(19)
(11)EP 3 095 830 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
29.07.2020 Bulletin 2020/31

(21)Application number: 16178230.5

(22)Date of filing:  02.06.2010
(51)International Patent Classification (IPC): 
C09K 3/30(2006.01)
A62D 1/00(2006.01)
C11D 7/50(2006.01)
C09K 5/04(2006.01)
C08J 9/14(2006.01)

(54)

AZEOTROPIC AND AZEOTROPE-LIKE COMPOSITIONS OF Z-1,1,1,4,4,4- HEXAFLUORO-2-BUTENE

AZEOTROPE ODER AZEOTROPENÄHNLICHE ZUSAMMENSETZUNGEN AUS Z-1,1,1,4,4,4-HEXAFLUOR-2-BUTEN

COMPOSITIONS AZÉOTROPIQUES ET DE TYPE AZÉOTROPE DE Z-1,1,1,4,4,4- HEXAFLUORO-2-BUTÈNE


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

(30)Priority: 02.06.2009 US 183197 P
02.06.2009 US 183203 P
16.12.2009 US 286872 P
16.12.2009 US 286870 P
16.12.2009 US 286868 P
16.12.2009 US 286863 P
11.01.2010 US 293763 P
11.01.2010 US 293765 P
11.01.2010 US 293767 P
20.01.2010 US 296547 P

(43)Date of publication of application:
23.11.2016 Bulletin 2016/47

(62)Application number of the earlier application in accordance with Art. 76 EPC:
10722890.0 / 2438134

(73)Proprietor: The Chemours Company FC, LLC
Wilmington DE 19801 (US)

(72)Inventor:
  • Robin, Mark, L.
    Middletown, DE Delaware 19709 (US)

(74)Representative: Morf, Jan Stefan et al
Abitz & Partner Patentanwälte mbB Arabellastrasse 17
81925 München
81925 München (DE)


(56)References cited: : 
WO-A1-2008/121785
WO-A1-2010/098936
US-A1- 2006 266 976
US-B1- 7 479 238
WO-A1-2009/032983
WO-A2-2008/134061
US-A1- 2009 099 272
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description


    [0001] This application claims priority of U.S. Patent Applications 61/183203 and 61/183197 filed June 2, 2009, U.S. Patent Applications 61/286868, 61/286872, 61/286870 and 61/286863 filed December 16, 2009, U.S. Patent Applications 61/293763, 61/293765 and 61/293767 filed January 11, 2010, U.S. Patent Application 61/296547 filed January 20, 2010.

    BACKGROUND OF THE INVENTION


    Field of the Disclosure



    [0002] The present disclosure relates to azeotropic or azeotrope-like compositions of Z-1,1,1,4,4,4-hexafluoro-2-butene (Z-FO-1336mzz).

    Description of Related Art



    [0003] Many industries have been working for the past few decades to find replacements for the ozone depleting chlorofluorocarbons (CFCs) and hydrochlorofluorocarbons (HCFCs). The CFCs and HCFCs have been employed in a wide range of applications, including their use as aerosol propellants, refrigerants, cleaning agents, expansion agents for thermoplastic and thermoset foams, heat transfer media, gaseous dielectrics, fire extinguishing and suppression agents, power cycle working fluids, polymerization media, particulate removal fluids, carrier fluids, buffing abrasive agents, and displacement drying agents. In the search for replacements for these versatile compounds, many industries have turned to the use of hydrofluorocarbons (HFCs).

    [0004] The HFCs do not contribute to the destruction of stratospheric ozone, but are of concern due to their contribution to the "greenhouse effect", i.e., they contribute to global warming. As a result of their contribution to global warming, the HFCs have come under scrutiny, and their widespread use may also be limited in the future. Thus, there is a need for compositions that do not contribute to the destruction of stratospheric ozone and also have low global warming potentials (GWPs). Certain hydrofluoroolefins, such as 1,1,1,4,4,4-hexafluoro-2-butene (CF3CH=CHCF3, FC-1336mzz, FO-1336mzz), are believed to meet both goals.

    [0005] WO 2008/134061 A2 discloses azeotropic or azeotrope-like compositions which are mixtures of Z-1,1,1,4,4,4-hexafluoro-2-butene with methyl formate, pentane, 2-methylbutane, 1,1,1,3,3-pentafluorobutane, trans-1,2-dichloroethylene, 1,1,1,3,3-pentafluoropropane, dimethoxymethane, or cyclopentane.

    [0006] WO 2009/032983 A1 discloses azeotropic or azeotrope-like compositions, which are mixtures of E-1,1,1,4,4,5,5,5-octafluoro-2-pentene with methyl formate, n-pentane, 2-methylbutane, 1,1,1,3,3-pentafluorobutane, trans-1,2-dichloroethylene, 1,1,1,3,3-pentafluoropropane, dimethoxymethane, cyclopentane or Z-1,1,1,4,4,4-hexafluoro-2-butene.

    [0007] US 7,479,238 B1 provides azeotrope-like compositions comprising 1,1,1-trifluoro-3-chloropropene and methyl formate and uses thereof, including use in refrigerant compositions, refrigeration systems, blowing agent compositions, solvent, and aerosol propellants.

    [0008] US 2006/266976 A1 describes compositions for use in refrigeration and air-conditioning systems comprising at least one bromofluoro-olefin. It further relates to refrigerant and heat transfer fluid compositions comprising a flammable refrigerant and a bromofluoro-olefin. In addition, compositions for use in refrigeration apparatus and air-conditioning apparatus employing a centrifugal compressor comprising at least one bromofluoro-olefin are disclosed.

    [0009] US 2009/099272 A1 provides polyurethane and polyisocyanurate foams and methods for the preparation thereof. The foams are produced with a polyol premix composition which comprises a combination of a hydrohaloolefin blowing agent, a polyol, a silicone surfactant, and a catalyst which is an adduct of an amine and an organic acid.

    [0010] WO 2008/121785 A1 relates to a blowing agent for thermosetting foams. The blowing agent is a hydrofluoroolefin (HCFO), preferably HFCO-1234ze in combination with a hydrochlorofluoroolefin (HCFO) preferably one selected from HCFO-1233zd, HCFO-1223, HCFO-1233xf and mixtures thereof.

    SUMMARY OF THE INVENTION



    [0011] This application includes two different types of azeotropic or azeotrope-like mixtures.

    [0012] This disclosure provides a composition consisting essentially of (a) Z-FO-1336mzz and (b) a component selected from the group consisting of 2-bromo-3,3,3-trifluoropropene and 1-chloro-3,3,3-trifluoropropene; wherein said component is present in an effective amount to form an azeotrope-like combination with the Z-1,1,1,4,4,4-hexafluoro-2-butene.

    [0013] This disclosure also provides a composition consisting essentially of (a) Z-FO-1336mzz and (b) a component which is 2-bromo-3,3,3-trifluoropropene; wherein said component is present in an effective amount to form an azeotropic combination with the Z-1,1,1,4,4,4-hexafluoro-2-butene.

    BRIEF SUMMARY OF THE DRAWINGS



    [0014] 

    FIG. 1 - FIG. 1 is a graphical representation of an azeotrope and azeotrope-like compositions consisting essentially of Z-FO-1336mzz and 2-bromo-3,3,3-trifluoropropene at a temperature of about 29.6 °C.

    FIG. 2 - FIG. 2 is a graphical representation of azeotrope-like compositions consisting essentially of Z-FO-1336mzz and 1-chloro-3,3,3-trifluoropropene at a temperature of about 24.7 °C.


    DETAILED DESCRIPTION OF THE INVENTION



    [0015] In many applications, the use of a pure single component or an azeotropic or azeotrope-like mixture is desirable. For example, when a blowing agent composition (also known as foam expansion agents or foam expansion compositions) is not a pure single component or an azeotropic or azeotrope-like mixture, the composition may change during its application in the foam forming process. Such change in composition could detrimentally affect processing or cause poor performance in the application. Also, in refrigeration applications, a refrigerant is often lost during operation through leaks in shaft seals, hose connections, soldered joints and broken lines. In addition, the refrigerant may be released to the atmosphere during maintenance procedures on refrigeration equipment. If the refrigerant is not a pure single component or an azeotropic or azeotrope-like composition, the refrigerant composition may change when leaked or discharged to the atmosphere from the refrigeration equipment. The change in refrigerant composition may cause the refrigerant to become flammable or to have poor refrigeration performance. Accordingly, there is a need for using azeotropic or azeotrope-like mixtures in these and other applications, for example azeotropic or azeotrope-like mixtures containing Z-1,1,1,4,4,4-hexafluoro-2-butene (Z-CF3CH=CHCF3, Z-FO-1336mzz, Z-FC-1336mzz, Z-HFO-1336mzz).

    [0016] Before addressing details of embodiments described below, some terms are defined or clarified.

    [0017] FO-1336mzz may exist as one of two configurational isomers, E or Z. FO-1336mzz as used herein refers to the isomers, Z-FO-1336mzz or E-FO-1336mzz, as well as any combinations or mixtures of such isomers.

    [0018] As used herein, the terms "comprises," "comprising," "includes," "including," "has," "having" or any other variation thereof, are intended to cover a non-exclusive inclusion. For example, a process, method, article, or apparatus that comprises a list of elements is not necessarily limited to only those elements but may include other elements not expressly listed or inherent to such process, method, article, or apparatus. Further, unless expressly stated to the contrary, "or" refers to an inclusive or and not to an exclusive or. For example, a condition A or B is satisfied by any one of the following: A is true (or present) and B is false (or not present), A is false (or not present) and B is true (or present), and both A and B are true (or present).

    [0019] Also, use of "a" or "an" are employed to describe elements and components described herein. This is done merely for convenience and to give a general sense of the scope of the invention. This description should be read to include one or at least one and the singular also includes the plural unless it is obvious that it is meant otherwise.

    [0020] Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Although methods and materials similar or equivalent to those described herein can be used in the practice or testing of embodiments of the present invention, suitable methods and materials are described below. In case of conflict, the present specification, including definitions, will control. In addition, the materials, methods, and examples are illustrative only and not intended to be limiting.

    [0021] Z-FO-1336mzz is a known compound, and its preparation method has been disclosed, for example, by Swearingen in U.S. Patent Application Publication US 2008-0269532 A1.

    [0022] This application includes azeotropic or azeotrope-like compositions comprising Z-FO-1336mzz.

    [0023] In some embodiments of this invention, the composition consists essentially of: (a) Z-1,1,1,4,4,4-hexafluoro-2-butene; and (b) a component selected from the group consisting of 2-bromo-3,3,3-trifluoropropene and 1-chloro-3,3,3-trifluoropropene; wherein said component is present in an effective amount to form an azeotrope-like combination with the Z-1,1,1,4,4,4-hexafluoro-2-butene.

    [0024] In some embodiments of this invention, the composition consists essentially of: (a) Z-1,1,1,4,4,4-hexafluoro-2-butene; and (b) a component which is 2-bromo-3,3,3-trifluoropropene; wherein said component is present in an effective amount to form an azeotropic combination with the Z-1,1,1,4,4,4-hexafluoro-2-butene.

    [0025] In some embodiments of this invention, the component is 2-bromo-3,3,3-trifluoropropene and the composition consists essentially of (a) Z-FO-1336mzz and (b) 2-bromo-3,3,3-trifluoropropene; wherein the 2-bromo-3,3,3-trifluoropropene is present in an effective amount to form an azeotropic or azeotrope-like mixture with Z-FO-1336mzz.

    [0026] In some embodiments of this invention, the component is 1-chloro-3,3,3-trifluoropropene and the composition consists essentially of (a) Z-FO-1336mzz and (b) 1-chloro-3,3,3-trifluoropropene; wherein the 1-chloro-3,3,3-trifluoropropene is present in an effective amount to form an azeotrope-like mixture with Z-FO-1336mzz.

    [0027] By effective amount is meant an amount, which, when combined with Z-FO-1336mzz, results in the formation of an azeotropic or azeotrope-like mixture. This definition includes the amounts of each component, which amounts may vary depending on the pressure applied to the composition so long as the azeotropic or azeotrope-like compositions continue to exist at the different pressures, but with possible different boiling points. Therefore, effective amount includes the amounts, such as may be expressed in weight or mole percentages, of each component of the compositions of the instant invention which form azeotropic or azeotrope-like compositions at temperatures or pressures other than as described herein.

    [0028] As recognized in the art, an azeotropic composition is an admixture of two or more different components which, when in liquid form under a given pressure, will boil at a substantially constant temperature, which temperature may be higher or lower than the boiling temperatures of the individual components, and which will provide a vapor composition essentially identical to the overall liquid composition undergoing boiling. (see, e.g., M. F. Doherty and M.F. Malone, Conceptual Design of Distillation Systems, McGraw-Hill (New York), 2001, 185-186, 351-359).

    [0029] Accordingly, the essential features of an azeotropic composition are that at a given pressure, the boiling point of the liquid composition is fixed and that the composition of the vapor above the boiling composition is essentially that of the overall boiling liquid composition (i.e., no fractionation of the components of the liquid composition takes place). It is also recognized in the art that both the boiling point and the weight percentages of each component of the azeotropic composition may change when the azeotropic composition is subjected to boiling at different pressures. Thus, an azeotropic composition may be defined in terms of the unique relationship that exists among the components or in terms of the compositional ranges of the components or in terms of exact weight percentages of each component of the composition characterized by a fixed boiling point at a specified pressure.

    [0030] For the purpose of this invention, an azeotrope-like composition means a composition that behaves like an azeotropic composition (i.e., has constant boiling characteristics or a tendency not to fractionate upon boiling or evaporation). Hence, during boiling or evaporation, the vapor and liquid compositions, if they change at all, change only to a minimal or negligible extent. This is to be contrasted with non-azeotrope-like compositions in which during boiling or evaporation, the vapor and liquid compositions change to a substantial degree.

    [0031] Additionally, azeotrope-like compositions exhibit dew point pressure and bubble point pressure with virtually no pressure differential. That is to say that the difference in the dew point pressure and bubble point pressure at a given temperature will be a small value. In this invention, compositions with a difference in dew point pressure and bubble point pressure of less than or equal to 5 percent (based upon the bubble point pressure) is considered to be azeotrope-like.

    [0032] It is recognized in this field that when the relative volatility of a system approaches 1.0, the system is defined as forming an azeotropic or azeotrope-like composition. Relative volatility is the ratio of the volatility of component 1 to the volatility of component 2. The ratio of the mole fraction of a component in vapor to that in liquid is the volatility of the component.

    [0033] To determine the relative volatility of any two compounds, a method known as the PTx method can be used. In this procedure, the total absolute pressure in a cell of known volume is measured at a constant temperature for various compositions of the two compounds. Use of the PTx Method is described in detail in "Phase Equilibrium in Process Design", Wiley-Interscience Publisher, 1970, written by Harold R. Null, on pages 124 to 126.

    [0034] These measurements can be converted into equilibrium vapor and liquid compositions in the PTx cell by using an activity coefficient equation model, such as the Non-Random, Two-Liquid (NRTL) equation, to represent liquid phase nonidealities. Use of an activity coefficient equation, such as the NRTL equation is described in detail in "The Properties of Gases and Liquids," 4th edition, published by McGraw Hill, written by Reid, Prausnitz and Poling, on pages 241 to 387, and in "Phase Equilibria in Chemical Engineering," published by Butterworth Publishers, 1985, written by Stanley M. Walas, pages 165 to 244. Without wishing to be bound by any theory or explanation, it is believed that the NRTL equation, together with the PTx cell data, can sufficiently predict the relative volatilities of the Z-1,1,1,4,4,4-hexafluoro-2-butene-containing compositions of the present invention and can therefore predict the behavior of these mixtures in multi-stage separation equipment such as distillation columns.

    [0035] To determine the relative volatility of this binary pair, the PTx method described above was used. The total absolute pressure in a PTx cell of known volume was measured at constant temperature for various binary compositions. These measurements were then reduced to equilibrium vapor and liquid compositions in the cell using the NRTL equation.

    [0036] It was found through experiments that Z-FO-1336mzz and 2-bromo-3,3,3-trifluoropropene (CF3CBr=CH2, HBFO-1233xfB, FO-1233xfB) form azeotropic or azeotrope-like compositions. To determine the relative volatility of this binary pair, the PTx method described above was used. The total absolute pressure in a PTx cell of known volume was measured at constant temperature for various binary compositions. These measurements were then reduced to equilibrium vapor and liquid compositions in the cell using the NRTL equation.

    [0037] The vapor pressure measured versus the compositions in the PTx cell for Z-FO-1336mzz/HBFO-1233xfB mixture is shown in FIG. 1, which illustrates graphically the formation of an azeotrope and azeotrope-like compositions of Z-1,1,1,4,4,4-hexafluoro-2-butene and HBFO-1233xfB at 29.6 °C, as indicated by a mixture of about 54.7 mole % Z-1,1,1,4,4,4-hexafluoro-2-butene and 45.3 mole % HBFO-1233xfB having the highest pressure over the range of compositions at this temperature.

    [0038] Based upon these findings, it has been calculated that Z-FO-1336mzz and HBFO-1233xfB form azeotropic compositions ranging from about 41.2 mole percent to about 75.1 mole percent Z-FO-1336mzz and from about 58.8 mole percent to about 24.9 mole percent HBFO-1233xfB (which form azeotropic compositions boiling at a temperature of from about -50 °C to about 160 °C and at a pressure of from about 0.2 psia (1.4 kPa) to about 349 psia (2406 kPa)). Some embodiments of azeotropic compositions are listed in Table 1.
    Table 1 Azeotropic compositions
    Azeotropic Temperature (°C)Azeotropic Pressure (psia)Z-FO-1336mzz (mole %)HBFO-1233xfB (mole %)
    29.6 13.9 54.7 45.3
    31.2 14.7 55.0 45.0


    [0039] Additionally, azeotrope-like compositions containing Z-FO-1336mzz and HBFO-1233xfB may also be formed. Such azeotrope-like compositions exist around azeotropic compositions. Some embodiments of azeotrope-like compositions are listed in Table 2. Additional embodiments of azeotrope-like compositions are listed in Table 3.
    Table 2 Azeotrope-like compositions
    COMPONENTST (°C)Mole Percentage Range
    Z-FO-1336mzz/HBFO-1233xfB -50 1-99/1-99
    Z-FO-1336mzz/HBFO-1233xfB -40 1-99/1-99
    Z-FO-1336mzz/HBFO-1233xfB -20 1-99/1-99
    Z-FO-1336mzz/HBFO-1233xfB 0 1-99/1-99
    Z-FO-1336mzz/HBFO-1233xfB 20 1-99/1-99
    Z-FO-1336mzz/HBFO-1233xfB 40 1-99/1-99
    Z-FO-1336mzz/HBFO-1233xfB 60 1-99/1-99
    Z-FO-1336mzz/HBFO-1233xfB 80 1-99/1-99
    Z-FO-1336mzz/HBFO-1233xfB 100 1-99/1-99
    Z-FO-1336mzz/HBFO-1233xfB 120 1-99/1-99
    Z-FO-1336mzz/HBFO-1233xfB 140 1-99/1-99
    Z-FO-1336mzz/HBFO-1233xfB 160 1-99/1-99
    Table 3 Azeotrope-like compositions
    COMPONENTST (°C)Mole Percentage Range
    Z-FO-1336mzz/HBFO-1233xfB -50 5-95/5-95
    Z-FO-1336mzz/HBFO-1233xfB -40 5-95/5-95
    Z-FO-1336mzz/HBFO-1233xfB -20 5-95/5-95
    Z-FO-1336mzz/HBFO-1233xfB 0 5-95/5-95
    Z-FO-1336mzz/HBFO-1233xfB 20 5-95/5-95
    Z-FO-1336mzz/HBFO-1233xfB 40 5-95/5-95
    Z-FO-1336mzz/HBFO-1233xfB 60 5-95/5-95
    Z-FO-1336mzz/HBFO-1233xfB 80 5-95/5-95
    Z-FO-1336mzz/HBFO-1233xfB 100 5-95/5-95
    Z-FO-1336mzz/HBFO-1233xfB 120 5-95/5-95
    Z-FO-1336mzz/HBFO-1233xfB 140 5-95/5-95
    Z-FO-1336mzz/HBFO-1233xfB 160 5-95/5-95


    [0040] It was found through experiments that Z-FO-1336mzz and 1-chloro-3,3,3-trifluoropropene (CF3CH=CHCl, HCFO-1233zd) form azeotrope-like compositions. To determine the relative volatility of this binary pair, the PTx method described above was used. The total absolute pressure in a PTx cell of known volume was measured at constant temperature for various binary compositions. These measurements were then reduced to equilibrium vapor and liquid compositions in the cell using the NRTL equation.

    [0041] The vapor pressure measured versus the compositions in the PTx cell for Z-FO-1336mzz/HCFO-1233zd mixture is shown in FIG. 2, which illustrates graphically the formation of azeotrope-like compositions consisting essentially of from about 1 to about 35 mole % Z-1,1,1,4,4,4-hexafluoro-2-butene and from about 99 to about 65 mole % HCFO-1233zd at about 24.7 °C and about 17.5 psia (121 kPa). FIG. 2 also illustrates graphically the formation of azeotrope-like compositions consisting essentially of from about 94 to about 99 mole % Z-1,1,1,4,4,4-hexafluoro-2-butene and from about 6 to about 1 mole % HCFO-1233zd at about 24.7 °C and about 11 psia (76 kPa).

    [0042] Some embodiments of azeotrope-like compositions are listed in Table 4. Additional embodiments of azeotrope-like compositions are listed in Table 5.
    Table 4 Azeotrope-like compositions
    COMPONENTST (°C)Mole Percentage Range
    Z-FO-1336mzz/HCFO-1233zd -40 1-24/76-99 and 96-99/1-4
    Z-FO-1336mzz/HCFO-1233zd -20 1-25/75-99 and 95-99/1-5
    Z-FO-1336mzz/HCFO-1233zd 0 1-28/72-99 and 95-99/1-5
    Z-FO-1336mzz/HCFO-1233zd 20 1-34/64-99 and 93-99/1-7
    Z-FO-1336mzz/HCFO-1233zd 40 1-40/60-99 and 91-99/1-9
    Z-FO-1336mzz/HCFO-1233zd 60 1-48/52-99 and 89-99/1-11
    Z-FO-1336mzz/HCFO-1233zd 80 1-56/44-99 and 85-99/1-15
    Z-FO-1336mzz/HCFO-1233zd 100 1-63/37-99 and 82-99/1-18
    Z-FO-1336mzz/HCFO-1233zd 120 1-66/34-99 and 81-99/1-19
    Z-FO-1336mzz/HCFO-1233zd 140 1-64/36-99 and 84-99/1-16
    Table 5 Azeotrope-like compositions
    COMPONENTST (°C)Mole Percentage Range
    Z-FO-1336mzz/HCFO-1233zd -40 5-24/76-95 and 96-99/1-4
    Z-FO-1336mzz/HCFO-1233zd -20 5-25/75-95 and 95-99/1-5
    Z-FO-1336mzz/HCFO-1233zd 0 5-28/72-95 and 95-99/1-5
    Z-FO-1336mzz/HCFO-1233zd 20 5-34/64-95 and 93-95/5-7
    Z-FO-1336mzz/HCFO-1233zd 40 5-40/60-95 and 91-95/5-9
    Z-FO-1336mzz/HCFO-1233zd 60 5-48/52-95 and 89-95/5-11
    Z-FO-1336mzz/HCFO-1233zd 80 5-56/44-95 and 85-95/5-15
    Z-FO-1336mzz/HCFO-1233zd 100 5-63/37-95 and 82-95/5-18
    Z-FO-1336mzz/HCFO-1233zd 120 5-66/34-95 and 81-95/5-19
    Z-FO-1336mzz/HCFO-1233zd 140 5-64/36-95 and 84-95/5-16


    [0043] The azeotropic or azeotrope-like compositions of the present invention can be prepared by any convenient method including mixing or combining the desired amounts. In one embodiment of this invention, an azeotropic or azeotrope-like composition can be prepared by weighing the desired component amounts and thereafter combining them in an appropriate container.

    [0044] The azeotropic or azeotrope-like compositions of the present invention can be used in a wide range of applications, including their use as aerosol propellants, refrigerants, solvents, cleaning agents, blowing agents (foam expansion agents) for thermoplastic and thermoset foams, heat transfer media, gaseous dielectrics, fire extinguishing and suppression agents, power cycle working fluids, polymerization media, particulate removal fluids, carrier fluids, buffing abrasive agents, and displacement drying agents.

    [0045] One embodiment of this invention provides a process for preparing a thermoplastic or thermoset foam. The process comprises using an azeotropic or azeotrope-like composition as a blowing agent, wherein said azeotropic or azeotrope-like composition consists essentially of Z-1,1,1,4,4,4-hexafluoro-2-butene and a component selected from the group consisting of 2-bromo-3,3,3-trifluoropropene and 1-chloro-3,3,3-trifluoropropene.

    [0046] Another embodiment of this invention provides a process for producing refrigeration. The process comprises condensing an azeotropic or azeotrope-like composition and thereafter evaporating said azeotropic or azeotrope-like composition in the vicinity of the body to be cooled, wherein said azeotropic or azeotrope-like composition consists essentially of Z-1,1,1,4,4,4-hexafluoro-2-butene and a component selected from the group consisting of 2-bromo-3,3,3-trifluoropropene and 1-chloro-3,3,3-trifluoropropene.

    [0047] Another embodiment of this invention provides a process using an azeotropic or azeotrope-like composition as a solvent, wherein said azeotropic or azeotrope-like composition consists essentially of Z-1,1,1,4,4,4-hexafluoro-2-butene and a component selected from the group consisting of 2-bromo-3,3,3-trifluoropropene and 1-chloro-3,3,3-trifluoropropene.

    [0048] Another embodiment of this invention provides a process for producing an aerosol product. The process comprises using an azeotropic or azeotrope-like composition as a propellant, wherein said azeotropic or azeotrope-like composition consists essentially of Z-1,1,1,4,4,4-hexafluoro-2-butene and a component selected from the group consisting of 2-bromo-3,3,3-trifluoropropene and 1-chloro-3,3,3-trifluoropropene.

    [0049] Another embodiment of this invention provides a process using an azeotropic or azeotrope-like composition as a heat transfer media, wherein said azeotropic or azeotrope-like composition consists essentially of Z-1,1,1,4,4,4-hexafluoro-2-butene and a component selected from the group consisting of 2-bromo-3,3,3-trifluoropropene and 1-chloro-3,3,3-trifluoropropene.

    [0050] Another embodiment of this invention provides a process for extinguishing or suppressing a fire. The process comprises using an azeotropic or azeotrope-like composition as a fire extinguishing or suppression agent, wherein said azeotropic or azeotrope-like composition consists essentially of Z-1,1,1,4,4,4-hexafluoro-2-butene and a component selected from the group consisting of 2-bromo-3,3,3-trifluoropropene and 1-chloro-3,3,3-trifluoropropene.

    [0051] Another embodiment of this invention provides a process using an azeotropic or azeotrope-like composition as dielectrics, wherein said azeotropic or azeotrope-like composition consists essentially of Z-1,1,1,4,4,4-hexafluoro-2-butene and a component selected from the group consisting of 2-bromo-3,3,3-trifluoropropene and 1-chloro-3,3,3-trifluoropropene.


    Claims

    1. A composition consisting essentially of:

    (a) Z-1,1,1,4,4,4-hexafluoro-2-butene; and

    (b) a component selected from the group consisting of 2-bromo-3,3,3-trifluoropropene and 1-chloro-3,3,3-trifluoropropene; wherein said component is present in an effective amount to form an azeotrope-like combination with the Z-1,1,1,4,4,4-hexafluoro-2-butene.


     
    2. A composition consisting essentially of:

    (a) Z-1,1,1,4,4,4-hexafluoro-2-butene; and

    (b) a component which is 2-bromo-3,3,3-trifluoropropene; wherein said component is present in an effective amount to form an azeotropic combination with the Z-1,1,1,4,4,4-hexafluoro-2-butene.


     
    3. A process for preparing a thermoplastic or thermoset foam comprising using the azeotrope-like composition of Claim 1 as a blowing agent.
     
    4. A process for preparing a thermoplastic or thermoset foam comprising using the azeotropic composition of Claim 2 as a blowing agent.
     
    5. A process for producing refrigeration comprising condensing the azeotrope-like composition of Claim 1 and thereafter evaporating said azeotrope-like composition in the vicinity of the body to be cooled.
     
    6. A process for producing refrigeration comprising condensing the azeotropic composition of Claim 2 and thereafter evaporating said azeotropic composition in the vicinity of the body to be cooled.
     
    7. A process comprising using the azeotrope-like composition of Claim 1 as a solvent.
     
    8. A process comprising using the azeotropic composition of Claim 2 as a solvent.
     
    9. A process for producing an aerosol product comprising using the azeotrope-like composition of Claim 1 as a propellant.
     
    10. A process for producing an aerosol product comprising using the azeotropic composition of Claim 2 as a propellant.
     
    11. A process comprising using the azeotrope-like composition of Claim 1 as a heat transfer media.
     
    12. A process comprising using the azeotropic composition of Claim 2 as a heat transfer media.
     
    13. A process for extinguishing or suppressing a fire comprising using the azeotrope-like composition of Claim 1 as a fire extinguishing or suppression agent.
     
    14. A process for extinguishing or suppressing a fire comprising using the azeotropic composition of Claim 2 as a fire extinguishing or suppression agent.
     
    15. A process comprising using the azeotrope-like composition of Claim 1 or the azeotropic composition of Claim 2 as dielectrics.
     


    Ansprüche

    1. Zusammensetzung, im Wesentlichen bestehend aus:

    (a) Z-1,1,1,4,4,4-Hexafluor-2-buten; und

    (b) einer Komponente, die ausgewählt ist aus der Gruppe bestehend aus 2-Brom-3,3,3-trifluorpropen und 1-Chlor-3,3,3-trifluorpropen, wobei die Komponente in einer wirksamen Menge vorliegt, um eine azeotropähnliche Kombination mit dem Z-1,1,1,4,4,4-Hexafluor-2-buten zu bilden.


     
    2. Zusammensetzung, im Wesentlichen bestehend aus:

    (a) Z-1,1,1,4,4,4-Hexafluor-2-buten; und

    (b) einer Komponente, die 2-Brom-3,3,3-trifluorpropen ist, wobei die Komponente in einer wirksamen Menge vorliegt, um eine azeotrope Kombination mit dem Z-1,1,1,4,4,4-Hexafluor-2-buten zu bilden.


     
    3. Verfahren zum Herstellen eines thermoplastischen oder duroplastischen Schaums, umfassend das Verwenden der azeotropähnlichen Zusammensetzung nach Anspruch 1 als Treibmittel.
     
    4. Verfahren zum Herstellen eines thermoplastischen oder duroplastischen Schaums, umfassend das Verwenden der azeotropen Zusammensetzung nach Anspruch 2 als Treibmittel.
     
    5. Verfahren zum Erzeugen von Kälte, umfassend das Kondensieren der azeotropähnlichen Zusammensetzung nach Anspruch 1 und anschließend Verdampfen der azeotropähnlichen Zusammensetzung in der Nähe des zu kühlenden Körpers.
     
    6. Verfahren zum Erzeugen von Kälte, umfassend das Kondensieren der azeotropen Zusammensetzung nach Anspruch 2 und anschließend Verdampfen der azeotropen Zusammensetzung in der Nähe des zu kühlenden Körpers.
     
    7. Verfahren, umfassend das Verwenden der azeotropähnlichen Zusammensetzung nach Anspruch 1 als ein Lösemittel.
     
    8. Verfahren, umfassend das Verwenden der azeotropen Zusammensetzung nach Anspruch 2 als ein Lösemittel.
     
    9. Verfahren zum Erzeugen eines Aerosolprodukts, umfassend das Verwenden der azeotropähnlichen Zusammensetzung nach Anspruch 1 als ein Treibmittel.
     
    10. Verfahren zum Erzeugen eines Aerosolprodukts, umfassend das Verwenden der azeotropen Zusammensetzung nach Anspruch 2 als ein Treibmittel.
     
    11. Verfahren, umfassend das Verwenden der azeotropähnlichen Zusammensetzung nach Anspruch 1 als Wärmeträger.
     
    12. Verfahren, umfassend das Verwenden der azeotropen Zusammensetzung nach Anspruch 2 als Wärmeträger.
     
    13. Verfahren zum Löschen oder Unterdrücken eines Feuers, umfassend das Verwenden der azeotropähnlichen Zusammensetzung nach Anspruch 1 als Feuerlösch- oder Unterdrückungsmittel.
     
    14. Verfahren zum Löschen oder Unterdrücken eines Feuers, umfassend das Verwenden der azeotropen Zusammensetzung nach Anspruch 2 als Feuerlösch- oder Unterdrückungsmittel.
     
    15. Verfahren, umfassend das Verwenden der azeotropähnlichen Zusammensetzung nach Anspruch 1 oder der azeotroähnlichen Zusammensetzung nach Anspruch 2 als Dielektrika.
     


    Revendications

    1. Composition constituée essentiellement de:

    (a) Z-1,1,1,4,4,4-hexafluoro-2-butène; et

    (b) un composant choisi dans le groupe constitué de: 2-bromo-3,3,3-trifluoropropène et 1-chloro-3,3,3-trifluoropropène; dans laquelle ledit composant est présent dans une quantité efficace pour former une combinaison de type azéotrope avec le Z-1,1,1,4,4,4-hexafluoro-2-butène.


     
    2. Composition constituée essentiellement de:

    (a) Z-1,1,1,4,4,4-hexafluoro-2-butène; et

    (b) un composant qui est le 2-bromo-3,3,3-trifluoropropène; dans laquelle ledit composant est présent dans une quantité efficace pour former une combinaison azéotropique avec le Z-1,1,1,4,4,4-hexafluoro-2-butène.


     
    3. Procédé pour la préparation d'une mousse thermoplastique ou thermodurcissable comprenant l'utilisation de la composition de type azéotrope selon la revendication 1 en tant qu'agent de gonflement.
     
    4. Procédé pour la préparation d'une mousse thermoplastique ou thermodurcissable comprenant l'utilisation de la composition azéotropique selon la revendication 2 en tant qu'agent de gonflement.
     
    5. Procédé pour la production d'une réfrigération comprenant la condensation de la composition de type azéotrope selon la revendication 1 et par la suite l'évaporation de ladite composition de type azéotrope au voisinage du corps à refroidir.
     
    6. Procédé pour la production d'une réfrigération comprenant la condensation de la composition azéotropique selon la revendication 2 et par la suite l'évaporation de ladite composition azéotropique au voisinage du corps à refroidir.
     
    7. Procédé comprenant l'utilisation de la composition de type azéotrope selon la revendication 1 en tant que solvant.
     
    8. Procédé comprenant l'utilisation de la composition azéotropique selon la revendication 2 en tant que solvant.
     
    9. Procédé pour la production d'un produit aérosol comprenant l'utilisation de la composition de type azéotrope selon la revendication 1 en tant que propulseur.
     
    10. Procédé pour la production d'un produit aérosol comprenant l'utilisation de la composition azéotropique selon la revendication 2 en tant que propulseur.
     
    11. Procédé comprenant l'utilisation de la composition de type azéotrope selon la revendication 1 en tant que milieu de transfert de chaleur.
     
    12. Procédé comprenant l'utilisation de la composition azéotropique selon la revendication 2 en tant que milieu de transfert de chaleur.
     
    13. Procédé pour l'extinction ou la suppression d'un feu comprenant l'utilisation de la composition de type azéotrope selon la revendication 1 en tant qu'agent d'extinction ou de suppression de feu.
     
    14. Procédé pour l'extinction ou la suppression d'un feu comprenant l'utilisation de la composition azéotropique selon la revendication 2 en tant qu'agent d'extinction ou de suppression de feu.
     
    15. Procédé comprenant l'utilisation de la composition de type azéotrope selon la revendication 1 ou de la composition azéotropique selon la revendication 2 en tant que diélectriques.
     




    Drawing











    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description




    Non-patent literature cited in the description