(19)
(11)EP 3 099 213 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
04.11.2020 Bulletin 2020/45

(21)Application number: 15704390.2

(22)Date of filing:  23.01.2015
(51)International Patent Classification (IPC): 
A61B 1/00(2006.01)
(86)International application number:
PCT/JP2015/000297
(87)International publication number:
WO 2015/115073 (06.08.2015 Gazette  2015/31)

(54)

ENDOSCOPIC SYSTEM AND IMAGE PROCESSING DEVICE

ENDOSKOPSYSTEM UND BILDVERARBEITUNGSVORRICHTUNG

SYSTÈME ENDOSCOPIQUE ET DISPOSITIF DE TRAITEMENT D'IMAGE


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 30.01.2014 JP 2014015575

(43)Date of publication of application:
07.12.2016 Bulletin 2016/49

(73)Proprietor: Sony Corporation
Tokyo 108-0075 (JP)

(72)Inventor:
  • HAYASHI, Tsuneo
    Tokyo 108-0075 (JP)

(74)Representative: D Young & Co LLP 
120 Holborn
London EC1N 2DY
London EC1N 2DY (GB)


(56)References cited: : 
EP-A1- 2 130 479
US-A1- 2012 130 168
WO-A1-2012/141193
US-A1- 2013 165 753
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    [CROSS REFERENCE TO RELATED APPLICATIONS]


    [Technical Field]



    [0001] The present disclosure relates to an endoscopic system, an image processing device, an image processing method, and a program, and particularly, for example, to an endoscopic system, an image processing device, an image processing method, and a program adapted to correct image shake in an image taken by an endoscopic device which is used in laparoscopic operations and the like.

    [Background Art]



    [0002] In recent years, in medical practice, laparoscopic operations may be performed instead of laparotomies in the related art.

    [0003] Fig. 1 shows an outline of a laparoscopic operation. In the laparoscopic operation, for example, when an abdominal operation is performed, several opening tools, called trocars 2, are attached to an abdominal wall instead of performing a laparotomy, which has been hitherto performed, by cutting the abdominal wall 1, and a laparoscope (hereinafter, also referred to as an endoscopic device or an endoscope) 3 and a processing tool 4 are inserted into a body from holes provided in the trocars 2. While viewing an image of an affected part (a tumor or the like) 5 taken by the endoscope 3, a process such as excising the affected part 5 using the processing tool 4 is performed. Since image shake may occur in the image taken by the endoscope 3, it is necessary to provide a mechanism for correcting the image shake.

    [0004] For example, PTL 1 discloses an endoscope capable of adjusting an image taking position by bending a tip end part, and also discloses that a bending direction and a bending angular velocity of the tip end part are detected to correct shake based on the bending direction and the bending angular velocity.

    [0005] US-A-2013/165 753 discloses an image processing device for images obtained by an endoscope, the device comprising: circuitry configured to determine rotation of the endoscope in response to a movement of an objective lens on its distal portion by manipulating the proximal portion of the endoscopic device, wherein detection of motion is also based on analysis of relative motion of multiple images.

    [Citation List]


    [Patent Literature]



    [0006] 

    [PTL 1] Japanese Unexamined Patent Application Publication No. 5-49599

    [PTL 2] WO-A-2012/141 193


    [Summary]


    Technical Problem



    [0007] In the endoscope 3 having a linear rod shape as shown in Fig. 1, a head part 6 is held by an operator, an assistant, a scopist, a robot, or the like. However, when a hand or the like holding the head part 6 is shaken, the motion of the shake is transmitted to an objective lens 7 with the trocar 2 acting as a support (rotation center), and thus image shake may occur due to the shake of the hand holding the head part 6. In the related art, a gyro has been built in the head part 6 to detect a moving angular velocity thereof, but this moving angular velocity is used to detect a direction of a camera necessary for realizing, for example, three-dimensional display, and is not used in the correction of the image shake.

    [0008] It is desirable to correct an image based on an angular velocity of a head part.

    Solution to Problem



    [0009] To solve the above problem, a first technology is an image processing device configured to estimate an approximate center of rotation of an endoscopic device based on motion detection in response to a movement of an objective lens at a distal portion of the endoscopic device by manipulating a proximal portion of the endoscopic device.

    Advantageous Effects of Invention



    [0010] According to the first and second embodiments of the present disclosure, it is possible to correct an image taken by the endoscopic device based on the angular velocity of the head part of the endoscopic device.

    Brief Description of Drawings



    [0011] 

    [fig.1]Fig. 1 is a diagram showing an outline of a laparoscopic operation.

    [fig.2]Fig. 2 is a block diagram showing an example of a configuration of an endoscopic system to which the present disclosure is applied.

    [fig.3]Fig. 3 is a block diagram showing another example of a configuration of an endoscopic device of Fig. 2.

    [fig.4]Fig. 4 is a diagram illustrating an outline of a correction process of an image correction device.

    [fig.5]Fig. 5 is a block diagram showing an example of a configuration of the image correction device.

    [fig.6]Fig. 6 is a block diagram showing an example of a configuration of a global motion vector calculation part.

    [fig.7]Fig. 7 is a diagram showing a positional relationship between an objective lens, a rotation center, and a gyro part in the endoscopic device.

    [fig.8]Fig. 8 is a diagram showing a relationship between an angular velocity of the gyro part and a moving amount of the objective lens.

    [fig.9]Fig. 9 is a flowchart illustrating the image correction process.

    [fig.10]Fig. 10 is a diagram illustrating stitching composition using an image after hand shake correction.

    [fig. 11]Fig. 11 is a block diagram showing an example of a configuration of a computer.


    Description of Embodiment



    [0012] Hereinafter, the best modes for carrying out the present disclosure (hereinafter, referred to as embodiments) will be described in detail with reference to the drawings.

    (Example of Configuration of Endoscopic System)



    [0013] Fig. 2 shows an example of a configuration of an endoscopic system according to an embodiment of the present disclosure. This endoscopic system 10 includes an endoscopic device 11, an image correction device (image processing device) 12, and a display device 13.

    [0014] The endoscopic device 11 and the image correction device 12 may be connected to each other through a cable or wirelessly. In addition, the image correction device 12 may be disposed at a position separated from an operating room and be connected through a network such as local LAN or the Internet. The image correction device 12 and the display device 13 are connected to each other in the same manner.

    [0015] The endoscopic device 11 includes a tube part 21 having a linear rod shape and a head part 24. The tube part 21 is also referred to as an optical visual tube or a hard tube, and the length thereof is approximately several tens of cm. At one end on the body insertion side thereof, an objective lens 22 is provided, and the other end is connected to the head part 24. An optical lens part 23 of a relay optical system is provided inside the tube part 21. The shape of the tube part 21 is not limited to the linear rod shape.

    [0016] The head part 24 has an image taking part 25 and a gyro part 26 built therein. The image taking part 25 has an image taking element such as a CMOS and converts an optical image of an affected part input from the tube part 21 into an image signal at a predetermined frame rate.

    [0017] The gyro part 26 detects an angular velocity at the time when the head part 24 is moved (a Yaw angular velocity wy with respect to a Yaw rotation axis and a Pitch angular velocity wp with respect to a Pitch rotation axis), and outputs the result of the detection to the downstream image correction device 12.

    [0018] In the endoscopic device 11, the optical image of the affected part converged by the objective lens 22 enters the image taking part 25 of the head part 24 through the optical lens part 23, is converted into an image signal of a predetermined frame rate by the image taking part 25, and is output to the downstream image correction device 12. In addition, in the endoscopic device 11, the gyro part 26 detects a moving angular velocity of the head part 24, and outputs the result of the detection to the downstream image correction device 12.

    [0019] Fig. 3 shows another example of the configuration of the endoscopic device 11. As shown in Fig. 3, the image taking part 25 may be disposed immediately after the objective lens 22 and the optical lens part 23 inside the tube part 21 may be omitted.

    [0020] Next, Fig. 4 shows an outline of a correction process of the image correction device 12. The image correction device 12 outputs, to the downstream display device 13, an image signal which is obtained by cutting, from an entire region (effective pixel area) of an image signal input at a predetermined frame rate from the image taking part 25 of the endoscopic device 11, a cutting area having a smaller size than the effective pixel area. At this time, hand shake can be corrected by moving the position of the cutting area by a shift amount corresponding to the hand shake. In addition, when a shutter mechanism of the image taking part 25 of the endoscopic device 11 is a rolling shutter, a rolling shutter distortion occurring due to this can be removed.

    [0021] Fig. 5 shows an example of a configuration of the image correction device 12. The image correction device 12 includes a global motion vector calculation part 31, a rotation center position estimation part 32, a rotation center position leveling part 33, an angular velocity leveling part 34, a shift amount determination part 35, an image cutting part 36, a distortion removing part 37, and an image output part 38.

    [0022] The global motion vector calculation part 31 calculates, based on an image signal of a predetermined frame rate input from the image taking part 25 of the endoscopic device 11, a motion vector of the whole image (hereinafter, referred to as a global motion vector) and a reliability thereof, and outputs the result of the calculation to the rotation center position estimation part 32.

    [0023] Fig. 6 shows an example of a configuration of the global motion vector calculation part 31. The global motion vector calculation part 31 includes a local motion detection part 41 and a global motion leveling part 42.

    [0024] The local motion detection part 41 divides an image of an image signal input from the image taking part 25 into blocks having a predetermined size and performs comparison with an image signal before one frame per block to output a motion vector in a block unit (hereinafter, also referred to as a local motion vector) and a reliability thereof to the global motion leveling part 42.

    [0025] The global motion leveling part 42 integrates a high-reliability local motion vector among the local motion vectors of the blocks of the respective frames to determine a global motion vector of the corresponding frame. Furthermore, the global motion leveling part 42 removes an instantaneous error by leveling global motion vectors of several frames before the corresponding frame. When a frequency of estimation of a rotation center position in the downstream rotation center position estimation part 32 is lower than the frame rate of the image signal, the leveling may be performed using the global motion vectors of several frames after the corresponding frame together.

    [0026] Returning to Fig. 5, the rotation center position estimation part 32 estimates, based on the angular velocity of the head part 24 detected by the gyro part 26 of the endoscopic device 11, the global motion vector, and the reliability thereof, the position of the rotation center (support) at the time when the objective lens 22 is moved by moving the head part 24 of the endoscopic device 11, and outputs the result of the estimation with a reliability thereof to the rotation center position leveling part 33. The rotation center position is continuously estimated at predetermined time intervals.

    [0027] The rotation center position leveling part 33 performs leveling by integrating the estimated rotation center position in a time direction, and outputs, to the shift amount determination part 35, the rotation center position from which the instantaneous error has been removed.

    [0028] The angular velocity leveling part 34 performs leveling by integrating the angular velocity of the head part 24 detected by the gyro part 26 of the endoscopic device 11 in the time direction, and outputs, to the shift amount determination part 35 and the distortion removing part 37, the angular velocity from which the instantaneous error has been removed.

    [0029] The shift amount determination part 35 calculates a moving amount of the objective lens 22 based on the leveled rotation center position and the leveled angular velocity, determines a shift amount of the image cutting area from the calculated moving amount of the objective lens 22, and notifies the image cutting part 36 of the result of the determination. The shift amount of the image cutting area corresponding to the moving amount of the objective lens 22 varies with the magnification of the objective lens 22. Therefore, in the shift amount determination part 35, a function for calculating the shift amount from the magnification and the moving amount of the objective lens 22 is held, or a table indicating the correspondence between these elements is previously held.

    [0030] The image cutting part 36 cuts the pixels of the cutting area, of which the position is adjusted according to the shift amount from the shift amount determination part 35, from an image signal of a predetermined frame rate sequentially input from the image taking part 25 of the endoscopic device 11, and outputs, to the distortion removing part 37, a hand shake correction image signal obtained as a result.

    [0031] When a rolling shutter distortion (which may occur when the shutter mechanism of the image taking part 25 is a rolling shutter) occurs in the hand shake correction image signal from the image cutting part 36, the distortion removing part 37 removes the distortion to output the resulting signal to the image output part 38. An existing arbitrary method may be applied to remove the rolling shutter distortion.

    [0032] The image output part 38 outputs, to the downstream (in this case, the display device 13), the hand shake correction image signal input through the distortion removing part 37.

    [0033] Next, the estimation of the rotation center position and the shift amount of the position of the cutting area will be described in detail with reference to Figs. 7 and 8.

    [0034] Fig. 7 shows a relationship between the objective lens 22 of the endoscopic device 11, the gyro part 26, and the rotation center position. Fig. 8 shows a relationship between the moving amount of the objective lens 22 and the angular velocity of the gyro part 26.

    [0035] As shown in Fig. 7, a distance between the objective lens 22 and the gyro part 26 is represented by d, a distance between the objective lens 22 and the rotation center is represented by a, and a distance between the rotation center and the gyro part 26 is represented by b. When the endoscopic device 11 is used in a laparoscopic operation in the state shown in Fig. 1, the trocar 2 becomes a rotation center.

    [0036] The relationship between the moving amount (Dx, Dy, Dz) of the objective lens 22 and the angular velocity (Yaw angular velocity wy, Pitch angular velocity wp) of the gyro part 26 is as the following expression (1) (approximate expression).





    t represents a one-frame time.

    [0037] In addition, the relationship between the detected global motion vector (Vx, Vy) and the angular velocity (Yaw angular velocity wy, Pitch angular velocity wp) of the gyro part 26 is as the following expression (2) (approximate expression).



    t represents a one-frame time.

    [0038] In the rotation center position estimation part 32, the sequentially input angular velocity and the leveled global motion vector are applied to the expression (2) to calculate a value of the position a of the rotation center.

    [0039] In the shift amount determination part 35, the leveled rotation center position a and the leveled angular velocity are applied to the expression (1) to calculate the moving amounts Dx, Dy, and Dz of the objective lens 22 and to determine a shift amount of the cutting area based on these moving amounts.

    (Description of Operation)



    [0040] Next, Fig. 9 is a flowchart illustrating the image correction process of the image correction device 12.

    [0041] In Step S1, the input of an image signal of a predetermined frame rate and the input of an angular velocity signal indicating the motion of the head part 24 are started from the endoscopic device 11 to the image correction device 12. The image signal is input to the global motion vector calculation part 31 and the image cutting part 36, and the angular velocity signal is input to the rotation center position estimation part 32 and the angular velocity leveling part 34.

    [0042] In Step S2, in the global motion vector calculation part 31, the local motion detection part 41 divides an image of an image signal input from the upstream into blocks having a predetermined size and performs comparison with an image signal before one frame per block to calculate a local motion vector in a block unit and a reliability thereof. In Step S3, the global motion leveling part 42 of the global motion vector calculation part 31 integrates a high-reliability local motion vector among the local motion vectors of the blocks of the respective frames to determine a global motion vector of the corresponding frame, and levels global motion vectors of several frames before the corresponding frame to output the result of the leveling to the rotation center position estimation part 32.

    [0043] In Step S4, in the rotation center position estimation part 32, the sequentially input angular velocity and the leveled global motion vector are applied to the expression (2) to calculate a value of the position a of the rotation center. In Step S5, the rotation center position leveling part 33 performs leveling by integrating the estimated rotation center position in the time direction, and outputs the result of the leveling to the shift amount determination part 35.

    [0044] In the angular velocity leveling part 34, in Step S6, the leveling is performed by integrating the angular velocity of the head part 24 detected by the gyro part 26 of the endoscopic device 11 in the time direction, and the result of the leveling is output to the shift amount determination part 35 and the distortion removing part 37. In Step S7, the shift amount determination part 35 calculates the moving amount of the objective lens 22 based on the leveled rotation center position and the leveled angular velocity, and determines a shift amount of the image cutting area from the calculated moving amount of the objective lens 22 to notify the image cutting part 36 of the result of the determination.

    [0045] In Step S8, the image cutting part 36 cuts the pixels of the cutting area, of which the position is adjusted according to the shift amount from the shift amount determination part 35, from the image signal of a predetermined frame rate sequentially input from the endoscopic device 11, and outputs, to the distortion removing part 37, a hand shake correction image signal obtained as a result.

    [0046] In Step S9, when a rolling shutter distortion occurs in the hand shake correction image signal from the image cutting part 36, the distortion removing part 37 removes the distortion to output the resulting signal to the image output part 38. The image output part 38 outputs, to the display device 13, the hand shake correction image signal input through the distortion removing part 37. The description of the image correction process is finished.

    [0047] As described above, the endoscopic system 10 according to this embodiment can correct hand shake which may occur in a video image taken by the endoscopic device 11.

    [0048] In addition, the endoscopic system 10 according to this embodiment can notify a user such as a doctor of, for example, the value of the the estimated position a of the rotation center (trocar). Accordingly, the user can grasp the length of the part which is inserted into the abdominal cavity.

    [0049] In addition, for example, when a 3D measurement functions is applied to the endoscopic device 11, the positional relationship between the affected part which is a subject and the rotation center (trocar) can be easily calculated.

    [0050] Furthermore, for example, when a plurality of images obtained as a result of taking the images by moving the endoscopic device 11 with the trocar acting as a rotation center are subjected to stitching composition based on the rotation center position and the angular velocity as shown in Fig. 10, a wide-viewing angle image with high accuracy can be obtained with a relatively small processing amount.

    [0051] The above-described series of processes of the image correction device 12 can be executed by hardware or software. When executing the series of processes by software, a program constituting the software is installed in a computer. Here, the computer includes a computer incorporated in dedicated hardware, and a computer such as a general-purpose personal computer which can execute various functions through installation of various programs.

    [0052] Fig. 11 is a block diagram showing an example of a configuration of hardware of the computer which executes the above-described series of processes using a program.

    [0053] In a computer 100, a central processing unit (CPU) 101, a read only memory (ROM) 102, and a random access memory (RAM) 103 are connected to each other through a bus 104.

    [0054] Furthermore, an input/output interface 105 is connected to the bus 104. An input part 106, an output part 107, a storage part 108, a communication part 109, and a drive 110 are connected to the input/output interface 105.

    [0055] The input part 106 is composed of a keyboard, a mouse, a microphone, or the like. The output part 107 is composed of a display, a speaker, or the like. The storage part 108 is composed of a hard disk, a nonvolatile memory, or the like. The communication part 109 is composed of a network interface or the like. The drive 110 drives a removable medium 111 such as a magnetic disk, an optical disk, a magneto-optical disk, or a semiconductor memory.

    [0056] In the computer 100 configured as described above, the CPU 101 executes, for example, a program stored in the storage part 108 by loading the program to the RAM 103 through the input/output interface 105 and the bus 104, and thus the above-described series of processes are performed.

    [0057] The program which is executed by the computer 100 (CPU 101) can be provided by being recorded on, for example, the removable medium 111 as a package medium or the like. In addition, the program can be provided through a wired or wireless transmission medium such as local area network, the Internet, or digital satellite broadcasting.

    [0058] The program which is executed by the computer 100 may be a program for performing the processes chronologically along the order described in the present description, or a program for performing the processes in parallel or at necessary timings such as when there is a call.

    Reference Signs List



    [0059] 
    2
    Trocar
    10
    Endoscopic system
    11
    Endoscopic device
    12
    Image correction device
    13
    Display device
    21
    Tube part
    22
    Objective lens
    23
    Optical lens part
    24
    Head part
    25
    Image taking part
    26
    Gyro part
    31
    Global motion vector calculation part
    32
    Rotation center position estimation part
    33
    Rotation center position leveling part
    34
    Angular velocity leveling Part
    35
    Shift amount determination part
    36
    Image cutting part
    37
    Distortion removing part
    38
    Image output part
    41
    Local motion detection part
    42
    Global motion leveling part
    100
    Computer
    101
    CPU



    Claims

    1. An image processing device (12) that processes images obtained by an endoscopic device (11) including an objective lens (22) on its distal portion and a head part (24) at its proximal portion having an image taking part (25) and a gyro part built therein, the image processing device, comprising:
    circuitry configured to estimate an approximate center of rotation of the endoscopic device that is positioned between the objective lens and the gyro part of the endoscopic device, based on detection of motion of the endoscopic device in response to a movement of the objective lens by manipulating the proximal portion of the endoscopic device wherein detection of motion of the distal portion of the endoscopic device is based on an analysis of relative motion of multiple images obtained using the objective lens (22) at the distal portion of the endoscopic device, and includes determining an angular velocity of the proximal portion of the endoscopic device.
     
    2. The image processing device of claim 1, wherein the analysis of relative motion of multiple images includes determining a motion vector of whole images obtained by the objective lens.
     
    3. The image processing device of claim 1, wherein the angular velocity of the proximal portion of the endoscopic device is detected by a motion sensor at the proximal portion of the endoscopic device.
     
    4. The image processing device of claim 1, wherein the circuitry removes instantaneous error values in the estimated approximate center of rotation based on an integration of estimated approximate center of rotation values over time.
     
    5. The image processing device of claim 1, wherein the circuitry removes instantaneous error values in the angular velocity based on an integration of detected angular velocity values over time.
     
    6. The image processing device of claim 1, wherein the circuitry removes a rolling shutter distortion in images obtained by the endoscopic device.
     
    7. The image processing device of claim 1, wherein the circuitry corrects hand shake in images obtained by the endoscopic device based on the approximate center of rotation of the endoscopic device.
     
    8. The image processing device of claim 1, wherein the circuitry combines a plurality of images obtained by moving the endoscopic device based on the approximate center of rotation of the endoscopic device.
     
    9. The image processing device of claim 1, wherein the circuitry determines a length of insertion of the treatment device based on the approximate center of rotation of the endoscopic device.
     
    10. The image processing device of claim 1, wherein the circuitry determines a positional relationship between a target treatment site and the treatment device based on the approximate center of rotation of the endoscopic device.
     
    11. An endoscopic system (10), comprising:

    an endoscopic device (11) that includes an objective lens (22) at a distal portion thereof; and

    an image processing device in accordance with claim 1.


     
    12. The endoscopic system of claim 11, wherein the endoscopic device is a rigid endoscope.
     


    Ansprüche

    1. Bildverarbeitungsvorrichtung (12), die Bilder verarbeitet, die durch eine endoskopische Vorrichtung (11) einschließlich einer Objektivlinse (22) an ihrem distalen Abschnitt und eines Kopfteils (24) an ihrem proximalen Abschnitt mit einem Bilderfassungsteil (25) und einem Gyroteil (26) darin eingebaut erhalten werden, wobei die Bildverarbeitungsvorrichtung Folgendes umfasst:
    eine Schaltungsanordnung, die zum Schätzen eines ungefähren Rotationszentrums der endoskopischen Vorrichtung, das zwischen der Objektivlinse und dem Gyroteil der endoskopischen Vorrichtung positioniert ist, basierend auf einer Detektion einer Bewegung der endoskopischen Vorrichtung als Reaktion auf eine Bewegung der Objektivlinse durch Manipulieren des proximalen Abschnitts der endoskopischen Vorrichtung konfiguriert ist, wobei die Detektion einer Bewegung des distalen Abschnitts der endoskopischen Vorrichtung auf einer Analyse einer relativen Bewegung mehrerer Bilder, die unter Verwendung der Objektivlinse (22) an dem distalen Abschnitt der endoskopischen Vorrichtung erhalten werden, basiert und Bestimmen einer Winkelgeschwindigkeit des proximalen Abschnitts der endoskopischen Vorrichtung beinhaltet.
     
    2. Bildverarbeitungsvorrichtung nach Anspruch 1, wobei die Analyse einer relativen Bewegung mehrerer Bilder Bestimmen eines Bewegungsvektors ganzer Bilder, die durch die Objektivlinse erhalten werden, beinhaltet.
     
    3. Bildverarbeitungsvorrichtung nach Anspruch 1, wobei die Winkelgeschwindigkeit des proximalen Abschnitts der endoskopischen Vorrichtung durch einen Bewegungssensor an dem proximalen Abschnitt der endoskopischen Vorrichtung detektiert wird.
     
    4. Bildverarbeitungsvorrichtung nach Anspruch 1, wobei die Schaltungsanordnung unmittelbare Fehlerwerte in dem geschätzten ungefähren Rotationszentrum basierend auf einer Integration von Werten des geschätzten ungefähren Rotationszentrums über die Zeit entfernt.
     
    5. Bildverarbeitungsvorrichtung nach Anspruch 1, wobei die Schaltungsanordnung unmittelbare Fehlerwerte der Winkelgeschwindigkeit basierend auf einer Integration detektierter Winkelgeschwindigkeitswerte über die Zeit entfernt.
     
    6. Bildverarbeitungsvorrichtung nach Anspruch 1, wobei die Schaltungsanordnung eine Rolling-Shutter(Rollender Verschluss)-Verzerrung in Bildern entfernt, die durch die endoskopische Vorrichtung erhalten werden.
     
    7. Bildverarbeitungsvorrichtung nach Anspruch 1, wobei die Schaltungsanordnung ein Handverwackeln in Bildern, die durch die endoskopische Vorrichtung erhalten werden, basierend auf dem ungefähren Rotationszentrum der endoskopischen Vorrichtung entfernt.
     
    8. Bildverarbeitungsvorrichtung nach Anspruch 1, wobei die Schaltungsanordnung mehrere Bilder, die durch Bewegen der endoskopischen Vorrichtung erhalten werden, basierend auf dem ungefähren Rotationszentrum der endoskopischen Vorrichtung kombiniert.
     
    9. Bildverarbeitungsvorrichtung nach Anspruch 1, wobei die Schaltungsanordnung eine Einführungslänge der Behandlungsvorrichtung basierend auf dem ungefähren Rotationszentrum der endoskopischen Vorrichtung bestimmt.
     
    10. Bildverarbeitungsvorrichtung nach Anspruch 1, wobei die Schaltungsanordnung eine Positionsbeziehung zwischen einer Zielbehandlungsstelle und der Behandlungsvorrichtung basierend auf dem ungefähren Rotationszentrum der endoskopischen Vorrichtung bestimmt.
     
    11. Endoskopisches System (10), das Folgendes umfasst:

    eine endoskopische Vorrichtung (11), die eine Objektivlinse (22) an einem distalen Abschnitt davon beinhaltet; und

    eine Bildverarbeitungsvorrichtung nach Anspruch 1.


     
    12. Endoskopisches System nach Anspruch 11, wobei die endoskopische Vorrichtung ein starres Endoskop ist.
     


    Revendications

    1. Dispositif de traitement d'image (12) qui traite des images obtenues par un dispositif endoscopique (11) comprenant une lentille de focalisation (22) sur sa partie distale et une partie tête (24) au niveau de sa partie proximale ayant une partie de capture (25) et une partie gyroscopique (26) intégrée à l'intérieur de celle-ci, le dispositif de traitement d'image comprenant :
    un ensemble de circuits configuré pour estimer un centre de rotation approximatif du dispositif endoscopique qui est positionné entre la lentille de focalisation et la partie gyroscopique du dispositif endoscopique en se basant sur une détection d'un mouvement du dispositif endoscopique à la suite d'un mouvement de la lentille de focalisation en manipulant la partie proximale du dispositif endoscopique, dans lequel une détection d'un mouvement de la partie distale du dispositif endoscopique est basée sur une analyse d'un mouvement relatif de multiples images obtenues à l'aide de la lentille de focalisation (22) au niveau de la partie distale du dispositif endoscopique et consiste à déterminer une vitesse angulaire de la partie proximale du dispositif endoscopique.
     
    2. Dispositif de traitement d'image selon la revendication 1, dans lequel l'analyse d'un mouvement relatif de multiples images consiste à déterminer un vecteur de mouvement d'images entières obtenues par la lentille de focalisation.
     
    3. Dispositif de traitement d'image selon la revendication 1, dans lequel la vitesse angulaire de la partie proximale du dispositif endoscopique est détectée par un capteur de mouvement au niveau de la partie proximale du dispositif endoscopique.
     
    4. Dispositif de traitement d'image selon la revendication 1, dans lequel l'ensemble de circuits élimine des valeurs d'erreur instantanée dans le centre de rotation approximatif estimé en se basant sur une intégration des valeurs de centre de rotation approximatif estimé au fil du temps.
     
    5. Dispositif de traitement d'image selon la revendication 1, dans lequel l'ensemble de circuits élimine des valeurs d'erreur instantanée dans la vitesse angulaire en se basant sur une intégration des valeurs de vitesse angulaire détectée au fil du temps.
     
    6. Dispositif de traitement d'image selon la revendication 1, dans lequel l'ensemble de circuits élimine une distorsion d'obturateur à rideaux dans des images obtenues par le dispositif endoscopique.
     
    7. Dispositif de traitement d'image selon la revendication 1, dans lequel l'ensemble de circuits corrige un tremblement des mains dans des images obtenues par le dispositif endoscopique en se basant sur le centre de rotation approximatif du dispositif endoscopique.
     
    8. Dispositif de traitement d'image selon la revendication 1, dans lequel l'ensemble de circuits combine une pluralité d'images obtenues en déplaçant le dispositif endoscopique en se basant sur le centre de rotation approximatif du dispositif endoscopique.
     
    9. Dispositif de traitement d'image selon la revendication 1, dans lequel l'ensemble de circuits détermine une longueur d'insertion du dispositif de traitement en se basant sur le centre de rotation approximatif du dispositif endoscopique.
     
    10. Dispositif de traitement d'image selon la revendication 1, dans lequel l'ensemble de circuits détermine une relation de position entre un site de traitement cible et le dispositif de traitement en se basant sur le centre de rotation approximatif du dispositif endoscopique.
     
    11. Système endoscopique (10) comprenant :

    un dispositif endoscopique (11) qui comprend une lentille de focalisation (22) au niveau d'une partie distale de celui-ci ; et

    un dispositif de traitement d'image selon la revendication 1.


     
    12. Système endoscopique selon la revendication 11, dans lequel le dispositif endoscopique est un endoscope rigide.
     




    Drawing






































    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description