(19)
(11)EP 3 096 365 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
27.11.2019 Bulletin 2019/48

(21)Application number: 15188471.5

(22)Date of filing:  06.10.2015
(51)International Patent Classification (IPC): 
H01L 33/58(2010.01)
F21V 8/00(2006.01)
F21V 5/04(2006.01)

(54)

LIGHTING APPARATUS AND LENS STRUCTURE THEREOF

BELEUCHTUNGSVORRICHTUNG UND DAZUGEHÖRIGE LINSENSTRUKTUR

APPAREIL D'ÉCLAIRAGE ET SA STRUCTURE DE LENTILLE


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 21.04.2015 TW 104112731

(43)Date of publication of application:
23.11.2016 Bulletin 2016/47

(60)Divisional application:
19203440.3

(73)Proprietor: Lextar Electronics Corp.
30075 Hsinchu (TW)

(72)Inventor:
  • Hsu, Han-Chung
    338 Taoyuan City (TW)

(74)Representative: Winter, Brandl, Fürniss, Hübner, Röss, Kaiser, Polte - Partnerschaft mbB 
Patent- und Rechtsanwaltskanzlei Alois-Steinecker-Strasse 22
85354 Freising
85354 Freising (DE)


(56)References cited: : 
WO-A1-2012/095242
US-A1- 2012 126 261
US-A1- 2009 219 716
US-A1- 2013 307 400
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    BACKGROUND


    Technical Field



    [0001] The present invention relates to a lighting apparatus. More particularly, the present invention relates to a lighting apparatus and a lens structure thereof.

    Description of Related Art



    [0002] A typical LED package has a fixed beam angle such as 120 degrees. In order to satisfy optical characteristics of various lighting module, a second lens is employed to cover the LED package to adjust the illumination distribution of the LED.

    [0003] The LED package includes an LED chip, a reflective cup and a fluorescent material. The fluorescent material and the LED chip are encapsulated in the recess of the reflective cup. Because the LED package emits a light only through its top surface, the shapes of the light incident surface and the light outgoing surface of the second lens are designed only based on the illumination distribution of the top surface of the LED package.

    [0004] In pace with the manufacturing progress, a fluorescent film is employed to direct cover the LED chip, and in such a configuration, the LED chip is not required to be encapsulated in the reflective cup. However, since the reflective cup is omitted, the lateral surface of the LED chip emits light to the circuit board, and this light will be reflected to the second lens, which causes unduly high brightness above the LED chip.

    [0005] In US 2012/0126261 A1 a lens comprising a light emission surface with a bowl-shape is disclosed. The inner surface of the bowl shaper is a housing recess which serves as a light receiving surface, and the outer surface of the bowl shape is a lens surface which serves as a light emission surface. The inner surface of the bowl shape is tapered toward the bottom of the bowl.shaped lens, and a conical, tip recess which is receded from the outer surface is formed at the tapered end which is the bottom of the bowl-shaped lens.

    SUMMARY



    [0006] The present invention prevents the unduly high brightness issue at the location above the light element caused by the light reflected by the circuit board.

    [0007] In accordance with one embodiment of the present invention, a lighting apparatus includes a circuit board, a lighting element and a lens structure. The lighting element is disposed on the circuit board. The lighting element includes a lighting top surface and a lighting lateral surface. The lighting lateral surface is adjoined to the lighting top surface and the circuit board. The lighting top surface has a center and an optical axis. The optical axis passes through the center. The lens structure covers the lighting element for receiving a light from the lighting element. The lens structure includes an outer surface. The outer surface includes a total reflection portion and a light outgoing portion. The optical axis passes through the total reflection portion. The light outgoing portion surrounds the total reflection portion. The total reflection portion is configured to totally reflect a portion of light from the center. The light outgoing portion is configured to allow another light from the center to leave away from the lens structure. The total reflection portion satisfies:

    Q1 is a first point on the total reflection portion. Q2 is a second point immediately adjacent to the first point. Q3 is a third point located on a connection line connecting the second point and the crossover point. A connection line connecting the third point and the first point is substantially perpendicular to a connection line connecting the crossover point and the first point. R1 is a distance from the crossover point to the first point. ΔR1 is a distance from the second point to the third point. Δθ1 is an included angle defined by the connection line connecting the first point and the crossover point and the connection line connecting the second point and the crossover point. n is a refractive index of a material of the lens structure.

    [0008] In accordance with another embodiment of the present invention, a lens structure includes a bottom surface, an inner surface and an outer surface. The inner surface is caved in the bottom surface. The outer surface includes a total reflection portion and a light outgoing portion. The light outgoing portion surrounds the total reflection portion. A central axis of the lens structure and an imaginary coplanar plane coplanar with the bottom surface crosses at a crossover point.

    [0009] By the foregoing embodiment, because some lights emitted by the center of the lighting top surface of the lighting element is totally reflected by the total reflection portion, the brightness above the lighting element will not be unduly high even though the light emitted by the lighting lateral surface is reflected by the circuit board upwardly.

    [0010] It is to be understood that both the foregoing general description and the following detailed description are by examples, and are intended to provide further explanation of the invention as claimed.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0011] The invention can be more fully understood by reading the following detailed description of the embodiment, with reference made to the accompanying drawings as follows:

    Fig. 1 is a cross-sectional view of a lighting apparatus in accordance with one embodiment of the present invention;

    Fig. 2 is a fragmentary side view of the lens structure in Fig. 1;

    Fig. 3 is a fragmentary side view of the lens structure in Fig. 2;

    Fig. 4 is a fragmentary side view of the lens structure in Fig. 2;

    Fig. 5 is a brightness distribution comparison chart in accordance one experimental result of the present invention; and

    Fig. 6 is a fragmentary side view of the lighting apparatus in accordance with another embodiment of the present invention.


    DETAILED DESCRIPTION



    [0012] Reference will now be made in detail to the present embodiments, some of which are embodiments of the invention as defined by the appended claims, which are illustrated in the accompanying drawings. Wherever possible, the same reference numbers are used in the drawings and the description to refer to the same or like parts.

    [0013] Fig. 1 is a cross-sectional view of a lighting apparatus in accordance with one embodiment of the present invention. As shown in Fig. 1, in this embodiment, the lighting apparatus includes a circuit board 100, a lighting element 200 and a lens structure 300. The lighting element 200 is disposed on the circuit board 100, and it can be driven by the driving circuit (not shown) on the circuit board 100 to emit a light. The lens structure 300 covers the lighting element 200 for receiving a light from the lighting element 200 and adjusting the traveling path of the light, so as to generate a desired illumination distribution. The lighting element 200 has a lighting top surface 201 and a lighting lateral surface 202. The lighting lateral surface 202 is adjoined to the lighting top surface 201 and the circuit board 100. More particularly, the circuit board 100 has an upper surface 101 facing toward the lens structure 300. The lighting element 200 is disposed on the upper surface 101 of the circuit board 100, and the lighting lateral surface 202 is adjoined to the lighting top surface 201 and the upper surface 101 of the circuit board 100. The lighting top surface 201 and the lighting lateral surface 202 of the lighting element 200 both allow the light inside the lighting element 200 to be emitted outside the lighting element 200.

    [0014] For example, in some embodiments, the lighting element 200 includes an LED chip 210 and a wavelength converting cover 220. The LED chip 210 is disposed on the upper surface 101 of the circuit board 100. In other words, the lower surface of the LED chip 210 is fixed on the upper surface 101 of the circuit board 100. The wavelength converting cover 220 covers other surfaces of the LED chip 210 (including top and lateral surfaces of the LED chip 210), so as to covert the wavelength of lights emitted by these surfaces of the LED chip 210, thereby obtaining lights having desired wavelength. Light emitted by these surfaces of the LED chip 210 travels through the wavelength converting cover 220 and travel out of the lateral and top surfaces of the wavelength converting cover 220. As such, the lateral surface of the wavelength converting cover 220 is the lighting lateral surface 202 of the lighting element 200, and the top surface of the wavelength converting cover 220 is the lighting top surface 201 of the lighting element 200. In some embodiment, the LED chip 210 can be, but is not limited to, a blue LED chip or an UV LED chip. The wavelength converting cover 220 can be, but is not limited to, a fluorescent film, which coverts some blue lights or UV lights to red, green or yellow light.

    [0015] Because the lighting lateral surface 202 allows the light from the LED chip 210 to be emitted outwardly, and the lighting lateral surface 202 is adjoined to the top surface 101 of the circuit board 100, the light from the LED chip 210 may travel through the lighting lateral surface 202 to the upper surface 101 of the circuit board 100. When the light arrives at the upper surface 101 of the circuit board 101, it is reflected by the upper surface 101 upwardly, which causes unduly high brightness above the lighting element 200.

    [0016] In order to address the unduly high brightness issue, the present invention provides the following solution. As shown in Fig. 1, the lens structure 300 includes an outer surface 310 and an inner surface 320 opposite to each other. The inner surface 320 is closer to the lighting element 200 than the outer surface 310 is, so that the light emitted by the lighting element 200 travels into the lens structure 300 through the inner surface 320 and leaves away from the lens structure 300 through the outer surface 310. In this embodiment, the outer surface 310 includes a total reflection portion 311 and a light outgoing portion 312. The lighting top surface 201 has a center O and an optical axis A. The optical axis A passes through the center O and is perpendicular to the lighting top surface 201. The optical axis A passes through the total reflection portion 311, and the light outgoing portion 312 surrounds the total reflection portion 311. When the lighting element 200 emits lights, the total reflection portion 311 totally reflects a portion of light from the center O of the lighting top surface 201, and the light outgoing portion 312 allows another light from the center O to leave away from the lens structure 300.

    [0017] In the foregoing embodiment, because some light emitted by the center O of the lighting top surface 201 is totally reflected by the total reflection portion 311, the brightness above the lighting element 200 will not be unduly high even though the light emitted by the lighting lateral surface 202 is reflected by the upper surface 101 of the circuit board 100 upwardly.

    [0018] Fig. 2 is a fragmentary side view of the lens structure 300 in Fig. 1. As shown in Fig. 2, the total reflection portion 311 and the light outgoing portion 312 cross at a boundary 313. In other words, a portion of the outer surface 310 between the boundary 313 and the optical axis A is the total reflection portion 311, and other portion of outer surface 310 is the light outgoing portion 312. The boundary 313 and the center O define an imaginary connection line L1. The imaginary connection line L1 and the optical axis A define an included angle α. The included angle α ranges from 6 degrees to 18 degrees. Because the included angle α determines the location of the boundary 313, it can determine the covering area that the total reflection portion 311 covers. In the covering area of the total reflection portion 311 based on the foregoing range of the included angle α, the brightness above the lighting element 200 (See Fig. 1) is not unduly high.

    [0019] In order to facilitate the total reflection portion 311 to totally reflect the light from the center O, in some embodiments, one embodiment of the present invention provides the following solution. Reference can be now made to Fig. 3, which is a fragmentary side view of the lens structure 300 in Fig. 2. As shown in Fig. 3, the total reflection portion 311 has a first point Q1 and a second point Q2. The first point Q1 and the second point Q2 are immediately adjacent to each other. It is understood that in this context, the description " two points are immediately adjacent to each other" means that the two points are arranged at an extremely short interval, such that the tangent plane of one point passes another point. For example, the second point Q2 and the first point Q1 are arranged at an extremely short interval, such that the tangent plane of the first point Q1 passes through the second point Q2. A third point Q3 can be determined on the connection line from the second point Q2 to the center O. The connection line connecting the third point Q3 and the first point Q1 is substantially perpendicular to a connection line connecting the center O and the first point Q1. R1 is a distance from the center O to the first point Q1. ΔR1 is a distance from the second point Q2 to the third point Q3. Δθ1 is an included angle defined by the connection line connecting the first point Q1 and the center O and the connection line connecting the second point Q2 and the center O. n is a refractive index of a material of the lens structure 300. The total reflection portion 311 substantially satisfies:



    [0020] When the total reflection portion 311 satisfies the foregoing equation, the total reflection portion 311 can effectively totally reflect the light from the center O. The working principle is described as follows. The medium outside the outer surface 310 is air, in which the refractive index therefore is 1. The medium inside the outer surface 310 is the material of the lens structure 300, in which the refractive index is n. According to Snell's Law, when the light travels from the interior with respect to the outer surface 310 to the outer surface 310, refraction occurs. If the incident angle is θi, and the refraction angle is θt, they satisfy: n×sinθi = 1×sinθt. When a total reflection occurs, the refraction angle θt is 90 degrees, and n×sinθi = 1×sin90° = 1. Therefore, the incident angle satisfies:

    In such a situation, the incident angle θi is called the critical angle. Therefore, the incident angle θi preferably satisfies

    so as to ensure that the total reflection occurs when the light travels from the interior with respect to the outer surface 310 to the outer surface 310. Further, because the connection line connecting the third point Q3 and the first point Q1 is substantially perpendicular to the traveling direction of the incident light, the incident angle θi is equal to the angle ∠Q2Q1Q3. Therefore, when satisfying

    the total reflection occurs when the light emitted from the center O arrives at the outer surface 311. Moreover, because the first point Q1 and the second point Q2 are arranged at an extremely short interval, the Δθ1 is extremely small, and therefore, the distance from the first point Q1 to the third point Q3 is about R1•Δθ1. As a result, the angle ∠Q2Q1Q3 satisfies:

    Based on the foregoing principle, as long as the total reflection portion 311 satisfies:

    the total reflection occurs when the light emitted by the center O arrives at the outer surface 310, thereby addressing the unduly high brightness issue above the lighting element 200.

    [0021] In order to facilitate the light outgoing portion 312 to allow the light emitted by the center O to leave away from the outer surface 310, one embodiment of the present invention provides the following solution. Reference can be now made to Fig. 4, which is a fragmentary side view of the lens structure 300 in Fig. 2. As shown in Fig. 4, the light outgoing portion 312 has a fourth point Q4 and a fifth point Q5. The fourth point Q4 and the fifth point Q5 are immediately adjacent to each other. More particularly, the fifth point Q5 and the fourth point Q4 are arranged at an extremely short interval, such that the tangent plane of the first point Q4 passes through the second point Q5. A sixth point Q6 can be determined on the connection line from the fifth point Q5 to the center O. The connection line connecting the sixth point Q6 and the fourth point Q4 is substantially perpendicular to a connection line connecting the center O and the fourth point Q4. R2 is a distance from the center O to the fourth point Q4. ΔR2 is a distance from the fifth point Q5 to the sixth point Q6. Δθ2 is an included angle defined by the connection line connecting the fourth point Q4 and the center O and the connection line connecting the fifth point Q5 and the center O. The light outgoing portion 312 satisfies:



    [0022] When the light outgoing portion 312 satisfies the foregoing equation, the light outgoing portion 312 allows the light from the center O to leave away from the outer surface 310. The working principle is described as follows. The medium outside the outer surface 310 is air, in which the refractive index therefore is 1. The medium inside the outer surface 310 is the material of the lens structure 300, in which the refractive index is n. According to Snell's Law, when incident angle θi of which the light arrives at the outer surface 310 satisfies:

    the total reflection occurs so that the light cannot leave away from the outer surface 310. Therefore, the incident angle θi preferably satisfies

    so as to ensure that the light can leave away from the outer surface 310 in a refraction manner when the light travels from the interior with respect to the outer surface 310 to the outer surface 310. Further, because the connection line connecting the sixth point Q6 and the fourth point Q4 is substantially perpendicular to the traveling direction of the incident light, the incident angle θi is equal to the angle ∠Q5Q4Q6. Therefore, when satisfying

    the light emitted by the center O can be refracted from the interior with respect to the outer surface 310 to the exterior with respect to the outer surface 310. Moreover, because the fourth point Q4 and the fifth point Q5 are arranged at an extremely short interval, the Δθ2 is extremely small, and therefore, the distance from the fourth point Q4 to the sixth point Q6 is about R2•Δθ2. As a result, the angle ∠Q5Q4Q6 satisfies:

    Based on the foregoing principle, as long as the light outgoing portion 312 satisfies:

    the light emitted by the center O can be refracted out of the outer surface 310 when the light arrives at the outer surface 310, thereby facilitating lighting.

    [0023] In some embodiments, as shown in Fig. 2, the lens structure 300 has a central axis C. The central axis C overlaps with the optical axis A of the lighting top surface 201 (See Fig. 1). In other words, the lens structure 300 is axisymmetrical with respect to the optical axis A of the lighting top surface 201. The lens structure 300 includes a bottom surface 330 and a lateral surface 340. The inner surface 320 is caved in the bottom surface 330. The lateral surface 340 is adjoined to the outer surface 310 and the bottom surface 330. The bottom surface 330 has an imaginary coplanar plane P. The imaginary coplanar plane P means an imaginary plane extending from the bottom surface 330, which is coplanar with the bottom surface 330. The central axis C and the imaginary coplanar plane P coplanar with the bottom surface 330 cross at a crossover point I. The crossover point I overlaps with the center O of the lighting top surface 201. In other words, in Fig. 3, the third point Q3 is also located on the connection line connecting the second point Q2 and the crossover point I. The connection line connecting the third point Q3 and the first point Q1 is also substantially perpendicular to the connection line connecting the crossover point I and the first point Q1. R1 is also a distance from the crossover point I to the first point Q1. Δθ1 is also an included angle defined by the connection line connecting the first point Q1 and the crossover point I and the connection line connecting the second point Q2 and the crossover point I. Moreover, in Fig. 4, the sixth point Q6 is also located on the connection line connecting the firth point Q5 and the crossover point I. The connection line connecting the sixth point Q6 and the fourth point Q4 is substantially perpendicular to the connection line connecting the crossover point I and the fourth point Q4. R2 is also a distance from the crossover point I to the fourth point Q4. Δθ2 is an included angle defined by the connection line connecting the fourth point Q4 and the crossover point I and the connection line connecting the fifth point Q5 and the crossover point I.

    [0024] In some embodiments, as shown in Fig. 2, the outer surface 310 satisfies:



    [0025] Y is a distance from any point on the outer surface 310 to the center O (or the crossover point I) measured along a direction parallel to the optical axis A (or the central axis C), namely, the longitudinal distance in Fig. 2, X is a distance from the point on the outer surface 310 to the optical axis A measured along a direction perpendicular to the optical axis A, namely, the transversal distance in Fig. 2. When the outer surface 310 satisfies the foregoing equation, the total reflection portion 311 can reflect the light emitted by the center O in a total reflection manner, and the light outgoing portion 312 can allow the light emitted by the center O to leave away from the outer surface 310.

    [0026] In some embodiments, as shown in Fig. 2, the inner surface satisfies:



    [0027] y is a distance from any point on the inner surface 320 to the center O (or the crossover point I) measured along a direction parallel to the optical axis A (or the central axis C), namely, the longitudinal distance in Fig. 2, x is a distance from the point on the inner surface 320 to the optical axis A (or the central axis C) measured along a direction perpendicular to the optical axis A (or the central axis C), namely, the transversal distance in Fig. 2. When the inner surface 320 satisfies the foregoing equation, and the outer surface 310 satisfies: Y = -0.0004X6 + 0.0090X5 - 0.0790X4 + 0.3410X3 - 0.8387X2 + 1.3205X + 3.52, it is preferably to ensure the total reflection portion 311 to totally reflect the light emitted by the center O, and to ensure the light outgoing portion allows the light emitted by the center O to leave away from the outer surface 310.

    [0028] In some embodiments, as shown in Fig. 2, the inner surface 320 is a curved surface, the transversal distance from any point on this curved surface to the center O (or the crossover point I) is inversely proportional to the longitudinal distance from this point to the center O (or the crossover point I). The light outgoing portion 312 includes a curved zone 3121 and a planar zone 3122. The curved zone 3121 is adjoined between the total reflection portion 311 and the planar zone 3122. The planar zone 3122 is adjoined to the lateral surface 340. The curved zone 3121 and the planar zone 3122 cross at a boundary 3123. The planar zone 3122 and the lateral surface 340 cross at a boundary 350. The inner surface 320 and the bottom surface 330 cross at a boundary 360. A distance d1 is defined from the boundary 360 to the optical axis A (or the central axis C) along the direction perpendicular to the optical axis A (or the central axis C). A distance d2 is defined from the boundary 3123 to the optical axis A (or the central axis C) along the direction perpendicular to the optical axis A (or the central axis C). A distance d3 is defined from the boundary 350 to the optical axis A (or the central axis C) along the direction perpendicular to the optical axis A (or the central axis C). The relationship among the distances d1, d2 and d3 preferably satisfies: 4 ≤ d2/d1 ≤ 6, and d3 > d2. This relationship effectively enables the light to be totally reflected by the total reflection portion 311, and effectively enables the light to leave away from the lens structure 300 through the light outgoing portion 312.

    [0029] In some embodiments, as shown in Fig. 2, the maximal distance from the inner surface 320 to the center O (or the crossover point I) measured along the direction parallel to the optical axis A (or the central axis C) is the distance d4. A distance d5 is defined from the planar zone 3122 to the center O (or the crossover point I) along the direction parallel to the optical axis A (or the central axis C). The maximal distance from the outer surface 310 to the center O (or the crossover point I) along the direction parallel to the optical axis A (or the central axis C) is the distance d6. The relationship among the distances d4, d5 and d6 preferably satisfies: 1.2 ≤ d6/d4 ≤ 1.8, and d5 > 0.5mm. This relationship effectively enables the light to be totally reflected by the total reflection portion 311, and effectively enables the light to leave away from the lens structure 300 through the light outgoing portion 312.

    [0030] In some embodiments, a material of the lens structure 300 is a light permeable plastic material which has a refractive index ranging from 1.45 to 1.65. It is understood that "a value ranging from A to B" in this context not only means that this value can be any value higher than A and lower than B, but also means that this value can be equal to A or equal to B.

    [0031] Fig. 5 is a brightness distribution comparison chart in accordance one experimental result of the present invention. As shown in Fig. 5, the traditional curve V1 is a brightness distribution curve of a traditional lighting apparatus employing a traditional lens structure without total reflection portion, and the improved curve V2 is a brightness distribution curve of the lighting apparatus employing the lens structure 300 in accordance with the present invention. It can be acknowledged that the central portion of the traditional curve V1 significantly raises, which means that the brightness above the lighting element 200 is unduly high; contrarily, the improved curve V2 does not significantly raise, which means that the brightness above the lighting element 200 is not unduly high. Therefore, the lens structure 300 can effectively address the issue of the unduly high brightness above the lighting element 200.

    [0032] Fig. 6 is a fragmentary side view of the lighting apparatus in accordance with another embodiment of the present invention. As shown in Fig. 6 the main difference between this embodiment and the previous embodiments is that the outer surface 310a is partially rough, while the foregoing outer surface 310 is smooth. In particular, the total reflection portion 311a of the outer surface 310a is rough. For example, the total reflection portion 311a has a roughness of between VDI 10 to 30. The "VDI" in this context is the surface roughness value regulated by Verein Deutscher Ingenieure, the Society of German Engineers. By making the total reflection portion 311a rough, the brightness distribution curve can be smoother.

    [0033] In some embodiments, as shown in Fig. 6, not only the whole total reflection portion 311a is rough, but also the light outgoing portion 312 is partially rough. In particular, the light outgoing portion 312a has a rough zone 3124a and a smooth zone 3125a. The rough zone 3124a is adjoined between the smooth zone 3125a and the total reflection portion 311a. In other words, a zone of the light outgoing portion 312a that is closer to the total reflection portion 311a is rough, and a zone of the light outgoing portion 312a that is farther away from the total reflection portion 311a is smooth. The rough zone 3124a is rougher than the smooth zone 3125a. For example, the rough zone 3124a has a roughness of between VDI 10 to 30. The rough zone 3124a and the smooth zone 3125a cross at a boundary 3126a. The center O (or the crossover point I) and the boundary 3126a define an imaginary connection line L2. The imaginary connection line L2 and the optical axis A (or the central axis C) define an included angle β, the included angle β is less than 36 degrees. The included angle β defines the location of the crossover boundary 3126a, thereby defining the covering area covered by the rough total reflection portion 311a and the rough zone 3124a. In the covering area of the total reflection portion 311a and the rough zone 3124a, the illumination distribution can be smoother.


    Claims

    1. A lighting apparatus, comprising:

    a circuit board (100);

    a lighting element (200) disposed on the circuit board (100), the lighting element (200) comprising a lighting top surface (201) and a lighting lateral surface (202), the lighting lateral surface (202) adjoined to the lighting top surface (201) and the circuit board (100), the lighting top surface (201) having a center (O) and an optical axis (A), the optical axis (A) passing through the center (O); and

    a lens structure (300) covering the lighting element (200) for receiving a light from the lighting element (200), the lens structure (300) comprising an outer surface (310), the outer surface (310) comprising a total reflection portion (311) and a light outgoing portion (312), the optical axis (A) passing through the total reflection portion (311), the light outgoing portion (312) surrounding the total reflection portion (311), the total reflection portion (311) being configured to totally reflect a portion of light from the center (O), the light outgoing portion (312) being configured to allow another light from the center (O) to leave away from the lens structure (300),

    characterized in that,
    the total reflection portion (311) satisfies:

    wherein Q1 is a first point on the total reflection portion (311), and Q2 is a second point immediately adjacent to the first point, and Q3 is a third point located on a connection line connecting the second point and the center (O), and a connection line connecting the third point and the first point is perpendicular to a connection line connecting the center (O) and the first point, R1 is a distance from the center to the first point, ΔR1 is a distance from the second point to the third point, Δθ1 is an included angle defined by the connection line connecting the first point and the center (O) and the connection line connecting the second point and the center (O), and n is a refractive index of a material of the lens structure (300).


     
    2. The lighting apparatus of claim 1, characterized in that the center (O) and a boundary (313) between the total refection portion (311) and a light outgoing portion (312) define an imaginary connection line (L1), the imaginary connection line (L1) and the optical axis (A) define an included angle (α), the included angle (α) ranges from 6 degrees to 18 degrees.
     
    3. The lighting apparatus of claim 1, characterized in that the light outgoing portion (312) satisfies:

    wherein Q4 is a fourth point on the light outgoing portion (312), and Q5 is a fifth point immediately adjacent to the fourth point, and Q6 is a sixth point located on a connection line connecting the fifth point and the center (O), and a connection line connecting the sixth point and the fourth point is perpendicular to a connection line connecting the center (O) and the fourth point, R2 is a distance from the center (O) to the fourth point, ΔR2 is a distance from the fifth point to the sixth point, Δθ2 is an included angle defined by the connection line connecting the fourth point and the center (O) and the connection line connecting the fifth point and the center (O), and n is a refractive index of a material of the lens structure (300).
     
    4. The lighting apparatus of claim 1, characterized in that the outer surface (310) satisfies:

    wherein Y is a distance from any point on the outer surface to the center (O) measured along a direction parallel to the optical axis (A), X is a distance from the point on the outer surface (310) to the optical axis (A) measured along a direction perpendicular to the optical axis (A).
     
    5. The lighting apparatus of claim 4, characterized in that the lens structure (300) comprises an inner surface (320) opposite to the outer surface (310), the inner surface (320) satisfies:

    wherein y is a distance from any point on the inner surface (320) to the center (O) measured along a direction parallel to the optical axis (A), x is a distance from the point on the inner surface (320) to the optical axis (A) measured along a direction perpendicular to the optical axis (A).
     


    Ansprüche

    1. Beleuchtungsvorrichtung mit:

    einer Leiterplatte (100);

    einem auf der Leiterplatte (100) angeordneten Beleuchtungselement (200), wobei das Beleuchtungselement (200) eine obere Beleuchtungsfläche (201) und eine seitliche Beleuchtungsfläche (202) umfasst, wobei die seitliche Beleuchtungsfläche (202) an die obere Beleuchtungsfläche (201) und die Leiterplatte (100) angrenzt, wobei die obere Beleuchtungsfläche (201) eine Mitte (O) und eine optische Achse (A) aufweist, wobei die optische Achse (A) durch die Mitte (O) verläuft; und

    einer Linsenstruktur (300), die das Beleuchtungselement (200) zum Empfangen von Licht aus dem Beleuchtungselement (200) überdeckt, wobei die Linsenstruktur (300) eine Außenfläche (310) aufweist, wobei die Außenfläche (310) einen Totalreflexionsabschnitt (311) und einen Lichtausstrahlabschnitt (312) umfasst, wobei die optische Achse (A) durch den Totalreflexionsabschnitt (311) verläuft, wobei der Lichtausstrahlabschnitt (312) den Totalreflexionsabschnitt (311) umgibt, wobei der Totalreflexionsabschnitt (311) so ausgestaltet ist, dass er einen Teil des Lichts aus der Mitte (O) vollständig reflektiert, wobei der Lichtausstrahlabschnitt (312) so ausgestaltet ist, dass ein anderes Licht aus der Mitte (O) aus der Linsenstruktur (300) austreten kann,

    dadurch gekennzeichnet, dass,

    der gesamte Reflexionsabschnitt (311) Folgendes erfüllt:

    wobei Q1 ein erster Punkt auf dem Totalreflexionsabschnitt (311) ist und Q2 ein zweiter Punkt ist, der unmittelbar an den ersten Punkt angrenzt, und Q3 ein dritter Punkt ist, der auf einer Verbindungslinie angeordnet ist, die den zweiten Punkt und die Mitte (O) verbindet, und eine Verbindungslinie, die den dritten Punkt und den ersten Punkt verbindet, senkrecht zu einer Verbindungslinie ist, die die Mitte (O) und den ersten Punkt verbindet, R1 ein Abstand von der Mitte zum ersten Punkt ist, ΔR1 ein Abstand vom zweiten Punkt zum dritten Punkt ist, Δθ1 ein eingeschlossener Winkel ist, der definiert ist durch die Verbindungslinie, die den ersten Punkt und die Mitte (O) verbindet, und die Verbindungslinie, die den zweiten Punkt und die Mitte (O) verbindet, und n ein Brechungsindex eines Materials der Linsenstruktur (300) ist.


     
    2. Beleuchtungsvorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die Mitte (O) und eine Grenze (313) zwischen dem Totalreflexionsabschnitt (311) und einem Lichtausstrahlabschnitt (312) eine imaginäre Verbindungslinie (L1) definieren, wobei die imaginäre Verbindungslinie (L1) und die optische Achse (A) einen eingeschlossenen Winkel (a) definieren und der eingeschlossene Winkel (a) von 6 Grad bis 18 Grad reicht.
     
    3. Beleuchtungsvorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass der Lichtausstrahlabschnitt (312) Folgendes erfüllt:

    wobei Q4 ein vierter Punkt auf dem Lichtausstrahlabschnitt (312) ist und Q5 ein fünfter Punkt ist, der unmittelbar an den vierten Punkt angrenzt, und Q6 ein sechster Punkt ist, der auf einer Verbindungslinie angeordnet ist, die den fünften Punkt und die Mitte (O) verbindet, und eine Verbindungslinie, die den sechsten Punkt und den vierten Punkt verbindet, senkrecht zu einer Verbindungslinie ist, die die Mitte (O) und den vierten Punkt verbindet, R2 ein Abstand von der Mitte (O) zum vierten Punkt ist, ΔR2 ein Abstand vom fünften Punkt zum sechsten Punkt ist, Δθ2 ein eingeschlossener Winkel ist, der definiert ist durch die Verbindungslinie, die den vierten Punkt und die Mitte (O) verbindet, und die Verbindungslinie, die den fünften Punkt und die Mitte (O) verbindet, und n ein Brechungsindex eines Materials der Linsenstruktur (300) ist.
     
    4. Beleuchtungsvorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die Außenfläche (310) Folgendes erfüllt:

    wobei Y ein Abstand von jedem Punkt auf der Außenfläche zur Mitte (O) ist, der entlang einer Richtung parallel zur optischen Achse (A) gemessen wird, X ein Abstand von dem Punkt auf der Außenfläche (310) zur optischen Achse (A) ist, der entlang einer Richtung senkrecht zur optischen Achse (A) gemessen wird.
     
    5. Beleuchtungsvorrichtung nach Anspruch 4, dadurch gekennzeichnet, dass die Linsenstruktur (300) eine der Außenfläche (310) gegenüberliegende Innenfläche (320) umfasst, wobei die Innenfläche (320) Folgendes erfüllt:

    wobei y ein Abstand von jedem Punkt auf der Innenfläche (320) zur Mitte (O) ist, der entlang einer Richtung parallel zur optischen Achse (A) gemessen wird, x ein Abstand von dem Punkt auf der Innenfläche (320) zur optischen Achse (A) ist, der entlang einer Richtung senkrecht zur optischen Achse (A) gemessen wird.
     


    Revendications

    1. Appareil d'éclairage, comprenant :

    une carte de circuit (100) ;

    un élément d'éclairage (200) disposé sur la carte de circuit (100), l'élément d'éclairage (200) comprenant une surface supérieure d'éclairage (201) et une surface latérale d'éclairage (202), la surface latérale d'éclairage (202) étant jointe à la surface supérieure d'éclairage (201) et à la carte de circuit (100), la surface supérieure d'éclairage (201) ayant un centre (O) et un axe optique (A), l'axe optique (A) passant par le centre (O) ; et

    une structure de lentille (300) qui couvre l'élément d'éclairage (200) afin de recevoir une lumière de la part de l'élément d'éclairage (200), la structure de lentille (300) comprenant une surface externe (310), la surface externe (310) comprenant une partie de réflexion totale (311) et une partie de sortie de lumière (312), l'axe optique (A) passant par la partie de réflexion totale (311), la partie de sortie de lumière (312) entourant la partie de réflexion totale (311), la partie de réflexion totale (311) étant configurée pour réfléchir totalement une partie de la lumière qui provient du centre (O), la partie de sortie de lumière (312) étant configurée pour permettre à une autre lumière qui provient du centre (O) de sortir par la structure de lentille (300),

    caractérisé en ce que

    la partie de réflexion totale (311) satisfait :

    où Q1 est un premier point sur la partie de réflexion totale (311), et Q2 est un deuxième point immédiatement adjacent au premier point, et Q3 est un troisième point situé sur une ligne de liaison qui relie le deuxième point et le centre (O), et une ligne de liaison qui relie le troisième point et le premier point est perpendiculaire à une ligne de liaison qui relie le centre (O) et le premier point, R1 est une distance entre le centre et le premier point, ΔR1 est une distance entre le deuxième point et le troisième point, Δθ1 est un angle inclus défini par la ligne de liaison qui relie le premier point et le centre (O) et la ligne de liaison qui relie le deuxième point et le centre (O), et n est un indice de réfraction d'un matériau de la structure de lentille (300).


     
    2. Appareil d'éclairage selon la revendication 1, caractérisé en ce que le centre (O) et une limite (313) entre la partie de réflexion totale (311) et une partie de sortie de lumière (312) définissent une ligne de liaison imaginaire (L1), la ligne de liaison imaginaire (L1) et l'axe optique (A) définissent un angle inclus (α), et l'angle inclus (α) est compris entre 6 degrés et 18 degrés.
     
    3. Appareil d'éclairage selon la revendication 1, caractérisé en ce que la partie de sortie de lumière (312) satisfait :

    où Q4 est un quatrième point sur la partie de sortie de lumière (312), et Q5 est un cinquième point immédiatement adjacent au quatrième point, et Q6 est un sixième point situé sur une ligne de liaison qui relie le cinquième point et le centre (O), et une ligne de liaison qui relie le sixième point et le quatrième point est perpendiculaire à une ligne de liaison qui relie le centre (O) et le quatrième point, R2 est une distance entre le centre (O) et le quatrième point, ΔR2 est une distance entre le cinquième point et le sixième point, Δθ2 est un angle inclus défini par la ligne de liaison qui relie le quatrième point et le centre (O) et la ligne de liaison qui relie le cinquième point et le centre (O), et n est un indice de réfraction d'un matériau de la structure de lentille (300).
     
    4. Appareil d'éclairage selon la revendication 1, caractérisé en ce que la surface externe (310) satisfait :

    où Y est une distance entre n'importe quel point sur la surface externe et le centre (O) mesurée le long d'une direction parallèle à l'axe optique (A), X est une distance entre le point sur la surface externe (310) et l'axe optique (A) mesurée le long d'une direction perpendiculaire à l'axe optique (A).
     
    5. Appareil d'éclairage selon la revendication 4, caractérisé en ce que la structure de lentille (300) comprend une surface interne (320) opposée à la surface externe (310), la surface interne (320) satisfaisant :

    où y est une distance entre n'importe quel point sur la surface interne (320) et le centre (O) mesurée le long d'une direction parallèle à l'axe optique (A), x est une distance entre le point sur la surface interne (320) et l'axe optique (A) mesurée le long d'une direction perpendiculaire à l'axe optique (A).
     




    Drawing























    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description