(19)
(11)EP 3 093 800 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
29.04.2020 Bulletin 2020/18

(21)Application number: 16158448.7

(22)Date of filing:  03.03.2016
(51)International Patent Classification (IPC): 
F01D 21/00(2006.01)
H04Q 9/00(2006.01)
F01D 17/20(2006.01)
F01D 5/28(2006.01)
F01D 17/02(2006.01)
G06K 19/077(2006.01)

(54)

SYSTEM FOR A GAS TURBINE ENGINE AND A METHOD FOR COMMUNICATING WITHIN SAID SYSTEM

SYSTEM FÜR EIN GASTURBINENTRIEBWERK UND VERFAHREN ZUR KOMMUNIKATION INNERHALB DES SYSTEMS

SYSTÈME POUR MOTEUR À TURBINE À GAZ ET PROCÉDÉ DE COMMUNICATION À L'INTÉRIEUR DUDIT SYSTÈME


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 05.05.2015 US 201514704715

(43)Date of publication of application:
16.11.2016 Bulletin 2016/46

(73)Proprietor: United Technologies Corporation
Farmington, CT 06032 (US)

(72)Inventors:
  • WU, Xin
    East Hartford, CT Connecticut 06108 (US)
  • SOLDNER, Nicholas Charles
    Southbury, CT Connecticut 06108 (US)
  • TOKGOZ, Cagatay
    South Windsor, CT Connecticut 06074 (US)
  • MANTESE, Joseph V.
    Ellington, CT Connecticut 06029 (US)
  • ZACCHIO, Joseph
    Wethersfield, CT Connecticut 06109 (US)

(74)Representative: Dehns 
St. Bride's House 10 Salisbury Square
London EC4Y 8JD
London EC4Y 8JD (GB)


(56)References cited: : 
EP-A1- 2 224 379
US-A1- 2007 080 810
US-A1- 2012 068 003
US-A1- 2013 231 893
US-A1- 2004 113 790
US-A1- 2011 133 950
US-A1- 2012 197 597
US-A1- 2014 083 176
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    TECHNICAL FIELD



    [0001] The subject matter of the present disclosure relates generally to gas turbine engines and, more particularly, relates to sensors for such gas turbine engines.

    BACKGROUND



    [0002] Various components of gas turbine engines, such as those engines used to power modern aircraft, often require in-situ wear and status monitoring for maintenance and performance purposes. Some gas turbine engine components implement embedded sensors for such monitoring. Typically, these embedded sensors include radio frequency identification (RFID) capabilities that operate at frequencies of tens or hundreds of MHz. The RFID allows the embedded sensor to communicate wirelessly with an external reader system through the surface of the gas turbine engine component.

    [0003] While generally effective, such RFID embedded sensors are less efficient when used with metallic or highly conductive gas turbine engine components such as, for example, aircraft skins or turbine blades. Directly embedding such RFID sensors underneath the metallic surface of these components make the wireless reading of the sensors difficult. In particular, the operating frequency of tens or hundreds of MHz interacts with the conductive surfaces to create eddy currents that prevent significant magnetic field penetration through the conductive surface so that the ability of the external reader system to read the embedded RFID sensor is reduced and, in some instances, nearly impossible. As an example in some arrangements, the eddy currents not only exist on the surface of the conductive component, but may also be created on the vertical and horizontal surfaces of the housing which contains the sensor as well.

    SUMMARY



    [0004] In accordance with a first aspect of the disclosure, there is provided a system, according to claim 1, for a gas turbine engine, comprising: a conductive component comprising one or more of an airfoil, a blade, a nacelle and a vane for the gas turbine engine, the conductive component including: a sensor system embedded in the conductive component, the sensor system including a magnetic communication system comprising: a microcontroller; a sensor coupled to the microcontroller; a low frequency radio-frequency identification integrated chip coupled to the microcontroller; and a first coupling circuit coupled to the low frequency radio-frequency identification integrated chip, the first coupling circuit including: a first capacitor and a first inductor connected in parallel; wherein a first end of the first capacitor is connected to a first end of the first inductor at a first node, which is further connected to the low frequency radio-frequency identification integrated chip by a lead line, and a second end of the first capacitor is connected to a second end of the first inductor at a second node, which is further connected to the low frequency radio-frequency identification integrated chip by a lead line, and a second capacitor is connected between the second node and ground; and a first coil winding wound within a first core, the first coil winding being operatively associated with a low frequency magnetic flux; wherein the first core comprises a p-core shape (pot-core) such that it includes a first outer wall circumscribing a first inner pillar that extends from a first base of the first core, the first core is a ferromagnetic material, the first outer wall includes a first at least first slot disposed opposite a first at least second slot, the first coil winding passes through either or both of the first at least first slot and first at least second slot to facilitate connection to the first capacitor; and the first outer wall is spaced apart from the first inner pillar such that the first coil winding winds around the first inner pillar therebetween; and an external base station external to the sensor system and including an external reader system that generates low frequency magnetic flux and includes: a low frequency reader, a third capacitor and a second inductor connected in series or parallel, the second inductor including a second coil winding wound about a second core, and a second coupling circuit coupled to the low frequency reader; wherein a first end of the second inductor is connected to a first end of the third capacitor, a second end of the third capacitor is connected to the low frequency reader via lead line; and a second end of the second inductor is connected to the low frequency reader via lead line; wherein the second core comprises a p-core shape (pot core) such that it includes a second outer wall circumscribing a second inner pillar that extends from a second base of the second core, the second core is a ferromagnetic material, the second outer wall includes a second at least first slot disposed opposite a second at least second slot, the second coil winding passes through either or both of the second at least first slot and the second at least second slot to facilitate connection to the third capacitor, and the second outer wall is spaced apart from the second inner pillar such that the second coil winding winds around the second inner pillar therebetween; wherein the sensor system produces a magnetic flux that is concentrated and directed by a first core of the sensor system to penetrate through the conductive component for coupling with a magnetic flux produced by the external reader system that is similarly concentrated and directed by a the second core of the external reader system to generate a magnetic flux coupling between the first and second inductors, whereby the reader system transfers power to the sensor system via a wireless energy stream and communicates wirelessly with the sensor system via a wireless data communication stream.

    [0005] The first coil winding may be a copper winding.

    [0006] The sensor may be one of a digital sensor and an analog sensor.

    [0007] The sensor may be one of an acceleration sensor, a temperature sensor, and a strain sensor.

    [0008] In accordance with a second aspect of the disclosure, a gas turbine engine is provided, comprising the system according to the first aspect.

    [0009] In accordance with a third aspect of the disclosure, there is provided a method, according to claim 6, of wirelessly communicating between a sensor system embedded in a conductive component of a gas turbine engine and an external reader by reducing eddy currents produced therefrom, the method comprising in a system according to the first aspect: concentrating and directing a first low frequency magnetic flux produced by the first core of the first inductor of the first coupling circuit of the sensor system for penetration through the conductive component; generating a second low frequency magnetic flux via the external reader; and concentrating and directing a second low frequency magnetic flux produced by the second core of the external reader to couple with the first low frequency magnetic flux to transfer power and communicate data between the external reader and the sensor system.

    [0010] The second core may be manufactured from a ferromagnetic material.

    [0011] The sensor system may include one of an acceleration sensor, a temperature sensor, and a strain sensor.

    [0012] The sensor system may include one of a digital sensor and an analog sensor.

    [0013] Other aspects and features of the disclosed systems and methods will be appreciated from reading the attached detailed description in conjunction with the included drawing figures. Moreover, selected aspects and features of one example embodiment may be combined with various selected aspects and features of other example embodiments.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0014] For further understanding of the disclosed concepts and embodiments, reference may be made to the following exemplary detailed description, read in connection with the drawings, wherein like elements are numbered alike, and in which:

    FIG. 1 is a side view of a gas turbine engine with portions sectioned and broken away to show details of an embodiment;

    FIG. 2 is a schematic diagram illustrating a sensor system communicating with an external reader system, constructed in accordance with an embodiment;

    FIG. 3 is a detailed schematic diagram illustrating a sensor system communicating with an external reader system, constructed in accordance with an embodiment;

    FIG. 4 is perspective view of a core of the sensor system and the external reader system of FIG. 2, constructed in accordance with an embodiment;

    FIG. 5 is a sectional view of the core in FIG. 4 taken along line 4-4 with a coil winding disposed in the core, constructed in accordance with an embodiment; and

    FIG. 6 is a process flow illustrating a sample sequence of steps which may be practiced in accordance with an embodiment.



    [0015] It is to be noted that the appended drawings illustrate only typical embodiments and are therefore not to be considered limiting with respect to the scope of the disclosure or claims. Rather, the concepts of the present disclosure may apply within other equally effective embodiments. Moreover, the drawings are not necessarily to scale, emphasis generally being placed upon illustrating the principles of certain embodiments.

    DETAILED DESCRIPTION



    [0016] Throughout this specification the terms "downstream" and "upstream" are used with reference to the general direction of gas flow through the engine and the terms "axial", "radial" and "circumferential" are generally used with respect to the longitudinal central engine axis.

    [0017] Referring now to FIG. 1, a gas turbine engine constructed in accordance with the present disclosure is generally referred to by reference numeral 10. The gas turbine engine 10 includes a compressor section 12, a combustor 14 and a turbine section 16. The serial combination of the compressor section 12, the combustor 14 and the turbine section 16 is commonly referred to as a core engine 18. The engine 10 is circumscribed about a longitudinal central axis 20.

    [0018] Air enters the compressor section 12 at the compressor inlet 22 and is pressurized. The pressurized air then enters the combustor 14. In the combustor 14, the air mixes with jet fuel and is burned, generating hot combustion gases that flow downstream to the turbine section 16. The turbine section 16 extracts energy from the hot combustion gases to drive the compressor section 12 and a fan 24, which includes a plurality of airfoils 26 (two airfoils shown in FIG. 1). As the turbine section 16 drives the fan 24, the airfoils 26 rotate so as to take in more ambient air. This process accelerates the ambient air 28 to provide the majority of the useful thrust produced by the engine 10. Generally, in some modern gas turbine engines, the fan 24 has a much greater diameter than the core engine 18. Because of this, the ambient air flow 28 through the fan 24 can be 5-10 times higher, or more, than the core air flow 30 through the core engine 18. The ratio of flow through the fan 24 relative to flow through the core engine 18 is known as the bypass ratio.

    [0019] As shown in FIG. 2, the gas turbine engine 10 may be associated with at least one magnetic communication system 32. The at least one magnetic communication system 32 may include a sensor system 34 and an external base station 36. The sensor system 34 may be embedded underneath a metallic or conductive component 35 of the gas turbine engine 10 such as, but not limited to, one of the airfoils 26, a blade of the compressor section 12, a blade of the turbine section 16, a nacelle 33, or a vane 37. The sensor system 34 may communicate wirelessly with an external reader system 38 that is associated with the external base station 36. The external reader system 38 may be external to the sensor system 34. Moreover, the sensor system 34 may produce a magnetic flux that is concentrated and directed by a first core 39 of the sensor system 34 to penetrate through the conductive component 35 for coupling with a magnetic flux produced by the external reader system 38 that is similarly concentrated and directed by a second core 40 of the external reader system 38.

    [0020] With reference to FIG. 3, the sensor system 34 may include a battery 41, a sensor 42, a microcontroller 43, and a low frequency radio-frequency identification integrated chip 44 (LF RFID IC). The sensor 42 may be a digital or analog sensor for monitoring parameters of the component 35 such as, but not limited to, acceleration, temperature, and strain. As a non-limiting example, the microcontroller 43 may be a MSP430 FRAM MCU microcontroller and the LF RFID IC 44 may be a TMS37157 chip.

    [0021] The battery 41 may include a positive end 46 and a negative end 48. The negative end 48 of the battery 41 may be connected to ground 50. The positive end 46 of the battery 41 may be connected to the sensor 42 via a lead line 52, the microcontroller 43 via lead line 54, and the LF RFID IC 44 via lead line 56. The sensor 42 may communicate with the microcontroller 43 via a first bus 58. The microcontroller 43 may communicate with the LF RFID IC 44 via a second bus 60. In an alternative embodiment, the sensor system 34 may optionally include an analog-to-digital converter, external to the microcontroller 43, to convert analog data from the sensor 42 to digital data for transfer to the LF RFID IC 44 via the microcontroller 43.

    [0022] The LF RFID IC 44 may be coupled to a first coupling circuit 62. In particular, the first coupling circuit 62 includes a first capacitor 64 and a first inductor 66 which may be connected in parallel. The first capacitor 64 may include a first end 68 and a second end 70. The first inductor 66 may include a first end 72 and a second end 74. The first end 68 of the first capacitor 64 may be connected to the first end 72 of the first inductor 66 at first node 76, which is further connected to the LF RFID IC 44 via a lead line 78. The second end 70 of the first capacitor 64 may be connected to the second end 74 of the first inductor 66 at a second node 80, which is further connected to the LF RFID IC 44 via a lead line 82. A second capacitor 84 includes a first end 86 connected to the second node 80 and the LF RFID IC 44. The second capacitor 84 also includes a second end 88 connected to ground 50. In an alternative embodiment, the first capacitor 64 and the first inductor 66 may be connected in series.

    [0023] With reference to FIGS. 4 and 5, the first inductor 66 includes a first coil winding 90 and the first core 39. The first coil winding 90 may be, but is not limited to, a copper winding. The first core 39 is a ferromagnetic material. Moreover, the first core 39 has a p-core shape (pot core) such that it includes a first cylindrical outer wall 94 circumscribing a first inner pillar 96 that extends from a first base 98 of the first core 39. The first outer wall 94 is spaced apart from the first inner pillar 96 such that the first coil winding 90 winds around the first inner pillar 96 therebetween. The first outer wall 94 includes a first at least first slot 100. In an exemplary embodiment, the first outer wall 94 may also include a first at least second slot 102 such that the first at least first slot 100 may be disposed opposite the first at least second slot 102. The first and second ends 72, 74 of the first inductor 66 (the first coil winding 90) pass through either or both of the first at least first slot 100 and the first at least second slot 102 to facilitate connection to the first capacitor 64.

    [0024] Moving back to FIG. 3, the reader system 38 may include a low frequency reader 106 and a second coupling circuit 108. The second coupling circuit 108 may include a second inductor 110 connected in series to a third capacitor 112 such that a first end 114 of the second inductor 110 is connected to the first end 116 of the third capacitor 112. A second end 118 of the second inductor 110 is connected to the low frequency reader 106 via lead line 120. A second end 122 of the third capacitor 112 is connected to the low frequency reader 106 via lead line 124. In an alternative embodiment, the second inductor 110 and the third capacitor 112 may be connected in parallel. The reader system 38 may generate a magnetic flux at low frequencies of hundreds of kHz such as, but not limited to, 125 kHz.

    [0025] Similar to the first inductor 66 of the sensor system 34, the second inductor 110 of the reader system 38 includes a second coil winding 126 and the second core 40. As the second coil winding 126 and the second core 40 are similar to the first coil winding 90 and the first core 39, respectively, FIGS. 4 and 5 are referenced to illustrate similar parts. The second coil winding 126 may be, but is not limited to, a copper winding. The second core may be a ferromagnetic material. Moreover, the second core 40 may have a p-core shape (pot core) such that it includes a second cylindrical outer wall 130 circumscribing a second inner pillar 132 that extends from a second base 134 of the second core 40. The second outer wall 130 may be spaced apart from the second inner pillar 132 such that the second coil winding 126 winds around the second inner pillar 132 therebetween. The second outer wall 130 may include a second at least first slot 136. In an exemplary embodiment, the second outer wall 130 may also include a second at least second slot 138 such that the second at least first slot 136 may be disposed opposite the second at least second slot 138. The first and second ends 114, 118 of the second inductor 110 (second coil winding 126) may pass through either or both of the second at least first slot 136 and the second at least second slot 138 to facilitate connection to the third capacitor 112 and the low frequency reader 106, respectively. Although the second core 40 may have a p-core shape, the second core 40 is not limited to this shape and may have other suitable shapes.

    [0026] In operation, the reader system 38 may communicate wirelessly with the sensor system 34 via a wireless digital data communication stream 140. The reader system 38 may also transfer power to the sensor system 34 via a wireless energy stream 142 such that a rectifier internal to the LF RFID IC 44 converts alternative current to direct current for powering the microcontroller 43. The sensor system 34 may be embedded in the metallic or conductive component 35 of the gas turbine engine 10. As an example shown in FIG. 1, the sensor system 34 may be embedded in a blade of the turbine section 16 for monitoring a parameter such as, but not limited to, temperature, acceleration, and strain. In particular, the microcontroller 43 may receive the monitored data from the sensor 42 via the first bus 58 for processing. In an exemplary embodiment, the sensor 42 may be an analog sensor in which case the microcontroller 43 will process and convert the received analog data from the sensor 42 to digital data via an internal analog-to-digital converter for transfer to the LF RFID IC 44. In another exemplary embodiment, the sensor 42 may be a digital sensor in which case the microcontroller 43 will process the received digital data for transfer to the LF RFID IC 44. Regardless of whether the sensor 42 is a digital or analog sensor, the LF RFID IC 44 will then receive the digital data from the microcontroller 43 via the second bus 60 in order to transcribe the digital data, in serial form, to low frequency radio-frequency identification data (LF RFID data). The LF RFID data may be selectively read by the reader system 38 via magnetic flux coupling between the first and second inductors 66, 110.

    [0027] For example, the first core 39 concentrates and directs the magnetic flux produced by the first coil winding 90 of the first inductor 66 to penetrate through the conductive component 35 for coupling with the magnetic flux produced by the second coil winding 126 of the second inductor 110, which is similarly concentrated and directed by the second core 40. Implementing the first and second cores 39, 40 to direct the low radio frequency magnetic flux reduces the formation of eddy currents and allows power transfer and data communication through the conductive component 35.

    [0028] In an exemplary embodiment, the battery 41 may be excluded from the sensor system 34 and the sensor 42 instead receives power from the wireless energy stream 142 via the LF RFID IC 44 and the microcontroller 43, which also receives power from the LF RFID IC 44.

    [0029] FIG. 6 illustrates a process flow 600 of a sample sequence of steps which may be performed to enable magnetic wireless communication between a sensor system embedded in a conductive component of a gas turbine engine and an external reader by reducing eddy currents produced therefrom. Box 610 shows the step of concentrating and directing a first low frequency magnetic flux produced by a first core of the sensor system for penetration through the conductive component. Another step, as illustrated in box 612, is generating a second low frequency magnetic flux via the external reader. Yet another step depicted in box 614 may be concentrating and directing a second low frequency magnetic flux produced by a second core of the external reader to couple with the first low frequency magnetic flux to transfer power and communicate data between the external reader and the sensor system. The first core is manufactured from a ferromagnetic material. The external reader may include a coupling circuit that is wirelessly communicable with the coil winding of the sensor system via a magnetic flux coupling. The sensor system may include one of an acceleration sensor, a temperature sensor, and a strain sensor. The sensor system may include one of a digital sensor and an analog sensor.

    [0030] While the present disclosure has shown and described details of exemplary embodiments, it will be understood by one skilled in the art that various changes in detail may be effected therein without departing from the scope of the disclosure as defined by claims supported by the written description and drawings. Further, where these exemplary embodiments (and other related derivations) are described with reference to a certain number of elements it will be understood that other exemplary embodiments may be practiced utilizing either less than or more than the certain number of elements. Although the present disclosure has been described in connection with gas turbine engine components, it should be noted that such exemplary systems and methods as described above may utilize, as an example, sensor systems embedded in any conductive, metallic components in other industries such as, but not limited to, automotive and manufacturing, to name a few, and accordingly also fall within the scope of the appended claims.

    INDUSTRIAL APPLICABILITY



    [0031] Based on the foregoing, it can be seen that the present disclosure sets forth systems and methods for enabling magnetic wireless communication between a sensor system embedded in a conductive, metallic component of a gas turbine engine and an external reader by reducing eddy currents produced therefrom. In addition, these systems and methods may enable power transfer and data communications between an external reader and a battery-less wireless sensor that is embedded in a metallic or conductive component for monitoring the physical health, load, and usage of the component, measuring parameters such as temperature, strain, and acceleration of the component, detecting counterfeit components, and identifying the component by part identification. The teachings of this disclosure may also be employed such that, the impact of eddy currents at low frequencies, such as below 50 MHz, is greatly reduced. Moreover, through the novel teachings set forth above, flexibility is provided to embed any type of sensor such as, but not limited to, temperature, acceleration, and strain sensors.


    Claims

    1. A system for a gas turbine engine, comprising:
    a conductive component (35) comprising one or more of an airfoil, a blade, a nacelle and a vane for the gas turbine engine, the conductive component (35) including:

    a sensor system (34) embedded in the conductive component (35), the sensor system (34) including a magnetic communication system comprising:

    a microcontroller (43);

    a sensor (42) coupled to the microcontroller;

    a low frequency radio-frequency identification integrated chip (44) coupled (60) to the microcontroller; and

    a first coupling circuit (62) coupled to the low frequency radio-frequency identification integrated chip (44), the first coupling circuit (62) including:

    a first capacitor (64) and a first inductor (66) connected in parallel; wherein

    a first end (68) of the first capacitor (64) is connected to a first end (72) of the first inductor (66) at a first node (76), which is further connected to the low frequency radio-frequency identification integrated chip (44) by a lead line (78), and

    a second end (70) of the first capacitor (64) is connected to a second end (74) of the first inductor (66) at a second node (78), which is further connected to the low frequency radio-frequency identification integrated chip (44) by a lead line (82), and a second capacitor (84) is connected between the second node (78) and ground (50); and

    a first coil winding (90) wound within a first core (39), the first coil winding (90) being operatively associated with a low frequency magnetic flux;

    wherein the first core (39) comprises a p-core shape (pot-core) such that it includes a first outer wall (94) circumscribing a first inner pillar (96) that extends from a first base (98) of the first core (39), the first core (39) is a ferromagnetic material, the first outer wall (94) includes a first at least first slot (100) disposed opposite a first at least second slot (102), the first coil winding (90) passes through either or both of the first at least first slot (100) and first at least second slot (102) to facilitate connection to the first capacitor (64); and the first outer wall (94) is spaced apart from the first inner pillar (96) such that the first coil winding (90) winds around the first inner pillar (96) therebetween; and

    an external base station (36) external to the sensor system (34) and including an external reader system (38) that generates low frequency magnetic flux and includes: a low frequency reader (106), a third capacitor (112) and a second inductor (110) connected in series or parallel, the second inductor (110) including a second coil winding (126) wound about a second core (40), and a second coupling circuit (108) coupled to the low frequency reader (106); wherein

    a first end (114) of the second inductor (110) is connected to a first end (114) of the third capacitor (112), a second end (122) of the third capacitor (112) is connected to the low frequency reader (106) via lead line (124); and

    a second end (118) of the second inductor (110) is connected to the low frequency reader (106) via lead line (120);

    wherein the second core (40) comprises a p-core shape (pot core) such that it includes a second outer wall (130) circumscribing a second inner pillar (132) that extends from a second base (134) of the second core (40), the second core (40) is a ferromagnetic material, the second outer wall (130) includes a second at least first slot (136) disposed opposite a second at least second slot (138), the second coil winding (126) passes through either or both of the second at least first slot (136) and the second at least second slot (138) to facilitate connection to the third capacitor (112), and the second outer wall (130) is spaced apart from the second inner pillar (132) such that the second coil winding (126) winds around the second inner pillar (132) therebetween;

    wherein the sensor system (34) produces a magnetic flux that is concentrated and directed by a first core (39) of the sensor system (34) to penetrate through the conductive component (35) for coupling with a magnetic flux produced by the external reader system (38) that is similarly concentrated and directed by a the second core (40) of the external reader system (38) to generate a magnetic flux coupling between the first and second inductors (66, 110), whereby the reader system (38) transfers power to the sensor system (34) via a wireless energy stream (142) and communicates wirelessly with the sensor system (34) via a wireless data communication stream (140).


     
    2. The system of claim 1, wherein the first coil winding is a copper winding.
     
    3. The system of claim 1 or 2, wherein the sensor is one of a digital sensor and an analog sensor.
     
    4. The system of any preceding claim, wherein the sensor is one of an acceleration sensor, a temperature sensor, and a strain sensor.
     
    5. A gas turbine engine (10), the engine comprising the system of any preceding claim.
     
    6. A method of wirelessly communicating between a sensor system (34) embedded in a conductive component (35) of a gas turbine engine (10) and an external reader (38) by reducing eddy currents produced therefrom, the method comprising in a system for a gas turbine engine as claimed in claim 1:

    concentrating and directing (610) a first low frequency magnetic flux produced by the first core (39) of the first inductor (66) of the first coupling circuit (62) of the sensor system for penetration through the conductive component;

    generating (612) a second low frequency magnetic flux via the external reader; and

    concentrating and directing (614) a second low frequency magnetic flux produced by the second core (40) of the external reader to couple with the first low frequency magnetic flux to transfer power (142) and communicate data (140) between the external reader and the sensor system.


     
    7. The method of claim 6, wherein the second core is manufactured from a ferromagnetic material.
     
    8. The method of claim 6 or 7, wherein the external reader includes a second coupling circuit (108), wherein the second coupling circuit wirelessly communicates with the first coil winding of the sensor system via a magnetic flux coupling.
     
    9. The method of any of claims 6, 7 or 8, wherein the sensor system includes one of an acceleration sensor, a temperature sensor, and a strain sensor (42).
     
    10. The method of any of claims 6 to 9, wherein the sensor system includes one of a digital sensor and an analog sensor.
     


    Ansprüche

    1. System für ein Gasturbinentriebwerk, umfassend:
    eine leitende Komponente (35), die eines oder mehrere von einem Schaufelprofil, einer Laufschaufel, einem Arbeitskorb und einer Leitschaufel für das Gasturbinentriebwerk umfasst, wobei die leitende Komponente (35) Folgendes beinhaltet:

    ein Sensorsystem (34), das in die leitende Komponente (35) eingebettet ist, wobei das Sensorsystem (34) ein magnetisches Kommunikationssystem beinhaltet, das Folgendes umfasst:

    einen Mikrocontroller (43);

    einen Sensor (42), der an den Mikrocontroller gekoppelt ist;

    einen integrierten Niederfrequenz-Hochfrequenzen-Indentifikationschip (44), der an den Mikrocontroller gekoppelt (60) ist; und

    eine erste Kopplungsschaltung (62), die an den integrierten Niederfrequenz-Hochfrequenz-Identifikationschip (44) gekoppelt ist, wobei die erste Kopplungsschaltung (62) Folgendes beinhaltet:

    einen ersten Kondensator (64) und einen ersten Induktor (66), die parallel geschaltet sind; wobei

    ein erstes Ende (68) des ersten Kondensators (64) mit einem ersten Ende (72) des ersten Induktors (66) an einem ersten Knoten (76) verbunden ist, der ferner mit dem integrierten Niederfrequenz-Hochfrequenz-Identifikationschip (44) durch eine Zuleitung (78) verbunden ist, und

    ein zweites Ende (70) des ersten Kondensators (64) mit einem zweiten Ende (74) des ersten Induktors (66) an einem zweiten Konten (78) verbunden ist, der ferner mit dem integrierten Niederfrequenz-Hochfrequenz-Identifikationschip (44) durch eine Zuleitung (82) verbunden ist, und ein zweiter Kondensator (84) zwischen dem zweiten Knoten (78) und der Erde (50) verbunden ist; und

    eine erste Spulenwicklung (90), die innerhalb eines ersten Kerns (39) gewickelt ist, wobei die erste Spulenwicklung (90) einem Niederfrequenzmagnetstrom wirksam zugeordnet ist;

    wobei der erste Kern (39) eine P-Kernform (Schalenkern) derart umfasst, dass er eine erste äußere Wand (94) beinhaltet, die eine erste innere Säule (96) umgibt, die sich von einer ersten Basis (98) des ersten Kerns (39) erstreckt, der erste Kern (39) ein ferromagnetisches Material ist, die erste äußere Wand (94) einen ersten mindestens ersten Schlitz (100) beinhaltet, der gegenüber einem ersten mindestens zweiten Schlitz (102) angeordnet ist, die erste Spulenwicklung (90) durch einen oder beide von dem ersten mindestens ersten Schlitz (100) und dem ersten mindestens zweiten Schlitz (102) verläuft, um die Verbindung mit dem ersten Kondensator (64) zu ermöglichen; und die erste äußere Wand (94) von der ersten inneren Säule (96) derart beabstandet ist, dass die erste Spulenwicklung (90) sich dazwischen um die erste innere Säule (96) wickelt; und

    eine externe Basisstation (36), die sich außerhalb des Sensorsystems (34) befindet und ein externes Lesesystem (38) beinhaltet, das einen Niederfrequenzmagnetstrom erzeugt und Folgendes beinhaltet: eine Niederfrequenzlesevorrichtung (106), einen dritten Kondensator (112) und einen zweiten Induktor (110), die in Reihe oder parallel geschaltet sind, wobei der zweite Induktor (110) eine zweite Spulenwicklung (126), die um einen zweiten Kern (40) gewickelt ist, beinhaltet, und eine zweite Kopplungsschaltung (108), die an die Niederfrequenzlesevorrichtung (106) gekoppelt ist; wobei

    ein erstes Ende (114) des zweiten Induktors (110) mit einem ersten Ende (114) des dritten Kondensators (112) verbunden ist, ein zweites Ende (122) des dritten Kondensators (112) mit der Niederfrequenzlesevorrichtung (106) über die Zuleitung (124) verbunden ist; und

    ein zweites Ende (118) des zweiten Induktors (110) mit der Niederfrequenzlesevorrichtung (106) über die Zuleitung (120) verbunden ist;

    wobei der zweite Kern (40) eine P-Kernform (Schalenkern) derart umfasst, dass er eine zweite äußere Wand (130) beinhaltet, die eine zweite innere Säule (132) umgibt, die sich von einer zweiten Basis (134) des zweiten Kerns (40) erstreckt, der zweite Kern (40) ein ferromagnetisches Material ist, die zweite äußere Wand (130) einen zweiten mindestens ersten Schlitz (136) beinhaltet, der gegenüber einem zweiten mindestens zweiten Schlitz (138) angeordnet ist, die zweite Spulenwicklung (126) durch einen oder beide von dem zweiten mindestens ersten Schlitz (136) und dem zweiten mindestens zweiten Schlitz (138) verläuft, um die Verbindung mit dem dritten Kondensator (112) zu ermöglichen, und die zweite äußere Wand (130) von der zweiten inneren Säule (132) derart beabstandet ist, dass die zweite Spulenwicklung (126) sich dazwischen um die zweite innere Säule (132) wickelt;

    wobei das Sensorsystem (34) einen Magnetstrom erzeugt, der durch einen ersten Kern (39) des Sensorsystems (34) konzentriert und geleitet wird, um die leitende Komponente (35) zu Kopplung mit einem durch das externe Lesesystem (38) erzeugten Magnetstrom zu durchdringen, der durch den zweiten Kern (40) des externen Lesesystems (38) gleichermaßen konzentriert und geleitet wird, um eine Magnetstromkopplung zwischen dem ersten und dem zweiten Induktor (66, 110) zu erzeugen, wodurch das Lesesystem (38) Leistung an das Sensorsystem (34) über einen drahtlosen Energiestrom (142) überträgt und mit dem Sensorsystem (34) über einen drahtlosen Datenkommunikationsstrom (140) drahtlos kommuniziert.


     
    2. System nach Anspruch 1, wobei die erste Spulenwicklung eine Kupferwicklung ist.
     
    3. System nach Anspruch 1 oder 2, wobei der Sensor einer von einem digitalen Sensor und einem analogen Sensor ist.
     
    4. System nach einem der vorangehenden Ansprüche, wobei der Sensor einer von einem Beschleunigungssensor, einem Temperatursensor und einem Belastungssensor ist.
     
    5. Gasturbinentriebwerk (10), wobei das Triebwerk das System nach einem der vorangehenden Ansprüche umfasst.
     
    6. Verfahren zum drahtlosen Kommunizieren zwischen einem Sensorsystem (34), das in eine leitende Komponente (35) eines Gasturbinentriebwerks (10) eingebettet ist, und einer externen Lesevorrichtung (38) durch Reduzieren von daraus erzeugten Wirbelströmen, wobei das Verfahren in einem System für ein Gasturbinentriebwerk nach Anspruch 1 Folgendes umfasst:

    Konzentrieren und Leiten (610) eines ersten Niederfrequenzmagnetstroms, der durch den ersten Kern (39) des ersten Induktors (66) der ersten Kopplungsschaltung (62) des Sensorsystems erzeugt wird, zum Durchdringen der leitenden Komponente;

    Erzeugen (612) eines zweiten Niederfrequenzmagnetstroms über die externe Lesevorrichtung; und

    Konzentrieren und Leiten (614) eines zweiten Niederfrequenzmagnetstroms, der durch den zweiten Kern (40) der externen Lesevorrichtung erzeugt wird, um sich mit dem ersten Niederfrequenzmagnetstrom zu koppeln, um zwischen der externen Lesevorrichtung und dem Sensorsystem Leistung (142) zu übertragen und Daten (140) zu kommunizieren.


     
    7. Verfahren nach Anspruch 6, wobei der zweite Kern aus einem ferromagnetischen Material gefertigt ist.
     
    8. Verfahren nach Anspruch 6 oder 7, wobei die externe Lesevorrichtung eine zweite Kopplungsschaltung (108) beinhaltet, wobei die zweite Kopplungsschaltung mit der ersten Spulenwicklung des Sensorsystems über eine Magnetstromkopplung drahtlos kommuniziert.
     
    9. Verfahren nach einem der Ansprüche 6, 7 oder 8, wobei das Sensorsystem einen von einem Beschleunigungssensor, einem Temperatursensor und einem Belastungssensor (42) beinhaltet.
     
    10. Verfahren nach einem der Ansprüche 6 bis 9, wobei das Sensorsystem einen von einem digitalen Sensor und einem analogen Sensor beinhaltet.
     


    Revendications

    1. Système pour moteur à turbine à gaz, comprenant :
    un composant conducteur (35) comprenant un ou plusieurs éléments parmi un profil aérodynamique, une pale, une nacelle et une aube pour le moteur à turbine à gaz, le composant conducteur (35) comportant :

    un système de capteur (34) intégré dans le composant conducteur (35), le système de capteur (34) comportant un système de communication magnétique comprenant :

    un microcontrôleur (43) ;

    un capteur (42) couplé au microcontrôleur ;

    une puce intégrée d'identification par radiofréquence basse fréquence (44) couplée (60) au microcontrôleur ; et

    un premier circuit de couplage (62) couplé à la puce intégrée d'identification par radiofréquence basse fréquence (44), le premier circuit de couplage (62) comportant :

    un premier condensateur (64) et un premier inducteur (66) reliés en parallèle ; dans lequel

    une première extrémité (68) du premier condensateur (64) est reliée à une première extrémité (72) du premier inducteur (66) au niveau d'un premier nœud (76), qui est en outre relié à la puce intégrée d'identification par radiofréquence basse fréquence (44) par une ligne conductrice (78), et

    une seconde extrémité (70) du premier condensateur (64) est reliée à une seconde extrémité (74) du premier inducteur (66) au niveau d'un second nœud (78), qui est en outre relié à la puce intégrée d'identification par radiofréquence basse fréquence (44) par une ligne conductrice (82), et un deuxième condensateur (84) est relié entre le second nœud (78) et la terre (50) ; et

    un premier enroulement de bobine (90) enroulé à l'intérieur d'un premier noyau (39), le premier enroulement de bobine (90) étant associé de manière fonctionnelle à un flux magnétique basse fréquence ;

    dans lequel le premier noyau (39) comprend une forme de noyau p (noyau en pot) de sorte qu'il comporte une première paroi extérieure (94) entourant un premier pilier intérieur (96) qui s'étend à partir d'une première base (98) du premier noyau (39), le premier noyau (39) est un matériau ferromagnétique, la première paroi extérieure (94) comporte une première au moins première fente (100) disposée à l'opposé d'une première au moins seconde fente (102), le premier enroulement de bobine (90) passe à travers l'une ou les deux de la première au moins première fente (100) et de la première au moins seconde fente (102) pour faciliter la liaison au premier condensateur (64) ; et la première paroi extérieure (94) est espacée du premier pilier intérieur (96) de sorte que le premier enroulement de bobine (90) s'enroule autour du premier pilier intérieur (96) entre eux ; et

    une station de base externe (36) externe au système de capteur (34) et comportant un système de lecteur externe (38) qui génère un flux magnétique basse fréquence et comporte : un lecteur basse fréquence (106), un troisième condensateur (112) et un second inducteur (110) reliés en série ou en parallèle, le second inducteur (110) comportant un second enroulement de bobine (126) enroulé autour d'un second noyau (40), et un second circuit de couplage (108) couplé au lecteur basse fréquence (106) ; dans lequel

    une première extrémité (114) du second inducteur (110) est reliée à une première extrémité (114) du troisième condensateur (112), une seconde extrémité (122) du troisième condensateur (112) est reliée au lecteur basse fréquence (106) par l'intermédiaire de la ligne conductrice (124) ; et

    une seconde extrémité (118) du second inducteur (110) est reliée au lecteur basse fréquence (106) par l'intermédiaire de la ligne conductrice (120) ;

    dans lequel le second noyau (40) comprend une forme de noyau p (noyau en pot) de sorte qu'il comporte une seconde paroi extérieure (130) entourant un second pilier intérieur (132) qui s'étend à partir d'une seconde base (134) du second noyau (40), le second noyau (40) est un matériau ferromagnétique, la seconde paroi extérieure (130) comporte une seconde au moins première fente (136) disposée en face d'une seconde au moins seconde fente (138), le second enroulement de bobine (126) passe à travers l'une ou les deux de la seconde au moins première fente (136) et de la seconde au moins seconde fente (138) pour faciliter la liaison au troisième condensateur (112), et la seconde paroi extérieure (130) est espacée du second pilier intérieur (132) de sorte que le second enroulement de bobine (126) s'enroule autour du second pilier intérieur (132) entre eux ;

    dans lequel le système de capteur (34) produit un flux magnétique qui est concentré et dirigé par un premier noyau (39) du système de capteur (34) pour pénétrer à travers le composant conducteur (35) pour le couplage avec un flux magnétique produit par le système de lecteur externe (38) qui est concentré et dirigé de manière similaire par le second noyau (40) du système de lecteur externe (38) afin de générer un couplage de flux magnétique entre les premier et second inducteurs (66, 110), moyennant quoi le système de lecteur (38) transfère de l'énergie au système de capteur (34) par l'intermédiaire d'un flux d'énergie sans fil (142) et communique sans fil avec le système de capteur (34) par l'intermédiaire d'un flux de communication de données sans fil (140) .


     
    2. Système selon la revendication 1, dans lequel le premier enroulement de bobine est un enroulement en cuivre.
     
    3. Système selon la revendication 1 ou 2, dans lequel le capteur est l'un parmi un capteur numérique et un capteur analogique.
     
    4. Système selon une quelconque revendication précédente, dans lequel le capteur est l'un parmi un capteur d'accélération, un capteur de température et un capteur de contrainte.
     
    5. Moteur à turbine à gaz (10), le moteur comprenant le système selon une quelconque revendication précédente.
     
    6. Procédé de communication sans fil entre un système de capteur (34) intégré dans un composant conducteur (35) d'un moteur à turbine à gaz (10) et un lecteur externe (38) en réduisant les courants de Foucault produits à partir de celui-ci, le procédé comprenant dans un système pour moteur à turbine à gaz selon la revendication 1 :

    la concentration et l'orientation (610) d'un premier flux magnétique basse fréquence produit par le premier noyau (39) du premier inducteur (66) du premier circuit de couplage (62) du système de capteur pour la pénétration à travers le composant conducteur ;

    la génération (612) d'un second flux magnétique basse fréquence par l'intermédiaire du lecteur externe ; et

    la concentration et l'orientation (614) d'un second flux magnétique basse fréquence produit par le second noyau (40) du lecteur externe pour le coupler avec le premier flux magnétique basse fréquence afin de transférer l'énergie (142) et de communiquer des données (140) entre le lecteur externe et le système de capteur.


     
    7. Procédé selon la revendication 6, dans lequel le second noyau est fabriqué à partir d'un matériau ferromagnétique.
     
    8. Procédé selon la revendication 6 ou 7, dans lequel le lecteur externe comporte un second circuit de couplage (108), dans lequel le second circuit de couplage communique sans fil avec le premier enroulement de bobine du système de capteur par l'intermédiaire d'un couplage de flux magnétique.
     
    9. Procédé selon l'une quelconque des revendications 6, 7 ou 8, dans lequel le système de capteur comporte l'un parmi un capteur d'accélération, un capteur de température et un capteur de contrainte (42).
     
    10. Procédé selon l'une quelconque des revendications 6 à 9, dans lequel le système de capteur comporte l'un parmi un capteur numérique et un capteur analogique.
     




    Drawing