(19)
(11)EP 3 098 997 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
26.10.2022 Bulletin 2022/43

(21)Application number: 15740127.4

(22)Date of filing:  21.01.2015
(51)International Patent Classification (IPC): 
H04L 5/00(2006.01)
(52)Cooperative Patent Classification (CPC):
H04L 5/0016; H04L 5/0044
(86)International application number:
PCT/CN2015/071217
(87)International publication number:
WO 2015/110008 (30.07.2015 Gazette  2015/30)

(54)

DATA TRANSMISSION AND DATA RECEIVING DETECTION METHOD, BASE STATION, AND USER EQUIPMENT

DATENSENDE- UND DATENEMPFANGSDETEKTIONSVERFAHREN, BASISSTATION UND BENUTZERGERÄT

PROCÉDÉ DE DÉTECTION DE TRANSMISSION ET DE RÉCEPTION DE DONNÉES, STATION DE BASE, ET ÉQUIPEMENT D'UTILISATEUR


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 22.01.2014 CN 201410030862

(43)Date of publication of application:
30.11.2016 Bulletin 2016/48

(73)Proprietor: Datang Mobile Communications Equipment Co., Ltd.
Beijing 100085 (CN)

(72)Inventor:
  • DAI, Xiaoming
    Beijing 100191 (CN)

(74)Representative: dompatent von Kreisler Selting Werner - Partnerschaft von Patent- und Rechtsanwälten mbB 
Deichmannhaus am Dom Bahnhofsvorplatz 1
50667 Köln
50667 Köln (DE)


(56)References cited: : 
WO-A1-2012/161080
WO-A1-2013/176042
CN-A- 102 036 402
CN-A- 103 518 339
WO-A1-2013/176042
CN-A- 101 772 039
CN-A- 102 299 728
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    TECHNICAL FIELD



    [0001] The present disclosure relates to the field of communication technology, in particular to a data transmission method, a data reception and detection method, a base station and a user equipment (UE).

    BACKGROUND



    [0002] A 4th-Generation (4G) system is designed on the basis of a linear receiver and orthogonal transmission. The linear receiver may be implemented conveniently while ensuring the system performance, and the orthogonal transmission may be used to simplify the implementation of a receiving end. Fig.1 is a schematic view showing data transmission on the basis of an orthogonal design, where a plurality of different pieces of data is transmitted on orthogonal physical resources respectively, and each piece of data is transmitted on a corresponding one physical resource. All the pieces of data are orthogonal to each other, so no interference occurs among them.

    [0003] Due to the limited radio resources, it is impossible for the orthogonal system to provide system capacity for multi-user transmission. The data transmission on the basis of the orthogonal design has a defect of small system capacity, i.e., the data transmission capability for the system is relatively low.

    [0004] Currently, NTT DoCoMo has proposed in WO2012161080 a non-orthogonal multi-address access approach on the basis of energy distribution, which may provide performance gains as compared with the orthogonal system. However, due to restriction on the degree of freedom for the energy distribution, its system capacity is still insufficient, and the data transmission capability is still low.

    [0005] A further reference document (WO2013176042) discloses a reception station device, a transmission station device, a communication system, a reception method, a transmission method, and a program, in which communication of data signals for a plurality of reception stations is performed using the same radio resource.

    SUMMARY



    [0006] The present disclosure has solved the afore-described problem as defined in the attached claims. According to the present invention there is provided a data transmission method according to claim 1, a data reception and detection method according to claim 4, a base station apparatus according to claim 8 and a user equipment apparatus according to claim 11. Embodiments are further defined by the dependent claims.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0007] 

    Fig. 1 is a schematic view showing the data transmission in an orthogonal mode in the prior art;

    Fig.2 is a flow chart of a data transmission method according to one embodiment of the present disclosure;

    Fig.3a is a schematic view showing the transmission of three pieces of data according to one embodiment of the present disclosure;

    Fig.3b is a schematic view showing the implementation of the transmission of three pieces of data in a Long-Term Evolution (LTE) system according to one embodiment of the present disclosure;

    Fig.3c is a schematic view showing the transmission of two pieces of data according to one embodiment of the present disclosure;

    Fig.4 is a schematic view showing the transmission of five pieces of data according to one embodiment of the present disclosure;

    Fig. 5 is a flow chart of a data reception and detection method according to one embodiment of the present disclosure;

    Fig.6 is another flow chart of the data reception and detection method according to one embodiment of the present disclosure;

    Fig.7 is a schematic view showing a base station according to one embodiment of the present disclosure;

    Fig. 8 is a schematic view showing a UE according to one embodiment of the present disclosure;

    Fig.9 is another schematic view showing the base station according to one embodiment of the present disclosure; and

    Fig. 10 is another schematic view showing the UE according to one embodiment of the present disclosure.


    DETAILED DESCRIPTION OF THE EMBODIMENTS



    [0008] In order to make the objects, the technical solutions and the advantages of the present disclosure more apparent, the present disclosure will be described hereinafter in a clear and complete manner in conjunction with the drawings and embodiments.

    [0009] It should be appreciated that, the present disclosure may be applied to various communication systems, e.g., a Global System of Mobile communication (GSM) system, a Code Division Multiple Access (CDMA) system, a Wideband Code Division Multiple Access (WCDMA) system, a General Packet Radio Service (GPRS) system, a Long Term Evolution (LTE) system, an Advanced Long Term Evolution (LTE-A) system, a Universal Mobile Telecommunication System (UMTS), and so on.

    [0010] It should be further appreciated that, in the embodiments of the present disclosure, a UE may include, but not limited to, a Mobile Station (MS), a mobile terminal, a mobile telephone, a handset and a portable equipment. The UE may communicate with one or more core networks via a Radio Access Network (RAN). For example, the UE may be a mobile telephone (or a cellular phone), a computer having a function of radio communication, a portable, pocket-size or handheld device, a device built in a computer, or an on-vehicle device.

    [0011] In the embodiments of the present disclosure, a base station (e.g., an access point) may refer to a device in an access network, which communicates with a radio terminal over an air interface through one or more sectors. The base station may be used to convert a received air frame from/to an Internet Protocol (IP) packet, and it functions as a router between the radio terminal and other parts of the access network, including an IP network. The base station may also be used coordinate the attribute management over the air interface. For example, the base station may be a Base Transceiver Station (BTS) for the GSM or CDMA system, a NodeB for the WCDMA system, or an evolved NodeB (eNB) for the LTE system, which are not particularly defined herein.

    [0012] An obj ect of the present disclosure is to provide a data transmission method, a data reception and detection method, a base station and a UE on the basis of a non-orthogonal mode. Before the transmission of a plurality of pieces of data on physical resources by the base station, the plurality of pieces of data is firstly mapped to the physical resources at an amount not greater than the number of the pieces of data, each piece of data in the plurality of pieces of data is mapped to at least one physical resource, and the number of the physical resources to which each piece of data is mapped is not completely the same. As a result, it is able to transmit more pieces of data through fewer physical resources, thereby to improve the data transmission capability for the communication system.

    [0013] As shown in Fig.2, the present disclosure provides in some embodiments a data transmission method, including: Step S201 of mapping a plurality of pieces of data to physical resources at an amount not greater than the number of the pieces of data, each piece of data in the plurality of pieces of data being mapped to at least one physical resource, the number of the physical resources to which each piece of data is mapped being not completely the same; and Step S202 of transmitting the plurality of pieces of data on the physical resources.

    [0014] Because the number of the physical resources on which the pieces of data are transmitted is smaller than the number of the pieces of data, so it is able to improve the data transmission capability for the communication system.

    [0015] Through power control, the number of the pieces of data to be transmitted on each physical resource may be greater than the number of the physical resources. However, in the embodiments of the present disclosure, the number of the pieces of data mapped to each physical resource is not greater than the number of the physical resources, so as to prevent the waste of resources.

    [0016] The pieces of data mapped to an identical physical resource are transmitted on an identical physical resource in a superposed manner, i.e., the pieces of data mapped to an identical physical resource are superposed and then transmitted on the physical resource. The pieces of data are superposed linearly.

    [0017] During the mapping, the plurality of pieces of data is divided into a plurality of layers, and the number of the physical resources to which each piece of data in a previous layer is mapped is greater than the number of the physical resources to which each piece of data in a current layer is mapped. Further, the number of the physical resources to which any one of the pieces of data in an identical layer is mapped is same as the number of the physical resources to which any other one of the pieces of data in the identical layer is mapped. The pieces of data which are in the layers of an identical type and belong to different users are overlapped to the minimum degree, and the layers of different types are subjected to pattern maximization treatment.

    [0018] The layers of an identical type which have different equivalent spreading factors (i.e., the number of elements which is not 0) are subjected to pattern maximization treatment, and the layers of an identical type which have an identical equivalent spreading factor are subjected to interference minimization treatment.

    [0019] The so-called pattern maximization treatment refers to the treatment for ensuring the maximum number of the layers of each type.

    [0020] Based on the above-mentioned principle, in the case that N=2, N=3 and N=4, resultant system spreading matrices may be shown in the following equations:



    and



    [0021] In the case that N=3, there may be layers of different types (3/2/1). For the layers each having an effective spreading factor (i.e., the number of columns where the elements are not 1) of 3, in the case of the minimum interference between the layers of an identical type, there may be three different patterns. For the layers each having an effective spreading factor of 2, in the case of the minimum interference between the layers of an identical type, there may be three different patterns. For the layers each having an effective spreading factor of 1, in the case of the minimum interference between the layers of an identical type, there is merely one pattern. In this way, it is able to achieve the pattern maximization.

    [0022] For the application scenarios where N=2 or 4, the pattern maximization may be achieved on the basis of the situation where N=3, and thus a detailed description thereof will be omitted herein.

    [0023] Alternatively, the plurality of pieces of data may belong to one user, or at least two users.

    [0024] In the case that the plurality of pieces of data belongs to at least two users, the base station may divide at first N pieces of data for the at least two users into K layers, and then transmit the N pieces of data on M physical resources irrelevant to each other, where N>M. In addition, for the pieces of data in an identical layer, the number of the irrelevant physical resources occupied by each piece of data is the same and greater than the number of the irrelevant physical resources occupied by each piece of data in a next layer.

    [0025] Because the base station divides the N pieces of data for the users into K layers and transmits them on the M physical resources, a transmission diversity order for the pieces of data in a current layer is smaller than that for the pieces of data in a previous layer. In the related art, the diversity order for the data flow based on a successive interference cancellation receiver is minimal in the first layer, and then increases layer by layer. However, based on the transmission mode in the embodiments of the present disclosure, the transmission diversity order for the data in the current layer is smaller than that for the data in the previous layer, and the transmission diversity order for the data in the first layer is maximal. As a result, after the detection of the successive interference cancellation receiver, the diversity order for the pieces of data in each layer is similar, so as to facilitate the demodulation of its own data by the user.

    [0026] The transmission diversity order refers to the number of the irrelevant physical resources occupied by the data to be transmitted. The pieces of data carried by two irrelevant physical resources are irrelevant to each other. In the case that a plurality of pieces of data is carried by an identical physical resource, these pieces of data are relevant to each other. Usually, the pieces of the data are transmitted on an identical physical resource in a linearly-superposed manner.

    [0027] Through power control, the number of the pieces of data to be transmitted on each physical resource may be greater than M, i.e., K may be greater than M. However, in the case that K>M, unnecessary resource waste may occur. Usually, in the case that K is smaller than or equal to M, it is able for the UE to demodulate its own data, so alternatively, the number of the pieces of data to be transmitted on each physical resource by the base station is not greater than M.

    [0028] Alternatively, the base station may transmit M pieces of data on the physical resources with a certain granularity, so as to reduce the waste of resources and facilitate the demodulation of its own data by the users in an accurate manner.

    [0029] At a receiving end, signal detection is carried out in a successive interference cancellation reception mode. A reception diversity order for a data stream in an ith layer based on the successive interference cancellation receiver may be calculated by the equation Ndiversity = NR-NT+i, where NR represents a sum of the transmission diversity order and the number of receiving antennae for the data, and NT represents the number of transmitting antennae for the data.

    [0030] During the detection for the successive interference cancellation, the diversity order for the detected data in the first layer is the minimal, so the diversity order for the detected data in the current layer may be incremented by 1 as compared with the diversity order for the detected data in the previous layer. In other words, the system performance based on the successive interference cancellation receiver depends on the accuracy of the interference cancellation in the first layer. Hence, the present disclosure provides in some embodiments a non-orthogonal transmission mode, and a basic principle for this mode is to enable the transmission diversity order for the data in the current layer to be greater than that for the data in the next layer, so as to ensure the similarity of the transmission diversity order for the pieces of data in each layer after the successive interference cancellation.

    [0031] For the data streams, the physical resources may be irrelevant to each other in any one, two or more of frequency, space, time and etc.

    [0032] As shown in Fig.3a, by taking three users and two irrelevant physical resources as an example, the data streams may be transmitted as follows:

    . A first and second symbols s1 sequentially transmitted by user 1 are irrelevant to each other in time, frequency or space. In this way, it is able to acquire two diversity orders at the receiving end. For a Single Input Multiple Output (SIMO) system with a 12 mode, the diversity order for the symbol s1 is 2 and has the highest reliability, so it may be demodulated by user 1 at first. At this time, the diversity order for the symbol s1 after the detection based on the successive interference cancellation receiver is 4=2(2 symbols) +2(2 antennae)-1+1. After the first symbol s1 has been demodulated, for users 2 and 3, the diversity orders for the symbols s2 and s3 after the detection are each 4=1(1 symbol) +2(2 antennae)-1+2.

    [0033] For a system with multiple data streams, in the case that the reception diversity order for each data stream is the same, the corresponding transmission mode is relatively reliable. Similarly, it may be extended to the case of more than two data streams.

    [0034] Taking the LTE system as an example, the pieces of data may be transmitted in a mode as shown in Fig.3b. In Fig.3b, a longitudinal direction represents a frequency domain, and a horizontal direction represents time. The pieces of data for users 1 and 2 are transmitted at a first frequency domain, and the pieces of data for users 1 and 3 are transmitted at a second frequency domain.

    [0035] As shown in Fig.3c, two orthogonal physical resources may also be used to transmit two pieces of data. At this time, the two pieces of data, i.e., S2 and S2', may be transmitted by user 2 on the two orthogonal physical resources respectively.

    [0036] As shown in Fig.4, in the case of five users and three orthogonal physical resources, the pieces of data may be transmitted as follows:

    . In other words, first, second and fifth pieces of data are transmitted on a first physical resource, first, second and third pieces of data are transmitted on a second physical resource, and first, third and fourth pieces of data are transmitted on a third physical resource. There exists the following relationship among the transmission diversity orders for the pieces of data for the users: user 1>user 2=user 3>user 4=user 5. In the case that there are three transmitting antennae and three receiving antennae, the reception diversity orders for the user may be

    and

    .

    [0037] The transmission mode in Fig.4 may also be represented by the following matrix

    .

    [0038] In the case that N pieces of data are transmitted on M irrelevant physical resources, the base station may transmit the pieces of data as follows:

    where S1 to SN represent the N pieces of data respectively, and

    represents a matrix for an NM non-orthogonal transmission mode. In the matrix G, the number of element "1" in each row corresponding to the pieces of data in an identical layer is the same, and the number of element "1" in each row is marked as n1,n2,n3,···,nN respectively, where n1n2n3 ≥ ··· ≥ nN.

    [0039] Alternatively, the pieces of data may be divided into layers and transmitted as follows:

    Here, the row weight represents the number of element "1" in the row, and the row weight is equal to the number of the physical resources occupied by the corresponding data to be transmitted. At this time, n1 > n2 = n3 ≥ ··· ≥ nN.

    [0040] Alternatively, in the case that K=M, the transmission mode may also be represented by the following M-dimensional matrix:

    . At this time, a sum s1 + s2 + s4 +...... + sN of the pieces of data in a first row may be transmitted on a first physical resource, a sum s3 + s1 + s2 +...... + sN-2 of the pieces of data in a second row may be transmitted on a second physical resource, ..., and a sum sN-1 +...... + s5 + s3 + s1 of the pieces of data in an Mth row may be transmitted on an Mth physical resource. Alternatively, a sum s1 + s3 + s5 +...... + sN-1 of the pieces of data in a first column may be transmitted on the first physical resource, a sum s2 + s1 + s3 +...... + sN-3 of the pieces of data in a second column may be transmitted on the second physical resource, ..., and a sum sN +...... + s4 + s2 + s1 of the pieces of data in an Mth column may be transmitted on the Mth physical resource.

    [0041] The present disclosure further provides in some embodiments a data reception and detection method which, as shown in Fig.5, includes: Step S501 of receiving, by a UE, a plurality of pieces of data on a plurality of physical resources from a base station; and Step S502 of carrying out, by the UE, demodulation detection in accordance with a mapping mode of the plurality of pieces of data to the plurality of physical resources, the number of the pieces of data mapped to the plurality of physical resources being not less than the number of the physical resources, each piece of data in the plurality of pieces of data being mapped to at least one physical resource, the number of the physical resources to which each piece of data is mapped being not completely the same.

    [0042] Through power control, the number of the pieces of data to be transmitted on each physical resource may be greater than the number of the physical resources. However, in the embodiments of the present disclosure, the number of the pieces of data mapped to each physical resource is not greater than the number of the physical resources, so as to prevent the waste of resources.

    [0043] The pieces of data mapped to an identical physical resource are transmitted on an identical physical resource in a superposed manner, i.e., the pieces of data mapped to an identical physical resource are superposed and then transmitted on the physical resource. The pieces of data are superposed linearly.

    [0044] During the mapping, the plurality of pieces of data is divided into a plurality of layers, and the number of the physical resources to which each piece of data in a previous layer is mapped is greater than the number of the physical resources to which each piece of data in a current layer is mapped. Further, the number of the physical resources to which any one of the pieces of data in an identical layer is mapped are same as the number of the physical resources to which any other one of the pieces of data in the identical layer is mapped. Alternatively, the pieces of data which are in the layers of an identical type and belong to different users are overlapped to the minimum degree, and the layers of different types are subjected to pattern maximization treatment.

    [0045] The layers of an identical type which have different equivalent spreading factors (i.e., the number of elements, each of which is not 0) are subjected to pattern maximization treatment, and the layers of an identical type which have an identical equivalent spreading factor are subjected to interference minimization treatment.

    [0046] Alternatively, the plurality of pieces of data may belong to one user, or at least two users. The UE may acquire its own data after the demodulation detection.

    [0047] Alternatively, the UE carries out the demodulation detection in a successive interference cancellation reception mode. Usually, a successive interference cancellation reception technique refers to the demodulation of the pieces of data layer by layer. A demodulation and detection result for the pieces of data in the current layer is used for the interference cancellation for the pieces of data in the next layer, and the pieces of data in the current layer may be detected in accordance with the data interference-free result for the pieces of the data in the previous layer obtained after the interference cancellation.

    [0048] Alternatively, the UE preferentially detects the data in the layer where the number of the physical resources to which each data is mapped is large.

    [0049] As shown in Fig.6, in an alternative embodiment, the data reception and detection method includes: Step S601 of receiving, by the UE, from the base station a plurality of pieces of data on a plurality of physical resources at an amount not greater than the number of the pieces of data, each piece of data in the plurality of pieces of data being mapped to at least one physical resource, the number of the physical resources to which each piece of data is mapped being not completely the same; and Step S602 of demodulating, by the UE, the pieces of data layers by layers from the first layer in a successive interference cancellation mode, until the data corresponding to the UE has been demodulated.

    [0050] Alternatively, Step S601 includes receiving, by the UE, from the base station N pieces of data transmitted on M orthogonal physical resources and to at least two users, where M<N. In addition, the following conditions may be satisfied. The N pieces of data are divided into K layers, and then transmitted on M physical resources irrelevant to each other. Further, for the pieces of data in an identical layer, the number of the irrelevant physical resources occupied by each piece of data is the same, and the number of the irrelevant physical resources occupied by each piece of data in the current layer is greater than the number of the irrelevant physical resources occupied by each piece of data in the next layer.

    [0051] In the case that the pieces of data in the layers are demodulated sequentially from the first layer, it is able to reduce the average computation complexity for the users.

    [0052] In the case of three users and two orthogonal physical resources as shown in Fig.3a, the signals received by the user 1 include



    where h11 represents a channel matrix experienced by a first half of the symbols, and h12 represents a channel matrix experienced by a second half of the symbols.

    [0053] During the detection by user 1, s2 and s3 are taken as interference signals. At first, the received signals are subjected to normalization treatment by the user 1. Then, user 1 may acquire s1 + s2 and s1 + s3 through a Minimum Mean Square Error (MMSE) algorithm, and determine log-likelihood ratios LLR1(s1) and LLR2(s1) for the symbol s1. Finally, user 1 may perform soft demodulation using LLR1(s1) + LLR2(s1), so as to acquire 1.

    [0054] For user 2, the signals received by the user 2 include



    User 2 may obtain its own data by detecting the symbol s1 to acquire 1, and then deleting 1 from , so as to acquire 2.

    [0055] At first, the received signals are subjected to normalization by user 2, and s1 + s2 and s1 + s3 are marked as T(1) and T(2) respectively. Then, through the MMSE algorithm, user 2 may acquire





    and



    [0056] Then, user 2 may determine log-likelihood ratios LLR1(T(1)) and LLR2(T(2)) for T(1) and T(2), respectively, and perform soft demodulation using LLR1(T(1)) + LLR2(T(2)), so as to acquire 1.

    [0057] Next, user 2 may decode 1 using a Turbo decoding technique (which may be used to improve the reliability of each bit), and then perform soft demodulation on the decoded 1 to acquire a soft-demodulation symbol

    .

    [0058] Then, user 2 may perform the interference cancellation, and substitute the resultant

    into 1 + 2, so as to acquire

    .

    [0059] For user 3, the signals received by the user 3 include



    Identical to the above steps for user 2, user 3 may substitute the resultant

    into 1 + 3, so as to acquire

    , where

    . Then, user 3 may decode 3 using the Turbo decoding technique, so as to acquire 3.

    [0060] The present disclosure further provides in some embodiments a base station which, as shown in Fig.7, includes: a mapping unit 701 configured to map a plurality of pieces of data to physical resources at an amount not greater than the number of the pieces of data, each piece of data in the plurality of pieces of data being mapped to at least one physical resource, the number of the physical resources to which each piece of data is mapped being not completely the same; and a transmission unit 702 configured to transmit the plurality of pieces of data on the physical resources.

    [0061] The number of the pieces of data mapped to each physical resource is not greater than the number of the physical resources.

    [0062] The pieces of data mapped to an identical physical resource are superposed and then transmitted on the physical resource.

    [0063] The pieces of data are superposed linearly.

    [0064] The plurality of pieces of data are divided into a plurality of layers, and the number of the physical resources to which each piece of data in a previous layer is mapped is greater than the number of the physical resources to which each piece of data in a current layer is mapped. The pieces of data which are in the layers of an identical type and belong to different users are overlapped to the minimum degree, and the layers of different types are subjected to pattern maximization treatment.

    [0065] The layers of an identical type which have different equivalent spreading factors (i.e., the number of elements, each of which is not 0) are subjected to pattern maximization treatment, and the layers of an identical type which have an identical equivalent spreading factor are subjected to interference minimization treatment.

    [0066] The number of the physical resources to which any one of the pieces of data in an identical layer is mapped is the same as the number of the physical resources to which any other one of the pieces of data in the identical layer is mapped.

    [0067] Alternatively, the plurality of pieces of data belongs to at least two users.

    [0068] The present disclosure further provides in some embodiments a UE which, as shown in Fig.8, includes: a reception unit 801 configured to receive a plurality of pieces of data on a plurality of physical resources from a base station; and a demodulation unit 802 configured to carry out demodulation detection in accordance with a mapping mode of the plurality of pieces of data to the plurality of physical resources, the number of the pieces of data mapped to the plurality of physical resources being not less than the number of the physical resources, each piece of data in the plurality of pieces of data being mapped to at least one physical resource, the number of the physical resources to which each piece of data is mapped being not completely the same.

    [0069] The number of the pieces of data mapped to each physical resource is not greater than the number of the physical resources.

    [0070] The pieces of data mapped to an identical physical resource are superposed and then transmitted on the physical resource.

    [0071] The pieces of data are superposed linearly.

    [0072] The plurality of pieces of data is divided into a plurality of layers, and the number of the physical resources to which each piece of data in a previous layer is mapped is greater than the number of the physical resources to which each piece of data in a current layer is mapped. The pieces of data which are in the layers of an identical type and belong to different users are overlapped to the minimum degree, and the layers of different types are subjected to pattern maximization treatment.

    [0073] The layers of an identical type which have different equivalent spreading factors (i.e., the number of elements, each of which is not 0) are subjected to pattern maximization treatment, and the layers of an identical type which have an identical equivalent spreading factor are subjected to interference minimization treatment.

    [0074] The number of the physical resources to which any one of the pieces of data in an identical layer is mapped is the same as the number of the physical resources to which any other one of the pieces of data in the identical layer is mapped.

    [0075] Alternatively, the plurality of pieces of data belongs to at least two users, and the UE acquires its own data after the demodulation detection.

    [0076] Alternatively, the UE carries out the demodulation detection in a successive interference cancellation mode.

    [0077] Alternatively, the UE preferentially detects the data in the layer where the number of the physical resources to which each data is mapped is large.

    [0078] The present disclosure further provides in some embodiments a base station which includes: a processor configured to map a plurality of pieces of data to physical resources at an amount not greater than the number of the pieces of data, and transmit the data under the control of the processor, each piece of data in the plurality of pieces of data being mapped to at least one physical resource, the number of the physical resources to which each piece of data is mapped being not completely the same.

    [0079] The base station may be further configured to achieve the other functions mentioned in the data transmission method.

    [0080] During the data transmission, the base station may be implemented through a transceiver module and a radio interface.

    [0081] The present disclosure further provides in some embodiments a UE which includes: a processor configured to receive, by the transceiver, a plurality of pieces of data on a plurality of physical resources from a base station, and carry out demodulation detection in accordance with a mapping mode of the plurality of pieces of data to the plurality of physical resources, the number of the pieces of data mapped to the plurality of physical resources being not less than the number of the physical resources, each piece of data in the plurality of pieces of data being mapped to at least one physical resource, the number of the physical resources to which each piece of data is mapped being not completely the same.

    [0082] The UE may be further configured to achieve the other functions mentioned in the data transmission method.

    [0083] During the data reception, the UE may be implemented through a transceiver module and a radio interface.

    [0084] The present disclosure further provides a base station which, as shown in Fig. 9, includes: a processor 90 configured to read a program stored in a memory so as to map a plurality of pieces of data to physical resources at an amount not greater than the number of the pieces of data, and transmit the pieces of data on the physical channels by a transceiver 91, each piece of data in the plurality of pieces of data being mapped to at least one physical resource, the number of the physical resources to which each piece of data is mapped being not completely the same; and the transceiver 91 configured to receive and transmit the data under the control of the processor.

    [0085] Because the number of the physical resources on which the pieces of data are transmitted is smaller than the number of the pieces of data, so it is able to improve the data transmission capability for the communication system.

    [0086] Alternatively, the number of the pieces of data mapped to each physical resource by the processor is not greater than the number of the physical resources, so as to prevent the waste of resources.

    [0087] Alternatively, the transceiver 91 is further configured to superpose and transmit the pieces of data mapped to an identical physical resource.

    [0088] Alternatively, the transceiver 91 is further configured to superpose the pieces of data linearly.

    [0089] Alternatively, the processor 90 is further configured to divide the plurality of pieces of data into a plurality of layers, the number of the physical resources to which each piece of data in a previous layer is mapped is greater than the number of the physical resources to which each piece of data in a current layer is mapped, the pieces of data which are in the layers of an identical type and belong to different users are overlapped to the minimum degree, and the layers of different types are subjected to pattern maximization treatment.

    [0090] Alternatively, the layers of an identical type which have different equivalent spreading factors (i.e., the number of elements, each of which is not 0) are subjected to pattern maximization treatment, and the layers of an identical type which have an identical equivalent spreading factor are subjected to interference minimization treatment.

    [0091] Alternatively, the processor is further configured to map the pieces of data in an identical layer to the physical resources at an identical amount.

    [0092] Alternatively, the plurality of pieces of data belongs to at least two users.

    [0093] In Fig.9, a bus architecture may include a number of buses and bridges connected to each other, so as to connect various circuits for one or more processors such as the processor 90 and one or more memories. In addition, as is known in the art, the bus architecture may be used to connect any other circuits, such as a circuit for a peripheral device, a circuit for a voltage stabilizer and a power management circuit, which will not be further elaborated herein. Bus interfaces are provided, and the transceiver 91 may consist of more than one elements, e.g., a transmitter and a receiver for communication with any other devices over a transmission medium. The processor 90 takes charge of managing the bus architecture as well as general processing. The memory may store therein data desired for the operation of the processor 90.

    [0094] The present disclosure further provides in some embodiments a UE which, as shown in Fig. 10, includes: a transceiver 101 configured to receive and transmit data under the control of a processor 100; and the processor 100 configured to read a program stored in a memory so as to receive, by the transceiver 101, a plurality of pieces of data on a plurality of physical resources from a base station, and carry out demodulation detection in accordance with a mapping mode of the plurality of pieces of data to the plurality of physical resources, the number of the pieces of data mapped to the plurality of physical resources being not less than the number of the physical resources, each piece of data in the plurality of pieces of data being mapped to at least one physical resource, the number of the physical resources to which each piece of data is mapped being not completely the same.

    [0095] Because the number of the physical resources on which the pieces of data are transmitted is smaller than the number of the pieces of data, so it is able to improve the data transmission capability for the communication system.

    [0096] Alternatively, the number of the pieces of data mapped to each physical resource is not greater than the number of the physical resources, so as to prevent the waste of resources.

    [0097] Alternatively, the pieces of data mapped to an identical physical resource are superposed and then transmitted on the physical resource.

    [0098] Alternatively, the pieces of data are superposed linearly.

    [0099] Alternatively, the plurality of pieces of data is divided into a plurality of layers, the number of the physical resources to which each piece of data in a previous layer is mapped is greater than the number of the physical resources to which each piece of data in a current layer is mapped, the pieces of data which are in the layers of an identical type and belong to different users are overlapped to the minimum degree, and the layers of different types are subjected to pattern maximization treatment.

    [0100] Alternatively, the layers of an identical type which have different equivalent spreading factors (i.e., the number of elements, each of which is not 0) are subjected to pattern maximization treatment, and the layers of an identical type which have an identical equivalent spreading factor are subjected to interference minimization treatment.

    [0101] Alternatively, the number of the physical resources to which any one of the pieces of data in an identical layer is mapped is the same as the number of the physical resources to which any other one of the pieces of data in the identical layer is mapped.

    [0102] Alternatively, the plurality of pieces of data belongs to at least two users, and the transceiver acquires the data after the demodulation detection.

    [0103] Alternatively, the transceiver 101 carries out the demodulation detection in a successive interference cancellation mode.

    [0104] Alternatively, the processor preferentially detects the data in the layer where the number of the physical resources to which each data is mapped is large.

    [0105] In Fig. 10, a bus architecture may include a number of buses and bridges connected to each other, so as to connect various circuits for one or more processors such as the processor 100 and one or more memories. In addition, as is known in the art, the bus architecture may be used to connect any other circuits, such as a circuit for a peripheral device, a circuit for a voltage stabilizer and a power management circuit which will not be further elaborated herein. Bus interfaces are provided, and the transceiver 101 may consist of more than one elements, e.g., a transmitter and a receiver for communication with any other devices over a transmission medium. With respect to different UEs, a user interface may also be provided for devices which are to be arranged inside or outside the UE, and these devices may include but not limited to a keypad, a display, a speaker, a microphone and a joystick. The processor 100 takes charge of managing the bus architecture as well as general processing. The memory may store therein data desired for the operation of the processor 100.

    [0106] According to the data transmission method, the data reception and detection method, the base station and the UE on the basis of a non-orthogonal mode in the embodiments of the present disclosure, before the transmission of the pieces of data on the physical resources by the base station, the plurality of pieces of data is firstly mapped to the physical resources at an amount not greater than the number of the pieces of data, each piece of data in the plurality of pieces of data is mapped to at least one physical resource, and the number of the physical resources to which each piece of data is mapped is not completely the same. Then, the pieces of data on the physical resources are transmitted. As a result, it is able to transmit more pieces of data through fewer physical resources, thereby to improve the data transmission capability for the communication system.

    [0107] It should be appreciated that, the present disclosure may be provided as a method, a system or a computer program product, so the present disclosure may be in the form of full hardware embodiments, full software embodiments, or combinations thereof. In addition, the present disclosure may be in the form of a computer program product implemented on one or more computer-readable storage mediums (including but not limited to disk memory, Compact Disc Read-Only Memory (CD-ROM) and optical memory) including computer-readable program codes.

    [0108] The present disclosure is described with reference to the flow charts and/or block diagrams showing the method, device (system) and computer program product according to the embodiments of the present disclosure. It should be appreciated that each process and/or block, or combinations thereof, in the flow charts and/or block diagrams may be implemented via computer program commands. These computer program commands may be applied to a general-purpose computer, a special-purpose computer, an embedded processor or any other processor of programmable data processing equipment, so as to form a machine, thereby to obtain the means capable of effecting the functions specified in one or more processes in the flow charts and/or one or more blocks in the block diagrams in accordance with the commands executed by the processor of the computer or the other programmable data processing equipment.

    [0109] These computer program commands may also be stored in a computer-readable memory capable of guiding the computer or the other programmable data processing equipment to work in a special manner, so as to form a product including a command device capable of effecting the functions specified in one or more processes in the flow charts and/or one or more blocks in the block diagrams.

    [0110] These computer program commands may also be loaded onto a computer or the other programmable data processing equipment, so as to perform a series of operations thereon and generate the processing implemented by the computer, thereby to provide the steps capable of effecting the functions specified one or more processes in the flow charts and/or one or more blocks in the block diagrams in accordance with the instructions.

    [0111] Although the preferred embodiments are described above, a person skilled in the art may make modifications and alterations to these embodiments in accordance with the basic concept of the present disclosure. So, the attached claims are intended to include the preferred embodiments and all of the modifications and alterations that fall within the scope of the present disclosure.

    [0112] Obviously, a person skilled in the art may make further modifications and improvements without departing from the principle of the present disclosure, and these modifications and improvements shall also fall within the scope of the present disclosure.


    Claims

    1. A data transmission method, executed by a base station on the basis of a non-orthogonal mode, to improve data transmission capability of a communication system comprising the base station and a plurality of User Equipments, UEs, comprising steps of:

    mapping a plurality of pieces of data to physical resources, each piece of data in the plurality of pieces of data being mapped to at least one physical resource, (S201); and

    transmitting to the plurality of UEs the plurality of pieces of data on the physical resources (S202),

    wherein the number of the physical resources on which the pieces of data are transmitted is not greater than the number of the pieces of data to improve data transmission capability for a communication system, the number of the pieces of data mapped to each physical resource is not greater than the number of the physical resources, the pieces of data mapped to an identical physical resource are linearly superposed and then transmitted on the physical resource, the plurality of pieces of data is divided into a plurality of multiplexing layers, and the number of the physical resources to which each piece of data in a previous multiplexing layer is mapped is greater than the number of the physical resources to which each piece of data in a current multiplexing layer is mapped, wherein the number of the physical resources to which each piece of data in the same multiplexing layer is mapped is the same,

    wherein the pieces of data which are in the same multiplexing layers and belong to different users are overlapped to the minimum degree;

    characterized in that, the data transmission method further comprises steps of: subjecting the multiplexing layers of an identical type which have an identical equivalent spreading factor to interference minimization treatment, wherein the multiplexing layers are determined to be of an identical type according to their spreading matrices.


     
    2. The data transmission method according to claim 1, wherein the number of the physical resources to which any one of the pieces of data in an identical multiplexing layer is mapped is the same as the number of the physical resources to which any other one of the pieces of data in the identical multiplexing layer is mapped.
     
    3. The data transmission method according to claim 1, wherein the plurality of pieces of data belongs to at least two users.
     
    4. A data reception and detection method, executed by a User Equipment, UE, on the basis of a non-orthogonal mode, to improve data transmission capability of a communication system comprising a base station and a plurality of UEs, comprising steps of:

    receiving, by the UE from the base station, a plurality of pieces of data on a plurality of physical resources from a base station (S501); and

    carrying out, by the UE, demodulation detection in accordance with a mapping mode of the plurality of pieces of data to the plurality of physical resources, the number of the pieces of data mapped to the plurality of physical resources being not less than the number of the physical resources to improve data transmission capability for a communication system, each piece of data in the plurality of pieces of data being mapped to at least one physical resource, wherein the number of the pieces of data mapped to each physical resource is not greater than the number of the physical resources, the pieces of data mapped to an identical physical resource are linearly superposed and then transmitted, the plurality of pieces of data is divided into a plurality of multiplexing layers, and the number of the physical resources to which each piece of data in a previous multiplexing layer is mapped is greater than the number of the physical resources to which each piece of data in a current multiplexing layer is mapped, wherein the number of the physical resources to which each piece of data in the same multiplexing layer is mapped is the same (S502),

    wherein the pieces of data which are in the same multiplexing layers and belong to different users are overlapped to the minimum degree;

    characterized in that, the data reception and detection method further comprises steps of: subjecting the multiplexing layers of an identical type which have an identical equivalent spreading factor to interference minimization treatment, wherein the multiplexing layers are determined to be of an identical type according to their spreading matrices.


     
    5. The data reception and detection method according to claim 4, wherein the number of the physical resources to which any one of the pieces of data in an identical multiplexing layer is mapped is the same as the number of the physical resources to which any other one of the pieces of data in the identical multiplexing layer is mapped.
     
    6. The data reception and detection method according to claim 4, wherein the plurality of pieces of data belongs to at least two users, the UE acquires its own data after the demodulation detection, and the UE carries out the demodulation detection in a successive interference cancellation mode.
     
    7. The data reception and detection method according to claim 4 or 6, wherein the UE detects the data in a first multiplexing layer before detecting the data in a second multiplexing layer, and the number of the physical resources to which each piece of data is mapped in the first multiplexing layer is larger than the number of the physical resources to which each piece of data is mapped in the second multiplexing layer.
     
    8. Abase station for improving data transmission capability of a communication system comprising the base station and a plurality of User Equipments, UEs, wherein the base station is configured to be on the basis of a non-orthogonal mode and comprises:

    a mapping unit (701) configured to map a plurality of pieces of data to physical resources, each piece of data in the plurality of pieces of data being mapped to at least one physical resource; and

    a transmission unit (702) configured to transmit to the plurality of UEs the plurality of pieces of data on the physical resources,

    wherein the number of the physical resources on which the pieces of data are transmitted is not greater than the number of the pieces of data to improve data transmission capability for a communication system, the number of the pieces of data mapped to each physical resource is not greater than the number of the physical resources, the pieces of data mapped to an identical physical resource are linearly superposed and then transmitted on the physical resource, the plurality of pieces of data is divided into a plurality of multiplexing layers, and the number of the physical resources to which each piece of data in a previous multiplexing layer is mapped is greater than the number of the physical resources to which each piece of data in a current multiplexing layer is mapped, wherein the number of the physical resources to which each piece of data in the same multiplexing layer is mapped is the same,

    wherein the pieces of data which are in the same multiplexing layers and belong to different users are overlapped to the minimum degree;

    characterized in that, the multiplexing layers of an identical type which have an identical equivalent spreading factor are subjected to interference minimization treatment, wherein the multiplexing layers are determined to be of an identical type according to their spreading matrices.


     
    9. The base station according to claim 8, wherein the number of the physical resources to which any one of the pieces of data in an identical multiplexing layer is mapped is the same as the number of the physical resources to which any other one of the pieces of data in the identical multiplexing layer is mapped.
     
    10. The base station according to claim 8, wherein the plurality of pieces of data belongs to at least two users.
     
    11. A User Equipment, UE for improving data transmission capability of a communication system comprising a base station and a plurality of UEs, wherein the UE is configured to be on the basis of a non-orthogonal mode and comprises:

    a reception unit (801) configured to receive from the base station a plurality of pieces of data on a plurality of physical resources from a base station; and

    a demodulation unit (802) configured to carry out demodulation detection in accordance with a mapping mode of the plurality of pieces of data to the plurality of physical resources, the number of the pieces of data mapped to the plurality of physical resources being not less than the number of the physical resources to improve data transmission capability for a communication system, each piece of data in the plurality of pieces of data being mapped to at least one physical resource,

    wherein the number of the pieces of data mapped to each physical resource is not greater than the number of the physical resources, the pieces of data mapped to an identical physical resource are linearly superposed and then transmitted, the plurality of pieces of data is divided into a plurality of multiplexing layers, and the number of the physical resources to which each piece of data in a previous multiplexing layer is mapped is greater than the number of the physical resources to which each piece of data in a current multiplexing layer is mapped, wherein the number of the physical resources to which each piece of data in the same multiplexing layer is mapped is the same,

    wherein the pieces of data which are in the same multiplexing layers and belong to different users are overlapped to the minimum degree;

    characterized in that, the multiplexing layers which have an identical equivalent spreading factor are subjected to interference minimization treatment, wherein the multiplexing layers are determined to be of an identical type according to their spreading matrices.


     
    12. The UE according to claim 11, wherein the number of the physical resources to which any one of the pieces of data in an identical multiplexing layer is mapped is the same as the number of the physical resources to which any other one of the pieces of data in the identical multiplexing layer is mapped.
     
    13. The UE according to claim 11, wherein the plurality of pieces of data belongs to at least two users, the UE acquires its own data after the demodulation detection, and the UE carries out the demodulation detection in a successive interference cancellation mode.
     
    14. The UE according to claim 11 or 13, wherein the UE detects the data in a first multiplexing layer before detecting the data in a second multiplexing layer, and the number of the physical resources to which each piece of data is mapped in the first multiplexing layer is larger than the number of the physical resources to which each piece of data is mapped in the second multiplexing layer.
     


    Ansprüche

    1. Datenübertragungsverfahren, das von einer Basisstation auf der Grundlage eines nicht-orthogonalen Modus ausgeführt wird, zur Verbesserung einer Datenübertragungsfähigkeit eines Kommunikationssystems, das die Basisstation und eine Vielzahl von User Equipments (UEs) aufweist, wobei das Verfahren die folgenden Schritte umfasst:

    Abbilden einer Vielzahl von Datenstücken auf physikalische Ressourcen, wobei jedes Datenstück in der Vielzahl von Datenstücken auf mindestens eine physikalische Ressource abgebildet wird (S201); und

    Übertragen der Vielzahl von Datenstücken auf den physikalischen Ressourcen an die Vielzahl von UEs (S202),

    wobei die Anzahl der physikalischen Ressourcen, auf denen die Datenstücke übertragen werden, nicht größer ist als die Anzahl der Datenstücke zur Verbesserung der Datenübertragungsfähigkeit eines Kommunikationssystems, wobei die Anzahl der auf jede physikalische Ressource abgebildeten Datenstücke nicht größer ist als die Anzahl der physikalischen Ressourcen, wobei die auf eine identische physikalische Ressource abgebildeten Datenstücke linear überlagert und dann an die physikalische Ressource übertragen werden, wobei die Vielzahl von Datenstücken in eine Vielzahl von Multiplexing-Schichten geteilt wird, und wobei die Anzahl der physikalischen Ressourcen, auf die jedes Datenstück in einer vorherigen Multiplexing-Schicht abgebildet wird, größer ist als die Anzahl der physikalischen Ressourcen, auf die jedes Datenstück in einer aktuellen Multiplexing-Schicht abgebildet wird, wobei die Anzahl der physikalischen Ressourcen, auf die jedes Datenstück in derselben Multiplexing-Schicht abgebildet wird, dieselbe ist, wobei die Datenstücke, die in denselben Multiplexing-Schichten sind und zu verschiedenen Benutzer gehören, sich in minimalem Ausmaß überschneiden;

    dadurch gekennzeichnet, dass das Datenübertragungsverfahren ferner die folgenden Schritte umfasst:
    Unterziehen der Multiplexing-Schichten eines identischen Typs, die einen identischen äquivalenten Spreizfaktor aufweisen, einer nterferenzminimierungsbehandlung, wobei die Multiplexing-Schichten gemäß ihren Spreizmatrizen als identischer Typ bestimmt werden.


     
    2. Datenübertragungsverfahren nach Anspruch 1, wobei die Anzahl der physikalischen Ressourcen, auf die ein beliebiges der Datenstücke in einer identischen Multiplexing-Schicht abgebildet wird, gleich der Anzahl der physikalischen Ressourcen ist, auf die ein beliebiges anderes der Datenstück in der identischen Multiplexing-Schicht abgebildet wird.
     
    3. Datenübertragungsverfahren nach Anspruch 1, wobei die Vielzahl von Datenstücken zu mindestens zwei Benutzern gehört.
     
    4. Datenempfangs- und -detektionsverfahren, das von einem User Equipment, UE, auf der Grundlage eines nicht-orthogonalen Modus ausgeführt wird, zur Verbesserung einer Datenübertragungsfähigkeit eines Kommunikationssystems, das eine Basisstation und eine Vielzahl von User Equipments (UEs) aufweist, wobei das Verfahren die folgenden Schritte umfasst:

    Empfangen, mittels des UE von der Basisstation, einer Vielzahl von Datenstücken auf einer Vielzahl von physikalischen Ressourcen von einer Basisstation (S501); und

    Durchführen, mittels des UE, einer Demodulationsdetektion entsprechend einem Abbildungsmodus der Vielzahl von Datenstücken auf die Vielzahl von physikalischen Ressourcen, wobei die Anzahl der Datenstücke, die auf die Vielzahl von physikalischen Ressourcen abgebildet werden, nicht geringer ist als die Anzahl der physikalischen Ressourcen zur Verbesserung der Datenübertragungsfähigkeit eines Kommunikationssystems, wobei jedes Datenstück in der Vielzahl von Datenstücken auf mindestens eine physikalische Ressource abgebildet wird, wobei die Anzahl der auf jede physikalische Ressource abgebildeten Datenstücke nicht größer ist als die Anzahl der physikalischen Ressourcen, wobei die auf eine identische physikalische Ressource abgebildeten Datenstücke linear überlagert und dann übertragen werden, wobei die Vielzahl von Datenstücken in eine Vielzahl von Multiplexing-Schichten geteilt wird, und wobei die Anzahl der physikalischen Ressourcen, auf die jedes Datenstück in einer vorherigen Multiplexing-Schicht abgebildet wird, größer ist als die Anzahl der physikalischen Ressourcen, auf die jedes Datenstück in einer aktuellen Multiplexing-Schicht abgebildet wird, wobei die Anzahl der physikalischen Ressourcen, auf die jedes Datenstück in derselben Multiplexing-Schicht abgebildet wird, dieselbe ist (S502), wobei die Datenstücke, die in denselben Multiplexing-Schichten sind und zu verschiedenen Benutzer gehören, sich in minimalem Ausmaß überschneiden;

    dadurch gekennzeichnet, dass das Datenempfangs- und -detektionsverfahren ferner folgende Schritte umfasst:
    Unterziehen der Multiplexing-Schichten eines identischen Typs, die einen identischen äquivalenten Spreizfaktor aufweisen, einer Interferenzminimierungsbehandlung, wobei die Multiplexing-Schichten gemäß ihren Spreizmatrizen als identischer Typ bestimmt werden.


     
    5. Datenempfangs- und -detektionsverfahren nach Anspruch 4, wobei die Anzahl der physikalischen Ressourcen, auf die ein beliebiges der Datenstücke in einer identischen Multiplexing-Schicht abgebildet wird, gleich der Anzahl der physikalischen Ressourcen ist, auf die ein beliebiges anderes der Datenstück in der identischen Multiplexing-Schicht abgebildet wird.
     
    6. Datenempfangs- und -detektionsverfahren nach Anspruch 4, wobei die Vielzahl von Datenstücken zu mindestens zwei Benutzern gehört, das UE nach der Demodulationsdetektion seine eigenen Daten erfasst, und das UE die Demodulationsdetektion in einem sukzessiven Interferenzauslöschungsmodus durchführt.
     
    7. Datenempfangs- und -detektionsverfahren nach Anspruch 4 oder 6, wobei das UE die Daten in einer ersten Multiplexing-Schicht detektiert, bevor es die Daten in einer zweiten Multiplexing-Schicht detektiert, und die Anzahl der physikalischen Ressourcen, auf die jedes Datenstück in der ersten Multiplexing-Schicht abgebildet wird, größer ist als die Anzahl der physikalischen Ressourcen, auf die jedes Datenstück in der zweiten Multiplexing-Schicht abgebildet wird.
     
    8. Basisstation zur Verbesserung der Datenübertragungsfähigkeit eines Kommunikationssystems, das die Basisstation und eine Vielzahl von User Equipments, UEs, aufweist, wobei die Basisstation so ausgebildet ist, dass sie auf einem nicht-orthogonalen Modus basiert, und aufweist:

    eine Abbildungseinheit (701), die dazu ausgebildet ist, eine Vielzahl von Datenstücken auf physikalische Ressourcen abzubilden, wobei jedes Datenstück in der Vielzahl von Datenstücken auf mindestens eine physikalische Ressource abgebildet wird; und

    eine Übertragungseinheit (702), die dazu ausgebildet ist, die Vielzahl von Datenstücken auf den physikalischen Ressourcen an die Vielzahl von UEs zu übertragen,

    wobei die Anzahl der physikalischen Ressourcen, auf denen die Datenstücke übertragen werden, nicht größer ist als die Anzahl der Datenstücke zur Verbesserung der Datenübertragungsfähigkeit eines Kommunikationssystems, wobei die Anzahl der Datenstücke, die auf jede physikalische Ressource abgebildet wird, nicht größer ist als die Anzahl der physikalischen Ressourcen, wobei die auf eine identische physikalische Ressource abgebildeten Datenstücke linear überlagert und dann an die physikalische Ressource übertragen werden, wobei die Vielzahl von Datenstücken in eine Vielzahl von Multiplexing-Schichten geteilt wird, und wobei die Anzahl der physikalischen Ressourcen, auf die jedes Datenstück in einer vorherigen Multiplexing-Schicht abgebildet wird, größer ist als die Anzahl der physikalischen Ressourcen, auf die jedes Datenstück in einer aktuellen Multiplexing-Schicht abgebildet wird, wobei die Anzahl der physikalischen Ressourcen, auf die jedes Datenstück in derselben Multiplexing-Schicht abgebildet wird, dieselbe ist, wobei die Datenstücke, die in denselben Multiplexing-Schichten sind und zu verschiedenen Benutzer gehören, sich in minimalem Ausmaß überschneiden;

    dadurch gekennzeichnet, dass Multiplexing-Schichten eines identischen Typs, die einen identischen äquivalenten Spreizfaktor aufweisen, einer Interferenzminimierungsbehandlung unterzogen werden, wobei die Multiplexing-Schichten gemäß ihren Spreizmatrizen als identischer Typ bestimmt werden.


     
    9. Basisstation nach Anspruch 8, wobei die Anzahl der physikalischen Ressourcen, auf die ein beliebiges der Datenstücke in einer identischen Multiplexing-Schicht abgebildet wird, gleich der Anzahl der physikalischen Ressourcen ist, auf die ein beliebiges anderes der Datenstück in der identischen Multiplexing-Schicht abgebildet wird.
     
    10. Basisstation nach Anspruch 8, wobei die Vielzahl von Datenstücken zu mindestens zwei Benutzern gehört.
     
    11. User Equipment, UE, zur Verbesserung der Datenübertragungsfähigkeit eines Kommunikationssystems, das eine Basisstation und eine Vielzahl von UEs aufweist, wobei das UE so ausgebildet ist, dass es auf einem nicht-orthogonalen Modus basiert, und aufweist:

    eine Empfangseinheit (801), die dazu ausgebildet ist, von der Basisstation eine Vielzahl von Datenstücken auf einer Vielzahl von physikalischen Ressourcen von der Basisstation zu empfangen; und

    eine Demodulationseinheit (802), die dazu ausgebildet ist, die Demodulationsdetektion entsprechend einem Abbildungsmodus der Vielzahl von Datenstücken auf die Vielzahl von physikalischen Ressourcen durchzuführen, wobei die Anzahl der Datenstücke, die auf die Vielzahl von physikalischen Ressourcen abgebildet werden, nicht geringer ist als die Anzahl der physikalischen Ressourcen zur Verbesserung der Datenübertragungsfähigkeit eines Kommunikationssystems, wobei jedes Datenstück in der Vielzahl von Datenstücken auf mindestens eine physikalische Ressource abgebildet wird,

    wobei die Anzahl der auf jede physikalische Ressource abgebildeten Datenstücke nicht größer ist als die Anzahl der physikalischen Ressourcen, wobei die auf eine identische physikalische Ressource abgebildeten Datenstücke linear überlagert und dann übertragen werden, wobei die Vielzahl von Datenstücken in eine Vielzahl von Multiplexing-Schichten geteilt wird, und wobei die Anzahl der physikalischen Ressourcen, auf die jedes Datenstück in einer vorherigen Multiplexing-Schicht abgebildet wird, größer ist als die Anzahl der physikalischen Ressourcen, auf die jedes Datenstück in einer aktuellen Multiplexing-Schicht abgebildet wird, wobei die Anzahl der physikalischen Ressourcen, auf die jedes Datenstück in derselben Multiplexing-Schicht abgebildet wird, dieselbe ist, wobei die Datenstücke, die in denselben Multiplexing-Schichten sind und zu verschiedenen Benutzer gehören, sich in minimalem Ausmaß überschneiden;

    dadurch gekennzeichnet, dass die Multiplexing-Schichten, die einen identischen äquivalenten Spreizfaktor aufweisen, einer Interferenzminimierungsbehandlung unterzogen werden, wobei die Multiplexing-Schichten gemäß ihren Spreizmatrizen als identischer Typ bestimmt werden.


     
    12. UE nach Anspruch 11, wobei die Anzahl der physikalischen Ressourcen, auf die ein beliebiges der Datenstücke in einer identischen Multiplexing-Schicht abgebildet wird, gleich der Anzahl der physikalischen Ressourcen ist, auf die ein beliebiges anderes der Datenstück in der identischen Multiplexing-Schicht abgebildet wird.
     
    13. UE nach Anspruch 11, wobei die Vielzahl von Datenstücken zu mindestens zwei Benutzern gehört, das UE nach der Demodulationsdetektion seine eigenen Daten erfasst, und das UE die Demodulationsdetektion in einem sukzessiven Interferenzauslöschungsmodus durchführt.
     
    14. UE nach Anspruch 11 oder 13, wobei das UE die Daten in einer ersten Multiplexing-Schicht detektiert, bevor es die Daten in einer zweiten Multiplexing-Schicht detektiert, und die Anzahl der physikalischen Ressourcen, auf die jedes Datenstück in der ersten Multiplexing-Schicht abgebildet wird, größer ist als die Anzahl der physikalischen Ressourcen, auf die jedes Datenstück in der zweiten Multiplexing-Schicht abgebildet wird.
     


    Revendications

    1. Procédé de transmission de données, exécuté par une station de base sur la base d'un mode non orthogonal, destiné à améliorer la capacité de transmission de données d'un système de communication comprenant la station de base et une pluralité d'équipements utilisateur, UE, comprenant les étapes suivantes :

    le mappage de la pluralité d'éléments de données aux ressources physiques, chaque élément de données dans la pluralité d'éléments de données étant mappé à au moins une ressource physique, (S201) ; et

    la transmission à la pluralité d'UE de la pluralité d'éléments de données sur les ressources physiques (S202),

    le nombre de ressources physiques sur lesquelles les éléments de données sont transmis n'étant pas plus élevé que le nombre d'éléments de données afin d'améliorer la capacité de transmission de données pour un système de communication, le nombre d'éléments de données mappés à chaque ressource physique n'étant pas plus élevé que le nombre de ressources physiques, les éléments de données mappés à une ressource physique identique étant superposés de manière linéaire et ensuite transmis sur la ressource physique, la pluralité d'éléments de données étant divisés en une pluralité de couches multiplexes et le nombre de ressources physiques auxquelles chaque élément de données dans une précédente couche multiplexe est mappé étant plus élevé que le nombre de ressources physiques auxquelles chaque élément de données dans une couche multiplexe actuelle est mappé, le nombre de ressources physiques auxquelles chaque élément de données dans la même couche multiplexe est mappé étant le même,

    les éléments de données, qui sont dans les mêmes couches multiplexes et appartiennent à des utilisateurs différents, se chevauchant au degré minimum ;

    caractérisé en ce que le procédé de transmission de données comprend en outre les étapes suivantes : la soumission des couches multiplexes d'un type identique qui ont un facteur de diffusion équivalent et identique au traitement de minimisation d'interférences, les couches multiplexes étant déterminées pour être d'un type identique selon leurs matrices de diffusion.


     
    2. Procédé de transmission de données selon la revendication 1, dans lequel le nombre de ressources physiques, auxquelles l'un quelconque des éléments de données dans une couche multiplexe est mappé, est le même que le nombre de ressources physiques auxquelles un autre quelconque des éléments de données dans la couche multiplexe identique est mappé.
     
    3. Procédé de transmission de données selon la revendication 1, dans lequel la pluralité d'éléments de données appartiennent à au moins deux utilisateurs.
     
    4. Procédé de détection et de réception de données, exécuté par un équipement utilisateur, UE, sur la base d'un mode non orthogonal, destiné à améliorer la capacité de transmission de données d'un système de communication comprenant une station de base et une pluralité d'UE, comprenant les étapes suivantes :

    la réception, par l'UE provenant de la station de base, d'une pluralité d'éléments de données sur une pluralité de ressources physiques provenant de la station de base (S501).

    la réalisation, par l'UE, de la détection de démodulation conformément au mode de mappage de la pluralité d'éléments de données à la pluralité de ressources physiques, le nombre d'éléments de données mappés à la pluralité de ressources physiques n'étant pas inférieur au nombre de ressources physiques afin d'améliorer la capacité de transmission de données pour un système de communication, chaque élément de données dans la pluralité d'éléments de données étant mappé à au moins une ressource physique, le nombre d'éléments de données mappés à chaque ressource physique n'étant pas plus élevé que le nombre de ressources physiques, les éléments de données mappés à une ressource physique identique étant superposés de manière linéaire et ensuite transmis, la pluralité d'éléments de données étant divisés en une pluralité de couches multiplexes et le nombre de ressources physiques auxquelles chaque élément de données dans une couche multiplexe précédente est mappé étant plus élevé que le nombre de ressources physiques auxquelles chaque élément de données dans une couche multiplexe actuelle est mappé, le nombre de ressources physiques auxquelles chaque élément de données dans la même couche multiplexe est mappé étant le même (S502),

    les éléments de données, qui sont dans les mêmes couches multiplexes et appartiennent à des utilisateurs différents, se chevauchant au degré minimum ;

    caractérisé en ce que le procédé de transmission de données comprend en outre les étapes suivantes : la soumission des couches multiplexes d'un type identique qui ont un facteur de diffusion équivalent et identique au traitement de minimisation d'interférences, les couches multiplexes étant déterminées pour être d'un type identique selon leurs matrices de diffusion.


     
    5. Procédé de détection et de réception de données selon la revendication 4, dans lequel le nombre de ressources physiques auxquelles l'un quelconque des éléments de données dans une couche multiplexe identique est mappé est le même que le nombre de ressources physiques auxquelles un autre quelconque des éléments de données dans la couche multiplexe identique est mappé.
     
    6. Procédé de détection et de réception de données selon la revendication 4, dans lequel la pluralité d'éléments de données appartiennent à au moins deux utilisateurs, l'UE acquiert ses propres données après la détection de démodulation et l'UE réalise la détection de démodulation en mode d'annulation d'interférences successives.
     
    7. Procédé de détection et de réception de données selon la revendication 4 ou 6, dans lequel l'UE détecte les données dans une première couche multiplexe avant de détecter les données dans une seconde couche multiplexe et le nombre de ressources physiques auxquelles chaque élément de données est mappé dans la première couche multiplexe est plus grand que le nombre de ressources physiques auxquelles chaque élément de données est mappé dans la seconde couche multiplexe.
     
    8. Station de base destinée à améliorer la capacité de transmission de données d'un système de communication comprenant la station de base et une pluralité d'équipements utilisateur, UE, dans laquelle la station de base est configurée pour être sur la base d'un mode non orthogonal et comprend :

    une unité de mappage (701) configurée pour mapper une pluralité d'éléments de données aux ressources physiques, chaque élément de données dans la pluralité d'éléments de données étant mappé à au moins une ressource physique ; et

    une unité de transmission (702) configurée pour transmettre à la pluralité d'UE la pluralité d'éléments de données sur les ressources physiques,

    le nombre de ressources physiques sur lesquelles les éléments de données sont transmis n'étant pas plus élevé que le nombre d'éléments de données afin d'améliorer la capacité de transmission de données pour un système de communication, le nombre d'éléments de données mappés à chaque ressource physique n'étant pas plus élevé que le nombre de ressources physiques, les éléments de données mappés à une ressource physique identique étant superposés de manière linéaire et ensuite transmis sur la ressource physique, la pluralité d'éléments de données étant divisés en une pluralité de couches multiplexes et le nombre de ressources physiques auxquelles chaque élément de données dans une précédente couche multiplexe est mappé étant plus élevé que le nombre de ressources physiques auxquelles chaque élément de données dans une couche multiplexe actuelle est mappé, le nombre de ressources physiques auxquelles chaque élément de données dans la même couche multiplexe est mappé étant le même,

    les éléments de données, qui sont dans les mêmes couches multiplexes et appartiennent à des utilisateurs différents, se chevauchant au degré minimum ;

    caractérisée en ce que, les couches multiplexes d'un type identique qui ont un facteur de diffusion équivalent et identique sont soumises au traitement de minimisation d'interférences, les couches multiplexes étant déterminées pour être d'un type identique selon leurs matrices de diffusion.


     
    9. Station de base selon la revendication 8, dans laquelle le nombre de ressources physiques auxquelles un quelconque des éléments de données dans une couche multiplexe identique est mappé est le même que le nombre de ressources physiques auxquelles un autre quelconque des éléments de données dans la couche multiplexe identique est mappé.
     
    10. Station de base selon la revendication 8, dans laquelle la pluralité d'éléments de données appartiennent à au moins deux utilisateurs.
     
    11. Equipement utilisateur, UE, destiné à améliorer la capacité de transmission de données d'un système de communication comprenant la station de base et une pluralité d'équipements utilisateur, UE, dans lequel l'UE est configuré pour être sur la base d'un mode non orthogonal et comprend :

    une unité de réception (801) configurée pour recevoir à partir de la station de base une pluralité d'éléments de données sur une pluralité de ressources physiques provenant de la station de base ;

    une unité de démodulation (802) configurée pour réaliser une détection de démodulation conformément au mode de mappage de la pluralité d'éléments de données à la pluralité de ressources physiques, le nombre d'éléments de données mappés à la pluralité de ressources physiques n'étant pas moins que le nombre de ressources physiques afin d'améliorer la capacité de transmission de données pour un système de communication, chaque élément de données dans la pluralité d'éléments de données étant mappés à au moins une ressource physique,

    le nombre d'éléments de données mappés à chaque ressource physique n'étant pas plus élevé que le nombre de ressources physiques, les éléments de données mappés à une ressource physique identique étant superposés de manière linéaire et ensuite transmis, la pluralité d'éléments de données étant divisés en une pluralité de couches multiplexes et le nombre de ressources physiques auxquelles chaque élément de données dans une précédente couche multiplexe est mappé étant plus élevé que le nombre de ressources physiques auxquelles chaque élément de données dans une couche multiplexe actuelle est mappé, le nombre de ressources physiques auxquelles chaque élément de données dans la même couche multiplexe est mappé étant le même,

    les éléments de données, qui sont dans les mêmes couches multiplexes et appartiennent à des utilisateurs différents, se chevauchant au degré minimum ;

    caractérisé en ce que les couches multiplexes d'un type identique qui ont un facteur de diffusion équivalent et identique sont soumises au traitement de minimisation d'interférences, les couches multiplexes étant déterminées pour être d'un type identique selon leurs matrices de diffusion.


     
    12. UE selon la revendication 11, dans lequel le nombre de ressources physiques auxquelles un quelconque des éléments de données dans une couche multiplexe identique est mappé est le même que le nombre de ressources physiques auxquelles un autre quelconque des éléments de données dans une couche multiplexe identique est mappé.
     
    13. UE selon la revendication 11, dans lequel la pluralité d'éléments de données appartiennent à au moins deux utilisateurs, l'UE acquiert ses propres données après la détection de démodulation et l'UE réalise la détection de démodulation en un mode d'annulation d'interférences successives.
     
    14. UE selon la revendication 11 ou 13, dans lequel l'UE détecte les données dans une première couche multiplexe avant de détecter les données dans une seconde couche multiplexe et le nombre de ressources physiques auxquelles chaque élément de données est mappé dans la première couche multiplexe est plus grand que le nombre de ressources physiques auxquelles chaque élément de données est mappé dans la seconde couche multiplexe.
     




    Drawing























    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description