(19)
(11)EP 3 098 168 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
01.12.2021 Bulletin 2021/48

(21)Application number: 16171108.0

(22)Date of filing:  24.05.2016
(51)International Patent Classification (IPC): 
B64D 15/16(2006.01)
(52)Cooperative Patent Classification (CPC):
B64D 15/166

(54)

DEICER BOOTS HAVING ELASTOMER FIBERS WITH ALIGNED CARBON ALLOTROPE MATERIALS

ENTEISERSTIEFFEL MIT ELASTOMERFASERN MIT AUSGERICHTETEN KOHLENSTOFF-ALLOTROP-MATERIALIEN

BOUDINS DE DÉGIVRAGE AYANT DES FIBRES ÉLASTOMÈRES AVEC DES MATÉRIAUX ALLOTROPE DE CARBONE ALIGNÉS


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 26.05.2015 US 201562166527 P

(43)Date of publication of application:
30.11.2016 Bulletin 2016/48

(73)Proprietor: Goodrich Corporation
Charlotte, NC 28217-4578 (US)

(72)Inventor:
  • HU, Jin
    Hudson, OH 44236 (US)

(74)Representative: Dehns 
St. Bride's House 10 Salisbury Square
London EC4Y 8JD
London EC4Y 8JD (GB)


(56)References cited: : 
EP-A1- 0 720 946
WO-A2-2008/085550
US-A- 4 690 353
WO-A1-2009/094506
GB-A- 1 165 381
US-A1- 2012 224 897
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    BACKGROUND



    [0001] Accumulation of ice on aircraft wings and other aircraft structures during flight is a known issue. A variety of techniques have been used to remove ice from aircraft during flight including chemical deicing (applying chemicals to aircraft structures to reduce ice adhesion forces or reduce the freezing point of water that collects on the aircraft), thermal deicing (actively heating aircraft structures to prevent ice formation or loosen accumulated ice), and pneumatic deicing (using inflatable elements to expand the profile of an aircraft structure to crack accumulated ice).

    [0002] Some state of the art pneumatic deicers (sometimes called deicer boots) employ a neoprene or polyester urethane outer layer positioned over a natural rubber inner layer, which is connected to an aircraft structure. Inflation tubes are positioned between the inner layer and the aircraft structure. The inflation tubes inflate causing portions of the outer and inner layers to move away from the aircraft structure. This movement deforms the outer layer so that ice that has accumulated on the outer layer cracks and is shed from the outer layer. Neoprene and polyester urethane outer layers generally possess adequate toughness, wind and sand erosion resistance, and chemical resistance to fuel and oil, but do not generally retract well at low temperatures. The natural rubber inner layer is used to improve the elasticity and retractability of the outer layer. The present disclosure describes improved compositions for deicer boots. US 4,690,353 relates to an electro-expulsive system for deicing. Said electro-expulsive system has a pair of opposed flexible ribbon-shaped electrically-conductive members that are electrically isolated in an elastomeric member of sheet-like configuration. The elastomeric material is adapted to be attached to a substrate. One conductive member, the proximal one, is embedded in the elastomeric material adjacent to the substrate whereas the second member, the distal one, is embedded in the elastomeric material over the proximal member. One or more voids in the elastomeric material are positioned between the conductive members in such a way that the conductive members are not allowed to touch each other. The conductive members are connected in an electrical circuit so as to receive large current pulses, the current flow direction in the proximal member being opposite to the current flow in the distal member. In operation, the opposing currents and the resulting interacting magnetic fields produce an electrorepulsive force between the proximal and distal conductive members which rapidly moves the distal member away from the proximal member and the substrate, distends the elastomeric material and tends to separate and eject any solid body thereon. EP 0720946 discloses a first embodiment of an ice protector having fabric layers sewn together defining a plurality of inflatable passages. In another embodiment, EP 0720946 discloses that the ice protector comprises an electrothermal heating element and that the layers are formed from polymeric material which may be fiber reinforced and that suitable fiber reinforcements include polyester, carbon, graphite or polyamide fibers. In a further embodiment, EP 0720946 discloses that the ice protector comprises an electromechanical de-icer and that the layers are formed from polymeric material which may be fiber reinforced and that suitable fiber reinforcements include polyester, carbon or graphite or polyamide fibers.

    [0003] US 2011/143087 A1 relates to flame-resistant composite materials containing an outer layer and at least one inner layer. The outer layer has an exterior surface and contains a first polymer matrix and a first carbon nanotube-infused fiber material.

    SUMMARY



    [0004] The invention defines a deicer boot according to claim 1.

    [0005] The invention further defines a method of forming a layer of a deicer boot according to claim

    [0006] Further details of the claimed invention are defined in the dependent claims 2-6 and 8-13.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0007] 

    FIG. 1 is a perspective view of a pneumatic de-icer boot in a distended condition.

    FIG. 2 is a schematic view of nanofibers formed by electrospinning to contain aligned carbon allotrope materials.

    FIG. 3 , which is not part of the claimed invention, is a schematic view of a non-woven electrospun fiber fabric with an icephobic material.

    FIG. 4 is a schematic view of an elastomer scaffold containing an icephobic material.

    FIG. 5 , which is not part of the claimed invention, is a schematic view of a matrix of non-woven electrospun fiber fabric and silver-colored polyurethane elastomer.


    DETAILED DESCRIPTION



    [0008] The present disclosure describes elastomeric deicer boots having improved elasticity and mechanical strength compared to the currently deployed neoprene and polyurethane deicer boots.

    [0009] FIG. 1 illustrates an aircraft component having a deicer boot according to the present disclosure. As shown in FIG. 1, aircraft component 10 is a wing. However, aircraft component 10 can also be a fairing, strut or any other externally exposed aircraft structure that can accumulate ice during operation of the aircraft. Deicer boot 12 includes outer layer 14, inner layer 16, carcass layer 18 and bond layer 20.

    [0010] Outer layer 14 is located on the external surface (or breezeside) of aircraft component 10. The composition of outer layer 14 is described in greater detail below. Inner layer 16 is located between outer layer 14 and aircraft structure 10. According to the prior art, inner layer 16 provides support for the retraction of outer layer 14. Inner layer 16 often contains a natural rubber. According to the present disclosure, inner layer 16 can be present as shown in FIG. 1. In an example which is not part of the claimed invention, the composition of outer layer 14 allows for the omission of inner layer 16 entirely. Carcass layer 18 is located between inner layer 16 and aircraft structure 10. Carcass layer 18 includes inflation tubes 22. inflation tubes 22 communicate with an air supply located on the aircraft (not shown). When air from the air supply is delivered to inflation tubes 22, inflation tubes 22 expand causing carcass layer 18, inner layer 16 and outer layer 14 to move away from aircraft structure 10. FIG. 1 shows outer layer 14 in a distended condition (i.e. inflation tubes 22 are pressurized). This movement causes accumulated ice on outer layer 14 to crack and be removed from outer layer 14. A detailed description of deicer boots is provided by U.S. Patent No. 6,520,452.

    [0011] In prior art deicer boots, the outer layer typically contained neoprene or a polyester urethane, and the inner layer was typically a natural rubber. The neoprene or polyester urethane elastomer layer provided erosion and chemical resistance, but had relatively poor elasticity at low temperatures. The natural rubber layer provided the elasticity needed for the outer layer to retract and reform to the aircraft structure once the inflation tubes were deflated. A carbon material (e.g., carbon black) could be added to the prior art elastomer layer to improve conductivity and reduce the likelihood of static discharge and provide additional strength. However, the carbon material was generally added to the elastomer in a non-ordered fashion (i.e. simple mixing). This resulted in a random distribution of carbon material throughout the elastomer layer. According to the present disclosure, outer layer 14 possesses the necessary strength, erosion resistance, and elasticity to eliminate the need for the natural rubber layer used in prior art deicer boots and yields a breezeside layer that has advantages compared to an elastomer containing randomly distributed carbon black.

    [0012] According to the claimed invention, outer layer 14 is a non-woven fiber fabric sheet that includes pluralities of elastomer fibers. Suitable elastomer fibers include neoprene, polyurethanes, natural rubbers and any other elastomers used to form the outer layer of a deicer boot. The elastomer fibers can be nanofibers (diameters less than 1000 nanometers) or microfibers (diameters smaller than a strand of silk) or a mixture of nanofibers and microfibers. The non-woven fiber fabric sheet of outer layer 14 also includes a carbon allotrope material that is aligned with one or more of the plurality of elastomer fibers. The carbon allotrope material is aligned with an elastomer fiber so that it is contained within or on the surface of the elastomer fiber. Suitable carbon allotrope materials include carbon nanotubes, graphene, graphite and carbon black. Carbon nanotubes can be single-walled carbon nanotubes or multi-walled carbon nanotubes. By aligning the elastomer fibers with the carbon allotrope materials, the non-woven fiber fabric of outer layer 14 is strengthened when compared to elastomer fibers that are simply mixed with a carbon material in a non-ordered fashion.

    [0013] In one embodiment of the present disclosure, an elastomer fiber and the carbon allotrope material is aligned by electrospinning the elastomer fiber with the carbon allotrope material. Electrospinning uses an electric charge to draw a very fine fiber from a polymer solution. When a sufficiently high voltage is applied to a liquid droplet, the liquid becomes charged and electrostatic repulsion counteracts the surface tension of the droplet causing the droplet to stretch. Once a critical point is reached, a stream of liquid erupts from the surface of the droplet. Where the molecular cohesion of the liquid is sufficiently high, a charged liquid jet is formed. The jet is elongated due to electrostatic repulsion initiated at small bends in the fiber and is deposited on a grounded collector. The jet dries in flight, resulting in a uniform fiber due to the elongation and thinning of the fiber due to the bending instability caused by the electrostatic repulsion. The polymer (e.g., polyurethane) solution can include the carbon allotrope material so that when the solution is electrospun, the carbon allotrope material is contained within the resulting electrospun fiber.

    [0014] FIG. 2 schematically illustrates one example of a carbon allotrope material contained within an elastomer fiber. Elastomer fiber 24 is formed at the spinning tip of an electrospinning apparatus (not shown). The electrospinning apparatus can include a power supply and pump for delivering the elastomer solution. Elastomer fiber 24 contains aligned carbon allotrope material 26 by electrospinning as described above. Carbon allotrope material 26 is aligned within or on the surface of elastomer fiber 24, rather than merely mixed with fibers 24 in a random, non-ordered fashion. For example, carbon nanotubes have a diameter and a length in a direction perpendicular to the diameter. Generally, the length of a carbon nanotube is greater than its width. As elastomer fiber 24 is electrospun, carbon nanotubes present in the elastomer solution will generally form within fiber 24 or on the surface of fiber 24 so that the length of the carbon nanotube extends in roughly the same direction as fiber 24. That is, the length of the carbon nanotube extends in generally the same direction as the length of fiber 24. While some amount of "tangling" or "intertwining" can occur during electrospinning, the elastomer fibers and carbon allotrope material form a non-woven fiber fabric. A number of elastomer fibers, some with aligned carbon allotrope materials, are tangled together to form the non-woven fiber fabric sheet.

    [0015] In some embodiments, the non-woven fiber fabric with elastomer fibers 24 and aligned carbon allotrope material 26 are melted and/or cured following electrospinning to form a solid sheet that can be applied as outer layer 14 to aircraft structure 10. In other embodiments, additional non-electrospun elastomers are applied to the non-woven fiber fabric formed by electrospinning. Furthermore, additives such as antioxidants and carbon black can be incorporated into the additional non-electrospun elastomers. The additional non-electrospun elastomers and additives can be applied to the non-woven fiber fabric by hot pressing, soaking, dipping, brushing, spraying or using other deposition techniques. Additives can also be added to the polymer solution used to form the electrospun elastomer fibers in the same way as carbon allotrope material 26. In some embodiments, the non-woven fiber fabric is applied to inner layer 16, which further improves the elasticity of outer layer 14. In an example which is not part of the claimed invention, inner layer 16 can be omitted.

    [0016] Not all elastomer fibers in the non-woven fiber fabric contain aligned carbon allotrope material. In some embodiments, only a portion of the elastomer fibers contain aligned carbon allotrope material. The loading of carbon allotrope material in the elastomer fibers of outer layer 14 can vary. In embodiments where conductivity is the primary concern, the carbon allotrope material can have a relatively low loading. For example, the non-woven fiber fabric sheet of outer layer 14 can contain about 0.5% carbon nanotubes by weight to provide outer layer 14 with the necessary conductivity to prevent static discharges that can damage outer layer 14 and aircraft structure 10. This loading level also provides more mechanical strength benefits than non-aligned carbon nanotubes at the same concentration. In other embodiments, the non-woven fiber fabric of outer layer 14 can contain about 0.5% graphene or carbon black by weight. In embodiments where mechanical strength is a primary concern, the carbon allotrope material can have a heavier loading. For example, the non-woven fiber fabric of outer layer 14 can contain up to about 5% carbon nanotubes by weight to improve the strength and erosion resistance of outer layer 14. In other embodiments, the non-woven fiber fabric of outer layer 14 can contain up to about 5% graphene or carbon black by weight.

    [0017] In addition to the non-electrospun elastomers and additives described above, outer layer 14 can also contain icephobic materials on its breezeside surface (external surface away from aircraft structure 10). Icephobic materials repel ice and/or prevent ice formation. Suitable icephobic materials include HybridShield® Icephobic and HybridSil Fire/Blast (both available from NanoSonic, Giles County, Virginia), and low ice adhesion compounds. Examples of low ice adhesion compounds include siloxanes, fluorocarbons, fluorocarbon and siloxane hybrids, hyperbranched polycarbosiloxanes, polysiloxanes and combinations thereof. Icephobic materials can be applied to the non-woven fiber fabric sheet of outer layer 14. The icephobic materials can both penetrate the fabric sheet and form a layer on the sheet's outer surface. In some embodiments, just enough icephobic material is applied to cover the outer surface of the non-woven fiber fabric. Minimizing the amount of icephobic material applied to the non-woven fiber fabric allows outer layer 14 to maintain its elasticity at low temperatures. The icephobic material can be applied to the non-woven fiber fabric by brushing, spraying, dipping, roll coating or other deposition techniques. FIG. 3 , which is not part of the claimed invention, illustrates a schematic view of non-woven fiber fabric sheet 28 with icephobic material 30, which make up outer layer 14. While FIG. 3 shows icephobic material 30 as a layer on top of sheet 28, icephobic material 30 also penetrates into sheet 28, filling voids between the fibers of sheet 28. FIG. 4 is a view of an elastomer scaffold (sheet 28 having elastomer fibers 24) containing icephobic material 30.

    [0018] Outer layer 14 can also include additives to modify its color. Neoprene pneumatic deicer boots are normally black due to the presence of carbon black filler. Some aircraft component providers prefer their aircraft components to have particular colors. In some cases, silver aircraft components are desired or required. Polyurethane deicer boots can contain aluminum flake fillers so that they have a silver color. However, neoprene boots with carbon black generally possess better erosion resistance and low temperature properties than silver polyurethane boots. The non-woven fiber fabric of outer layer 14 (containing elastomer fibers aligned with carbon allotrope material) can be combined with an aluminum flake-filled polyurethane elastomer layer to provide an outer layer 14 that has better resistance and low temperature properties than a silver polyurethane boot while still possessing the silver color. The non-woven fiber fabric sheet of outer layer 14 can be embedded onto an existing polyurethane elastomer having aluminum flake. FIG. 5 , which is not part of the claimed invention, shows a silver-colored polyurethane elastomer applied to the non-woven fiber fabric sheet so that the silver-colored polyurethane elastomer covers the non-woven fiber fabric sheet. As shown in FIG. 5, silver-colored polyurethane elastomer 32 is applied to non-woven fiber fabric sheet 28. The silver-colored polyurethane elastomer can be applied to the non-woven fiber fabric by hot pressing, brushing, spraying, dipping, roll coating or other deposition techniques. While FIG. 5 shows silver-colored polyurethane elastomer 32 as a layer on top of sheet 28, silver-colored polyurethane elastomer 32 also penetrates into sheet 28, filling voids between the fibers of sheet 28. In another embodiment, aluminum flake material can be added to a polymer solution prior to electrospinning, and the aluminum flake material can introduced into elastomer fibers 24 in a similar fashion to carbon allotrope material 26.

    [0019] The method of forming a layer of a deicer boot includes the steps of aligning a carbon allotrope material within a first elastomer fiber with the first elastomer fiber, joining the first elastomer fiber with a plurality of additional elastomer fibers to form a non-woven fiber fabric, and incorporating the non-woven fiber fabric into a sheet. The step of aligning the elastomer fibers with the carbon allotrope material can include electrospinning. Carbon allotrope materials can be electrospun with the elastomer fibers so that the carbon allotrope materials are contained within or on the fibers. The non-woven fiber fabric can be melted and/or cured to form the sheet. The sheet can be applied to aircraft structure 10 as outer layer 14. Alternatively, the non-woven fiber fabric can be embedded into an existing neoprene or polyurethane sheet (with or without aluminum flake) to form outer layer 14. An icephobic material can also be applied to the sheet.

    [0020] Aligning carbon allotrope materials with elastomer fibers as disclosed herein provides a non-woven fiber fabric sheet that possesses a number of benefits as an outer layer of a deicer boot. First, the non-woven fiber fabric containing aligned reinforced particles, after being fused or cured into a solid sheet or embedded into a second rubber material, is stronger and more resistant to wind, rain and sand erosion when compared to current elastomer layers (either plain or containing non-ordered carbon materials) while still providing the necessary conductivity to prevent damaging static discharge. Second, the presence of aligned carbon allotropes improves the low temperature properties (improved elasticity and reduced brittleness) that can allow for the omission of inner layer 16.

    [0021] While the invention has been described with reference to an exemplary embodiment(s), it will be understood by those skilled in the art that various changes may be made without departing from the scope of the appended claims. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the scope of the appended claims. Therefore, it is intended that the invention not be limited to the particular embodiment(s) disclosed, but that the invention will include all embodiments falling within the scope of the appended claims.


    Claims

    1. A deicer boot comprising:

    an aircraft structure (10);

    an inner elastomer layer (16);

    an outer layer (14) comprising:

    a non-woven fiber fabric sheet that includes a plurality of elastomer fibers (24);
    and

    a carbon allotrope material (26) within the plurality of elastomer fibers (24), wherein the carbon allotrope material (26) of at least one elastomer fiber belonging to the plurality of elastomer fibers is aligned with the at least one elastomer fiber; and

    a carcass layer (18) having inflation tubes (22) between the aircraft structure (10) and the dinner layer (16), such that the inner layer (16) is between the carcass layer (18) and the outer layer (14), and

    a bond layer adjacent the carcass layer (18) and configured to attach the carcass layer ( 18) to the aircraft structure (10).


     
    2. The deicer boot of claim 1, wherein the carbon allotrope material (26) is selected from the group consisting of carbon nanotubes, graphene, graphite, carbon black and combinations thereof, and/or wherein the elastomer fibers comprise a material selected from the group consisting of neoprene, polyurethane, natural rubbers and combinations thereof.
     
    3. The deicer boot of any of claims 1 to 2, wherein the plurality of elastomer fibers (24) and the carbon allotrope material form a non-woven electrospun fiber fabric sheet (28).
     
    4. The deicer boot of any of claims 1 to 3, further comprising an icephobic material located on a breezeside surface of the outer layer, and preferably wherein the icephobic material is selected from the group consisting of siloxanes, fluorocarbons, polycarbosiloxanes, polysiloxanes, and combinations thereof.
     
    5. The deicer boot of any of claims 1 to 4, wherein the outer layer (14) further comprises:
    aluminum flake, and preferably wherein the aluminum flake is aligned with at least one elastomer fiber belonging to the plurality of elastomer fibers.
     
    6. The deicer boot of claim 3 or 4, wherein the non-woven electrospun fiber fabric sheet (28) further comprises a non-electrospun elastomer, and preferably wherein the non-woven electrospun fiber fabric sheet (28) further comprises an additive selected from the group consisting of antioxidants, carbon black and combinations thereof.
     
    7. A method of forming a layer of a deicer boot, the method comprising:

    aligning a carbon allotrope material (26) within a first elastomer fiber (24) with the first elastomer fiber;

    joining the first elastomer fiber (24) with a plurality of additional elastomer fibers to form a non-woven fiber fabric; and

    incorporating the non-woven fiber fabric into a sheet (28).


     
    8. The method of claim 7, wherein the carbon allotrope material is selected from the group consisting of carbon nanotubes, graphene, graphite, carbon black and combinations thereof.
     
    9. The method of claim 7 or 8, wherein aligning the first elastomer fiber with the carbon allotrope material is carried out by electrospinning an elastomer solution containing the first carbon allotrope material.
     
    10. The method of any of claims 7 to 9, wherein incorporating the non-woven fabric into the sheet (28) comprises fusing or melting the non-woven fabric to form the sheet (28).
     
    11. The method of any of claims 7 to 10, further comprising:
    applying an icephobic material to the sheet, wherein the icephobic material is selected from the group consisting of siloxanes, fluorocarbons, polycarbosiloxanes, polysiloxanes, and combinations thereof.
     
    12. The method of any of claims 7 to 11, further comprising:
    aligning a first elastomer fiber (24) with aluminum flake material by electrospinning an elastomer solution containing the aluminum flake material.
     
    13. The method of any of claims 7 to 12, wherein the sheet (28) is a neoprene or polyurethane sheet (28), and wherein incorporating the non-woven fabric into the sheet comprises embedding the non-woven fabric into the sheet, or wherein the sheet is a polyurethane elastomer sheet having aluminum flake, and wherein incorporating the non-woven fabric into the sheet comprises embedding the non-woven fabric into the sheet.
     


    Ansprüche

    1. Enteiserstiefel, umfassend:

    eine Luftfahrzeugstruktur (10);

    eine innere Elastomerschicht (16);

    eine Außenschicht (14), umfassend:

    eine nicht gewebte Faserstoffbahn, die eine Vielzahl von Elastomerfasern (24) beinhaltet; und

    ein Kohlenstoff-Allotrop-Material (26) innerhalb der Vielzahl von Elastomerfasern (24), wobei das Kohlenstoff-Allotrop-Material (26) von mindestens einer Elastomerfaser, die zu der Vielzahl von Elastomerfasern gehört, mit der mindestens einen Elastomerfaser ausgerichtet ist; und

    eine Karkassenschicht (18) mit Aufblasrohren (22) zwischen der Luftfahrzeugstruktur (10) und der Innenschicht (16), sodass die Innenschicht (16) zwischen der Karkassenschicht (18) und der Außenschicht (14) liegt, und

    eine Haftschicht, die an die Karkassenschicht (18) angrenzt und dazu konfiguriert ist, die Karkassenschicht (18) an der Luftfahrzeugstruktur (10) zu befestigen.


     
    2. Enteiserstiefel nach Anspruch 1, wobei das Kohlenstoff-Allotrop-Material (26) aus der Gruppe bestehend aus Kohlenstoffnanoröhren, Graphen, Graphit, Ruß und Kombinationen dieser ausgewählt ist, und/oder wobei die Elastomerfasern ein Material umfassen, das aus der Gruppe bestehend aus Neopren, Polyurethan, Naturkautschuken und Kombinationen dieser ausgewählt ist.
     
    3. Enteiserstiefel nach einem der Ansprüche 1 bis 2, wobei die Vielzahl von Elastomerfasern (24) und das Kohlenstoff-Allotrop-Material eine nicht gewebte elektrogesponnene Faserstoffbahn (28) ausbilden.
     
    4. Enteiserstiefel nach einem der Ansprüche 1 bis 3, ferner umfassend ein eisfeindliches Material, das sich an einer brisenseitigen Oberfläche der Außenschicht befindet, und wobei das eisfeindliche Material bevorzugt aus der Gruppe bestehend aus Siloxanen, Fluorkohlenstoffen, Polycarbosiloxanen, Polysiloxanen und Kombinationen dieser ausgewählt ist.
     
    5. Enteiserstiefel nach einem der Ansprüche 1 bis 4, wobei die Außenschicht (14) ferner Folgendes umfasst:
    Aluminiumflocke, und wobei die Aluminiumflocke bevorzugt mit mindestens einer Elastomerfaser ausgerichtet ist, die zu der Vielzahl von Elastomerfasern gehört.
     
    6. Enteiserstiefel nach Anspruch 3 oder 4, wobei die nicht gewebte elektrogesponnene Faserstoffbahn (28) ferner ein nicht elektrogesponnenes Elastomer umfasst, und wobei die nicht gewebte elektrogesponnene Faserstoffbahn (28) ferner bevorzugt einen Zusatzstoff umfasst, der aus der Gruppe bestehend aus Antioxidantien, Ruß und Kombinationen dieser ausgewählt ist.
     
    7. Verfahren zur Ausbildung einer Schicht eines Enteiserstiefels, wobei das Verfahren Folgendes umfasst:

    Ausrichten eines Kohlenstoff-Allotrop-Materials (26) innerhalb einer ersten Elastomerfaser (24) mit der ersten Elastomerfaser;

    Verbinden der ersten Elastomerfaser (24) mit einer Vielzahl von zusätzlichen Elastomerfasern, um einen nicht gewebten Faserstoff auszubilden; und

    Einbringen des nicht gewebten Faserstoffs in eine Bahn (28) .


     
    8. Verfahren nach Anspruch 7, wobei das Kohlenstoff-Allotrop-Material aus der Gruppe bestehend aus Kohlenstoffnanoröhren, Graphen, Graphit, Ruß und Kombinationen dieser ausgewählt ist.
     
    9. Verfahren nach Anspruch 7 oder 8, wobei das Ausrichten der ersten Elastomerfaser mit dem Kohlenstoff-Allotrop-Material durch Elektrospinnen einer Elastomerlösung, die das erste Kohlenstoff-Allotrop-Material enthält, ausgeführt wird.
     
    10. Verfahren nach einem der Ansprüche 7 bis 9, wobei das Einbringen des nicht gewebten Stoffs in die Bahn (28) ein Verschmelzen oder Einschmelzen des nicht gewebten Stoffs umfasst, um die Bahn (28) auszubilden.
     
    11. Verfahren nach einem der Ansprüche 7 bis 10, ferner umfassend:
    Aufbringen eines eisfeindlichen Materials auf die Bahn, wobei das eisfeindliche Material aus der Gruppe bestehend aus Siloxanen, Fluorkohlenstoffen, Polycarbosiloxanen, Polysiloxanen und Kombinationen dieser ausgewählt ist.
     
    12. Verfahren nach einem der Ansprüche 7 bis 11, ferner umfassend:
    Ausrichten einer ersten Elastomerfaser (24) mit Aluminiumflockenmaterial durch Elektrospinnen einer Elastomerlösung, die das Aluminiumflockenmaterial enthält.
     
    13. Verfahren nach einem der Ansprüche 7 bis 12, wobei die Bahn (28) eine Neopren- oder Polyurethanbahn (28) ist, und wobei das Einbringen des nicht gewebten Stoffs in die Bahn ein Einbetten des nicht gewebten Stoffs in die Bahn umfasst, oder wobei die Bahn eine Polyurethan-Elastomer-Bahn mit Aluminiumflocken ist, und wobei das Einbringen des nicht gewebten Stoffs in die Bahn ein Einbetten des nicht gewebten Stoffs in die Bahn umfasst.
     


    Revendications

    1. Boudin de dégivrage comprenant :

    une structure d'aéronef (10) ;

    une couche interne d'élastomère (16) ;

    une couche externe (14) comprenant :

    une feuille de tissu en fibres non tissées qui comporte une pluralité de fibres élastomères (24) ;
    et

    un matériau allotrope de carbone (26) dans la pluralité de fibres élastomères (24), dans lequel le matériau allotrope de carbone (26) d'au moins une fibre élastomère appartenant à la pluralité de fibres élastomères est aligné avec l'au moins une fibre élastomère ; et

    une couche de carcasse (18) ayant des tubes de gonflage (22) entre la structure d'aéronef (10) et la couche interne (16), de sorte que la couche interne (16) se situe entre la couche de carcasse (18) et la couche externe (14), et

    une couche de liaison adjacente à la couche de carcasse (18) et configurée pour fixer la couche de carcasse (18) à la structure d'aéronef (10).


     
    2. Boudin de dégivrage selon la revendication 1, dans lequel le matériau allotrope de carbone (26) est sélectionné dans le groupe consistant en des nanotubes de carbone, le graphène, le graphite, le noir de carbone et leurs combinaisons, et/ou dans lequel les fibres élastomères comprennent un matériau sélectionné dans le groupe consistant en le néoprène, le polyuréthane, des caoutchoucs naturels et leurs combinaisons.
     
    3. Boudin de dégivrage selon l'une quelconque des revendications 1 et 2, dans lequel la pluralité de fibres élastomères (24) et le matériau allotrope de carbone forment une feuille (28) de tissu en fibres électrofilées non tissées.
     
    4. Boudin de dégivrage selon l'une quelconque des revendications 1 à 3, comprenant en outre un matériau glaciophobe situé sur une surface de côté exposé de la couche externe, et de préférence dans lequel le matériau glaciophobe est sélectionné dans le groupe consistant en des siloxanes, des fluorocarbures, des polycarbosiloxanes, des polysiloxanes et leurs combinaisons.
     
    5. Boudin de dégivrage selon l'une quelconque des revendications 1 à 4, dans lequel la couche externe (14) comprend en outre :
    une paillette d'aluminium, et de préférence dans lequel la paillette d'aluminium est alignée avec au moins une fibre élastomère appartenant à la pluralité de fibres élastomères.
     
    6. Boudin de dégivrage selon la revendication 3 ou 4, dans lequel la feuille (28) de tissu en fibres électrofilées non tissées comprend en outre un élastomère non électrofilé, et de préférence dans lequel la feuille (28) de tissu en fibres électrofilées non tissées comprend en outre un additif sélectionné dans le groupe consistant en des antioxydants, le noir de carbone et leurs combinaisons.
     
    7. Procédé de formation d'une couche d'un boudin de dégivrage, le procédé comprenant :

    l'alignement d'un matériau allotrope de carbone (26) dans une première fibre élastomère (24) avec la première fibre élastomère ;

    l'assemblage de la première fibre élastomère (24) avec une pluralité de fibres élastomères supplémentaires pour former un tissu en fibres non tissées ; et

    l'incorporation du tissu en fibres non tissées dans une feuille (28).


     
    8. Procédé selon la revendication 7, dans lequel le matériau allotrope de carbone est sélectionné dans le groupe consistant en des nanotubes de carbone, le graphène, le graphite, le noir de carbone et leurs combinaisons.
     
    9. Procédé selon la revendication 7 ou 8, dans lequel l'alignement de la première fibre élastomère avec le matériau allotrope de carbone est effectué par électrofilage d'une solution d'élastomère contenant le premier matériau allotrope de carbone.
     
    10. Procédé selon l'une quelconque des revendications 7 à 9, dans lequel l'incorporation du tissu non tissé dans la feuille (28) comprend la fusion ou la fonte du tissu non tissé pour former la feuille (28).
     
    11. Procédé selon l'une quelconque des revendications 7 à 10, comprenant en outre :
    l'application d'un matériau glaciophobe à la feuille, dans lequel le matériau glaciophobe est sélectionné dans le groupe consistant en des siloxanes, des fluorocarbures, des polycarbosiloxanes, des polysiloxanes et leurs combinaisons.
     
    12. Procédé selon l'une quelconque des revendications 7 à 11, comprenant en outre :
    l'alignement d'une première fibre élastomère (24) avec un matériau de paillette d'aluminium par électrofilage d'une solution élastomère contenant le matériau de paillette d'aluminium.
     
    13. Procédé selon l'une quelconque des revendications 7 à 12, dans lequel la feuille (28) est une feuille (28) de néoprène ou de polyuréthane, et dans lequel l'incorporation du tissu non tissé dans la feuille comprend l'intégration du tissu non tissé dans la feuille, ou dans lequel la feuille est une feuille d'élastomère de polyuréthane ayant une paillette d'aluminium, et dans lequel l'incorporation du tissu non tissé dans la feuille comprend l'intégration du tissu non tissé dans la feuille.
     




    Drawing














    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description