BACKGROUND
[0001] This specification relates to constructing and programming quantum hardware for quantum annealing processes that can perform reliable information processing at non-zero temperatures.
[0002] Artificial intelligent tasks can be translated into machine learning optimization problems. To perform an artificial intelligence task, quantum hardware, e.g., a quantum processor, is constructed and programmed to encode the solution to a corresponding machine optimization problem into an energy spectrum of a many-body quantum Hamiltonian characterizing the quantum hardware. For example, the solution is encoded in the ground state of the Hamiltonian. The quantum hardware performs adiabatic quantum computation starting with a known ground state of a known initial Hamiltonian. Over time, as the known initial Hamiltonian evolves into the Hamiltonian for solving the problem, the known ground state evolves and remains at the instantaneous ground state of the evolving Hamiltonian. The energy spectrum or the ground state of the Hamiltonian for solving the problem is obtained at the end of the evolution without diagonalizing the Hamiltonian.
[0003] Reference is made to
I. de Vega et al.:"Effects of dissipation on an adiabatic quantum search algorithm", New Journal of Physics, volume 12, page 123010 (2010) in which the authors state that they compare the effects of such a thermal environment on the algorithm performance with those of a structured environment similar to the one encountered in systems coupled to an electromagnetic field that exists within a photonic crystal. They state that, whereas for all the parameter regimes explored here, the algorithm performance is worsened by contact with a thermal environment, the picture appears to be different when one considers a structured environment. The authors state that, in this case they show that by tuning the environment parameters to certain regimes, the algorithm performance can actually be improved with respect to the closed system case.
[0004] Reference is also made to
Constanti Brif et al.: "Exploring adiabatic quantum trajectories via optimal control" arXiv: 1310.3443v1 [quant-ph] 13 Oct 2013 in which the authors state that adiabatic quantum computation employs a slow change of a time-dependent control function (or functions) to interpolate between an initial and final Hamiltonian, which helps to keep the system in the instantaneous ground state. When the evolution time is finite, the degree of adiabaticity (quantified in this work as the average ground-state population during evolution) depends on the particulars of a dynamic trajectory associated with a given set of control functions. The authors state that they use quantum optimal control theory with a composite objective functional to numerically search for controls that achieve the target final state with a high fidelity while simultaneously maximizing the degree of adiabaticity. Exploring properties of optimal adiabatic trajectories in model systems elucidates the dynamic mechanisms that suppress unwanted excitations from the ground state. The authors state that they discover that the use of multiple control functions makes it possible to access a rich set of dynamic trajectories, some of which attain a significantly improved performance (in terms of both fidelity and adiabaticity) through the increase of the energy gap during most of the evolution time.
SUMMARY
[0005] According to an aspect of the present invention, there is provided an apparatus according to claim 1. According to another aspect of the present invention, there is provided a method according to claim 5. Optional features are set out in the dependent claims.
[0006] The details of one or more embodiments of the subject matter of this specification are set forth in the accompanying drawings and the description below.
DESCRIPTION OF DRAWINGS
[0007]
FIG. 1 is a schematic perspective view of a quantum annealing processor within a Chimera connectivity of interacting qubits.
FIG. 2 is a schematic diagram showing the structures and interactions of two qubits in a quantum processor, where the interactions include x-x and x-z interactions of a quantum governor.
FIG. 2A is a schematic diagram showing a Josephson box, including a Josephson junction and a capacitor.
FIG. 3 is a schematic diagram showing the effect of a quantum governor on transitions among instantaneous energy states during a quantum annealing process
FIG. 4 is a schematic diagram showing the interplay of an initial Hamiltonian, a problem Hamiltonian, and a Hamiltonian of a quantum governor chosen for the problem Hamiltonian during a quantum annealing process.
FIG. 5 is a flow diagram of an example process for determining a quantum governor distribution.
FIG. 6 is a flow diagram of an example process for performing an artificial intelligence task.
DETAILED DESCRIPTION
Overview
[0008] Solutions to hard combinatorial problems, e.g., NP-hard problems and machine learning problems, can be encoded in the ground state of a many-body quantum Hamiltonian system, which is also called a quantum annealer ("QA"). A quantum annealing process at zero temperature limit is known as adiabatic quantum computation, in which the QA is initialized to a ground state of an initial Hamiltonian
Hi that is a known and easy to prepare. Over time, the QA is adiabatically guided within the Hilbert space to a problem Hamiltonian
Hp that encodes the problem. In theory, during the adiabatic quantum computation, the QA can remain in the instantaneous ground state of a Hamiltonian
Htotal evolving from
Hi to
Hp, where
Htotal can be expressed as:

where s is a time dependent control parameter:

and
tT is the total time of the adiabatic quantum computation. The QA will reach the ground state of the problem Hamiltonian
Hp with certainty, if the evolution of system is sufficiently slow with respect to the intrinsic energy scale of the system.
[0009] In reality, the quantum computation may not be completely adiabatic and the QA may reach an excited state of
Htotal during the computation, which can lead to inaccurate result at the end of the quantum computation. For example, in many hard combinatorial optimization problems, e.g., in decision problems, when the problem Hamiltonian demonstrates a phase transition in its computational complexity, the size of a gap between an excited state and the ground state of
Htotal can be small, e.g., exponentially small, with respect to the intrinsic energy scale of the system. In such situations, the QA may undergo a quantum phase transition and can reach a large number, e.g., an exponentially large number, of excited states. In addition, the QA may also deviate from the ground state of
Htotal due to other factors such as quantum fluctuations induced by environmental interactions with the system and system imperfection errors, including control errors and fabrication imperfections. In this specification, the process of driving the QA from the ground state of
Hi to the ground state of
Hp is called a quantum annealing schedule or a quantum annealing process.
[0010] Quantum hardware, such as quantum processors, of this specification includes a quantum chip that defines a quantum governor ("QG") in addition to
Hi and
Hp, such that the evolving Hamiltonian
Htotal becomes
Htot: 
where
I(t) and
P(t) represent the time-dependency of the initial and problem Hamiltonians,
Hi and
Hp, respectively;
G(t) represents the time-dependency of the QG Hamiltonian,
HG ; and
HAG-B is the interaction of the combined QA-QG system with its surrounding environment, commonly referred to as a bath. In a simplified example,
I(t) equals
(1-s), P(t) equals s,
G(t) equals
s(1-s), and
HAG-B is assumed to be non-zero but constant during the quantum annealing process. The strength of
HAG-B is related to spectral density of bath modes that can often be characterized off-line by a combination of experimental and theoretical quantum estimation/tomography techniques.
[0011] Generally, the QG can be considered as a class of non-information-bearing degrees of freedom that can be engineered to steer the dissipative dynamics of an information-bearing degree of freedom. In the example of
Htotal, the information-bearing degree of freedom is the QA. The quantum hardware is constructed and programmed to allow the QG to navigate the quantum evolution of a disordered quantum annealing hardware at finite temperature in a robust manner and improve the adiabatic quantum computation process. For example, the QG can facilitate driving the QA towards a quantum phase transition, while decoupling the QA from excited states of
Htotal by making the excited states effectively inaccessible by the QA. After the quantum phase transition, the QA enters another phase in which the QA is likely to be frozen in excited states due to quantum localization or Anderson localization. The QG can adjust the energy level of the QA to be in tune with vibrational energies of the environment to facilitate the QA to relax into a lower energy state or the ground state. Such an adjustment can increase the ground state fidelity, i.e., the fidelity of the QA being in the ground state at the end of the computation, and allow the QA to avoid a pre-mature freeze in suboptimal solutions due to quantum localization.
[0012] Generally, the QA experiences four phases in a quantum annealing process of the specification, including initialization, excitation, relaxation, and freezing, which are explained in more detailed below. The QG assists the QA in the first two phases by creating a mismatch between average phonon energy of the bath and an average energy level spacing of the
QA to suppress unwanted excitations. In the third and fourth stages, the QG enhances thermal fluctuations by creating an overlap between the spectral densities of the QA and the bath. The enhanced thermal fluctuations can allow the QA to have high relaxation rates from higher energy states to lower energy states or the ground state of the problem Hamiltonian
Hp . In particular, the QG can allow the QA to defreeze from non-ground states caused by quantum localization.
[0013] The QG can be used to achieve universal adiabatic quantum computing when quantum interactions are limited due to either natural or engineered constraints of the quantum hardware. For example, a quantum chip can have engineering constraints such that the Hamiltonian representing the interactions of qubits on the quantum chip is a k-local stochastic Hamiltonian. The quantum hardware can be constructed and programmed to manipulate the structural and dynamical effects of environmental interactions and disorders, even without any control over the degrees of freedom of the environment.
[0014] Generally, the QG is problem-dependent. The quantum hardware of the specification can be programmed to provide different QGs for different classes of problem Hamiltonians. In some implementations, a QG can be determined for a given
Hp using a quantum control strategy developed based on mean-field and microscopic approaches. In addition or alternatively, the quantum control strategy can also implement random matrix theory and machine learning techniques in determining the QG. The combined QA and QG can be tuned and trained to generate desired statistical distributions of energy spectra for
Hp, such as Poisson, Levy, or Boltzmann distributions.
Example Quantum Hardware
[0015] As shown in FIG. 1, in a quantum processor, a programmable quantum chip 100 includes 4 by 4 unit cells 102 of eight qubits 104, connected by programmable inductive couplers as shown by lines connecting different qubits. Each line may represent one or multiple couplers between a pair of qubits. The chip 100 can also include a larger number of unit cells 102, e.g., 8 by 8 or more.
[0016] FIG. 2 shows an example pair of coupled qubits 200, 202 in the same unit cell of a chip, such as any pair of qubits in the unit cell 102 of the quantum chip 100. In this example, each qubit is a superconducting qubit and includes two parallelly connected Josephson boxes 204a, 204b or 206a, 206b. Each Josephson box can include a Josephson junction and a capacitance connected in parallel. An example is shown in FIG. 2A, in which a Josephson box 218 includes a Josephson junction 220 parallelly connected to a capacitance 222. The qubits 200, 202 are subject to an external magnetic field B applied along a z direction perpendicular to the surface of the paper on which the figure is shown; the B field is labeled by the symbol ⊗. Three sets of inductive couplers 208, 210, 212 are placed between the qubits 200, 202 such that the qubits are coupled via the z-z, x-z, and x-x spin interactions, where the z-z interactions represent the typical spin interactions of a QA, and the x-z, x-x interactions are auxiliary interactions representing the controllable degrees of freedom of a QG. Here x, y, and z are spin directions in Hilbert space, in which each direction is orthogonal to the other two directions.
[0017] Compared to one conventional quantum chip known in the art, the qubits that are coupled along the z-z spin directions in the chip 100 of FIG. 1 are additionally coupled along the x-z spin directions and the x-x spin directions through the coupler sets 210, 212. The Hamiltonian of the conventional quantum chip can be written as:

where

and

quantum operators that have binary values and each represents the spin of the
ith qubit along the x direction or the z direction, respectively.
hi and
Jij are parameters that can be programmed for different problems to be solved by adjusting the inductive coupler set 208.
hi and
Jij have real values. The sparsity of the parameter
Jij is constrained by the hardware connectivity, i.e., the connectivity of the qubits shown in FIG. 1. For unconnected qubits, the corresponding
Jij is 0. Again,
I(t) and
P(t) represent the time-dependency of initial and problem Hamiltonians, respectively. In a simplified example,
I(t) equals (1-s), and
P(t) equals s, where s equals
t/
tT.
[0018] The additional coupler sets 210, 212 introduce additional quantum control mechanisms to the chip 100.
[0019] In general the control mechanisms of a QG acts within the same Hilbert space of the QA and include:
- (i) Site dependent magnetic field on any spin, or quantum disorders, such as

, which is also binary and represents the spin of the ith qubit along the y direction; - (ii) Two-body quantum exchange interaction terms, e.g.,

, that represents coupling of the ith and jth qubits along the x-z directions; - (iii) A global time-varying control knob G(t), which can be s(1-s), where s = t/tT; and
- (iv) A set of macroscopic, programmable control parameters of the environment, such as the temperature T.
[0020] Accordingly, the Hamiltonian
Htot for the combined QA-QG system in the chip 100 is:

where ε
i,mdenotes the QG induced disorders, the tensor
gijmn defines the general two-body interaction parameters that specify the QG, and
I(t), G(t), and
P(t) are as described above. In this Hamiltonian, the initial Hamiltonian is:

the problem Hamiltonian
Hp is:

and the QG Hamiltonian
HQG is:

[0021] Again, the total Hamiltonian is:

Programming the Quantum Hardware
[0022] For a given problem and its corresponding problem Hamiltonian
Hp, a QG is determined to improve the ground state fidelity of the QA. The QG is determined without needing to diagonalize
Hp. Various QG realizations can be repeated to statistically improve knowledge about the computational outcomes.
[0023] In embodiments, a QG is determined such that before a system characterized by
Htotal experiences a quantum phase transition, the QG Hamiltonian
HQG acts to suppress excitations of the QA. In particular, the QG is out of resonance with the average phonon energy of the bath, which creates a mismatch between the average phonon energy and average energy level spacing of the combined QA and QG, or
Htot to reduce unwanted excitations. After the system undergoes the quantum phase transition, the QG Hamiltonian
HQG acts to enhance relaxation of the QA from any excited state to the ground state of
Htot. In particular, the average energy level spacing of
Htot is in resonance with the average phonon energy. The QG enhances thermal fluctuations by creating an overlap between the spectral densities of the system and its bath. The thermal fluctuations can facilitate the QA to reach the ground state of
Htot at a high relaxation rate and prevent the QA from being prematurely frozen at an excited state due to quantum localization.
[0024] An example of desirable QG functions is shown in FIG. 3. The energy levels
Eo, E1, E2, ...
Ei (not shown) of
Htotal are plotted as a function of time
t. At
t = 0,
Htotal is
Hi, and at
t = tT, Htotal is
Hp. During a quantum annealing process from t = 0 to
t = tT, the QA approximately experiences an initialization phase from
t = 0 to
t = t1, an excitation phase from
t = t1 to
t =
t2, a relaxation phase from t =
t2 to
t =
t3, and a freezing phase from t = t3 to
t =
tT. The time
t2 can correspond to a time at which a quantum phase transition occurs in a system characterized by
Htotal. During the excitation phase, the QG increases, as indicated by arrows 300, 302, the average energy spacing between adjacent energy levels
Δε
i, such as
Δε
1 =
E2-E1 and
Δε
0 =
E1-Eo, such that the increased energy spacing is much larger than the average phonon energy. During the relaxation phase, the QG adjusts the average energy spacing
Δε
0,
Δε
1, ... to be comparable to the average phone energy to facilitate relaxation of the QA from excited states to lower energy states or the ground state, as indicated by arrows 304, 306, 308, 310.
[0025] The interplay of the three Hamiltonians,
Hi, Hp, and
HQG over time in different phases of the quantum annealing process is schematically shown in FIG. 4. The control parameters
I(t), P(t), and
G(t) control the shapes of the curves for the corresponding Hamiltonians. In this example,
I(t) and
P(t) are linear and
G(t) is parabolic.
[0026] In addition, the QG can be chosen to allow the QA of
Htot to steadily evolve over the QA schedule and reach a final state that has a maximum overlap with the ground state
of Hp. Ideally, the ground state fidelity of the QA at time
tT is 1. However, unity fidelity is hard to achieve within a finite period of time. Other than at time 0 and at time
tT, the QA of
Htot is in a mixed state of the combined
Hp, Hi, and
HQG. The evolution of the QA can be expressed as:

where

is the state of the QA at time 0,

is the state of the QA at time
tT, and
pA(t) is the density function of the QA at other times. By assigning a probability, e.g., using a probability mass function, to each state

, the evolution of the QA can be further expressed as:

where
ƒG(k) is the probability mass function, k=0, 1, ..., and corresponds to quantum state levels, and Σ
kƒG(k) = 1. If the ground state fidelity is 1, then
ƒG(
0) = 1, and
ƒG(
k≠0) = 0. As described above, such a unity fidelity is hard to realize. Instead, a desirable QG can be selected to provide an exponential distribution function as:

where λ
G defines the distribution of a QG family suitable for use with
Hp. The probability mass function can be any probability distribution function. Examples include Poisson distribution functions, Levy distribution functions, and Boltzmann distribution functions.
[0027] To determine a QG with desirable functions for a problem, including those functions described above with reference to FIGS. 3 and 4, one or more techniques can be used, including, for example, open quantum system models, random matrix theory, and machine learning. An example process 500 for determining a QG is shown in FIG. 5, which can be performed by a classical processor, such as a classical computer, or a quantum processor, or a combination of them.
[0028] In the process 500, information about energy states of a known
Htotal is obtained (502). In some implementations, a QG is constructed using random matrix theory (RMT) and some predictions on general statistical properties of the combined QA-QG system can be made. In particular, using the random matrix theory, approximate distributions of the energy levels
Ei of the
i energy states, where
i is 0, 1, 2, ..., a spontaneous energy spectrum, the spacings
Δε
i of the energy levels, and the average level spacing Δ
e of the spacings can be obtained. In some implementations, the average energy level spacing Δ
ε is obtained using mean-field theories without explicitly diagonalizing
Htotal. In some examples, path-integral Monte-Carlo is used for evaluating an approximate ground state energy of
Htotal..
[0029] In some implementations, the average energy level spacing at time t is estimated as:

where
εi(t) is the energy of the
ith instantaneous eigenstate energy of
Htotal, and N is the total number of eigenstates.
[0030] Also in the process 500, the average phonon energy of the bath in which the system characterized by
Htotal is located is calculated (504). In approximation, the average phonon energy can be taken as kT, where k is the Boltzmann constant, and T is the temperature. The average phonon energy can also be calculated in a more precise manner. For example, an open quantum system model of dynamics, such as the Lindblad formalism, can be selected for the calculation. The selection can be based on calibration data of the quantum processor. Under the open quantum system model, the average phonon energy of a bath, in which a system represented by
Htotal is located, at any given temperature T can be defined as:

where
J(ω) can be the Omhic spectral density, i.e.,
J(
ω)
= λωe-ω/γ, the super-Omhic spectral density, i.e.,
J(
ω) =
λω3e-ω/γ, the Drude-Lorentz spectral density, i.e.,

, or a flat spectral distribution, i.e.,
J(ω) = 1. In these equations, λ is the reorganization energy and y is the bath frequency cut-off .
[0031] A probability mass function for the ground state fidelity of the QA is selected (506). In some implementations, the probability mass function is selected manually by a user. Based on the obtained information, the calculated average phonon energy, and the selected probability mass function, the process 500 then determines (508) a QG distribution for
Hp. In some implementations, the determination process can be at least partially performed by a user. For example, the QG distribution can be represented by an exponential family, such as a Gaussian unitary ensemble, of random matrices selected using a random matrix theory model. The average energy level spacing Δg and the maximum and minimum energy eigenvalues of the QG or
HQG are determined to allow the QG to function as desired. In particular, in the second phase of the QA schedule, e.g., during time
t1 to
t2 shown in FIG. 3, the average energy level spacing of the QG is chosen such that the chosen energy level spacing dominates the energy-level spacing of the problem Hamiltonian. The chosen energy level spacing is also much bigger than the average energy of the phonon bath, e.g., by a factor of 5-10, such that the average energy level spacing of the combined QA and QG
Δ(
g +
ε) becomes:

[0032] This choice increases the energy level spacing of
Htotal such that the combined energy level spacing of
Htot is much larger than the average phonon energy. Accordingly, possible excitations of the QA to a higher energy state by thermal fluctuation are suppressed. In addition, the QG is also selected such that in the third phase of the QA schedule, e.g., during time
t2 to
t3 shown in FIG. 3, the average energy level spacing of the QG leads to :

[0033] This choice allows the energy level spacing of
Htotal to be similar to the thermal fluctuation. The QA can relax to a lower energy state or the ground state at a high rate. The selected exponential family can be parameterized with respect to the controllable parameters, such as the coupling between qubits, of the quantum hardware.
[0034] Alternatively or in addition, a machine learning system can be used to tune the control parameters of the QG distribution selected based on the random matrix theory model. In some implementations, a deep neural network is used to represent the QG-QA system or the system characterized by
Htot, and stochastic gradient descent is used to train the QG distribution. As an example, the training is done by selecting a statistically meaningful number, e.g., 1000, of random matrices
{εim; gijmn} from a parameterized exponential family that can in average generate path-integral Monte-Carlo outputs, within the desired probability mass function for a given
Htotal of interest. In some implementations, the training can start with an initial QG distribution selected based on the desired average combined energy level spacing
Δ(
g+
ε) discussed above. The initial QG distribution can have predetermined probability distributions. The training can be supervised training.
[0035] The implementation of the random matrix theory model can output a generative probability mass function. In supervised training, label can be generated by finding the coupling coefficients of the QG such that the probability mass function generated by the QA and the QG has maximum overlap, e.g., within a given measure or figure of merit such as χ
2 divergence, with an ideal probability mass function that is known in advance for the training set. FIG. 6 shows an example process 600 in which a control system programs QA hardware, such as a quantum processor, for the QA hardware to perform an artificial intelligence task. The control system includes one or more classical, i.e., non-quantum, computers, and may also include a quantum computer. The task is translated into a machine learning optimization problem, which is represented in a machine-readable form.
[0036] The control system receives (602) the machine-readable machine learning optimization problem. The control system encodes (606) the optimization problem into the energy spectrum of an engineered
Htotal. The encoding is based on structure of the QA hardware, such as the couplings between qubits. An example of
Htotal is the Ising Hamiltonian
HSG, and the encoding determines the values for the parameters
hi and
Jij. The encoded information, such as
hi and
Jij, is provided to the QA hardware, which receives (620) the information as initialization parameters for the hardware. To stabilize the QA during a quantum annealing process to be performed by the QA hardware, the control system further devises (608) a QG, e.g., by selecting one QG from a QG distribution determined using the process 500 of FIG. 5. The selection can be random (pseudo) selection. In some implementations, a user can select the QG from the QG distribution and input the selection to the control system. The devised QG is characterized by control parameters including
εim. and
gijmn , which are sent to the QA hardware to program the QA hardware.
[0037] The QA hardware receives (620) the initialization parameters, such as
hi and
Jij, and also receives (622) the control parameters for the QG, such as
hiG, JijG, JijGA, and is programmed and initialized by the control system according to the received initialization parameters and QG parameters. The QA hardware implements (624) the quantum annealing schedule to obtain eigenstates of the combined QA-QG system characterized by
Htot. The solution to the machine learning optimization problem is encoded in these eigenstates. After a predetermined amount of time, the QA schedule ends and the QA hardware provides (626) an output represented by the eigenstates and their corresponding energy spectra. The output can be read by the control system or by another classical computer or quantum computer. The predetermined amount of time can be in the order of
1/
(Δ(g+
ε))
2. However, shorter or longer periods of time can be used. A shorter time period may provide better quantum speedup, and a longer time period may provide a higher ground state fidelity.
[0038] As described above, in the output provided by the QA hardware, the ground state fidelity of the QA is generally smaller than 1. When the fidelity is smaller than 1, the one-time output provided by the QA hardware may not accurately encode the solution to the problem. In some implementations, the QA hardware performs the QA schedule multiple times, using the same QG or different QGs provided by the control system that have different sets of control parameters, such as
εim and
gijmn , selected from the same QG distribution determined for the problem, to provide multiple outputs. The multiple outputs can be statistically analyzed and the problem or the artificial intelligence task can be resolved or performed based on the statistical results.
[0039] In particular, in the process 600, after the control system receives and stores (610) the output provided by the QA hardware, the control system determines (612) whether the QA hardware has completed the predetermined number of iterations of QA schedules. If not, then the control system returns to the step 608 by devising another QG, which can be the same as the previously used QG or a different QG selected from the previously determined QG distribution. The QA hardware receives (622) another set of control parameters for the QG and is re-programmed by the control system based on this set of control parameters and the previously determined initialization parameters that encode the problem. The QA schedule is implemented again (624) and another output is provided (626). If the QA hardware has completed the predetermined number of iterations of QA schedule, then the control system or another data processing system statistically processes (614) all outputs to provide solutions to the problem. Solutions to a problem can be provided with a predetermined degree of certainty that has a sharply peaked PDF about an actual solution to the problem. The PDF can be peaked based on the statistical analysis.
[0040] The predetermined number of iterations can be 100 iterations or more, or 1000 iterations or more. In some implementations, the number of iterations can be chosen in connection with the length of the QA schedule, so that the process 600 can be performed with high efficiency and provide solutions to the problems with high accuracy. For example, when the length of each QA schedule is relatively short, e.g., shorter than 1/(
Δ(
g+
ε))
2, the predetermined number of iterations can be chosen to be relatively large, e.g., 1000 iterations or more. In other situations when the length of each QA schedule is relatively long, e.g., longer than
1/(
Δ(
g+
ε))
2, the predetermined number of iterations can be chosen to be relatively small, e.g., less than 1000 iterations.
[0041] The digital functional operations described in this specification can be implemented in digital electronic circuitry, in tangibly-embodied computer software or firmware, in computer hardware, including the structures disclosed in this specification and their structural equivalents, or in combinations of one or more of them. Embodiments in this specification can be implemented as one or more computer programs, i.e., one or more modules of computer program instructions encoded on a tangible non-transitory storage medium for execution by, or to control the operation of, data processing apparatus. The computer storage medium can be a machine-readable storage device, a machine-readable storage substrate, a random or serial access memory device, or a combination of one or more of them. Alternatively or in addition, the program instructions can be encoded on an artificially-generated propagated signal, e.g., a machine-generated electrical, optical, or electromagnetic signal, that is generated to encode information for transmission to suitable receiver apparatus for execution by a data processing apparatus.
[0042] The term "data processing apparatus" refers to digital data processing hardware and encompasses all kinds of apparatus, devices, and machines for processing data, including by way of example a programmable digital processor, a digital computer, or multiple digital processors or computers. The apparatus can also be, or further include, special purpose logic circuitry, e.g., an FPGA (field programmable gate array) or an ASIC (application-specific integrated circuit). The apparatus can optionally include, in addition to hardware, code that creates an execution environment for computer programs, e.g., code that constitutes processor firmware, a protocol stack, a database management system, an operating system, or a combination of one or more of them.
[0043] A computer program, which may also be referred to or described as a program, software, a software application, a module, a software module, a script, or code, can be written in any form of programming language, including compiled or interpreted languages, or declarative or procedural languages, and it can be deployed in any form, including as a stand-alone program or as a module, component, subroutine, or other unit suitable for use in a digital computing environment. A computer program may, but need not, correspond to a file in a file system. A program can be stored in a portion of a file that holds other programs or data, e.g., one or more scripts stored in a markup language document, in a single file dedicated to the program in question, or in multiple coordinated files, e.g., files that store one or more modules, sub-programs, or portions of code. A computer program can be deployed to be executed on one computer or on multiple computers that are located at one site or distributed across multiple sites and interconnected by a data communication network.
[0044] The processes and logic flows described in this specification can be performed by one or more programmable digital computers, operating with one or more quantum processors, as appropriate, executing one or more computer programs to perform functions by operating on input data and generating output. The processes and logic flows can also be performed by, and apparatus can also be implemented as, special purpose logic circuitry, e.g., an FPGA or an ASIC, or by a combination of special purpose logic circuitry and one or more programmed computers. For a system of one or more digital computers to be "configured to" perform particular operations or actions means that the system has installed on it software, firmware, hardware, or a combination of them that in operation cause the system to perform the operations or actions. For one or more computer programs to be configured to perform particular operations or actions means that the one or more programs include instructions that, when executed by digital data processing apparatus, cause the apparatus to perform the operations or actions.
[0045] Digital computers suitable for the execution of a computer program can be based on general or special purpose microprocessors or both, or any other kind of central processing unit. Generally, a central processing unit will receive instructions and data from a read-only memory or a random access memory or both. The essential elements of a computer are a central processing unit for performing or executing instructions and one or more memory devices for storing instructions and data. The central processing unit and the memory can be supplemented by, or incorporated in, special purpose logic circuitry. Generally, a digital computer will also include, or be operatively coupled to receive data from or transfer data to, or both, one or more mass storage devices for storing data, e.g., magnetic, magneto-optical disks, or optical disks. However, a computer need not have such devices.
[0046] Computer-readable media suitable for storing computer program instructions and data include all forms of non-volatile memory, media and memory devices, including by way of example semiconductor memory devices, e.g., EPROM, EEPROM, and flash memory devices; magnetic disks, e.g., internal hard disks or removable disks; magneto-optical disks; and CD-ROM and DVD-ROM disks.
[0047] Control of the various systems described in this specification, or portions of them, can be implemented in a computer program product that includes instructions that are stored on one or more non-transitory machine-readable storage media, and that are executable on one or more digital processing devices. The systems described in this specification, or portions of them, can each be implemented as an apparatus, method, or electronic system that may include one or more digital processing devices and memory to store executable instructions to perform the operations described in this specification.
1. An apparatus comprising:
qubits; and
inductive couplers among the qubits, each inductive coupler being configured to couple a pair of qubits,
wherein the qubits and the inductive couplers are configured to have a quantum Hamiltonian Htot in which:

where I(t), G(t), and P(t) are time-dependent control parameters of an initial Hamiltonian Hi, an additional Hamiltonian HQG, and a problem Hamiltonian Hp respectively, and where εi,m denotes disorders and gijmn defines general two-body interaction parameters, N is the total number of pairs of qubits, σrepresents a quantum operator, i represents an ith pair of qubits, hi and Jij have real values that are associated with coupling strength between the qubits of each pair of qubits,
such that the qubits and the inductive couplers are characterized by a quantum annealer in which excitations of the quantum annealer from an instantaneous ground state to a higher energy state are suppressed during a first period of time in a quantum annealing process, and relaxation of the quantum annealer from higher energy states to lower energy states or the ground state is facilitated during a second period of time in the quantum annealing process;
wherein the quantum annealer experiences four phases in the quantum annealing process, including initialization, excitation, relaxation, and freezing, in which the first period of time comprises the initialization and excitation phases and the second period of time comprises the relaxation and freezing phases;
wherein in the first period of time, the qubits and inductive couplers are configured to create a mismatch between average phonon energy of a bath in which the qubits and the inductive couplers are located and an average energy level spacing of the quantum annealer to suppress the excitations of the quantum annealer;
and wherein in the second period of time, qubits and inductive couplers are configured to facilitate relaxation of the quantum annealer by enhancing thermal fluctuations by creating an overlap between spectral densities of the quantum annealer and a bath in which the qubits and the inductive couplers are located.
2. The apparatus of claim 1, wherein the qubits comprises a first pair of superconducting qubits, the first pair comprising:
a first superconducting qubit configured to have controllable quantum binary operators σ1i, where i = x, y, or z and represents a direction in Hilbert space;
a second superconducting qubit configured to have controllable binary quantum operators σ2i, where i = x, y, or z and represents a direction in the Hilbert space; and
wherein the inductive couplers comprise:
a first inductive coupler between the first and second superconducting qubits, wherein when a magnetic field is applied along the z direction, the first inductive coupler couples the first superconducting qubit with the second superconducting qubit in a first coupling represented by σ1z σ2z; and
a second inductive coupler between the first and second superconducting qubits, wherein when the magnetic field along the z direction is applied, the second inductive coupler couples the first superconducting qubit with the second superconducting qubit in a second coupling represented by σ1xσ2z + σ2xσ1z.
3. The apparatus of claim 2, wherein the couplers comprise a third inductive coupler between the first and second superconducting qubits, wherein when the magnetic field along the z direction is applied, the second inductive coupler couples the first superconducting qubit with the second superconducting qubit in a third inductive coupling represented by σ1xσ2x.
4. The apparatus of claim 1, wherein the qubits comprise a plurality of pairs of superconducting qubits, each of the plurality of pairs comprising:
a first superconducting qubit configured to have controllable quantum binary operators σ1i, where i = x, y, or z and represents a direction in Hilbert space;
a second superconducting qubit configured to have controllable binary quantum operators σ2i, where i = x, y, or z and represents a direction in the Hilbert space; and wherein the inductive couplers comprise:
a first inductive coupler between the first and second superconducting qubits, wherein when a magnetic field is applied along the z direction, the first inductive coupler couples the first superconducting qubit with the second superconducting qubit in a first coupling represented by σ1z σ2z; and
a second inductive coupler between the first and second superconducting qubits, wherein when the magnetic field along the z direction is applied, the second inductive coupler couples the first superconducting qubit with the second superconducting qubit in a second coupling represented by σ1xσ2z + σ2xσ1z;
wherein different pairs of superconducting qubits are coupled through additional inductive couplers.
5. A method comprising:
for a controllable quantum processor having controllable quantum states characterized by a quantum Hamiltonian Htot, the quantum processor being controlled such that the Hamiltonian Htot evolves from an initial quantum Hamiltonian Hi over time to a problem quantum Hamiltonian Hp, and where a quantum state of the quantum processor evolves from a ground state of Hi towards a ground state of Hp as Htot evolves from Hi to Hp,
deriving, by one or more processors, data characterizing a spontaneous energy spectrum of Htot of the quantum processor, the deriving being based on a combination of Hi and Hp at a time that Htot has the spontaneous energy spectrum;
estimating, based on reorganization energy and frequency of a bath in which the quantum processor is located, by the one or more processors, an average phonon energy of the bath; and
determining, by the one or more processors, an additional quantum Hamiltonian HQG without diagonalizing Hp, based on the derived data characterizing the energy spectrum of Htot and the calculated average phonon energy, such that HQG limits evolution of the quantum state into the ground state of Hp as Htot evolves to Hp, according to:

where I(t), G(t), and P(t) are time-dependent control parameters of Hi, HQG, and Hp respectively,
wherein determining HQG is such that during the evolution of the Hamiltonian Htot and a first period of time comprising initialization an excitation phases of a quantum annealing process controlled by the quantum processor in which the Hamiltonian Htot has the spontaneous energy spectrum, an average spacing Δg between energy levels of HQG and an average spacing Δε between energy levels of Htot are much larger than an average phonon energy Δω of the bath to suppress excitations of the quantum state from a ground state of Htot to an excited state of Htot, and in a second period of time after the first period time, comprising relaxation and freezing phases of the quantum annealing process, the average spacing Δgbetween the energy levels of HQG and the average spacing Δε between energy levels of Htot are similar to the average phonon energy Δω of the bath so as to facilitate relaxation of the quantum state from an excited state of Htot to the ground state of Htot.
6. The method of claim 5, comprising recording a selected probability mass function for the probability of the quantum state being in the ground state of Hp when Htot evolves to Hp, and HQG is determined also based on the selected probability mass function and using the selected probability mass function in determining the additional quantum Hamiltonian.
7. The method of claim 5 wherein the spontaneous energy spectrum is obtained at approximately half time of a total time for Htot to evolve from Hi to Hp.
8. The method of claim 5, wherein deriving the information about an energy spectrum of Htot at the time of the quantum phase transition comprises evaluating ground state energy of Htot using quantum Monte-Carlo techniques, mean-field theories, or Markus theory.
9. The method of claim 5 wherein the information about an energy spectrum comprises actual energy levels, spacing among the actual energy levels, distribution of the spacing among the actual energy levels, or an average spacing between adjacent average energy levels.
10. The method of claim 5, wherein calculating the average phonon energy of the bath comprises calculating the average phonon energy using an open quantum systems model.
11. The method of claim 10 wherein the average phonon energy satisfies the following equation:

where
J(ω) is one of an Omhic spectral density:

, a super-Ohmic spectral density:

, a Drude-Lorentz spectral density:

, and a flat spectral distribution
J(ω) = 1,
λis a reorganization energy, and yis a bath frequency cut-off.
12. The method of claim 5, wherein determining the additional quantum Hamiltonian HQG comprises selecting an exponential family of random matrices to represent a distribution of HQG and determining control parameters for the selected exponential family of random matrices.
1. Vorrichtung, umfassend:
Qubits; und
induktive Koppler zwischen den Qubits, wobei jeder induktive Koppler konfiguriert ist, ein Qubit-Paar zu koppeln,
wobei die Qubits und die induktiven Koppler so konfiguriert sind, dass sie einen Quanten-Hamiltonianer Htot aufweisen, in dem:

wobei I(t), G(t) und P(t) zeitabhängige Steuerungsparameter eines anfänglichen Hamiltonianers Hi, eines zusätzlichen Hamiltonianers HQG bzw. eines Problem-Hamiltonianers Hp sind, und wobei εi,m Störungen darstellt und gijmn allgemeine Zweikörper-Wechselwirkungsparameter definiert, N die Gesamtzahl der Qubit-Paare ist, σ einen Quantenoperator darstellt, i ein i-tes Qubit-Paar darstellt, hi und Jij reelle Werte aufweisen, die mit der Kopplungsstärke zwischen den Qubits eines jeden Qubit-Paares assoziiert sind,
sodass die Qubits und die induktiven Koppler durch einen Quantenglühkörper gekennzeichnet sind, in dem Anregungen des Quantenglühkörpers von einem momentanen Grundzustand zu einem höheren Energiezustand während eines ersten Zeitraums in einem Quantenglühverfahren unterdrückt werden und die Relaxation des Quantenglühkörpers von höheren Energiezuständen zu niedrigeren Energiezuständen oder dem Grundzustand während eines zweiten Zeitraums in dem Quantenglühverfahren erleichtert wird;
wobei der Quantenglüher vier Phasen im Quantenglühverfahren durchläuft, einschließlich Initialisierung, Anregung, Relaxation und Einfrieren, wobei der erste Zeitraum die Initialisierungs- und Anregungsphase umfasst und der zweite Zeitraum die Relaxations- und Einfrierphase beinhaltet;
wobei in dem ersten Zeitraum die Qubits und die induktiven Koppler konfiguriert sind, eine Ungleichheit zwischen einer durchschnittlichen Phononenenergie eines Bades, in dem sich die Qubits und die induktiven Koppler befinden, und einem durchschnittlichen Energiepegelabstand des Quantenglühers zu erzeugen, um die Anregung des Quantenglühers zu unterdrücken;
und wobei in dem zweiten Zeitraum Qubits und induktive Koppler konfiguriert sind, die Relaxation des Quantenglühers durch Verstärkung thermischer Fluktuationen zu erleichtern, indem eine Überlappung zwischen den spektralen Dichten des Quantenglühers und einem Bad, in dem sich die Qubits und die induktiven Koppler befinden, erzeugt wird.
2. Vorrichtung nach Anspruch 1, wobei die Qubits ein erstes Paar supraleitender Qubits umfassen, wobei das erste Paar Folgendes umfasst:
ein erstes supraleitendes Qubit, das so konfiguriert ist, dass es steuerbare quantenbinäre Operatoren aufweist wobei i = x, y, oder z ist und eine Richtung im Hilbert-Raum darstellt;
ein zweites supraleitendes Qubit, das so konfiguriert ist, dass es steuerbare binäre Quantenoperatoren aufweist

, wobei i = x, y, oder z ist und eine Richtung im Hilbert-Raum darstellt; und
wobei die induktiven Koppler Folgendes umfassen:
einen ersten induktiven Koppler zwischen dem ersten und dem zweiten supraleitenden Qubit, wobei, wenn ein Magnetfeld entlang der z-Richtung aufgebracht wird, der erste induktive Koppler das erste supraleitende Qubit mit dem zweiten supraleitenden Qubit in einer ersten Kopplung koppelt, dargestellt durch

; und
einen zweite induktiven Koppler zwischen dem ersten und dem zweiten supraleitenden Qubit, wobei, wenn das Magnetfeld entlang der z-Richtung aufgebracht wird, der zweite induktive Koppler das erste supraleitende Qubit mit dem zweiten supraleitenden Qubit in einer zweiten Kopplung koppelt, dargestellt durch

.
3. Vorrichtung nach Anspruch 2, wobei die Koppler einen dritten induktiven Koppler zwischen dem ersten und dem zweiten supraleitenden Qubit umfassen, wobei, wenn das Magnetfeld entlang der z-Richtung aufgebracht wird, der zweite induktive Koppler das erste supraleitende Qubit mit dem zweiten supraleitenden Qubit in einer dritten induktiven Kopplung koppelt, dargestellt durch

.
4. Vorrichtung nach Anspruch 1, wobei die Qubits eine Vielzahl von Paaren supraleitender Qubits umfassen, jedes der Vielzahl von Paaren Folgendes umfasst:
ein erstes supraleitendes Qubit, das so konfiguriert ist, dass es steuerbare quantenbinäre Operatoren aufweist

, wobei i = x, y, oder z ist und eine Richtung im Hilbert-Raum darstellt;
ein zweites supraleitendes Qubit, das so konfiguriert ist, dass es steuerbare binäre Quantenoperatoren aufweist,

wobei i = x, y, oder z ist und eine Richtung im Hilbert-Raum darstellt; und wobei die induktiven Koppler Folgendes umfassen:
einen ersten induktiven Koppler zwischen dem ersten und dem zweiten supraleitenden Qubit, wobei, wenn ein Magnetfeld entlang der z-Richtung aufgebracht wird, der erste induktive Koppler das erste supraleitende Qubit mit dem zweiten supraleitenden Qubit in einer ersten Kopplung koppelt, dargestellt durch

; und
einen zweite induktiven Koppler zwischen dem ersten und dem zweiten supraleitenden Qubit, wobei, wenn das Magnetfeld entlang der z-Richtung aufgebracht wird, der zweite induktive Koppler das erste supraleitende Qubit mit dem zweiten supraleitenden Qubit in einer zweiten Kopplung koppelt, dargestellt durch

;
wobei verschiedene Paare von supraleitenden Qubits durch zusätzliche induktive Koppler gekoppelt werden.
5. Verfahren, umfassend:
für einen steuerbaren Quantenprozessor, der steuerbare Quantenzustände aufweist, die durch einen Quanten-Hamiltonianer Htot gekennzeichnet sind, wobei der Quantenprozessor derart gesteuert wird, dass sich der Hamiltonianer Htot von einem anfänglichen Quanten-Hamiltonianer Hi im Verlauf der Zeit zu einem Problem-Quanten-Hamiltonianer Hp entwickelt, und wobei sich ein Quantenzustand des Quantenprozessors von einem Grundzustand von Hi zu einem Grundzustand von Hp entwickelt, wenn sich Htot von Hi zu Hp entwickelt,
Ableiten, durch einen oder mehrere Prozessoren, von Daten, die ein spontanes Energiespektrum von Htot des Quantenprozessors charakterisieren, wobei das Ableiten auf einer Kombination von Hi und Hp zu einem Zeitpunkt basiert, an dem Htot das spontane Energiespektrum aufweist;
Schätzen, basierend auf der Reorganisationsenergie und - frequenz eines Bades, in dem sich der Quantenprozessor befindet, durch den einen oder die mehreren Prozessoren, einer durchschnittlichen Phononenenergie des Bades; und
Ermitteln, durch den einen oder die mehreren Prozessoren, eines zusätzlichen Quanten-Hamiltonianers HQG ohne Diagonalisierung von Hp, basierend auf den abgeleiteten Daten, die das Energiespektrum von Htot und die berechnete durchschnittliche Phononenenergie charakterisieren, sodass HQG die Entwicklung des Quantenzustands in den Grundzustand von Hp einschränkt, wenn sich Htot zu Hp entwickelt, gemäß:

wobei I(t), G(t) und P(t) zeitabhängige Steuerungsparameter von Hi, HQG, bzw. Hp sind,
wobei das Ermitteln von HQG so erfolgt, dass während der Entwicklung des Hamiltonianers Htot und eines ersten Zeitraums, der Initialisierungs- und Anregungsphasen eines durch den Quantenprozessor gesteuerten Quantenglühverfahrens umfasst, in dem der Hamiltonianer Htot das Δg spontane Energiespektrum aufweist, ein durchschnittlicher Abstand Δε zwischen den Energieniveaus von HQG und ein durchschnittlicher Abstand zwischen den Energieniveaus Δω von Htot viel größer als eine durchschnittliche Phononenenergie des Bades sind, um Anregungen des Quantenzustands von einem Grundzustand von Htot zu einem angeregten Zustand von Htot zu unterdrücken, und in einem zweiten Zeitraum nach dem ersten Zeitpunkt, der Relaxations- und Einfrierphasen des Quantenglühverfahrens umfasst, der durchschnittliche Abstand Δg zwischen den Energieniveaus von HQG und der durchschnittliche Abstand Δε zwischen den Energieniveaus von Htot ähnlich der durchschnittlichen Phononenenergie Δω des Bades sind, um die Relaxation des Quantenzustands von einem angeregten Zustand von Htot zum Grundzustand von Htot zu erleichtern.
6. Verfahren nach Anspruch 5, umfassend das Aufzeichnen einer ausgewählten Wahrscheinlichkeitsmassenfunktion für die Wahrscheinlichkeit, dass sich der Quantenzustand im Grundzustand von Hp befindet, wenn sich Htot zu Hp entwickelt, und dass HQG auch basierend auf der ausgewählten Wahrscheinlichkeitsmassenfunktion bestimmt wird und die ausgewählte Wahrscheinlichkeitsmassenfunktion beim Ermitteln des zusätzlichen Quanten-Hamiltonianers verwendet wird.
7. Verfahren nach Anspruch 5, wobei das spontane Energiespektrum etwa zur Hälfte der Gesamtzeit erhalten wird, in der sich Htot von Hi zu Hp entwickelt.
8. Verfahren nach Anspruch 5, wobei das Ableiten der Information über ein Energiespektrum von Htot zum Zeitpunkt des Quantenphasenübergangs die Bewertung der Grundzustandsenergie von Htot unter Verwendung von Quanten-Monte-Carlo-Techniken, Mean-Field-Theorien oder der Markus-Theorie umfasst.
9. Verfahren nach Anspruch 5, wobei die Information über ein Energiespektrum aktuelle Energieniveaus, den Abstand zwischen den aktuellen Energieniveaus, die Verteilung des Abstands zwischen den aktuellen Energieniveaus oder einen durchschnittlichen Abstand zwischen angrenzenden durchschnittlichen Energieniveaus umfasst.
10. Verfahren nach Anspruch 5, wobei das Berechnen der durchschnittlichen Phononenenergie des Bades das Berechnen der durchschnittlichen Phononenenergie unter Verwendung eines offenen Quantensystemmodells umfasst.
11. Verfahren nach Anspruch 10, wobei die durchschnittliche Phononenenergie die folgende Gleichung erfüllt

wobei
J(ω) eines von einer ohmschen Spektraldichte:

, einer superohmschen Spektraldichte:

, einer Drude-Lorentz-Spektraldichte:

, und einer flachen Spektralverteilung
J(ω) =1, A eine Reorganisationsenergie und γ eine Badfrequenzgrenze ist.
12. Verfahren nach Anspruch 5, wobei das Ermitteln des zusätzlichen Quanten-Hamiltonianers HQG das Auswählen einer exponentiellen Familie von Zufallsmatrizen umfasst, um eine Verteilung von HQG darzustellen, und das Steuern von Parametern für die ausgewählte exponentielle Familie von Zufallsmatrizen.
1. Appareil comprenant :
des qubits ; et
des coupleurs inductifs parmi les qubits, chaque coupleur inductif étant configuré pour coupler une paire de qubits,
dans lequel les qubits et les coupleurs inductifs sont configurés pour avoir un hamiltonien quantique Htot dans lequel :

lorsque I(t) , G(t) et P(t) sont des paramètres de commande dépendant du temps d'un hamiltonien initial Hi, d'un hamiltonien supplémentaire HQG et d'un hamiltonien de problème Hp respectivement, et lorsque εi,mdésigne des troubles et gijmn définit des paramètres généraux d'interaction à deux corps, N est le nombre total de paires de qubits, σ représente un opérateur quantique, i représente une ième paire de qubits, hi et Jij ont des valeurs réelles qui sont associées à la force de couplage entre les qubits de chaque paire de qubits,
de telle sorte que les qubits et les coupleurs inductifs sont caractérisés par un recuit quantique dans lequel les excitations du recuit quantique d'un état fondamental instantané à un état d'énergie supérieure sont supprimées pendant une première période de temps dans un processus de recuit quantique, et la relaxation du recuit quantique d'états d'énergie supérieure à des états d'énergie inférieure ou l'état fondamental est facilité pendant une deuxième période de temps dans le processus de recuit quantique ;
dans lequel le recuit quantique subit quatre phases dans le processus de recuit quantique, incluant le lancement, l'excitation, la relaxation et la congélation, dans lequel la première période de temps comprend les phases de lancement et d'excitation et la deuxième période de temps comprend les phases de relaxation et de congélation ;
dans lequel, dans la première période de temps, les qubits et les coupleurs inductifs sont configurés pour créer un décalage entre une énergie moyenne de phonon d'un bain dans lequel les qubits et les coupleurs inductifs sont situés et un espacement de niveau d'énergie moyen du recuit quantique pour supprimer les excitations du recuit quantique ;
et dans lequel dans la deuxième période de temps, des qubits et des coupleurs inductifs sont configurés pour faciliter la relaxation du recuit quantique en améliorant les fluctuations thermiques en créant un chevauchement entre des densités spectrales du recuit quantique et un bain dans lequel les qubits et les coupleurs inductifs sont situés.
2. Appareil selon la revendication 1, dans lequel les qubits comprennent une première paire de qubits supraconducteurs, la première paire comprenant :
un premier qubit supraconducteur configuré pour avoir des opérateurs binaires quantiques commandables

, où i = x, y ou z et représente une direction dans l'espace de Hilbert ;
un deuxième qubit supraconducteur configuré pour avoir des opérateurs quantiques binaires commandables

, où i = x, y ou z et représente une direction dans l'espace de Hilbert ; et
dans lequel les coupleurs inductifs comprennent :
un premier coupleur inductif entre les premier et deuxième qubits supraconducteurs, dans lequel lorsqu'un champ magnétique est appliqué le long de la direction z, le premier coupleur inductif couple le premier qubit supraconducteur avec le deuxième qubit supraconducteur dans un premier couplage représenté par

; et
un deuxième coupleur inductif entre les premier et deuxième qubits supraconducteurs, dans lequel lorsque le champ magnétique le long de la direction z est appliqué, le deuxième coupleur inductif couple le premier qubit supraconducteur avec le deuxième qubit supraconducteur dans un deuxième couplage représenté par

.
3. Appareil selon la revendication 2, dans lequel les coupleurs comprennent un troisième coupleur inductif entre les premier et deuxième qubits supraconducteurs, dans lequel lorsque le champ magnétique le long de la direction z est appliqué, le deuxième coupleur inductif couple le premier qubit supraconducteur avec le deuxième qubit supraconducteur dans un troisième couplage inductif représenté par

.
4. Appareil selon la revendication 1, dans lequel les qubits comprennent une pluralité de paires de qubits supraconducteurs, chacune de la pluralité de paires comprenant :
un premier qubit supraconducteur configuré pour avoir des opérateurs binaires quantiques comandables

, où i = x, y ou z et représente une direction dans l'espace de Hilbert ;
un deuxième qubit supraconducteur configuré pour avoir des opérateurs quantiques binaires commandables

où i = x, y ou z et représente une direction dans l'espace de Hilbert ; et dans lequel les coupleurs inductifs comprennent :
un premier coupleur inductif entre les premier et deuxième qubits supraconducteurs, dans lequel lorsqu'un champ magnétique est appliqué le long de la direction z, le premier coupleur inductif couple le premier qubit supraconducteur avec le deuxième qubit supraconducteur dans un premier couplage représenté par

; et
un deuxième coupleur inductif entre les premier et deuxième qubits supraconducteurs, dans lequel lorsque le champ magnétique le long de la direction z est appliqué, le deuxième coupleur inductif couple le premier qubit supraconducteur avec le deuxième qubit supraconducteur dans un deuxième couplage représenté par

;
dans lequel différentes paires de qubits supraconducteurs sont couplées par l'intermédiaire de coupleurs inductifs supplémentaires.
5. Procédé comprenant :
pour un processeur quantique commandable ayant des états quantiques commandables caractérisés par un hamiltonien quantique Htot, le processeur quantique étant commandé de telle sorte que le hamiltonien Htot évolue d'un hamiltonien quantique initial Hi dans le temps à un hamiltonien quantique de problème Hp, et où un état quantique du processeur quantique évolue d'un état fondamental de Hi vers un état fondamental de Hp à mesure que Htot évolue de Hi à Hp,
la dérivation, par un ou plusieurs processeurs, de données caractérisant un spectre d'énergie spontanée de Htot du processeur quantique, la dérivation étant basée sur une combinaison de Hi et Hp à un instant auquel Htot a le spectre d'énergie spontanée ;
l'estimation, sur la base de l'énergie et de la fréquence de réorganisation d'un bain dans lequel le processeur quantique est situé, par les un ou plusieurs processeurs, d'une énergie moyenne de phonon du bain ; et
la détermination, par les un ou plusieurs processeurs, d'un hamiltonien quantique supplémentaire HQG sans diagonalisation de Hp, sur la base des données dérivées caractérisant le spectre d'énergie de Htot et l'énergie moyenne de phonon calculée, de telle sorte que HQG limite l'évolution de l'état quantique en l'état fondamental de Hp à mesure que Htot évolue vers Hp, selon :

où I(t), G(t) et P(t) sont des paramètres de commande dépendant du temps de Hi, HQG et Hp respectivement,
dans lequel la détermination de HQG est de telle sorte que pendant l'évolution du hamiltonien Htot et une première période de temps comprenant le lancement une phase d'excitation d'un processus de recuit quantique commandé par le processeur quantique dans lequel le hamiltonien Htot a le spectre d'énergie spontanée, un espacement moyen Δg entre des niveaux d'énergie de HQG et un espacement moyen Δε entre des niveaux d'énergie de Htot sont beaucoup plus grands qu'une énergie moyenne de phonon Δω du bain pour supprimer des excitations de l'état quantique d'un état fondamental de Htot à un état excité de Htot, et dans une deuxième période de temps après la première période de temps, comprenant des phases de relaxation et de congélation du processus de recuit quantique, l'espacement moyen Δg entre les niveaux d'énergie de HQG et l'espacement moyen Δε entre des niveaux d'énergie de Htot sont similaires à l'énergie moyenne de phonon Δω du bain de manière à faciliter la relaxation de l'état quantique d'un état excité de Htot à l'état fondamental de Htot.
6. Procédé selon la revendication 5, comprenant l'enregistrement d'une fonction de masse de probabilité sélectionnée pour la probabilité que l'état quantique soit dans l'état fondamental de Hp à mesure que Htot évolue vers Hp, et HQG est déterminé également sur la base de la fonction de masse de probabilité sélectionnée et l'utilisation de la fonction de masse de probabilité sélectionnée dans la détermination du hamiltonien quantique supplémentaire.
7. Procédé selon la revendication 5, dans lequel le spectre d'énergie spontanée est obtenu à environ la moitié du temps total pour que Htot évolue de Hi à Hp.
8. Procédé selon la revendication 5, dans lequel la dérivation des informations concernant un spectre d'énergie de Htot au moment de la transition de phase quantique comprend l'évaluation de l'énergie de l'état fondamental de Htot en utilisant des techniques de Monte-Carlo quantiques, des théories de champ moyen ou la théorie de Marcus.
9. Procédé selon la revendication 5, dans lequel les informations concernant un spectre d'énergie comprennent des niveaux d'énergie réels, un espacement entre les niveaux d'énergie réels, une répartition de l'espacement entre les niveaux d'énergie réels, ou un espacement moyen entre des niveaux d'énergie moyens adjacents.
10. Procédé selon la revendication 5, dans lequel le calcul de l'énergie moyenne de phonon du bain comprend le calcul de l'énergie moyenne de phonon en utilisant un modèle de systèmes quantiques ouverts.
11. Procédé selon la revendication 10, dans lequel l'énergie moyenne des phonon satisfait à l'équation suivante

où
J(ω) est l'une parmi une densité spectrale Omhique :
J(
ω) =

, une densité spectrale super-Ohmique :

, une densité spectrale de Drude-Lorentz :

, et une répartition spectrale plate
J(ω) =1,
λest une énergie de réorganisation, et γ est une coupure de fréquence de bain.
12. Procédé selon la revendication 5, dans lequel la détermination du hamiltonien quantique supplémentaire HQG hamiltonien quantique supplémentaire comprend la sélection d'une famille exponentielle de matrices aléatoires pour représenter une répartition de HQG et la détermination de paramètres de commande pour la famille exponentielle sélectionnée de matrices aléatoires.