing the received multicast data of the first multicast group; a delaying device for reading the multicast data from the storage device, and delaying the multicast data by a predetermined time.


    SUMMARY


    TECHNICAL PROBLEM



    [0006] The communication bandwidth controller described in Japanese Unexamined Patent Application Publication No. 2012-094944 (Patent Literature 1) controls bandwidths precisely in accordance with the priority of transmission requests in point-to-multipoint communications between a communication driver and tasks. In contrast, the control system described above uses a network with predefined control periods and predefined bandwidths, and cannot use the technical idea of dynamically changing the bandwidth for every transmission of data.

    [0007] In response to this issue, the present invention is described in the appended claims.

    SOLUTION TO PROBLEM



    [0008] The solution to the technical problem is as defined by the appended claims.

    GENERAL DESCRIPTION



    [0009] In some embodiments, the assignment unit determines packets to which the first data and the second data are to be assigned in a manner not to exceed a maximum permissible data size of each packet.

    [0010] In some embodiments, the assignment unit sequentially determines, for a plurality of data sets to be transmitted each having a set transmission period, an assignment setting for assigning the data sets to be transmitted to respective packets in the order of length of the transmission periods of the data sets, starting with the data set with the shortest transmission period.

    [0011] In some embodiments, the second data includes a plurality of data elements. The assignment unit determines an assignment setting for assigning the second data to packets to assign the plurality of data elements included in the second data to the same packet when the second data is set to be transmitted synchronously, and to assign the plurality of data elements included in the second data to a plurality of packets when the second data is not set to be transmitted synchronously.

    [0012] In some embodiments, the assignment unit determines, among the plurality of data sets to be transmitted, the assignment setting for assigning data sets that are set to be transmitted synchronously to packets with a higher priority than for other data sets.

    [0013] In some embodiments, the assignment unit includes a unit that notifies an occupied state of each packet by data assigned to each packet.

    [0014] In some embodiments, the assignment unit includes a unit that provides a prompt to change predetermined communication parameters including the control period, the first transmission period, and the second transmission period when being unable to determine assignment setting of the first data and the second data in accordance with the predetermined communication parameters.

    [0015] Another aspect of the present invention provides a development support apparatus for a control system that controls a control target. The control system includes a master device and a plurality of slave devices connected to the master device with a network. The master device transmits packets over the network in every predetermined control period. The plurality of slave devices sequentially transfer packets transmitted from the master device. The development support apparatus includes a unit that receives, when the master device repeatedly executes a program including input and output processes performed in the slave devices to calculate first data and second data, predetermined communication parameters including a first transmission period that is set to an integer multiple of the control period for the first data and a second transmission period that is set to an integer multiple of the control period for the second data and longer than the first transmission period, and an assignment determination unit that determines assignment setting to assign the first data to a packet in every first transmission period and assigns the second data to a packet in every second transmission period.

    [0016] A still another aspect of the present invention provides a controller connected to a plurality of slave devices with a network. The controller transmits packets over the network in every one or more predetermined control periods. The plurality of slave devices sequentially transfer packets transmitted from the controller.

    [0017] The controller includes an execution unit that repeatedly executes a program including input and output processes performed in the slave devices to calculate first data and second data, and an assignment unit that assigns, in accordance with a first transmission period that is set to an integer multiple of the control period for the first data and a second transmission period that is set to an integer multiple of the control period for the second data and longer than the first transmission period, the first data to a packet in every first transmission period and the second data to a packet in every second transmission period. The controller stores each of the first data and the second data in the packet together with information indicating a slave device that is a transmission destination of the packet. Each of the plurality of slave devices extracts data intended for the slave device from data included in a packet transmitted from the controller.

    [0018] A still another aspect of the present invention provides a development support apparatus for a control system that controls a control target. The control system includes a master device and a plurality of slave devices connected to the master device with a network. The master device transmits packets over the network in every one or more predetermined control periods. The plurality of slave devices sequentially transfer packets transmitted from the master device. The master device includes an execution unit that repeatedly executes a program including input and output processes performed in the slave devices to calculate first data and second data. The development support apparatus determines assignment setting to assign the first data to a packet in every first transmission period and the second data to a packet in every second transmission period in accordance with a first transmission period that is set to an integer multiple of the control period for the first data and a second transmission period that is set to an integer multiple of the control period for the second data and longer than the first transmission period.

    [0019] A still another aspect of the present invention provides a control method implemented in a control system that controls a control target. The control system includes a master device and a plurality of slave devices connected to the master device with a network. The control method includes causing the master device to transmit packets over the network in every one or more predetermined control periods, and causing the plurality of slave devices to sequentially transfer packets transmitted from the master device, causing the master device to repeatedly execute a program including input and output processes performed in the slave devices to calculate first data and second data, assigning, in accordance with a first transmission period that is set to an integer multiple of the control period for the first data and a second transmission period that is set to an integer multiple of the control period for the second data and longer than the first transmission period, the first data to a packet in every first transmission period and the second data to a packet in every second transmission period, causing the master device to respectively store the first data and the second data in the packets, together with information indicating a slave device that is a transmission destination of the packet, and causing each of the plurality of slave devices to extract data intended for the slave device from data included in a packet transmitted from the master device.

    ADVANTAGEOUS EFFECTS



    [0020] The control system according to the aspect of the present invention enables data transmission in periods optimum for each slave device.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0021] 

    Fig. 1 is a schematic diagram showing the overall configuration of a PLC system according to one embodiment of the present invention.

    Fig. 2 is a schematic diagram of the hardware configuration of a CPU included in the PLC system according to the present embodiment.

    Fig. 3 is a schematic diagram showing the hardware configuration of a remote device included in the PLC system according to the present embodiment.

    Figs. 4A and 4B are diagrams describing the overall processing performed by the PLC system according to the present embodiment.

    Fig. 5 is a diagram describing a packet generation process performed in the PLC system according to the present embodiment.

    Fig. 6 is a table showing communication parameters used in the PLC system according to the present embodiment.

    Figs. 7A to 7C are diagrams describing a packet generation process performed in accordance with the communication parameters shown in Fig. 6 in one example.

    Fig. 8 is a table showing the total occupied time and the occupied ratio of each packet when the output information set shown in Fig. 7C is assigned to packets.

    Fig. 9 is a flowchart showing the procedure used by the PLC system according to the present embodiment.

    Figs. 10A to 10C are diagrams showing examples of the data structure of a packet used in the PLC system according to the present embodiment.

    Fig. 11 is a schematic diagram showing the overall configuration of a PLC system according to a modification of the embodiment.


    DETAILED DESCRIPTION



    [0022] Embodiments of the present invention will now be described with reference to the drawings. The same or corresponding components in the figures are given the same reference numerals, and will not be described redundantly.

    [0023] A control system according to the present embodiment mainly includes programmable logic controllers (PLCs). However, the control system may not be such a PLC system, but may mainly include various industrial computers. The system may further use a new processing device (computation device) that may emerge through technological advancements.

    A. Overall Configuration of the PLC System



    [0024] The overall configuration of the PLC system according to the present embodiment will now be described. Fig. 1 is a schematic diagram showing the overall configuration of the PLC system 1 according to the present embodiment.

    [0025] Referring now to Fig. 1, the PLC system 1 is a control system for controlling targets, and includes a main processing device 2 and a plurality of remote devices 40_1, 40_2, and 40_3, and to 40_N (these units may hereafter be collectively referred to as remote devices 40). The main processing device 2 and the remote devices 40 are controllers constituting at least a portion of the PLC system 1, and are connected to each other with a field network 4.

    [0026] The communications with the field network 4 are centrally controlled by the main processing device 2. More specifically, the main processing device 2 transmits data, which is to be sequentially transmitted on the field network 4, at predetermined timings or in accordance with predetermined rules. The data to be sequentially transmitted on the field network 4 is also referred to as packets. The main processing device 2 can also be referred to as a master device, and each of the remote devices 40_1, 40_2, and 40_3 to 40_N can also be referred to as a slave device. In other words, the PLC system 1 as a control system includes the main processing device 2 (master device), and the plurality of remote devices 40 (slave devices) connected to the main processing device 2 (master device) with the field network 4.

    [0027] The main processing device 2 executes programs (including user programs and system programs as described later) for controlling control targets to implement processes of, for example, collecting input signals from the remote devices 40 (hereinafter also referred to as field information), performing control computations based on the collected field information, and outputting command values calculated through such computations to the remote devices 40.

    [0028] The main processing device 2 includes a CPU 10, one or more IO units 20, and a power supply unit 30 as its hardware components. The CPU 10 and the IO units 20 are connected to each other with an internal bus (not shown) to allow data communications between them. The power supply unit 30 supplies power with an appropriate voltage to the CPU 10 and the IO units 20.

    [0029] The CPU 10 includes a computation unit for executing programs to control a control target, and a communication processing unit 110 for controlling communications with the remote devices 40 via the field network 4.

    [0030] The CPU 10 may be connected to a development support apparatus 500, which can install various programs, debug the programs, and monitor the execution status of the programs. The development support apparatus 500 is typically implemented by executing a support program on a general-purpose computer. The support program may have capabilities of simulatively executing various programs by emulating the CPU 10.

    [0031] Each remote device 40 receives field information from an external switch or sensor, and transmits the received field information to the main processing device 2 via the field network 4. The remote device 40 also outputs a command value received from the main processing device 2 via the field network 4 to an external relay or actuator. The remote device 40 may also operate independently in accordance with the command value received via the field network 4. For example, the remote device 40 may be a simple IO unit having no computation function, an IO unit having a computation function, or a device including an actuator, such as a servo driver.

    [0032] The remote devices 40 in Fig. 1 are servo drivers. Servo motors 42_1, 42_2, and 42_3 to 42_N (these motors may hereafter be collectively referred to as servo motors 42) are connected to the remote devices 40_1, 40_2, and 40_3 to 40_N. Each servo motor is controlled through the corresponding remote device in accordance with an instruction from the main processing device 2.

    [0033] The communication processing unit 110 included in the CPU 10 manages cyclic transmission of data sequences (packets) including data handled by the main processing device 2 (master device) and the remote devices 40 (slave devices) on the field network 4. A packet is transmitted in every one or more predetermined control periods. More specifically, the main processing device 2 (master device) transmits a packet onto the field network 4 in every one or more predetermined control periods. Each remote device 40 (slave device) sequentially transfers packets transmitted from the main processing device 2 (master device).

    [0034] The control period herein refers to the processing time of a user program. The control period may be a predetermined fixed period, or may be changed dynamically in accordance with the volume of the user program to be executed.

    [0035] Although the field network schematically shown in Fig. 1 has a ring topology, the field network may be a daisy-chain network. The field network in the present embodiment may have any topology that can allow transmission of a data sequence (packet) in every one or more predetermined control periods.

    B. Hardware Configuration of CPU 10



    [0036] The hardware configuration of the CPU 10 included in the PLC system 1 according to the present embodiment will now be described. Fig. 2 is a schematic diagram showing the hardware configuration of the CPU 10 included in the PLC system 1 according to the present embodiment.

    [0037] As shown in Fig. 2, the CPU 10 includes a processor 100, which is a computation unit, a main memory 102, a non-volatile memory 104, and an internal bus controller 108, in addition to the communication processing unit 110. These components are connected to one another with an internal bus 109 to allow data communications between them.

    [0038] The processor 100 executes programs associated with control. The processor 100 reads a program as appropriate from the non-volatile memory 104 or other storage, and expands the program in the main memory 102 and executes the program. The non-volatile memory 104 stores a user program 105 and a system program 106 as programs associated with control. Data associated with programs executed by the processor 100 is stored in a work area 103 defined in the main memory 102.

    [0039] The internal bus controller 108 is connected to an IO unit 20 with the internal bus (not shown), and passes data (field information and command values) between the processor 100 and the IO unit 20.

    [0040] The communication processing unit 110 is connected to the remote device 40 via the field network 4, and passes data (field information and command values) between the CPU 10 and the remote device 40. More specifically, the communication processing unit 110 includes a communication controller 112, a shared memory 114, a transmission buffer 120, a transmission circuit 122, a reception buffer 130, and a reception circuit 132.

    [0041] The transmission buffer 120 and the transmission circuit 122 perform processing associated with transmission of frames from the communication processing unit 110 to an external device. The reception buffer 130 and the reception circuit 132 perform processing associated with transmission of frames from the external device to the communication processing unit 110. The communication processing unit 110 includes the shared memory 114. The processor 100 writes a calculated command value into the shared memory 114, and reads field information from the shared memory 114. In other words, the command value written in the shared memory 114 is transferred to the transmission buffer 120, and is then transmitted from the transmission buffer 120 to the remote device 40. The field information obtained from the remote device 40 is received by the reception buffer 130, and is then transferred to the shared memory 114.

    [0042] The processing in the communication processing unit 110 is executed by the communication controller 112. More specifically, the communication controller 112 may generate and transmit packets in accordance with an instruction from the processor 100, and may extract information from received packets as appropriate.

    [0043] Some or all components of the communication processing unit 110 may be implemented using software. Some or all components of the communication processing unit 110 may be implemented using hardware circuits such as application-specific integrated circuits (ASICs) or field programmable gate arrays (FPGAs).

    C. Hardware Configuration of Remote Device 40



    [0044] The hardware configuration of each remote device 40 included in the PLC system 1 according to the present embodiment will now be described. Fig. 3 is a schematic diagram showing the hardware configuration of the remote device 40 included in the PLC system 1 according to the present embodiment.

    [0045] Although the remote device 40 according to the present embodiment may have various structures, the remote device 40 with the structure shown in Fig. 3 has computation capabilities and IO capabilities. As shown in Fig. 3, the remote device 40 includes a computation processing unit 400, an input circuit 402, an output circuit 404, and a communication processing unit 410.

    [0046] The computation processing unit 400 performs predetermined processing based on a packet transmitted via the field network 4, and transmits the resultant packet via the field network 4.

    [0047] The input circuit 402 receives a signal (field information) input from the field, and outputs the signal to the computation processing unit 400. The output circuit outputs a signal to the field in accordance with a command value provided from the computation processing unit 400.

    [0048] The communication processing unit 410 is connected to the CPU 10 via the field network 4, and passes data (field information and command values) between the remote device 40 and the CPU 10. More specifically, the communication processing unit 410 includes a communication controller 412, a shared memory 414, a transmission buffer 420, a transmission circuit 422, a reception buffer 430, and a reception circuit 432. These components have the same functions as the communication controller 112, the shared memory 114, the transmission buffer 120, the transmission circuit 122, the reception buffer 130, and the reception circuit 132 described above (all shown in Fig. 2), and thus will not be described in detail. The processing of the communication processing unit 410 included in the slave device performed when receiving a packet and when transmitting a packet differs from the processing performed by the communication processing unit 110 included in the CPU 10, which is included in the master device.

    [0049] Although some or all components of the remote device 40 (the computation processing unit 400, the input circuit 402, the output circuit 404, and the communication processing unit 410) may be implemented using software, some or all components of the remote device 40 may be implemented using hardware circuits such as ASICs or FPGAs.

    D. Field Network 4



    [0050] A communication process performed by the field network 4 will now be described.

    [0051] The field network 4 may use a communication scheme that allows packet transmission in every one or more predetermined control periods (communication in real time). The field network 4 may be industrial EtherNet (registered trademark). Variants of industrial Ethernet (registered trademark) include EtherCAT (registered trademark), Profinet IRT, MECHATROLINK (registered trademark)-III, Powerlink, SERCOS (registered trademark)-III, and CIP Motion. A field network other than industrial Ethernet (registered trademark) may be used. For example, DeviceNet or CompoNet (registered trademark) may be used.

    E. Overall Processing



    [0052] The overall processing performed in the PLC system 1 according to the present embodiment will now be described. Figs. 4A and 4B are diagrams describing the overall processing performed by the PLC system 1 according to the present embodiment. Fig. 4A shows the data structure of a packet with a related technique, and Fig. 4B shows the data structure of a packet according to the present embodiment.

    [0053] In a typical field network, as shown in Fig. 4A, each packet stores the same type of data. In other words, each packet has the same data structure. The data set of the same type is transmitted in every one or more predetermined control periods. In the example shown in Fig. 4A, each packet contains data to be transmitted to the slaves 1 to 6.

    [0054] For multi-axis control using the plurality of servo motors 42 shown in Fig. 1, for example, each packet stores command values for multiple axes. This increases the data length of the packet. A control period T1 (control period used in the remote device 40) increases in proportion to the number of axes used for a control target.

    [0055] In reality, some axes may need a fast response, whereas other axes may not need a fast response. However, a system involving many axes typically transmits command values to axes that may not need a fast response in substantially the same control period as for axes that need a faster response. This can place limitations on axes that need a fast response.

    [0056] The structure including a relatively large number of axes shown Fig. 4A transfers each single packet containing a set of command values intended for all the axes. The control period T1 has a length proportional to the number of axes. In other words, each servo motor 42 does not allow a response in a period shorter than the control period T1.

    [0057] In contrast, the control period in the present embodiment is substantially variable in accordance with the communication speed requested in each remote device 40. In other words, the structure for controlling the plurality of servo motors 42 can set a control period for each axis in accordance with a requested response time, and generates packets in accordance with the set control period. This achieves the variably set control periods.

    [0058] In the example shown in Fig. 4B, the control period T2 is for each packet. In this example, the control period T2 is set for the slaves 1 and 2, whereas the control period T2 × 2 is set for the slaves 3 to 6. Although every packet contains command values for the slaves 1 and 2, only alternate packets contain command values for the slaves 3 to 6. For example, odd-numbered packets contain command values for the slaves 3 and 4, whereas even-numbered packets contain command values for the slaves 5 and 6.

    [0059] Such packets allow the slaves 1 and 2 to use the same control period as the control period T2, and the slaves 3 to 6 to use the control period twice the length of the control period T2. In the example shown in Fig. 4B, communication for an axis that needs a fast response is performed in every control period T, whereas communication for an axis that may not need a fast response is performed once in every multiple control periods. This control reduces the data size of a packet per communication, and shortens the control period further and achieves a faster response.

    [0060] As described below, the data structure of each packet is changed dynamically in every control period in accordance with the number of slave devices included in the control system and the control period requested in each slave device in the present embodiment. This achieves intended control.

    F. Packet Generation Process



    [0061] A packet generation process performed in the PLC system 1 according to the present embodiment will now be described. Fig. 5 is a diagram describing the packet generation process performed in the PLC system 1 according to the present embodiment.

    [0062] Referring now to Fig. 5, the user program 105 contains a plurality of processes A, B, C, and D, each of which is independently performed repeatedly in predetermined control periods. The processes A, B, C, and D have transmission periods As, Bs, Cs, and Ds, respectively. The processes A, B, C, and D receive input field information collected from the remote devices 40 for example. The processes A, B, C, and D are performed to yield output information sets A(n), B(n), C(n), or D(n) (n is an integer equal to or greater than 1). For ease of explanation, the output information sets are defined in an array, but may be stored in any arrangement or any format. The output information sets A(n), B(n), C(n), and D(n) are stored in the work area 103 defined in the main memory 102, and are sequentially updated in control periods set for their corresponding processes. In other words, the main processing device 2 (master device) includes the processor 100 (execution unit) that repeatedly executes the user program 105 including input and output processes in the remote devices 40 (slave devices). The processor 100 (execution unit) executes the user program 105 to calculate data of multiple types.

    [0063] The output information sets stored in the work area 103 are selected in accordance with predefined assignment setting 150. Packets Nt1, Nt2, Nt3, Nt4, ... are generated sequentially. In the example shown in Fig. 5, the output information set A(n) calculated through the process A is assigned to each generated packet. In other words, the output information set A(n) is transmitted in every packet control period. In contrast, the communication frequency (control period/transmission period) of each of the output information sets B(n), C(n), and D(n) is set to 1/3 of the communication frequency of the output information set A(n). In this case, the output information sets B(n), C(n), and D(n) are transmitted once in every three control periods. In other words, the output information sets B(n), C(n), or D(n) are updated in every period with a length three times the length of the packet control period.

    [0064] In this manner, the communication frequency (period) for data provided to the remote devices 40 is optimized in accordance with the type of the processing and/or the details of the output information sets to avoid cases in which the data size of each packet increases excessively and the control period cannot be shortened. In other words, the communication bandwidth prepared in the field network 4 can be used effectively. For the system including many remote devices 40, this structure can provide remote devices 40 that may need a fast response with command values in shorter control periods.

    [0065] In the above example, the output information sets A(n), B(n), C(n), and D(n) calculated through the processing included in the user program 105 are transmitted from the main processing device 2 to the plurality of remote devices 40. The above control is also applicable to the processing in which the main processing device 2 collects field information from each of the remote devices 40. To collect field information from each remote device 40, the main processing device 2 transmits a command for obtaining field information (hereinafter also referred to as a data refresh command) to each target remote device 40. The data refresh command is transmitted in an appropriate control period in accordance with the type of the processing and/or necessary field information as described above. This structure effectively uses the communication bandwidth prepared in the field network 4, and allows data communications to satisfy the need for a fast response.

    G. Specific Examples of Packet Assignment



    [0066] A packet assignment process will now be described based on specific examples. Typically, the processor 100 in the CPU 10 assigns output information sets for transmission targets to packets, or in other words, determines the assignment setting 150. This processing may be performed in an off-line environment in, for example, the development support apparatus 500 connected to the CPU 10.

    g1: Communication Parameters



    [0067] Fig. 6 is a table showing communication parameters used in the PLC system 1 according to the present embodiment. Referring now to Fig. 6, for example, the processes A, B, C, and D are performed repeatedly. The transmission periods As, Bs, Cs, and Ds, which are the execution periods of the corresponding processes, are 250, 500, 1000, and 1000 µsec, respectively.

    [0068] The processes A, B, C, and D yield the output information sets A(n), B(n), C(n), and D(n), respectively. These output information sets contain the numbers of data elements, or namely, Ac, Bc, Cc, and Dc, which are 3, 4, 4, and 1, respectively. More specifically, the output information set A(n) includes three data elements A(1), A(2), and A(3). The output information set B(n) includes four data elements B(1), B(2), B(3), and B(4). The output information set C(n) includes four data elements C(1), C(2), C(3), and C(4). The output information set D(n) includes one data element D(1).

    [0069] The packet occupied times Ap, Bp, Cp, and Dp, which respectively correspond to the output information sets A(n), B(n), C(n), and D(n), indicate the occupied times to be used when the corresponding data elements are assigned to the packets. The packet occupied time can vary in accordance with the length or the type of the corresponding data element. More specifically, the packet occupied time indicates the data size of the corresponding data element. The control period Tc indicates the maximum transmission data size per packet.

    [0070] The packet occupied time may not be used but the data size of each data element may be directly used for evaluation. In other words, the data size that can be assigned to each packet (maximum data size) may be determined in advance using the control period Tc, and the assignment setting may then be determined using the data size of each data element to be assigned.

    [0071] In the example shown in Fig. 6, the packet occupied times Ap and Dp for the output information sets A(n) and D(n) each are 30 µsec, whereas the packet occupied times Bp and Cp for the output information sets B(n) and C(n) each are 35 µsec.

    [0072] The control period Tc is a period for generating a packet. The communication frequencies Af, Bf, Cf, and Df for the processes A, B, C, and D are values each indicating the ratio occupied by the corresponding output information set to be assigned to packets using the control period Tc as a reference. For example, the communication frequency Af for the process A is 0.5, indicating that the corresponding output information set A(n) is copied into one of every two packets to be transmitted. The communication frequency Bf for the process B is 0.25, indicating that the corresponding output information set B(n) is copied into one of every four packets to be transmitted. The communication frequencies Cf and Df for the processes C and D are both 0.125, indicating that the corresponding output information sets C(n) and D(n) each are copied into one of every eight packets to be transmitted. Thus, the data elements need to be assigned to packets to set the transmission period of the output information set A(n) to the control period Tc × 2, the transmission period of the output information set B(n) to the control period Tc × 4, and the transmission period of each of the output information sets C(n) and D(n) to the control period Tc × 8.

    [0073] Among the communication parameters shown in Fig. 6, the synchronization (sync) indicates whether the data set corresponding to the output information set needs to be transmitted entirely in the same packet. For example, the output information set A(n) and the output information set D(n) each have the sync setting. In this case, the data set corresponding to each of these output information sets is entirely assigned to the same packet. In other words, the data set corresponding to each of these output information sets is to be transmitted in synchronization. In contrast, the output information sets B(n) and C(n) each have no sync setting. For each of these output information sets B(n) and C(n), different parts of the corresponding data set may be assigned to different packets. For example, motion control using three axes may have commands for different axes to be updated simultaneously. The output information used by this application may need synchronization. In contrast, the output information used independently in control may not need updating at the same timing. Such information thus has no sync setting.

    g2: Packet Generation Process



    [0074] Figs. 7A to 7C are diagrams describing a packet generation process performed in accordance with the communication parameters shown in Fig. 6 in one example. Referring now to Figs. 7A to 7C, the assignment setting in accordance with the communication parameters shown in Fig. 6 will now be described.

    [0075] When the highest communication frequency (the control period/the shortest transmission period) > 1, the current control period cannot achieve intended control. In this case, the transmission period, the packet occupied time, the control period, or other parameters need to be changed.

    [0076] With the communication parameters shown in Fig. 6, the assignment setting is first determined to assign, with a higher priority, an output information set having a higher requested communication frequency (with a shorter requested transmission period). When one or more output information sets need synchronization, such output information sets with the sync setting are assigned with a higher priority.

    [0077] With the communication parameters shown in Fig. 6, the output information sets A(n) and D(n) have the sync setting. Among these output information sets with the sync setting, the output information set A(n) has a higher communication frequency. In this case, the assignment setting is determined to assign the entire data set corresponding to the output information set A(n), which needs synchronization and has the highest communication frequency, to a packet with a frequency of once every reciprocal of the communication frequency Af (= the control period Tc/the transmission period). In the example shown in Fig. 6, the communication frequency of the output information set A(n) is 0.5, and thus the output information set A(n) is assigned to a packet once every two control periods Tc. In other words, the three data elements A(1), A(2), and A(3) included in the output information set A(n) are assigned to a single data packet.

    [0078] The assignment is also optimized to prevent the total occupied time of each packet from exceeding the control period Tc when the data elements are assigned to each packet.

    [0079] Fig. 7A shows an example in which the three data elements A(1), A(2), and A(3) included in the output information set A(n) are assigned to each of the odd-numbered packets, which are packets Nt1, Nt3, Nt5, Nt7, Nt9, Nt11, Nt13, ....

    [0080] In the state shown in Fig. 7A, the total occupied time of each odd-numbered packet occupied by the output information set A(n) is the packet occupied time Ap × the number of data elements Ac = 90 µsec. This satisfies the condition: the packet occupied time Ap × the number of data elements Ac < the control period Tc (125 µsec).

    [0081] Second, the assignment setting is determined to assign the entire data set corresponding to the other output information set D(n) with the sync setting to a packet with a frequency of once every reciprocal of the communication frequency Df. The communication frequency of the output information set Ds(n) is 0.125, and thus the output information set D(n) is assigned to a packet once every eight control periods Tc. In the state shown in Fig. 7A, the odd-numbered packets still have space. In this example, the single data element D(1) included in the output information set D(n) is assigned to each of the packets Nt1, Nt9, ....

    [0082] In this state, the total packet occupied time of each of the first packet, the ninth packet, the seventeenth packet, ... is the packet occupied time Ap × the number of data elements Ac + the packet occupied time Dp × the number of data elements Dc = 120 µsec. This satisfies the condition for the control period Tc (125 µsec).

    [0083] If the condition for the total occupied time is not satisfied after the output information sets with the sync setting are assigned to packets in the manner described above, the transmission period, the packet occupied time, the control period, and other parameters need to be changed.

    [0084] As described above, the main processing device 2 (master device) determines the assignment setting in accordance with the first transmission period that is set to an integer multiple (×2) of the control period Tc for the output information set A(n) (first data), and the second transmission period that is set to an integer multiple (×8) of the control period Tc for the output information set D(n) (second data) and longer than the first transmission period. The assignment setting is determined to assign, in every first transmission period, the output information set A(n) (first data) to a packet transmitted in every control period, and assign, in every second transmission period, the output information set D(n) (second data) to a packet transmitted in every control period Tc1 to prevent the data size of each packet from exceeding its maximum permissible data size (control period Tc). The packet assignment of multiple data sets to be transmitted with the set transmission periods is performed in the order of in the order of length of the transmission periods of the data sets, starting with the data set with the shortest transmission period.

    [0085] Subsequently, the output information sets that need no synchronization are sequentially assigned to packets in the order of higher communication frequencies. With the communication parameters shown in Fig. 6, the assignment setting is determined to assign data elements B(1), B(2), B(3), and B(4) included in the output information set B(n), which has no sync setting and has the highest communication frequency with a frequency of once every reciprocal of the communication frequency Bf (= the control period Tc/the transmission period). The data elements may be assigned to different packets. The assignment is performed to satisfy the two conditions: the resultant assigned frequency will be a specified value; and the total packet occupied time of each packet does not exceed the control period. In other words, the data elements included in the output information set B are sequentially assigned to prevent the occupied ratio of each packet (the total packet occupied time/the control period Tc) from exceeding 1. The output information set B needs no synchronization. Thus, all the data elements may not be assigned to the same packet to achieve the requested communication frequency.

    [0086] In the state shown in Fig. 7A, when, for example, the data element B(1) is assigned to the packet Nt1, the total packet occupied time is the packet occupied time Ap × the number of data elements Ac + the packet occupied time Dp × the number of data elements Dc + the packet occupied time Bp × (the number of data elements Bc - 3) = 155 µsec > the control period Tc. This does not satisfy the condition. In this case, the data element B(1) is assigned to the next packet Nt2.

    [0087] In the state shown in Fig. 7B, all the data elements B(1), B(2), B(3), and B(4) included in the output information set B(n) have been assigned. In this state, the data elements B(1), B(2), and B(3) are assigned to each of the packets Nt2, Nt6, Nt10, ....

    [0088] In the state shown in Fig. 7B, the total occupied time of each of the second packet, the sixth packet, the tenth packet, ... is the packet occupied time Bp × (the number of data elements Bc - 1) = 105 µsec. This satisfies the condition: the packet occupied time Bp × (the number of data elements Bc - 1) < the control period Tc (125 µsec).

    [0089] In this case, the packet occupied time Bp × the number of data elements Bc = 140 µsec > the control period Tc (125 µsec). Thus, the data element B(4) cannot be assigned to the same packet Nt2 as the packet to which the data elements B(1), B(2), and B(3) are assigned. Further, the total packet occupied time of the odd-numbered packet Nt3 is near its limiting value. In this case, the data element B(4) is inevitably assigned to the packet Nt4. In the same manner, the data element B(4) is assigned to each of the packets Nt4, Nt8, and Nt12, ....

    [0090] Subsequently, the assignment setting is determined for the data elements C(1), C(2), C(3), and C(4) included in the output information set C(n). Each of the data elements C(1), C(2), C(3), and C(4) is assigned with a frequency of once every reciprocal of the communication frequency Cf (= the control period Tc/the transmission period). The data elements may be assigned to different packets. The assignment is performed to satisfy the two conditions: the resultant assigned frequency will be a specified value; and the total packet occupied time of each packet does not exceed the control period. In other words, the data elements included in the output information set C are sequentially assigned to prevent the occupied ratio of each packet (the total packet occupied time/the control period Tc) from exceeding 1. The output information set C needs no synchronization. Thus, all the data elements of the output information set C may not be assigned to the same packet to achieve the requested communication frequency.

    [0091] In the state shown in Fig. 7B, the total occupied time of each of the packets Nt1, Nt2, and Nt3 is near its limiting value. In this case, the output information set C(n) is inevitably assigned to the packet Nt4. When two data elements of the output information set C(n) are to assigned, the packet occupied time Bp × (the number of data elements Bc - 3) + the packet occupied time Cp × (the number of data elements Cc - 2) = 105 µsec < the control period Tc. In contrast, when three data elements of the output information set C(n) are to be assigned, the packet occupied time Bp × the number of data elements Bc + the packet occupied time Cp × (the number of data elements Cc - 1) = 140 µsec > the control period Tc. This allows assignment of only two data elements.

    [0092] The total occupied time of each of the packets Nt5, Nt6, and Nt7 is near its limiting value. Thus, the remaining data elements included in the output information set C(n) are assigned to the packet Nt8. For the packet Nt8, the packet occupied time Bp × (the number of data elements Bc - 3) + the packet occupied time Cp × (the number of data elements Cc - 2) = 105 µsec < the control period Tc.

    [0093] In the state shown in Fig. 7C, all the data elements included in the output information sets A(n), B(n), C(n), and D(n) have been assigned. This assignment state is defined by the assignment setting 150 (Fig. 5).

    [0094] If the condition for the total occupied time of each packet is not satisfied after any one of the output information sets that need no synchronization is assigned in the manner described above, the transmission period, the packet occupied time, the control period, and other parameters need to be changed.

    [0095] Fig. 8 is a table showing the total occupied time and the occupied ratio when the output information sets shown in Fig. 7C are assigned to packets. As shown in Fig. 8, the total packet occupied time of any packet does not exceed the control period Tc (125 µsec). As a result, the occupied ratio of each packet is less than 1.

    [0096] As described above, some applications may set whether a plurality of data elements included in an output information set need synchronization. For an output information set including a plurality of data elements, the assignment setting is determined to assign the plurality of data elements included in the output information set to the same packet (to a single packet or to a common packet) when the output information set has the sync setting. When the output information set has no sync setting and the plurality of data elements included in the output information set cannot be assigned to the same packet, the assignment setting is determined to assign the plurality of data elements to a plurality of packets. Among a plurality of transmission target output information sets, output information sets within the sync transmission setting are assigned to packets with a higher priority than other data.

    [0097] With the procedure described above, each output information set is transmitted at the specified communication frequency, and each output information set is assigned as appropriate to satisfy the conditions including the total occupied time of each packet.

    H. Procedure



    [0098] The procedure used by the PLC system 1 according to the present embodiment will now be described. Fig. 9 is a flowchart showing the procedure used by the PLC system 1 according to the present embodiment. The flowchart in Fig. 9 illustrates processes associated with the data transmission described above. The steps shown in Fig. 9 are typically implemented by the processor 100 included in the CPU 10 of the main processing device 2. However, the development support apparatus 500 may virtually implement the steps described below in an off-line environment. In other words, the development support apparatus 500 has substantially the same functions as the CPU 10 of the main processing device 2.

    [0099] The processor 100 first receives the user program 105 and various settings, and stores the received program and settings in the non-volatile memory 104 (step S2). Subsequently, the processor 100 performs an assignment process (steps S10 to S34 described below) for transmitting output information sets calculated through the processes included in the user program 105 at specified communication frequencies.

    [0100] More specifically, the processor 100 reads communication parameters (refer to Fig. 6 for example) that may be specified by a user, and identifies output information sets to be transmitted (target output information sets) (step S10). Subsequently, the processor 100 determines whether one or more of the target output information sets have the sync setting by referring to the read communication parameters (step S12). When one or more of the target output information sets have the sync setting (Yes in step S12), the processor 100 selects an output information set with the highest communication frequency from the output information sets with the sync setting (step S14). The processor 100 then attempts to assign the selected output information set to packets in a manner to satisfy the two conditions: the resultant assigned frequency will be a specified value; and the total packet occupied time of each packet does not exceed the control period (step S16). The processor 100 determines whether all the data elements of the selected output information set have been successfully assigned to packets (step S 18).

    [0101] When any of the data elements of the selected output information set has not successfully been assigned to packets (No in step S18), the processor 100 notifies the user that the communication with the specified communication parameters cannot be performed, and the transmission period, the packet occupied time, the control period, and other parameters need to be changed (step S32). The processing ends.

    [0102] When all the elements of the selected output information set have been successfully assigned to packets (Yes in step S18), the processor 100 determines whether the output information sets with the sync setting include output information sets that have not been assigned to packets yet (step S20). When one or more of the output information sets with the sync setting have not been assigned to packets yet (Yes in step S20), the processor 100 selects an output information set with the highest communication frequency from the output information sets that have not been assigned to packets yet (step S22). The processor 100 then repeats the processing in step S16 and subsequent steps.

    [0103] When all the output information sets with the sync setting have been completely assigned to packets (No in step S20) or when no output information set has the sync setting (No in step S12), the processor 100 determines whether any output information sets have not been assigned to packets yet (step S24).

    [0104] When any output information sets have not been assigned to packets yet (Yes in step S24), the processor 100 selects an output information set with the highest communication frequency from the output information sets that have not been assigned to packets yet (step S26). The processor 100 attempts to assign the selected output information set to packets to satisfy the two conditions: the resultant assigned frequency will be a specified value; and the total packet occupied time of each packet does not exceed the control period (step S28). The processor 100 determines whether all of the selected output information sets have been successfully assigned to packets (step S30).

    [0105] When all the selected output information sets have not been successfully assigned to packets (No in step S30), the processing advances to step S32.

    [0106] When all the selected output information sets have been successfully assigned to packets (Yes in step S30), the processor 100 repeats the processing in step S24 and subsequent steps.

    [0107] Finally, when all the output information sets have been completely assigned to packets (No in step S24), the processor 100 generates the assignment setting 150 indicating the completion of the assignment, and stores the assignment setting (step S34).

    [0108] Subsequently, the processor 100 starts executing programs to control the control targets in response to either an explicit or implicit instruction (including the user program 105 and the system program 106) (step S40). The processor 100 then determines the packet assignment for information calculated by executing the programs in accordance with the assignment setting 150 stored in step S34, and generates packets in every control period (step S42). The processing in steps S40 and S42 will then be repeated.

    I. User Support Capabilities



    [0109] In the packet assignment process described above, each output information set is basically automatically assigned to packets in accordance with the set communication parameters. In addition to this, the support capabilities to further optimize the assignment results will now be described. More specifically, the guidance capabilities for correcting the assignment when the predetermined communication parameters cannot be set will now be described. Further, the capabilities for notifying the user whether the control period can further be shortened for the predetermined communication parameters will now be described. These capabilities may support the user and enhance usability.

    [0110] For example, the total occupied time of each packet shown in Fig. 8 may be calculated for the assignment results. The total occupied time of each packet shown in Fig. 8 may be presented to the user in any form (in a list or in a graph). In other words, the packet assignment process according to the present embodiment includes notifying the occupied state of data assigned to each packet (for example, the occupied ratio or the occupied time).

    [0111] When the assignment is determined for output information sets with the sync setting, the total occupied time in any packet exceeding the control period is determined to be an error. In other words, the packet assignment process according to the present embodiment includes providing a prompt to change the communication parameters when the data elements to be assigned cannot be assigned in accordance with the predetermined communication parameters including the control period and the transmission period.

    [0112] In that case, the adjustments to eliminate errors may be performed with the technique described below.
    1. (1) The control period is increased to accommodate the total occupied time of each packet. In this case, a message may be provided to the user indicating the degree by which the control period can increase to eliminate errors. In other words, the maximum value of the total occupied time calculated for each packet may be presented to the user and guide the user to increase the control period to exceed the maximum value. In some embodiments, the control period may be increased automatically.
    2. (2) The total occupied time of each packet is decreased to be within the control period. In this case, a fewer number of output information sets are assigned to each packet to shorten the total occupied time of each packet. In some embodiments, the settings for output information sets with the sync setting may be changed.


    [0113] To allow efficient use of the field network 4, the approaches described below may be used. The approaches refer to the results indicating the total occupied time and the occupied ratio of each packet to which output information sets have been assigned as shown in Fig. 8.
    • The highest occupied ratio of the odd-numbered packets Nt1, Nt3, Nt5, Nt7... to which output information sets with the sync setting have been assigned can approach 1.
    • The packet occupied time of each output information set can be extended or the control period can be shortened.
    • An output information set (e.g., an output information set E) can be added until the packet occupied ratio approaches 1.
    • The amount of information to be transmitted can be increased by extending the packet occupied time until the packet occupied ratio approaches 1.

    J. Data Reception in Slave Devices



    [0114] As described above, the PLC system 1 according to the present embodiment uses data stored in packets that are transmitted in every control period with the data structure that is not fixed but changes dynamically. Thus, the destination of data included in each packet is also not fixed. A data reception process performed by each slave device for receiving packets storing data that changes with time will now be described.

    [0115] Figs. 10A to 10C are diagrams showing examples of the data structure of a packet used in the PLC system 1 according to the present embodiment. Fig. 10A shows a typical data structure. A packet with the data structure shown in Fig. 10A includes a header 302, a data area group 304, and a footer 306. The data area group 304 includes sections in correspondence with destination slave devices, and stores transmission target data. With a data area assigned to the device from the data area group 304 being known, each slave device receiving the packet shown in Fig. 10A extracts data intended for the slave device from its assigned data area.

    [0116] Fig. 10B shows the data structure of a packet used in the PLC system 1 according to the present embodiment. In the present embodiment, as described above, the destinations of data sets stored in each packet change with time. Each packet stores, in its header 302, identification information 303 for specifying slave devices intended as its destinations.

    [0117] Each slave device, which has received the packet shown in Fig. 10B, determines whether the data area group 304 includes a data area assigned to the device by referring to the identification information 303 in the header 302, and further identifies the data area assigned to the device. In the example shown in Fig. 10B, a flag carrying 0 and 1 is used as the identification information 303. The flag indicates that the packet stores data intended for the first and second slave devices from the start of the packet, or namely the slave devices 1 and 2. The flag carrying 0 for the third and the fourth positions indicates that the packet stores no data for the third and fourth slave devices from the start of the packet, or namely the slave devices 3 and 4. The slave devices 3 and 4 receiving the packet shown in Fig. 10B extract no data from the packet, and directly transfer the packet to a subsequent slave device.

    [0118] In contrast, the fifth and sixth slave devices from the start of the packet, or namely the slave devices 5 and 6, determine that the packet stores data intended for the slave devices, and extract data intended for the slave devices from their corresponding data areas.

    [0119] In this manner, the identification information 303 allows reliable transmission of target data to target slave devices when the destinations of data included in each packet change with time. More specifically, the main processing device 2 (master device) stores the identification information 303 indicating destination remote device 40 (slave device) to which data is to be transmitted and the data in the packet. Each remote device 40 (slave device) extracts only data intended for the device from the data included in the packet transmitted from the main processing device 2 (master device).

    [0120] Fig. 10C shows another data structure of a packet used in the PLC system 1 according to the present embodiment. The data structure shown in Fig. 10C, which is similar to the data structure shown in Fig. 10A, can dynamically change the size of each data area in the data area group 304. For slave devices for which no data is to be transmitted, invalid data (e.g., null code) is input in their corresponding data areas. Each slave device determines that no data is intended for the slave when a null code is input in a data area assigned to the device, and directly transfers the packet to a subsequent slave device without extracting any data from the packet.

    [0121] Each packet may store the destination of data in the corresponding data area of the data area group 304, instead of storing the destination in the header 302.

    [0122] This data structure can change the packet size dynamically while maintaining the framework of the data area group 304. This achieves control with requested control periods.

    K. Modification



    [0123] Although the field network in the above embodiment has the ring topology, the field network may be a daisy-chain network. The field network with the daisy chain topology will now be described with reference to Fig. 11.

    [0124] Fig. 11 is a schematic diagram showing the overall configuration of a PLC system 1A according to a modification of the present embodiment. As shown in Fig. 11, the PLC system 1A includes a main processing device 2 (master device), and one or more remote devices 40 (slave devices), which are connected to each other with a field network having a daisy chain topology. In the field network, packets are sequentially transferred from the master device to the slave devices (down-packets), the transfer direction is reversed at the end of the path, and are sequentially transferred from the slave devices to the master device (up-packets).

    [0125] In the system with the daisy chain topology, the CPU 10 includes a communication processing unit 110A suited to the daisy chain topology. The other components and processes are the same as those described above, and will not be described in detail.

    [0126] Although the above embodiment and its modification describe the data transmission in the field network, the data transmission is also applicable to the internal bus connecting the CPU 10 and the IO units 20 in each PLC.

    L. Other Embodiments



    [0127] The assignment capabilities according to the present embodiment are not limited to the above examples, and may be modified variously. The main processing device 2 (master device) as the controller may have all the assignment capabilities, or the development support apparatus 500 may have substantially all the assignment capabilities. The main processing device 2 (master device) and the development support apparatus 500 may communicate with each other to implement the assignment capabilities. Various embodiments may be used as appropriate in accordance with the system configuration, the cost, and other associated factors.

    M. Advantageous Effects



    [0128] The embodiments allow the master device to transmit necessary data to the plurality of slave devices connected to the same network as appropriate with the update frequencies determined in accordance with the functions or processes to be implemented by each slave device, and thus enable effective use of the predefined bandwidths of the network. Without the need to transmit unnecessary data on the network, the control period can be shortened to achieve faster communications.

    [0129] The embodiments disclosed herein are only illustrative in all respects and should not be construed to be restrictive, as far as they fall within the scope of the appended claims. The scope of the invention is designated by the appended claims.

    REFERENCE SIGNS LIST



    [0130] 
    1,
    1APLC system
    2
    main processing device
    4
    field network
    10
    CPU
    20
    IO unit
    30
    power supply unit
    40
    remote device
    42
    servo motor
    100
    processor
    102
    main memory
    103
    work area
    104
    non-volatile memory
    105
    user program
    106
    system program
    108
    internal bus controller
    109
    internal bus
    110, 110A, 410
    communication processing unit
    112, 412
    communication controller
    114, 414
    shared memory
    120, 420
    transmission buffer
    122, 422
    transmission circuit
    130, 430
    reception buffer
    132, 432
    reception circuit
    150
    assignment setting
    400
    computation processing unit
    402
    input circuit
    404
    output circuit
    500
    development support apparatus



    Claims

    1. A controller (2) connected to a plurality of slave devices (40) with a network (4), the controller (2) being configured to transmit packets over the network (4) in every one or more predetermined control periods, the plurality of slave devices (40) being configured to transfer to a subsequent slave device packets transmitted from the controller (2), the controller (2) comprising:

    an execution unit (100) configured to repeatedly execute a program including input and output processes performed in the slave devices (40) to calculate first data and second data; and

    an assignment unit (100) configured to assign the first data to a packet in every first transmission period and the second data to a packet in every second transmission period, the first transmission period being set to an integer multiple of the control period for the first data and the second transmission period being set to an integer multiple of the control period for the second data and longer than the first transmission period,

    the controller (2) being configured to respectively store the first data and the second data in the packets, together with information indicating a slave device (40) that is a transmission destination of the packet, wherein

    the control period for the first data and the control period for the second data are the same, and

    the control period is a time for generating a packet.


     
    2. A control system for controlling a control target, the system comprising:

    a controller (2) in accordance with claim 1; and

    a plurality of slave devices (40) connected to the controller (2) with a network (4),

    the controller (2) being configured to transmit packets over the network (4) in first and second transmission period, the plurality of slave devices (40) being configured to transfer to a subsequent slave device packets transmitted from the controller (2),

    wherein each of the plurality of slave devices (40) is configured to extract data intended for the slave device (40) from data included in a packet transmitted from the controller (2).


     
    3. The control system according to claim 2, wherein
    the assignment unit (100) is configured to determine packets to which the first data and the second data are to be assigned in such a manner that a maximum permissible data size of each packet is not exceeded.
     
    4. The control system according to claim 2 or claim 3, wherein
    the assignment unit (100) is configured to sequentially determine, for a plurality of data sets to be transmitted each having a set transmission period, an assignment setting for assigning the data sets to be transmitted to respective packets in the order of length of the transmission periods of the data sets, starting with the data set with the shortest transmission period.
     
    5. The control system according to any one of claims 2 to 4, wherein

    the second data includes a plurality of data elements, and

    the assignment unit (100) is configured to determine an assignment setting for assigning the second data to packets such that:

    the plurality of data elements included in the second data are assigned to the same packet when the second data is set to be transmitted synchronously, and

    the plurality of data elements included in the second data are assigned to a plurality of packets when the second data is not set to be transmitted synchronously.


     
    6. The control system according to claims 5, wherein
    the assignment unit (100) is configured to determine, among the plurality of data sets to be transmitted, the assignment setting for assigning, to packets, those data sets that are set to be transmitted synchronously, with a higher priority than for other data sets.
     
    7. The control system according to any one of claims 2 to 6, wherein
    the assignment unit (100) includes a unit configured to notify an occupied state of each packet by data assigned to each packet.
     
    8. The control system according to any one of claims 2 to 7, wherein
    the assignment unit (100) includes a unit configured to provide a prompt to change predetermined communication parameters including the control period, the first transmission period, and the second transmission period when being unable to determine an assignment setting for assigning the first data and the second data in accordance with the predetermined communication parameters.
     
    9. A development support apparatus (500) for a control system configured to control a control target,
    the control system including a master device (2) and a plurality of slave devices (40) connected to the master device (2) with a network (4),
    the master device (2) being configured to transmit packets over the network (4) in every predetermined control period, the plurality of slave devices (40) being configured to transfer to a subsequent slave device packets transmitted from the master device (2), the development support apparatus comprising:

    a unit configured to receive, when the master device (2) repeatedly executes a program including input and output processes performed in the slave devices (40) to calculate first data and second data, predetermined communication parameters including a first transmission period that is set to an integer multiple of the control period for the first data and a second transmission period that is set to an integer multiple of the control period for the second data and longer than the first transmission period, and

    an assignment determination unit configured to determine an assignment setting to assign the first data to a packet in every first transmission period and to assign the second data to a packet in every second transmission period, wherein

    the control period for the first data and the control period for the second data are the same, and

    the control period is a time for generating a packet.


     
    10. A control method implemented in a control system configured to control a control target,
    the control system including a controller (2) and a plurality of slave devices (40) connected to the controller (2) with a network (4), the control method comprising: causing the controller (2) to transmit packets over the network (4) in every one or more predetermined control periods, and causing the plurality of slave devices (40) to transfer to a subsequent slave device packets transmitted from the controller (2); causing the controller (2) to repeatedly execute a program including input and output processes performed in the slave devices (40) to calculate first data and second data;
    assigning, in accordance with a first transmission period that is set to an integer multiple of the control period for the first data and a second transmission period that is set to an integer multiple of the control period for the second data and longer than the first transmission period, the first data to a packet in every first transmission period and the second data to a packet in every second transmission period;
    causing the controller device (2) to respectively store the first data and the second data in the packets, together with information indicating a slave device (40) that is a transmission destination of the packet; and
    causing each of the plurality of slave devices (40) to extract data intended for the slave device (40) from data included in a packet transmitted from the controller (2), wherein

    the control period for the first data and the control period for the second data are the same, and

    the control period is a time for generating a packet.


     


    Ansprüche

    1. Steuerung (2), die über ein Netzwerk (4) mit mehreren Slave-Geräten (40) verbunden ist, wobei die Steuerung (2) geeignet ist, Pakete über das Netzwerk (4) in jeweils einer oder mehreren vorbestimmten Steuerperioden zu übertragen, wobei die mehreren Slave-Geräte (40) geeignet sind, von der Steuerung (2) übertragene Pakete an ein nachfolgendes Slave-Gerät zu übertragen,
    wobei die Steuerung (2) umfasst:

    eine Ausführungseinheit (100), die geeignet ist, wiederholend ein Programm mit Eingabe- und Ausgabeprozessen, die zum Berechnen von ersten Daten und von zweiten Daten in den Slave-Geräten (40) ausgeführt werden, auszuführen; und

    eine Zuweisungseinheit (100), die geeignet ist, die ersten Daten einem Paket in jeder ersten Übertragungsperiode und die zweiten Daten einem Paket in jeder zweiten Übertragungsperiode zuzuweisen, wobei die erste Übertragungsperiode als ein ganzzahliges Vielfaches der Steuerperiode für die ersten Daten festgelegt ist und die zweite Übertragungsperiode als ein ganzzahliges Vielfaches der Steuerperiode für die zweiten Daten festgelegt ist und länger als die erste Übertragungsperiode ist,

    wobei die Steuerung (2) geeignet ist, jeweils die ersten Daten und die zweiten Daten in den Paketen zusammen mit Informationen, die ein Slave-Gerät (40) angeben, das ein Übertragungsziel des Pakets ist, zu speichern, wobei

    die Steuerperiode für die ersten Daten und die Steuerperiode für die zweiten Daten gleich sind, und

    die Steuerperiode eine Zeit für die Erzeugung eines Pakets ist.


     
    2. Steuersystem zum Steuern eines Steuerziels, wobei das System umfasst:

    eine Steuerung (2) nach Anspruch 1; und

    mehrere Slave-Geräte (40), die über ein Netzwerk (4) mit der Steuerung (2) verbunden sind,

    wobei die Steuerung (2) geeignet ist, Pakete über das Netzwerk (4) in einer ersten und einer zweiten Übertragungsperiode zu übertragen, wobei die mehreren Slave-Geräte (40) geeignet sind, von der Steuerung (2) übertragene Pakete an ein nachfolgendes Slave-Gerät zu übertragen,

    wobei jedes der mehreren Slave-Geräte (40) geeignet ist, Daten, die für das Slave-Gerät (40) bestimmt sind, aus Daten zu extrahieren, die in einem von der Steuerung (2) übertragenen Paket enthalten sind.


     
    3. Steuersystem nach Anspruch 2, wobei
    die Zuweisungseinheit (100) geeignet ist, Pakete, denen die ersten Daten und die zweiten Daten zugewiesen werden sollen, derart zu bestimmen, dass eine maximal zulässige Datengröße jedes Pakets nicht überschritten wird.
     
    4. Steuersystem nach Anspruch 2 oder Anspruch 3, wobei
    die Zuweisungseinheit (100) geeignet ist, für mehrere zu übertragende Datensätze, die jeweils eine festgelegte Übertragungsperiode haben, sequentiell eine Zuweisungseinstellung zum Zuweisen der zu übertragenden Datensätze zu jeweilige Pakete in der Reihenfolge der Länge der Übertragungsperioden der Datensätze, beginnend mit dem Datensatz mit der kürzesten Übertragungsperiode, zu bestimmen.
     
    5. Steuersystem gemäß einem der Ansprüche 2 bis 4, wobei

    die zweiten Daten mehrere Datenelementen enthalten, und

    die Zuweisungseinheit (100) geeignet ist, eine Zuweisungseinstellung für die Zuweisung der zweiten Daten zu Paketen zu bestimmen, so dass

    die mehreren Datenelemente, die in den zweiten Daten enthalten sind, dem gleichen Paket zugewiesen werden, wenn die zweiten Daten zum synchronen Übertragen eingestellt sind, und

    die mehreren Datenelemente, die in den zweiten Daten enthalten sind, mehreren Paketen zugeordnet werden, wenn die zweiten Daten nicht auf synchrone Übertragung eingestellt sind.


     
    6. Steuersystem nach Anspruch 5, wobei
    die Zuweisungseinheit (100) geeignet ist, aus den mehreren zu übertragenden Datensätzen die Zuweisungseinstellung für die Zuweisung derjenigen Datensätze zu Paketen, die so eingestellt sind, dass sie synchron mit einer höheren Priorität als für andere Datensätze übertragen werden, zu bestimmen.
     
    7. Steuersystem gemäß einem der Ansprüche 2 bis 6, wobei
    die Zuweisungseinheit (100) eine Einheit umfasst, die geeignet ist, einen Besetztzustand jedes Pakets durch jedem Paket zugewiesene Daten zu melden.
     
    8. Steuersystem gemäß einem der Ansprüche 2 bis 7, wobei
    die Zuweisungseinheit (100) eine Einheit enthält, die geeignet ist, eine Aufforderung zum Ändern vorbestimmter Kommunikationsparameter einschließlich der Steuerperiode, der ersten Übertragungsperiode und der zweiten Übertragungsperiode bereitzustellen, wenn sie nicht in der Lage ist, eine Zuweisungseinstellung für die Zuweisung der ersten Daten und der zweiten Daten gemäß den vorbestimmten Kommunikationsparametern zu bestimmen.
     
    9. Entwicklungsunterstützungsvorrichtung (500) für ein Steuersystem, das zur Steuerung eines Steuerziels geeignet ist,
    wobei das Steuersystem ein Master-Gerät (2) und mehrere Slave-Geräte (40) umfasst, die über ein Netzwerk (4) mit dem Master-Gerät (2) verbunden sind,
    wobei das Master-Gerät (2) geeignet ist, in jeder vorbestimmten Steuerperiode Pakete über das Netzwerk (4) zu übertragen, wobei die mehreren Slave-Geräte (40) geeignet sind, von dem Master-Gerät (2) übertragene Pakete an ein nachfolgendes Slave-Gerät zu übertragen,
    wobei die Entwicklungsunterstützungsvorrichtung umfasst:

    eine Einheit, die geeignet ist, wenn das Master-Gerät (2) wiederholend ein Programm mit Eingabe- und Ausgabeprozessen, die zum Berechnen von ersten Daten und von zweiten Daten in den Slave-Geräten (40) ausgeführt werden, ausführt, vorbestimmte Kommunikationsparameter zu empfangen, die eine erste Übertragungsperiode, die als ein ganzzahliges Vielfaches der Steuerperiode für die ersten Daten festgelegt ist, und eine zweite Übertragungsperiode enthalten, die als ein ganzzahliges Vielfaches der Steuerperiode für die zweiten Daten festgelegt und länger als die erste Übertragungsperiode ist, und

    eine Zuweisungsbestimmungseinheit, die geeignet ist, eine Zuweisungseinstellung zum Zuweisen der ersten Daten zu einem Paket in jeder ersten Übertragungsperiode und zum Zuweisen der zweiten Daten zu einem Paket in jeder zweiten Übertragungsperiode zu bestimmen, wobei

    die Steuerperiode für die ersten Daten und die Steuerperiode für die zweiten Daten gleich sind, und

    die Steuerperiode eine Zeit für die Erzeugung eines Pakets ist.


     
    10. Steuerungsverfahren, das in einem Steuersystem implementiert ist, das zur Steuerung eines Steuerziels geeignet ist,
    wobei das Steuersystem eine Steuerung (2) und mehrere Slave-Geräten (40) umfasst, die mit der Steuerung (2) über ein Netzwerk (4) verbunden sind, wobei das Steuerverfahren umfasst:

    Veranlassen der Steuerung (2), in jeder oder mehreren vorbestimmten Steuerperioden Pakete über das Netzwerk (4) zu übertragen, und Veranlassen der mehreren Slave-Geräte (40), Pakete, die von der Steuerung (2) übertragen werden, an ein nachfolgendes Slave-Gerät zu übertragen;

    Bewirken, dass die Steuerung (2) wiederholt ein Programm ausführt, das Eingabe- und Ausgabeprozesse enthält, die in den Slave-Gerät (40) ausgeführt werden, um erste Daten und zweite Daten zu berechnen;

    Zuweisen, in Übereinstimmung mit einer ersten Übertragungsperiode, die als ein ganzzahliges Vielfaches der Steuerperiode für die ersten Daten festgelegt ist, und einer zweiten Übertragungsperiode, die als ein ganzzahliges Vielfaches der Steuerperiode für die zweiten Daten festgelegt ist und länger als die erste Übertragungsperiode ist, der ersten Daten zu einem Paket in jeder ersten Übertragungsperiode und der zweiten Daten zu einem Paket in jeder zweiten Übertragungsperiode;

    Bewirken, dass die Steuerung (2) die jeweiligen ersten Daten und zweiten Daten in den Paketen zusammen mit Informationen, die ein Slave-Gerät (40) angeben, das ein Übertragungsziel des Pakets ist; und

    Bewirken, dass jede der mehreren Slave-Geräten (40) Daten, die für die Slave-Geräte (40) bestimmt sind, aus Daten extrahiert, die in einem von der Steuerung (2) übertragenen Paket enthalten sind, wobei

    die Steuerperiode für die ersten Daten und die Steuerperiode für die zweiten Daten gleich sind, und

    die Steuerperiode eine Zeit für die Erzeugung eines Pakets ist.


     


    Revendications

    1. Contrôleur (2) connecté à plusieurs dispositifs esclaves (40) avec un réseau (4), le contrôleur (2) étant configuré pour transmettre des paquets à travers le réseau (4) dans chacune d'une ou de plusieurs périodes de contrôle prédéterminées, les dispositifs esclaves (40) étant configurée pour transférer à un dispositif esclave suivant des paquets transmis par le contrôleur (2),
    le contrôleur (2) comprenant :

    une unité d'exécution (100) configurée pour exécuter de manière répétée un programme comprenant des processus d'entrée et de sortie exécutés dans les dispositifs esclaves (40) pour calculer des premières données et des secondes données ; et

    une unité d'affectation (100) configurée pour affecter les premières données à un paquet dans chaque première période de transmission et les secondes données à un paquet dans chaque seconde période de transmission, la première période de transmission étant fixée à un multiple entier de la période de contrôle pour les premières données et la seconde période de transmission étant fixée à un multiple entier de la période de contrôle pour les secondes données et étant plus longue que la première période de transmission,

    le contrôleur (2) étant configuré pour stocker respectivement les premières données et les secondes données dans les paquets, ainsi que des informations indiquant un dispositif esclave (40) qui est une destination de transmission du paquet, dans lequel

    la période de contrôle pour les premières données et la période de contrôle pour les secondes données sont les mêmes, et

    la période de contrôle est un temps de génération d'un paquet.


     
    2. Système de contrôle pour contrôler une cible de contrôle, le système comprenant :

    un contrôleur (2) selon la revendication 1 ; et

    plusieurs dispositifs esclaves (40) connectés au contrôleur (2) par un réseau (4),

    le contrôleur (2) étant configuré pour transmettre des paquets à travers le réseau (4) dans une première et une seconde période de transmission, les plusieurs dispositifs esclaves (40) étant configurée pour transférer à un dispositif esclave suivant les paquets transmis par le contrôleur (2),

    dans lequel chacun des plusieurs dispositifs esclaves (40) est configuré pour extraire des données destinées au dispositif esclave (40) à partir de données incluses dans un paquet transmis par le contrôleur (2).


     
    3. Système de contrôle selon la revendication 2, dans lequel
    l'unité d'affectation (100) est configurée pour déterminer les paquets auxquels les premières données et les secondes données doivent être affectées de manière à ce que la taille maximale autorisée de chaque paquet ne soit pas dépassée.
     
    4. Système de contrôle selon la revendication 2 ou la revendication 3, dans lequel
    l'unité d'affectation (100) est configurée pour déterminer séquentiellement, pour plusieurs ensembles de données à transmettre ayant chacun une période de transmission déterminée, un paramètre d'affectation pour affecter les ensembles de données à transmettre à des paquets respectifs dans l'ordre de longueur des périodes de transmission des ensembles de données, en commençant par l'ensemble de données ayant la période de transmission la plus courte.
     
    5. Système de contrôle selon l'une quelconque des revendications 2 à 4, dans lequel

    la seconde donnée comprend plusieurs éléments de données, et

    l'unité d'affectation (100) est configurée pour déterminer un paramètre d'affectation permettant d'affecter les secondes données à des paquets tels que :

    les plusieurs éléments de données inclus dans les secondes données sont affectés au même paquet lorsque les secondes données sont réglées pour être transmises de manière synchrone, et

    les plusieurs éléments de données inclus dans les secondes données sont affectés à plusieurs paquets lorsque les secondes données ne sont pas réglées pour être transmises de manière synchrone.


     
    6. Système de contrôle selon la revendication 5, dans lequel
    l'unité d'affectation (100) est configurée pour déterminer, parmi les plusieurs ensembles de données à transmettre, le paramètre d'affectation permettant d'affecter, aux paquets, les ensembles de données qui doivent être transmis de manière synchrone, avec une priorité plus élevée que pour les autres ensembles de données.
     
    7. Système de contrôle selon l'une quelconque des revendications 2 à 6, dans lequel
    l'unité d'affectation (100) comprend une unité configurée pour notifier un état d'occupation de chaque paquet par des données affectées à chaque paquet.
     
    8. Système de contrôle selon l'une quelconque des revendications 2 à 7, dans lequel
    l'unité d'affectation (100) comprend une unité configurée pour fournir une invitation à modifier des paramètres de communication prédéterminés, y compris la période de contrôle, la première période de transmission et la seconde période de transmission, lorsqu'il est impossible de déterminer un paramètre d'affectation pour l'affectation des premières données et des secondes données conformément aux paramètres de communication prédéterminés.
     
    9. Dispositif d'aide au développement (500) pour un système de contrôle configuré pour contrôler une cible de contrôle,
    le système de contrôle comprenant un dispositif maître (2) et plusieurs dispositifs esclaves (40) connectés au dispositif maître (2) par un réseau (4),
    le dispositif maître (2) étant configuré pour transmettre des paquets à travers le réseau (4) à chaque période de contrôle prédéterminée, les plusieurs dispositifs esclaves (40) étant configurée pour transférer à un dispositif esclave suivant les paquets transmis par le dispositif maître (2),
    le dispositif d'aide au développement comprenant :

    une unité configurée pour recevoir, lorsque le dispositif maître (2) exécute de manière répétée un programme comprenant des processus d'entrée et de sortie effectués dans les dispositifs esclaves (40) pour calculer des premières données et des secondes données, des paramètres de communication prédéterminés comprenant une première période de transmission qui est fixée à un multiple entier de la période de contrôle pour les premières données et une seconde période de transmission qui est fixée à un multiple entier de la période de contrôle pour les secondes données et plus longue que la première période de transmission, et

    une unité de détermination d'affectation configurée pour déterminer un paramètre d'affectation afin d'affecter les premières données à un paquet dans chaque première période de transmission et d'affecter les secondes données à un paquet dans chaque seconde période de transmission, dans laquelle

    la période de contrôle pour les premières données et la période de contrôle pour les secondes données sont les mêmes, et

    la période de contrôle est un temps de génération d'un paquet.


     
    10. Procédé de contrôle mis en Ĺ“uvre dans un système de contrôle configuré pour contrôler une cible de contrôle,
    le système de contrôle comprenant un contrôleur (2) et plusieurs dispositifs esclaves (40) connectés au contrôleur (2) avec un réseau (4), le procédé de contrôle comprenant :

    faire en sorte que le contrôleur (2) transmette des paquets sur le réseau (4) à chaque période de contrôle prédéterminée, et faire en sorte que les plusieurs dispositifs esclaves (40) transfère à un dispositif esclave suivant des paquets transmis par le contrôleur (2) ;

    faire en sorte que le contrôleur (2) exécute de manière répétée un programme comprenant des processus d'entrée et de sortie exécutés dans les dispositifs esclaves (40) pour calculer des premières données et des secondes données ;

    affecter, conformément à une première période de transmission qui est fixée à un multiple entier de la période de contrôle pour les premières données et une seconde période de transmission qui est fixée à un multiple entier de la période de contrôle pour les secondes données et plus longue que la première période de transmission, les premières données à un paquet dans chaque première période de transmission et les secondes données à un paquet dans chaque seconde période de transmission ;

    amener le contrôleur (2) à stocker respectivement les premières données et les secondes données dans les paquets, ainsi que des informations indiquant un dispositif esclave (40) qui est une destination de transmission du paquet ; et

    amener chacun des plusieurs dispositifs esclaves (40) à extraire des données destinées au dispositif esclave (40) à partir de données incluses dans un paquet transmis par le contrôleur (2), dans lequel

    la période de contrôle pour les premières données et la période de contrôle pour les secondes données sont les mêmes, et

    la période de contrôle est un temps de génération d'un paquet.


     




    Drawing






































    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description