(19)
(11)EP 3 098 529 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
25.03.2020 Bulletin 2020/13

(21)Application number: 16171315.1

(22)Date of filing:  25.05.2016
(51)International Patent Classification (IPC): 
F24F 11/30(2018.01)
G05D 23/19(2006.01)
F24F 140/50(2018.01)

(54)

COORDINATED CONTROL OF HVAC SYSTEM USING AGGREGATED SYSTEM DEMAND

KOORDINIERTE STEUERUNG VON HLK-SYSTEMEN MITTELS AGGREGIERTEM SYSTEMBEDARF

COMMANDE COORDONNÉE D'UN SYSTÈME CVC UTILISANT UNE DEMANDE SYSTÈME AGRÉGÉE


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 28.05.2015 US 201514723911

(43)Date of publication of application:
30.11.2016 Bulletin 2016/48

(73)Proprietor: Carrier Corporation
Farmington, Connecticut 06032 (US)

(72)Inventors:
  • SIMON, Emile C.
    Penrose Wharf, Cork (IE)
  • KOURAMAS, Konstantinos
    Penrose Wharf, Cork (IE)
  • MUKHERJEE, Kushal
    Penrose Wharf, Cork (IE)
  • CYCHOWSKI, Marcin T.
    Penrose Wharf, Cork (IE)

(74)Representative: Schmitt-Nilson Schraud Waibel Wohlfrom Patentanwälte Partnerschaft mbB 
Pelkovenstraße 143
80992 München
80992 München (DE)


(56)References cited: : 
EP-A2- 2 607 803
WO-A1-2013/182320
WO-A1-2012/112324
US-A1- 2011 137 468
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    FIELD



    [0001] The subject matter disclosed herein relates to HVAC systems and, more specifically, to control of HVAC system equipment.

    BACKGROUND



    [0002] In some known heating, ventilation, and air conditioning (HVAC) systems, equipment setpoints are typically fixed or weather compensated (i.e., determined based on outdoor air temperature) without any feedback from other systems. As such, the produced heating/cooling capacity may deviate from a building demand corresponding to a desired building comfort level. Similarly, the authority of the capacity production and distribution system, which is determined via its fluids flows/pressures and temperatures, may be unnecessarily high, so a lower authority could be sufficient to maintain the building comfort. The capacity deviations and the high authorities may result in increased energy consumption and cost.

    [0003] US 20110137468 A1 discloses a cooling system for providing conditioned air to a facility includes a chiller or other cooling subsystem, a cooling tower subsystem and one or more air handling units or process cooling units. The cooling subsystem may advantageously include one or more chillers (e.g., variable speed chillers, constant speed chillers, absorption chillers, etc.) and chilled fluid pumps.

    [0004] Accordingly, it is desirable to provide a control system to improve HVAC system efficiency and maintain building comfort levels.

    BRIEF DESCRIPTION



    [0005] The invention is defined by independent claims 1 and 5.

    [0006] In one aspect, a control system for an HVAC system having a plurality of HVAC components operably associated with one or more terminal units is provided. The control system includes a coordination module and a controller having a processor and a memory, the controller operably associated with the coordination module and in signal communication with the plurality of HVAC components. The controller is configured to determine an aggregated thermal demand of the HVAC system, determine, with the coordination module, an operational setpoint for at least one HVAC component of the plurality of HVAC components based on the determined aggregated thermal demand, and send a signal indicative of each determined operational setpoint to each associated HVAC component of the plurality of HVAC components.

    [0007] In addition to one or more of the features described above, or as an alternative, further embodiments may include: wherein the controller is configured to update the operational setpoints at predetermined time intervals; wherein the plurality of HVAC components comprises a capacity generation plant, a fluid circulation pump, and ventilation equipment; wherein the ventilation equipment comprises an air handling unit; wherein the coordination module includes a cooling mode module and a heating mode module; and/or wherein determining the aggregated thermal demand of the HVAC system comprises determining an aggregated thermal demand of the one or more terminal units. Exemplary embodiments of the invention may include any of these features alone or in any subset.

    [0008] In another aspect, an HVAC system is provided. The system includes a plurality of HVAC components, at least one terminal unit associated with each HVAC component of the plurality of HVAC components, a coordination module, and a controller having a processor and a memory, the controller operably associated with the coordination module and in signal communication with the plurality of HVAC components and associated terminal units. The controller is configured to determine an aggregated thermal demand of the HVAC system, determine, with the coordination module, an operational setpoint for at least one HVAC component of the plurality of HVAC components based on the determined aggregated thermal demand, and send a signal indicative of each determined operational setpoint to each associated HVAC component of the plurality of HVAC components.

    [0009] In addition to one or more of the features described above, or as an alternative, further embodiments may include: wherein the controller is configured to update the operational setpoints at predetermined time intervals; wherein the plurality of HVAC components comprises a capacity generation plant, a fluid circulation pump, and ventilation equipment; wherein the ventilation equipment comprises an air handling unit; wherein the coordination module includes a cooling mode module and a heating mode module; and/or wherein determining the aggregated thermal demand of the HVAC system comprises determining an aggregated thermal demand of the one or more terminal units. Exemplary embodiments of the invention may include any of these features alone or in any subset.

    [0010] In yet another aspect, provided herein is a method of controlling an HVAC system having a plurality of HVAC components, at least one terminal unit associated with each HVAC component of the plurality of HVAC components, a coordination module, and a controller operably associated with the coordination module and in signal communication with the plurality of HVAC components and associated terminal units. The method includes determining an aggregated thermal demand of the HVAC system, determining, with the coordination module, an operational setpoint for at least one HVAC component of the plurality of HVAC components based on the determined aggregated thermal demand, and subsequently operating each HVAC component of the plurality of HVAC components at the determined operational setpoint.

    [0011] In addition to one or more of the features described above, or as an alternative, further embodiments may include: updating the operational setpoints at predetermined time intervals; wherein the plurality of HVAC components comprises a capacity generation plant, a fluid circulation pump, and ventilation equipment; wherein the ventilation equipment comprises an air handling unit; wherein the coordination module includes a cooling mode sub-module and a heating mode sub-module; wherein the operational setpoint for the capacity generation plant is a water temperature, the operational setpoint for the pump is a water pressure, and the operational setpoint for the air handling unit is a supply air temperature; wherein said determining an aggregated thermal demand comprises determining an aggregated thermal demand of the one or more terminal units; and/or wherein said determining an aggregated thermal demand of the HVAC system comprises determining if the capacity generation plant is being operated in a cooling mode or a heating mode, measuring an air temperature of the zone, and dividing the product of the number of terminal units of the one or more terminal units operating in the cooling mode or the heating mode and the difference between a zone air temperature setpoint and a measured zone air temperature, by the total number of terminal units associated with the plurality of HVAC components. Exemplary embodiments of the invention may include any of these features alone or in any subset.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0012] The foregoing and other features, and advantages of embodiments are apparent from the following detailed description taken in conjunction with the accompanying drawings in which:

    FIG. 1 is a schematic view of an exemplary HVAC system;

    FIG. 2 is an exemplary control diagram that may be used for the system shown in FIG. 1; and

    FIG. 3 is a flow chart illustrating an exemplary method of controlling the system shown in FIG. 1.


    DETAILED DESCRIPTION



    [0013] FIG. 1 illustrates an exemplary HVAC system 10 that generally includes a capacity generation plant 12, a fluid circulation pump 14, ventilation equipment 16, and a controller 18. Capacity generation plant 12 conditions (i.e., heats/cools) a heat transfer fluid such as water and supplies the conditioned fluid to pump 14 via a conduit 20. Pump 14 subsequently supplies the conditioned fluid to ventilation equipment 16 (via a supply conduit 22) where the conditioned fluid is utilized to condition air forced through ventilation equipment 16. The conditioned air is then used to adjust the temperature of a building or structure associated with HVAC system 10. The fluid is then returned to capacity generation plant 12 via a return conduit 24 where the fluid is re-conditioned. Controller 18 is configured to coordinate the operation of capacity generation plant 12, pump 14, and ventilation equipment 16 with a demand of the building to reduce energy consumption through improved system efficiency.

    [0014] Capacity generation plant 12 may be, for example a heat pump, a chiller, or a boiler. However, capacity generation plant 12 may be any type of capacity generation plant that enables HVAC system 10 to function as described herein. Capacity generation plant 12 is configured to heat or cool a heat transfer fluid (e.g., water) to facilitate environmental conditioning of the buildings. As such, capacity generation plant 12 may be controlled to selectively adjust the temperature of the heat transfer fluid.

    [0015] Fluid circulation pump 14 is configured to supply the heat transfer fluid from capacity generation plant 12 to ventilation equipment 16. Pump 14 may be controlled to selectively adjust the pressure (or flow) of the heat transfer fluid.

    [0016] Ventilation equipment 16 may be any suitable equipment to supply conditioned air to selected zones or areas of the building. For example, in the illustrated embodiment, ventilation equipment 16 includes an air handling unit (AHU) 26 and a plurality of terminal units 28 connected via air ducts (not shown) to that AHU 26. AHU 26 is configured to receive outside air and supply the outside air (via a supply conduit 30) to one or more terminal units 28, which condition the air and supply it to the zones associated with the respective terminal unit(s) 28. The conditioned air is subsequently returned to AHU 26 via a return conduit 32 where it may be recycled or exhausted to the atmosphere. In the illustrated embodiment, terminal units 28 are fan coil units. However, terminal units 28 may be any suitable equipment that enables HVAC system 10 to function as described herein. For example, terminal units 28 may be fan coil units (FCUs), air terminal units (ATUs), variable air volume systems (VAV), or even AHUs.

    [0017] Controller 18 may be a system-level controller configured to adjust operational setpoints of capacity generation plant 12, pump 14, and ventilation equipment 16 based on load conditions and a thermal demand of the building (which may be estimated with an average difference between a measurement of an actual room air temperature and a setpoint room air temperature), as is described herein in more detail. For example, a setpoint of plant 12 may be a fluid supply temperature, a setpoint of pump 14 may be a fluid pressure or flow, and a setpoint of equipment 16 may be a valve or damper opening, a fan speed, a supply air flow and/or temperature setpoint for that equipment for a room or zone. As used herein, the term controller refers to an application specific integrated circuit (ASIC), an electronic circuit, a processor (shared, dedicated, or group) and memory that executes one or more software or firmware programs, a combinational logic circuit, and/or other suitable components that provide the described functionality.

    [0018] In the exemplary embodiment, controller 18 includes or is in signal communication with a coordination module 40 to facilitate adjusting the setpoints of capacity generation plant 12, pump 14, and ventilation equipment 16. As illustrated in FIG. 2, coordination module 40 includes a cooling mode sub-module 42 and a heating mode sub-module 44. Cooling mode module 42 may be used when plant 12 is operated in a cooling mode, and second mode module 44 may be used when plant 12 is operated in a heating mode.

    [0019] Modules 42, 44 may include reference/lookup tables, graphs, formulas, and the like to facilitate determining the operational setpoints for components 12, 14, 16 when plant 12 is operated in the cooling or heating mode. For example, as illustrated in FIG. 2, controller 18 determines setpoints for components 12 and 14 with a reference graph, and controller 18 determines setpoints for component 16 with a predetermined formula, all of which may be converted into formulas, look-up tables, or reference graphs.

    [0020] Modules 42, 44 facilitate determining setpoints of plant 12, pump 14, and equipment 16 for a specified thermal demand and load conditions, and controller 18 subsequently adjusts components 12, 14, and 16 to operate at those setpoints. The setpoints may be updated at predetermined time intervals (e.g., every five minutes).

    [0021] FIG. 3 illustrates an exemplary method 100 of controlling HVAC system 10 that generally includes steps 120, 140, and 160. At step 120, controller 18 determines the current building demand. At step 140, controller 18 determines operational setpoints for HVAC components (e.g., 12, 14, 16) that result in efficient operation of the entire HVAC system 10. At step 160, controller 18 sends one or more signals indicative of the determined setpoint(s) to the HVAC component(s). Method 100 may be executed at predetermined time intervals (e.g., every five minutes).

    [0022] At step 120, controller 18 determines the current building demand, which is the total thermal heating or cooling demand required by the building/system served by the HVAC component under consideration (e.g., 12, 14, 16). The current building demand may be determined in various ways as represented by steps 120a-120e.

    [0023] For example, at step 120a, controller 18 determines the current building demand by:

    where NFCooling or NFHeating are the set of terminal units 28 in cooling or heating demand, respectively, ΔTi = RATSP,i - RATi is the difference between the room/zone air temperature setpoint RATSP,i and the measured room air temperature RATi (with i referring to the terminal unit number), and NtotFCUs being the total number of terminal units 28 being connected to and served by the HVAC component (i.e., the fixed number of terminal units 28, which is always larger or equal to the number of units 28 currently in heating or cooling demand).

    [0024] At step 120b, controller 18 determines the current building demand by:

    where the current building demand is calculated the same as in Equation (1), except where the ΔTi are weighted according to a sizing factor Vi for each terminal unit 28 (zone). These weighting factors Vi can be, for example, the unit rated capacity, the area or the volume of the zone served by the terminal unit 28, or a priority measure chosen by the building owner. The Vtot measure is the sum of all the weighting factors over all the relevant terminal units 28 installed in the building/system 10 (i.e. connected to the HVAC component being coordinated with these terminal units 28). For the particular cases where Vi is equal to 1, or the area of the zone or the volume of the zone served by that terminal unit 28, then Vtot is equal to the total number of terminal units 28 installed, or the total building surface or volume served (through the terminal units) by the coordinated HVAC component, respectively.

    [0025] At step 120c, controller 18 determines the current building demand utilizing Equation (2), but where ΔTi is replaced by another relevant measure of the demand of terminal unit 28 (in the relevant heating/cooling mode). All signals measured at the terminal unit 28 could potentially be leveraged to determine its demand. In particular, such value of demand may be: fan(s) speed(s), valve(s) or damper(s) openings, electrical heater(s) usage of the terminal unit, temperature(s) of the air going in or out of the unit, a measure of the capacity(ies) or power used by the terminal unit, a measure of temperatures and flows of fluids through the unit, or a combination thereof

    [0026] At step 120d, controller 18 determines the current building demand by utilizing HVAC component (e.g., plant 12, pump 14, equipment 16) measurements in addition to or instead of terminal unit measurements in steps 120a-120c. Such measurements of the HVAC component may be: the fan(s) speed(s), the valve(s) or damper(s) openings, the electrical heater(s) usage of the terminal unit, the temperature(s) of the air going in or out of the unit, the measure of the capacity(ies) or power used by the terminal unit, the measure of temperatures and flows of fluids through the unit, or a combination thereof.

    [0027] At step 120e, controller 18 determines the current building demand by a combination of one or more of steps 120a-120d.

    [0028] At step 130, controller 18 may determine if capacity generation plant 12 is operating in a cooling mode or a heating mode, which may be utilized to differentiate between using cooling mode module 42 and heating mode module 44. Operating in the heating or cooling mode may be the system's default/legacy decision, or it may be a decision utilizing building demand measure estimated as described with the different substeps of step 120. One example is given with the following set of rules: Start heating if (ΔT > 0 and ΔTHeat > 0.75°C), start cooling if (ΔT < 0 and ΔTCool < -0.75°C), stop heating if (ΔT < 0 or ΔTHeαt < 0.25°C), stop cooling if (ΔT > 0 or ΔTCool > -0.25°C), changeover from cooling to heating if (ΔT > 0 and ΔTHeat> 0.5°C), and changeover from heating to cooling if (ΔT < 0 and ΔTCool < -0.5°C). ΔTHeαt and ΔTCool can be estimated as described with the different substeps of step 120, ΔT is estimated similarly but as the average demand over all the occupied zones (so regardless whether the corresponding terminal units 28 are in heating or cooling mode), and the threshold values ±0.25, 0.5, 0.75°C can be adjusted by the building owner or via an appropriate scaling depending on the HVAC system installed and/or the building characteristics

    [0029] At step 140, controller 18 determines setpoints that will be sent to HVAC components by utilizing coordination module 40 and the determined building demand from step 120. Step 140 may include determining setpoints for capacity generation plant 12 (step 140a), pump 14 (step 140b), and ventilation equipment 16 (step 140c).

    [0030] At step 140a, controller 18 determines one or more setpoints that will be sent to capacity generation plant 12 through sub steps 142a and 144a. At step 142a, controller 18 determines whether to use coordination sub-module 42 or sub-module 44, depending on whether plant 12 is operated in the cooling or heating mode, respectively. Then, at step 144a, controller 18 utilizes coordination module 40 (i.e., either sub-module 42 or 44 as chosen from step 142a) to determine the capacity generation plant setpoint based on the building demand determined in step 120. More specifically, at step 142a, controller 18 sets capacity generation plant 12 to a minimum effort setpoint below a low demand threshold (La), increases (e.g., linearly) the effort setpoint from low demand threshold (La) to a high demand threshold (Ha), and sets the maximum effort setpoint beyond the high demand threshold (Ha). For example, thresholds (La) and (Ha) define line (A) in the graphs illustrated in coordination module 40 (FIG. 2).

    [0031] Demand thresholds (La) and (Ha) may be determined by operating terminal units 28 with hysteresis thresholds above or beyond which they start or stop their cooling/heating effort. In the exemplary embodiment, thresholds of terminal units 28 are used to determine (La) and (Ha) thresholds (e.g., values of temperature differences). Alternatively, demand thresholds (La) and (Ha) may be related to percentages of building level effort determined in step 120 (e.g., 25%, 50%, and 75% of an average valve opening or of plant 12 or HVAC system total capacity).

    [0032] Similarly, at step 140b, controller 18 determines one or more setpoints that will be sent to fluid circulation pump 14 through sub steps 142b and 144b. At step 142b, controller 18 determines whether to use either coordination sub-module 42 or 44 depending on whether plant 12 is operating in the cooling or heating mode, respectively. Then at step 144b, controller 18 utilizes coordination module 40 (i.e., sub-module 42 or 44 as chosen in step 142b) to determine the capacity generation plant setpoint based on the building demand determined in step 120. More specifically, at step 142b, controller 18 sets pump 14 to a minimum effort setpoint below a low demand threshold (Lb), and increases (e.g., linearly(the effort setpoint from the low demand threshold (Lb) to a high demand threshold (Hb), and sets the maximum effort setpoint beyond the high demand threshold (Hb). For example, thresholds (Lb), and (Hb) define line (B) in the graphs illustrated in coordination module 40 (FIG. 2).

    [0033] Demand thresholds (Lb) and (Hb) may be determined by operating terminal units 28 with hysteresis thresholds above or beyond which they start or stop their cooling/heating effort. In the exemplary embodiment, thresholds of terminal units 28 are used to determine (Lb) and (Hb) thresholds (e.g., values of temperature differences). Alternatively, demand thresholds (Lb) and (Hb) may be related to percentages of building level effort determined in step 120 (e.g., 25%, 50%, and 75% of an average valve opening or of the plant or HVAC system total capacity).

    [0034] FIG. 2 illustrates an exemplary threshold choice for which (Lb) = (L), (Hb) = (La) = (M), and (Ha) = (H), wherein (L) is a global Low Threshold, (M) is a global Medium Threshold, and (H) is a global High Threshold. This exemplary choice implies that the effort setpoint of fluid circulation pump 14 is increased to its maximum before the effort setpoint of plant 12 is increased.

    [0035] At step 140c, controller 18 determines one or more setpoints that will be sent to ventilation equipment 16 that treats fresh air from outside prior to sending it to the building such as AHU 26, which will be used for exemplary purposes. At step 142c, controller 18 determines whether to use either coordination sub-module 42 or 44 depending on whether plant 12 is operated in the cooling or heating mode, respectively. A third alternative may be used if plant 12 is off, as described herein in more detail.. At step 144c, controller 18 determines a supply air temperature setpoint (SATsp) of AHU 26 sufficient to prevent overcooling or overheating a specific area/zone (in the determined heating/cooling mode), as describe herein in more detail.

    [0036] When capacity generation plant 12 is operated in the cooling mode, SATsp is determined by:

    where max(RATsp) is the maximum room air temperature setpoint amongst all areas/zones served by that AHU, and air duct losses/gains are determined by:

    where mean(RAT) is the mean temperature amongst all the areas/zones from which the air is extracted and sent to the AHU (which average can be weight-averaged for instance with the zones areas or volumes or flow of extracted air), EAT is the temperature of the air extracted from the rooms by the AHU and measured at the AHU, SF is the flow of air supplied by the AHU to the building, and EF is the flow of air extracted by the AHU from the building. If SF and EF are maintained close together by design SF/EF can be approximated by the value 1.

    [0037] When capacity generation plant 12 is operated in the heating mode, SATsp is determined by:

    where min(RATsp) is the minimum room air temperature setpoint amongst all areas/zones served by that AHU.

    [0038] When capacity generation plant 12 is off, SATsp is determined by:

    where mean(RATsp) is the average room air temperature setpoint amongst all areas/zones served by that AHU.

    [0039] At step 160, controller 18 sends the determined setpoints to the associated HVAC component and operates those components at the determined setpoints. For example, the setpoint(s) determined for step 140a are sent to capacity generation plant 12, the setpoint(s) determined for steps 140b are sent to fluid circulation pump 14, and the setpoint(s) determined for steps 140c are sent to ventilation equipment 16 that treats outside air prior to sending throughout the building. In some embodiments, a filter 46 (FIG. 2) may be used to smooth the setpoint change to facilitate preventing operational issues that may result from a sudden, large setpoint change. Control may then return to step 120. As such, controller 18 is programmed to perform the steps described herein.

    [0040] Described herein are systems and methods for controlling HVAC system components such as a capacity generation plant, a fluid circulation pump, and ventilation equipment. The control coordinates the effort of the various components with respect to an aggregated measure of the demand on terminal units that are connected to the components. The control obtains an estimate of the heating/cooling aggregated whole building demand, computes component setpoints based on the building demand, filters the setpoints, and sends the setpoints to the associated components to operate those components at the determined setpoints. As such, the components setpoints are periodically adjusted to meet the building demand resulting in more efficient component operation and energy savings.

    [0041] While the disclosure has been described in detail in connection with only a limited number of embodiments, it should be readily understood that the disclosure is not limited to such disclosed embodiments. Rather, the disclosure can be modified to incorporate any number of variations, alterations, substitutions or equivalent arrangements not heretofore described, but which are commensurate with the scope of the disclosure. Additionally, while various embodiments have been described, it is to be understood that aspects of the disclosure may include only some of the described embodiments. Accordingly, the disclosure is not to be seen as limited by the foregoing description, but is only limited by the scope of the appended claims.


    Claims

    1. HVAC system (10) comprising:

    a plurality of HVAC components (12, 14, 16);

    at least one terminal unit (28) operably associated with each HVAC component (12, 14, 16) of the plurality of HVAC components (12, 14, 16);

    a control system comprising:

    a coordination module (40); and

    a controller (18) having a processor and a memory, the controller (18) operably associated with the coordination module (40) and in signal communication with the plurality of HVAC components (12, 14, 16), the controller (18) configured:

    to determine an aggregated thermal demand of the HVAC system (10);

    to determine, with the coordination module (40), an operational setpoint for at least one HVAC component (12, 14, 16) of the plurality of HVAC components (12, 14, 16) based on the determined aggregated thermal demand; and

    to send a signal indicative of each determined operational setpoint to each associated HVAC component (12, 14, 16) of the plurality of HVAC components (12, 14, 16),

    wherein the plurality of HVAC components (12, 14, 16) comprises a capacity generation plant (12), a fluid circulation pump (14), and ventilation equipment (16), and

    wherein the coordination module (40) includes a cooling mode module (42) and a heating mode module (44),

    characterized in that the controller (18) is configured

    to determine if the capacity generation plant (12) is operating in a cooling mode or a heating mode, and

    to determine whether to use coordination sub-module (42) or sub-module (44), depending on whether the capacity generation plant (12) is operated in a cooling or a heating mode, and

    wherein the determining of the operational setpoint for at least one HVAC component (12, 14, 16) comprises at least one of:

    determining one or more setpoints to be sent to the capacity generation plant (12), wherein the controller (18) is configured to set the capacity generation plant (12) to a minimum effort setpoint below a low demand threshold (La), increase the effort setpoint from low demand threshold (La) to a high demand threshold (Ha), and to set a maximum effort setpoint beyond the high demand threshold (Ha),

    determining one or more setpoints to be sent to the fluid circulation pump (14), wherein the controller (18) is configured to set the pump (14) to a minimum effort setpoint below a low demand threshold (Lb), increase the effort setpoint from the low demand threshold (Lb) to a high demand threshold (Hb), and to set a maximum effort setpoint beyond the high demand threshold (Hb), and

    determining one or more setpoints to be sent to the ventilation equipment (16) that treats fresh air from outside, wherein when the capacity generation plant (12) is operated in the cooling mode, a supply air setpoint (SATsp) is determined by the sum of the maximum room air temperature setpoint amongst all areas/zones and the air duct losses/gains, and wherein when the capacity generation plant (12) is operated in the heating mode, a supply air setpoint (SATsp) is determined by the sum of the minimum room air temperature setpoint amongst all areas/zones and the air duct losses/gains.


     
    2. HVAC system (10) of claim 1, wherein the controller (18) is configured to update the operational setpoints at predetermined time intervals.
     
    3. HVAC system (10) of claim 1, wherein the ventilation equipment comprises an air handling unit.
     
    4. HVAC system (10) of any one of the preceding claims, wherein determining the aggregated thermal demand of the HVAC system (10) comprises determining an aggregated thermal demand of the one or more terminal units (28).
     
    5. Method of controlling an HVAC system (10) having a plurality of HVAC components (12, 14, 16), at least one terminal unit (28) associated with each HVAC component (12, 14, 16) of the plurality of HVAC components (12, 14, 16), a coordination module (40), and a controller (18) operably associated with the coordination module (40) and in signal communication with the plurality of HVAC components (12, 14, 16) and associated terminal units (28), the method comprising:

    determining an aggregated thermal demand of the HVAC system (10);

    determining, with the coordination module (40), an operational setpoint for at least one HVAC component (12, 14, 16) of the plurality of HVAC components (12, 14, 16) based on the determined aggregated thermal demand; and

    subsequently operating each HVAC component (12, 14, 16) of the plurality of HVAC components (12, 14, 16) at the determined operational setpoint,

    wherein the coordination module (40) includes a cooling mode sub-module (42) and a heating mode sub-module (44),

    and wherein the plurality of HVAC components (12, 14, 16) comprises a capacity generation plant, a fluid circulation pump, and ventilation equipment,

    characterized in that the controller (18) is configured

    to determine if the capacity generation plant (12) is operating in a cooling mode or a heating mode, and

    to determine whether to use coordination sub-module (42) or sub-module (44), depending on whether the capacity generation plant (12) is operated in a cooling or a heating mode, and

    wherein the determining of the operational setpoint for at least one HVAC component (12, 14, 16) comprises at least one of:

    determining one or more setpoints to be sent to the capacity generation plant (12), wherein the controller (18) is configured to set the capacity generation plant (12) to a minimum effort setpoint below a low demand threshold (La), increase the effort setpoint from low demand threshold (La) to a high demand threshold (Ha), and to set a maximum effort setpoint beyond the high demand threshold (Ha),

    determining one or more setpoints to be sent to the fluid circulation pump (14), wherein the controller (18) is configured to set the pump (14) to a minimum effort setpoint below a low demand threshold (Lb), increase the effort setpoint from the low demand threshold (Lb) to a high demand threshold (Hb), and to set a maximum effort setpoint beyond the high demand threshold (Hb), and

    determining one or more setpoints to be sent to the ventilation equipment (16) that treats fresh air from outside, wherein when capacity generation plant (12) is operated in the cooling mode, a supply air setpoint (SATsp) is determined by the sum of the maximum room air temperature setpoint amongst all areas/zones and the air duct losses/gains, and wherein when the capacity generation plant (12) is operated in the heating mode, a supply air setpoint (SATsp) is determined by the sum of the minimum room air temperature setpoint amongst all areas/zones and the air duct losses/gains.


     
    6. Method of claim 5, further comprising updating the operational setpoints at predetermined time intervals.
     
    7. Method of any one of claims 5 or 6, wherein said determining an aggregated thermal demand comprises determining an aggregated thermal demand of the one or more terminal units (28).
     
    8. Method of claim 5, wherein the ventilation equipment comprises an air handling unit.
     
    9. Method of claim 8, wherein the operational setpoint for the capacity generation plant is a water temperature, the operational setpoint for the pump is a water pressure, and the operational setpoint for the air handling unit is a supply air temperature.
     
    10. Method of any one of claims 5 to 9, wherein said determining an aggregated thermal demand of the HVAC system (10) comprises:

    determining if the capacity generation plant is being operated in a cooling mode or a heating mode;

    measuring an air temperature of the zone; and

    dividing the product of the number of terminal units (28) of the one or more terminal units (28) operating in the cooling mode or the heating mode and the difference between a zone air temperature setpoint and a measured zone air temperature, by the total number of terminal units (28) associated with the plurality of HVAC components (12, 14, 16).


     


    Ansprüche

    1. HVAC-System (10), umfassend:

    eine Vielzahl von HVAC-Komponenten (12, 14, 16);

    mindestens eine Anschlusseinheit (28), die in Wirkverbindung mit jeder HVAC-Komponente (12, 14, 16) aus der Vielzahl von HVAC-Komponenten (12, 14, 16) steht;

    ein Steuerungssystem, das Folgendes umfasst:

    ein Koordinationsmodul (40); und

    eine Steuerung (18), die einen Prozessor und einen Speicher aufweist, wobei die Steuerung (18) in Wirkverbindung mit dem Koordinationsmodul (40) steht und in Signalverbindung mit der Vielzahl von HVAC-Komponenten (12, 14, 16) steht, wobei die Steuerung (18) konfiguriert ist:

    um einen aggregierten thermischen Bedarf des HVAC-Systems (10) zu ermitteln;

    um mit dem Koordinationsmodul (40) einen Betriebssollwert für mindestens eine HVAC-Komponente (12, 14, 16) aus der Vielzahl von HVAC-Komponenten (12, 14, 16) basierend auf dem ermittelten aggregierten thermischen Bedarf zu ermitteln; und

    um ein Signal, das jeden ermittelten Betriebssollwert angibt, an jede zugehörige HVAC-Komponente (12, 14, 16) aus der Vielzahl von HVAC-Komponenten (12, 14, 16) zu senden,

    wobei die Vielzahl von HVAC-Komponenten (12, 14, 16) eine Leistungserzeugungsanlage (12), ein Fluidumwälzpumpe (14) und Lüftungseinrichtungen (16) umfasst, und

    wobei das Koordinationsmodul (40) ein Kühlbetriebsmodul (42) und ein Heizbetriebsmodul (44) beinhaltet,

    dadurch gekennzeichnet, dass die Steuerung (18) konfiguriert ist,

    um zu ermitteln, ob die Leistungserzeugungsanlage (12) in einem Kühlbetrieb oder einem Heizbetrieb arbeitet, und

    um zu ermitteln, ob das Koordinationsuntermodul (42) oder das Untermodul (44) zu verwenden ist, abhängig davon, ob die Leistungserzeugungsanlage (12) in einem Kühl- oder in einem Heizbetrieb betrieben wird, und

    wobei das Ermitteln des Betriebssollwerts für mindestens eine HVAC-Komponente (12, 14, 16) mindestens eines aus Folgendem umfasst:

    Ermitteln eines oder mehrerer Sollwerte, die an die Leistungserzeugungsanlage (12) zu senden sind, wobei die Steuerung (18) konfiguriert ist, um die Leistungserzeugungsanlage (12) auf einen minimalen Aufwandsollwert unter einer unteren Bedarfsschwelle (La) einzustellen, den Aufwandsollwert von der unteren Bedarfsschwelle (La) zu einer oberen Bedarfsschwelle (Ha) zu erhöhen, und einen maximalen Aufwandsollwert über der oberen Bedarfsschwelle (Ha) einzustellen,

    Ermitteln eines oder mehrerer Sollwerte, die an die Fluidumwälzpumpe (14) zu senden sind, wobei die Steuerung (18) konfiguriert ist, die Pumpe (14) auf einen minimalen Aufwandsollwert unter einer unteren Bedarfsschwelle (Lb) einzustellen, den Aufwandsollwert von der unteren Bedarfsschwelle (Lb) zu einer oberen Bedarfsschwelle (Hb) zu erhöhen, und einen maximalen Aufwandsollwert über der oberen Bedarfsschwelle (Hb) einzustellen, und

    Ermitteln eines oder mehrerer Sollwerte, die an die Lüftungseinrichtungen (16), die frische Luft von außerhalb behandeln, zu senden sind, wobei, wenn die Leistungserzeugungsanlage (12) im Kühlbetrieb betrieben wird, ein Zuluftsollwert (SATsp) durch die Summe aus dem maximalen Raumlufttemperatursollwert in allen Bereichen/Zonen und den Luftleitungsverlusten/-zugewinnen ermittelt wird, und wobei, wenn die Leistungserzeugungsanlage (12) im Heizbetrieb betrieben wird, ein Zuluftsollwert (SATsp) durch die Summe aus dem minimalen Raumlufttemperatursollwert in allen Bereichen/Zonen und den Luftleitungsverlusten/-zugewinnen ermittelt wird.


     
    2. HVAC-System (10) nach Anspruch 1, wobei die Steuerung (18) konfiguriert ist, die Betriebssollwerte in vorbestimmten Zeitabständen zu aktualisieren.
     
    3. HVAC-System (10) nach Anspruch 1, wobei die Lüftungseinrichtungen eine Lüfungsanlage umfassen.
     
    4. HVAC-System (10) nach einem der vorstehenden Ansprüche, wobei das Ermitteln des aggregierten thermischen Bedarfs des HVAC-Systems (10) das Ermitteln eines aggregierten thermischen Bedarfs der einen oder mehreren Anschlusseinheiten (28) umfasst.
     
    5. Verfahren zum Steuern eines HVAC-Systems (10), das eine Vielzahl von HVAC-Komponenten (12, 14, 16), mindestens eine Anschlusseinheit (28), die in Verbindung mit jeder HVAC-Komponente (12, 14, 16) aus der Vielzahl von HVAC-Komponenten (12, 14, 16) ist, ein Koordinationsmodul (40) und eine Steuerung (18) in Wirkverbindung mit dem Koordinationsmodul (40) und in Signalverbindung mit der Vielzahl von HVAC-Komponenten (12, 14, 16) und zugehörigen Anschlusseinheiten (28) aufweist, wobei das Verfahren Folgendes umfasst:

    Ermitteln eines aggregierten thermischen Bedarfs des HVAC-Systems (10);

    Ermitteln, mit dem Koordinationsmodul (40), eines Betriebssollwerts für mindestens eine HVAC-Komponente (12, 14, 16) aus der Vielzahl von HVAC-Komponenten (12, 14, 16) basierend auf dem ermittelten aggregierten thermischen Bedarf; und

    anschließendes Betreiben jeder HVAC-Komponente (12, 14, 16) aus der Vielzahl von HVAC-Komponenten (12, 14, 16) mit dem ermittelten Betriebssollwert,

    wobei das Koordinationsmodul (40) ein Kühlbetriebsuntermodul (42) und ein Heizbetriebsuntermodul (44) beinhaltet, und

    wobei die Vielzahl von HVAC-Komponenten (12, 14, 16) eine Leistungserzeugungsanlage, eine Fluidumwälzpumpe und Lüftungseinrichtungen umfasst,

    dadurch gekennzeichnet, dass die Steuerung (18) konfiguriert ist,

    um zu ermitteln, ob die Leistungserzeugungsanlage (12) in einem Kühlbetrieb oder einem Heizbetrieb arbeitet, und

    um zu ermitteln, ob das Koordinationsuntermodul (42) oder das Untermodul (44) zu verwenden ist, abhängig davon, ob die Leistungserzeugungsanlage (12) in einem Kühl- oder in einem Heizbetrieb betrieben wird, und

    wobei das Ermitteln des Betriebssollwerts für mindestens eine HVAC-Komponente (12, 14, 16) mindestens eines aus Folgendem umfasst:

    Ermitteln eines oder mehrerer Sollwerte, die an die Leistungserzeugungsanlage (12) zu senden sind, wobei die Steuerung (18) konfiguriert ist, um die Leistungserzeugungsanlage (12) auf einen minimalen Aufwandsollwert unter einer unteren Bedarfsschwelle (La) einzustellen, den Aufwandsollwert von der unteren Bedarfsschwelle (La) zu einer oberen Bedarfsschwelle (Ha) zu erhöhen, und einen maximalen Aufwandsollwert über der oberen Bedarfsschwelle (Ha) einzustellen,

    Ermitteln eines oder mehrerer Sollwerte, die an die Fluidumwälzpumpe (14) zu senden sind, wobei die Steuerung (18) konfiguriert ist, die Pumpe (14) auf einen minimalen Aufwandsollwert unter einer unteren Bedarfsschwelle (Lb) einzustellen, den Aufwandsollwert von der unteren Bedarfsschwelle (Lb) zu einer oberen Bedarfsschwelle (Hb) zu erhöhen, und einen maximalen Aufwandsollwert über der oberen Bedarfsschwelle (Hb) einzustellen, und

    Ermitteln eines oder mehrerer Sollwerte, die an die Lüftungseinrichtungen (16), die frische Luft von außerhalb behandeln, zu senden sind, wobei, wenn die Leistungserzeugungsanlage (12) im Kühlbetrieb betrieben wird, ein Zuluftsollwert (SATsp) durch die Summe aus dem maximalen Raumlufttemperatursollwert in allen Bereichen/Zonen und den Luftleitungsverlusten/-zugewinnen ermittelt wird, und wobei, wenn die Leistungserzeugungsanlage (12) im Heizbetrieb betrieben wird, ein Zuluftsollwert (SATsp) durch die Summe aus dem minimalen Raumlufttemperatursollwert in allen Bereichen/Zonen und den Luftleitungsverlusten/-zugewinnen ermittelt wird.


     
    6. Verfahren nach Anspruch 5, ferner umfassend das Aktualisieren der Betriebssollwerte in vorbestimmten Zeitabständen.
     
    7. Verfahren nach einem der Ansprüche 5 oder 6, wobei das Ermitteln eines aggregierten thermischen Bedarfs das Ermitteln eines aggregierten thermischen Bedarfs der einen oder mehreren Anschlusseinheiten (28) umfasst.
     
    8. Verfahren nach Anspruch 5, wobei die Lüftungseinrichtungen eine Lüftungsanlage umfassen.
     
    9. Verfahren nach Anspruch 8, wobei der Betriebssollwert für die Leistungserzeugungsanlage eine Wassertemperatur ist, der Betriebssollwert für die Pumpe ein Wasserdruck ist, und der Betriebssollwert für die Lüftungsanlage eine Zulufttemperatur ist.
     
    10. Verfahren nach einem der Ansprüche 5 bis 9, wobei das Ermitteln eines aggregierten thermischen Bedarfs des HVAC-Systems (10) Folgendes umfasst:

    Ermitteln, ob die Leistungserzeugungsanlage in einem Kühlbetrieb oder einem Heizbetrieb betrieben wird;

    Messen einer Lufttemperatur der Zone; und

    Dividieren des Produkts aus der Anzahl von Anschlusseinheiten (28) der einen oder mehreren Anschlusseinheiten (28), die in dem Kühlbetrieb oder in dem Heizbetrieb arbeiten, und der Differenz zwischen einem Zonenlufttemperatursollwert und einer gemessenen Zonenlufttemperatur durch die Gesamtzahl der Anschlusseinheiten (28) in Verbindung mit der Vielzahl von HVAC-Komponenten (12, 14, 16).


     


    Revendications

    1. Système CVC (10) comprenant :

    une pluralité de composants CVC (12, 14, 16) ;

    au moins une unité de borne (28) associée opérationnellement à chaque composant CVC (12, 14, 16) de la pluralité de composants CVC (12, 14, 16) ;

    un système de commande comprenant :

    un module de coordination (40) ; et

    un dispositif de commande (18) ayant un processeur et une mémoire, le dispositif de commande (18) étant associé opérationnellement au module de coordination (40) et en communication de signal avec la pluralité de composants CVC (12, 14, 16), le dispositif de commande (18) étant configuré :

    pour déterminer une demande thermique agrégée du système CVC (10) ;

    pour déterminer, avec le module de coordination (40), un point de consigne opérationnel pour au moins un composant CVC (12, 14, 16) de la pluralité de composants CVC (12, 14, 16) d'après la demande thermique agrégée déterminée ; et

    pour envoyer un signal indicatif de chaque point de consigne opérationnel déterminé à chaque composant CVC associé (12, 14, 16) de la pluralité de composants CVC (12, 14, 16),

    dans lequel la pluralité de composants CVC (12, 14, 16) comprennent une installation de production de capacité (12), une pompe de circulation de fluide (14), et un équipement de ventilation (16), et

    dans lequel le module de coordination (40) comporte un module de mode de refroidissement (42) et un module de mode de chauffage (44),

    caractérisé en ce que le dispositif de commande (18) est configuré

    pour déterminer si l'installation de production de capacité (12) fonctionne dans un mode de refroidissement ou un mode de chauffage, et

    pour déterminer s'il faut utiliser le sous-module (42) ou le sous-module (44) de coordination, selon que l'installation de production de capacité (12) fonctionne dans un mode de refroidissement ou de chauffage, et

    dans lequel la détermination du point de consigne opérationnel pour au moins un composant CVC (12, 14, 16) comprend au moins l'une de :
    la détermination d'un ou de plusieurs points de consigne à envoyer à l'installation de production de capacité (12), dans lequel le dispositif de commande (18) est configuré pour régler l'installation de production de capacité (12) à un point de consigne d'effort minimal en dessous d'un seuil de faible demande (La), augmenter le point de consigne d'effort du seuil de faible demande (La) à un seuil de demande élevée (Ha), et pour régler un point de consigne d'effort maximal au-delà du seuil de demande élevée (Ha),
    la détermination d'un ou de plusieurs points de consigne à envoyer à la pompe de circulation de fluide (14), dans lequel le dispositif de commande (18) est configuré pour régler la pompe (14) à un point de consigne d'effort minimal en dessous d'un seuil de faible demande (Lb), augmenter le point de consigne d'effort du seuil de faible demande (Lb) à un seuil de demande élevée (Hb), et pour régler un point de consigne d'effort maximal au-delà du seuil de demande élevée (Hb), et
    la détermination d'un ou de plusieurs points de consigne à envoyer à l'équipement de ventilation (16) qui traite l'air frais provenant de l'extérieur, dans lequel lorsque l'installation de production de capacité (12) fonctionne dans le mode de refroidissement, un point de consigne d'air fourni (SATsp) est déterminé par la somme du point de consigne de température d'air ambiant maximal parmi toutes les régions/ zones et des pertes/gains de conduit d'air, et dans lequel lorsque l'installation de production de capacité (12) fonctionne dans le mode de chauffage, un point de consigne d'air fourni (SATsp) est déterminé par la somme du point de consigne de température d'air ambiant minimal parmi toutes les régions/zones et des pertes/gains de conduit d'air.


     
    2. Système CVC (10) selon la revendication 1, dans lequel le dispositif de commande (18) est configuré pour mettre à jour les points de consigne opérationnels à des intervalles de temps prédéterminés.
     
    3. Système CVC (10) selon la revendication 1, dans lequel l'équipement de ventilation comprend une unité de traitement d'air.
     
    4. Système CVC (10) selon l'une quelconque des revendications précédentes, dans lequel la détermination de la demande thermique agrégée du système CVC (10) comprend la détermination d'une demande thermique agrégée des une ou plusieurs unités de borne (28).
     
    5. Procédé de commande d'un système CVC (10) ayant une pluralité de composants CVC (12, 14, 16), au moins une unité de borne (28) associée à chaque composant CVC (12, 14, 16) de la pluralité de composants CVC (12, 14, 16), un module de coordination (40), et un dispositif de commande (18) associé opérationnellement au module de coordination (40) et en communication de signal avec la pluralité de composants CVC (12, 14, 16) et des unités de borne associées (28), le procédé comprenant :

    la détermination d'une demande thermique agrégée du système CVC (10) ;

    la détermination, avec le module de coordination (40), d'un point de consigne opérationnel pour au moins un composant CVC (12, 14, 16) de la pluralité de composants CVC (12, 14, 16) d'après la demande thermique agrégée déterminée ; et

    le fonctionnement ultérieur de chaque composant CVC (12, 14, 16) de la pluralité de composants CVC (12, 14, 16) au point de consigne opérationnel déterminé,

    dans lequel le module de coordination (40) comporte un module de mode de refroidissement (42) et un module de mode de chauffage (44),

    et dans lequel la pluralité de composants CVC (12, 14, 16) comprennent une installation de production de capacité, une pompe de circulation de fluide, et un équipement de ventilation,

    caractérisé en ce que le dispositif de commande (18) est configuré

    pour déterminer si l'installation de production de capacité (12) fonctionne dans un mode de refroidissement ou un mode de chauffage, et

    pour déterminer s'il faut utiliser le sous-module (42) ou le sous-module (44) de coordination, selon que l'installation de production de capacité (12) fonctionne dans un mode de refroidissement ou de chauffage, et

    dans lequel la détermination du point de consigne opérationnel pour au moins un composant CVC (12, 14, 16) comprend au moins l'une de :

    la détermination d'un ou de plusieurs points de consigne à envoyer à l'installation de production de capacité (12), dans lequel le dispositif de commande (18) est configuré pour régler l'installation de production de capacité (12) à un point de consigne d'effort minimal en dessous d'un seuil de faible demande (La), augmenter le point de consigne d'effort du seuil de faible demande (La) à un seuil de demande élevée (Ha), et pour régler un point de consigne d'effort maximal au-delà du seuil de demande élevée (Ha),

    la détermination d'un ou de plusieurs points de consigne à envoyer à la pompe de circulation de fluide (14), dans lequel le dispositif de commande (18) est configuré pour régler la pompe (14) à un point de consigne d'effort minimal en dessous d'un seuil de faible demande (Lb), augmenter le point de consigne d'effort du seuil de faible demande (Lb) à un seuil de demande élevée (Hb), et pour régler un point de consigne d'effort maximal au-delà du seuil de demande élevée (Hb), et

    la détermination d'un ou de plusieurs points de consigne à envoyer à l'équipement de ventilation (16) qui traite l'air frais provenant de l'extérieur, dans lequel lorsque l'installation de production de capacité (12) fonctionne dans le mode de refroidissement, un point de consigne d'air fourni (SATsp) est déterminé par la somme du point de consigne de température d'air ambiant maximal parmi toutes les régions/ zones et des pertes/gains de conduit d'air, et dans lequel lorsque l'installation de production de capacité (12) fonctionne dans le mode de chauffage, un point de consigne d'air fourni (SATsp) est déterminé par la somme du point de consigne de température d'air ambiant minimal parmi toutes les régions/zones et des pertes/gains de conduit d'air.


     
    6. Procédé selon la revendication 5, comprenant en outre la mise à jour des points de consigne opérationnels à des intervalles de temps prédéterminés.
     
    7. Procédé selon l'une quelconque des revendications 5 ou 6, dans lequel ladite détermination d'une demande thermique agrégée comprend la détermination d'une demande thermique agrégée des une ou plusieurs unités de borne (28).
     
    8. Procédé selon la revendication 5, dans lequel l'équipement de ventilation comprend une unité de traitement d'air.
     
    9. Procédé selon la revendication 8, dans lequel le point de consigne opérationnel pour l'installation de production de capacité est une température d'eau, le point de consigne opérationnel pour la pompe est une pression d'eau et le point de consigne opérationnel pour l'unité de traitement d'air est une température d'air fourni.
     
    10. Procédé selon l'une quelconque des revendications 5 à 9, dans lequel ladite détermination d'une demande thermique agrégée du système CVC (10) comprend :

    le fait de déterminer si l'installation de production de capacité fonctionne dans un mode de refroidissement ou un mode de chauffage,

    la mesure d'une température d'air de la zone ; et

    la division du produit du nombre d'unités de borne (28) des une ou plusieurs unités de borne (28) fonctionnant dans le mode de refroidissement ou le mode de chauffage et de la différence entre un point de consigne de température d'air de zone et une température d'air de zone mesurée, par le nombre total d'unités de borne (28) associées à la pluralité de composants CVC (12, 14, 16).


     




    Drawing














    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description