(19)
(11)EP 3 101 792 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
28.09.2022 Bulletin 2022/39

(21)Application number: 16169576.2

(22)Date of filing:  13.05.2016
(51)International Patent Classification (IPC): 
H02M 1/32(2007.01)
(52)Cooperative Patent Classification (CPC):
H02M 1/32; H02M 1/322

(54)

METHOD FOR CONTROLLING INVERTER

VERFAHREN ZUR STEUERUNG EINES WECHSELRICHTERS

PROCÉDÉ DE CONTRÔLE D'INVERSEUR


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 02.06.2015 KR 20150077710

(43)Date of publication of application:
07.12.2016 Bulletin 2016/49

(73)Proprietor: LSIS Co., Ltd.
Gyeonggi-do 14119 (KR)

(72)Inventors:
  • LIM, Deok-Young
    14118 Gyeonggi-do (KR)
  • YANG, Chun-Suk
    14118 Gyeonggi-do (KR)

(74)Representative: K&L Gates LLP 
Karolinen Karree Karlstraße 12
80333 München
80333 München (DE)


(56)References cited: : 
EP-A2- 1 148 611
US-A1- 2011 210 687
DE-A1-102007 022 515
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    BACKGROUND


    1. Technical Field



    [0001] The present disclosure relates to a method for controlling an inverter. More specifically, the present disclosure relates to a method for controlling an inverter to interrupt an input power and speed up discharge of residual energy at a smoothing stage when the inverter is stopped for an emergency.

    2. Description of the Related Art



    [0002] An inverter is used for driving an induction motor by receiving DC power to convert it to AC power with a switching element and supplying the AC power to the induction motor. The inverter generates pulse width modulation (PWM) signal and controls the switching element with the PWM signal to generate AC power. Then, the inverter controls the pulse width of the PWM signal to change the voltage and frequency of AC power and change the torque and rotation speed of the induction motor as desired.

    [0003] If a safety signal is input to an inverter while it is driven, the input power to the inverter has to be interrupted for safety. However, the inverter stands by in a safety trip mode until an operator interrupts the input power, and thus there is a risk of a secondary accident. Moreover, even after the operator has interrupted the input power to the inverter, residual energy remains in a smoothing stage, and thus there is a time delay unit the service is provided.

    [0004] FIG. 1 is a graph showing voltage profile of a smoothing stage as the input power to the inverter is turned on/off when a safety signal is input.

    [0005] Referring to FIG. 1, when voltage is applied to an inverter, the voltage is gradually charged at a smoothing stage during an initial charging circuit operation, and an SMPS begins to operate (①). Then, the smoothing stage is continuously charged, and an initial charge relay operates such that the smoothing stage is charged up to the input power (②).

    [0006] Then, if a safety signal is input to an I/O unit (③), the inverter enters a safety trip mode and stands by. Then, when an operator interrupts the input power (④), the energy remaining in the smoothing stage is gradually discharged.

    [0007] Then, when the energy remaining in the smoothing stage is discharged such that the voltage of the smoothing stage becomes a predetermined voltage (⑤), the inverter triggers a low voltage trip. In the low voltage trip mode, the inverter stops operating and the initial charge relay does not operate, and thus the discharging of the smoothing stage becomes slower. Then, the residual energy remaining at the smoothing stage continues to be discharged and the SMPS is turned off (⑥), such that the discharging of the smoothing stage becomes even slower.

    [0008] As such, it takes longer time to discharge the residual energy at the smoothing stage, and thus resuming of the service is delayed.

    [0009] DE 10 2007 022515 discloses a method for controlling an inverter in such a manner that rapid discharge of residual energy is achieved.

    [0010] There has been proposed a method for discharging the residual energy at the smoothing stage by using a discharge resistor when the inverter is stopped for an emergency. However, the discharge resistor occupies large volume and there is a risk of electric shock when attaching the discharge resistor to the smoothing stage.

    SUMMARY



    [0011] It is an aspect of the present disclosure to provide a method for reducing the risk of secondary accidents such as electric shock by interrupting input power when an inverter is stopped for an emergency.

    [0012] It is another aspect of the present disclosure to provide a method for reducing a time taken for resuming service by an inverter by speeding up discharge of energy remaining at a smoothing stage when the inverter is stopped for an emergency.

    [0013] It is an aspect of the present disclosure to provide a method for quickly discharging residual energy at a smoothing stage of an inverter without requiring any additional element such as a discharge resistor used in the related art.

    [0014] A method according to the invention is defined in claim 1.

    [0015] The performing the DC excitation process may include: converting currents in an abc coordinate system output from the inverter to currents in a rotational coordinate system; generating a voltage command in the rotational coordinate system by using the currents in the rotational coordinate system and a current command; converting the voltage command in the rotational coordinate system to the voltage command in a stationary coordinate system; and applying the voltage command in the stationary coordinate system to the inverter.

    [0016] The current command may include a d-axis current command having a value equal to the voltage of the smoothing stage of the inverter and a q-axis current command having a value equal to zero.

    [0017] The determining whether the low voltage trip occurs in the inverter includes resuming the DC excitation process and the fan drive if it is determined that the low voltage trip occurs.

    [0018] The determining whether the voltage at the smoothing stage of the inverter is less than the predetermined voltage may include completing the DC excitation process or the zero vector drive, and the fan drive if it is determined that the voltage of the smoothing stage of the inverter is less than the predetermined voltage.

    [0019] The predetermined voltage may be larger than an SMPS_off voltage of the inverter.

    [0020] As set forth above, the risk of secondary accidents such as electric shock when an inverter is stopped for an emergency can be reduced.

    [0021] In addition, according to an exemplary embodiment of the present disclosure, residual energy at a smoothing stage of an inverter can be quickly discharged when the inverter is stopped for an emergency even without requiring any additional element such as a discharge resistor or a sensor.

    [0022] Accordingly, a time taken for resuming service by an inverter can be shortened.

    BRIEF DESCRIPTION OF DRAWINGS



    [0023] 

    FIG. 1 is a graph showing a smoothing stage voltage profile when a safety signal is input to an inverter;

    FIG. 2 is a block diagram of an inverter according to an exemplary embodiment of the present disclosure;

    FIG. 3 is a block diagram for illustrating control for speeding up the discharge of the smoothing stage of the inverter performing current control;

    FIG. 4 is a flowchart for illustrating control for speeding up the discharge of the smoothing stage when the inverter performs current control;

    FIG. 5 is a graph showing a smoothing stage voltage profile according to the control of FIG. 4;

    FIG. 6 is a diagram for illustrating an output voltage vector of an inverter expressed in a d-q axis stationary coordinate system;

    FIG. 7 is a flowchart for illustrating control for speeding up the discharge of the smoothing stage at the time of inverter V/F control; and

    FIG. 8 is a graph showing a smoothing stage voltage profile according to the control of FIG. 7


    DETAILED DESCRIPTION



    [0024] Terms or words used in the specification and claims shall not be construed merely in a conventional and dictionary definition but shall be construed in a meaning and concept corresponding to the technical idea of the present disclosure based on the principle that an inventor is allowed to properly define the concepts of terms in order to describe his or her disclosure in the best way.

    [0025] Hereinafter, exemplary embodiments of the present disclosure will be described in detail with reference to the accompanying drawings. Like reference numerals are used herein to designate like elements throughout the various views.

    [0026] FIG. 2 is a block diagram of an inverter controller 100 according to an exemplary embodiment of the present disclosure. Although the inverter controller 100 and an inverter 2 are shown as separate elements in FIG. 2, it is to be understood that the inverter controller 100 may be integrated with the inverter 2. Operation of the inverter 2 will be described briefly. When power is supplied from a power source 1 to the inverter 2, a three-phase AC power (R, S and T) is input to a converter stage 21 to be converted to DC power, such that a smoothing stage 22 begins to be charged. When the voltage of the smoothing stage increases to reach Vsmps_on or higher, an SMPS 25 begins to operate, such that power used for inverter drive, protection and/or sensing, etc., is generated. When the inverter is driven, a three-phase power (U, V and W) is output to a load 3 according to the state of switches of an inverter stage 23.

    [0027] The inverter control apparatus 100 according to the exemplary embodiment of the present disclosure includes an input power switchgear 120, an I/O unit 140 and a controller 160.

    [0028] Specifically, as shown in FIG. 2, the input power switchgear 120 is disposed between the input power source 1 and the converter stage 21 of the inverter 2 and may supply input power to the inverter 2 or interrupt the power supplied to the inverter 2 depending on the switching operation.

    [0029] The I/O unit 140 is connected to the inverter 2 to perform data input/out or the like and may apply a safety signal to the inverter 2 depending on a user control input. In addition, the I/O unit 140 may output a failure output relay signal to the input power switchgear 120 at the time of issuing a safety signal.

    [0030] In addition, upon receiving a failure output relay signal from the I/O unit 140, the input power switchgear 120 interrupts the input power to the inverter 2. When the input power to the inverter 2 is interrupted, the controller 160 performs control for speeding up the discharging of residual energy at the inverter.

    [0031] The control for speeding up the discharging of residual energy at the inverter will be described in detail below with reference to the drawings.

    [0032] The control for speeding up the discharging of residual energy at the inverter according to the exemplary embodiment of the present disclosure may be largely divided into a case where the inverter performs current control and a case where the inverter performs V/F control.

    [0033] Firstly, a control method for speeding up the discharging of a smoothing stage of an inverter performing current control through a DC excitation process will be described with reference to FIG. 3.

    [0034] As shown in FIG. 3, the controller 160 of the inverter control apparatus 100 according to the exemplary embodiment of the present disclosure includes a current control unit 162, a stationary coordinate system conversion unit 164 and a rotational coordinate system conversion unit 166.

    [0035] Inverter output currents la, Ib and Ic are converted from abc coordinate system to d-q rotational coordinate system (Id and Iq) and are input to the current control unit 162. More specifically, the rotational coordinate system conversion unit 166 converts the signals la, Ib and Ic on the abc coordinate system to two-phase AC currents Id and Iq on the rotational coordinate system by using Equation 1 below:

    where Id denotes an AC current on d-axis of the rotational coordinate system, and Iq denotes an AC current on q-axis current of the rotational coordinate system.

    [0036] The current control unit 162 generates voltage command using the inverter output current and current command. The generated voltage command is a voltage command of the rotational coordinate system. The voltage command generated in the current control unit 162 is applied to the stationary coordinate system conversion unit 164.

    [0037] In addition, the stationary coordinate system conversion unit 164 converts the voltage command of the rotational coordinate system to the voltage command of the stationary coordinate system. More specifically, the stationary coordinate system conversion unit 164 converts a two-phase DC voltage Vdse and Vqse of the rotational coordinate system to a two-phase AC voltage Vdss and Vqss of the stationary coordinate system by using Equation 2 below:

    where Vdss and Vqss are AC voltages of the stationary coordinate system.

    [0038] In addition, the stationary coordinate system conversion unit 164 applies the converted voltage command of the stationary coordinate system to the PWM inverter 2. The current command input to the current control unit 162 includes a d-axis current command Id_ref and a q-axis current command Iq-ref. In order to perform control for speeding up the discharge of the smoothing stage of the inverter, the d-axis current command Id-ref is set to be equal to the smoothing stage voltage Vcap.

    [0039] In addition, the q-axis current command Iq-ref is set to be "0" to perform the current control. Such DC excitation process by the inverter may be performed until the inverter triggers the low voltage trip. A detailed description thereof will be made below with reference to FIG. 4.

    [0040] FIG. 4 is a flowchart for illustrating a sequence of speeding up the discharge of the smoothing stage at the time of inverter current control.

    [0041] As shown in FIG. 4, the condition of an inverter is monitored to determine whether a safety signal is generated in the inverter (step S10). If it is determined that a safety signal is generated in the inverter, a failure output relay signal is generated to interrupt input power to the inverter (step S12).

    [0042] When the input power is interrupted, the above-described DC excitation process is performed (step S14). In addition, a fan may also be driven while the DC excitation process is performed.

    [0043] Subsequently, it is determined whether a low voltage trip occurs (step S16). If the energy at the smoothing stage of the inverter is discharged and it is determined that the low voltage trip occurs (YES in step S16), the inverter is interrupted and the fan stops, and thus the above-described DC excitation process is performed and the fan is driven again in the low voltage trip mode.

    [0044] Subsequently, it is determined whether the voltage of the smoothing stage of the inverter is less than a predetermined voltage VI (step S18). If it is determined that the voltage is less than the predetermined voltage VI (YES in step S18), the DC excitation process and the fan drive is finished, and accordingly the sequence of discharging the smoothing stage is completed.

    [0045] In doing so, by setting the predetermined voltage VI to be larger than the SMPS off voltage, the sequence of discharging the smoothing stage can be completed while all of the inverter switches are turned off.

    [0046] A graph showing smoothing stage voltage profile according to input power ON/OFF during the control of the inverter is shown in FIG. 5.

    [0047] Specifically, when voltage is applied to an inverter, the smoothing stage voltage is gradually charged during an initial charge circuit operation, and the SMPS begins to operate (①). Then, when the smoothing stage is continuously charged to reach a predetermined level, an initial charge relay operates such that the smoothing stage is charged with the voltage equal to the input power ((2)).

    [0048] When a safety signal is input to the inverter, the input power is interrupted through the I/O failure output relay signal (③), and the control for speeding up the discharge of the smoothing stage (the DC excitation process and the fan drive) is performed to discharge the smoothing stage.

    [0049] It is to be noted that the discharge of the smoothing stage is performed even during the low voltage trip mode (④) of the inverter, and thus residual energy can be discharged more quickly than in existing inverters. Then, when the smoothing stage voltage becomes less than V1 (V1 > SMPS_off), the sequence is completed.

    [0050] Hereinafter, control for speeding up the discharge of the smoothing stage of the inverter performing V/F control will be described with reference to FIG. 6.

    [0051] FIG. 6 is a diagram for illustrating an output voltage vector of an inverter expressed in a d-q axis stationary coordinate system, in which eight output voltage vectors of the inverter are shown.

    [0052] In a spatial vector voltage modulation scheme, eight output voltage vectors V0 to V7 that may be generated in an inverter for a certain control period are synthesized to generate a voltage equal to the command voltage on average.

    [0053] Referring to FIG. 6, the voltages V0 and V7 are zero voltage vectors and cannot supply a valid voltage that drives a load, whereas the voltages VI to and V6 are active voltage vectors and supply a valid voltage that drives the load.

    [0054] The controller 160 of the inverter control apparatus 100 according to the exemplary embodiment of the present disclosure includes a zero vector output unit (not shown), and outputs a zero vector for a predetermined time period when the input power to the inverter is interrupted, such that control for speeding up the discharge of the smoothing stage of the inverter.

    [0055] In addition, the zero vector may be output until the inverter triggers a low voltage trip, which will be described below in detail with reference to FIG. 7.

    [0056] FIG. 7 is a flowchart for illustrating a sequence of speeding up the discharge of the smoothing stage at the time of inverter V/F control.

    [0057] As shown in FIG. 7, the condition of an inverter is monitored to determine whether a safety signal is generated in the inverter (step S20). If it is determined that a safety signal is generated in the inverter by a user control input, for example, a failure output relay signal is generated to interrupt input power to the inverter (step S22).

    [0058] Then, when the input power is interrupted, zero vector drive is performed (step S24). The zero vector drive may be performed by outputting the zero vectors described above with reference to FIG. 6.

    [0059] The control for speeding up the discharge of the smoothing stage may be performed by driving the fan along with the zero vector drive as shown in the drawings. Subsequently, it is determined whether a low voltage trip occurs (step S26). If the energy at the smoothing stage of the inverter is discharged and it is determined that the low voltage trip occurs (YES in step S26), the inverter is interrupted and the fan stops, and thus the above-described zero voltage drive is performed and the fan is driven again in the low voltage trip mode.

    [0060] Subsequently, it is determined whether the voltage of the smoothing stage of the inverter is less than a predetermined voltage VI (step S28). If it is determined that the voltage is less than the predetermined voltage VI (YES in step S28), the zero voltage drive and the fan drive is finished, and accordingly the sequence of discharging the smoothing stage is completed. In doing so, by setting the predetermined voltage VI to be larger than the SMPS off voltage, the sequence of discharging the smoothing stage can be completed while all of the inverter switches are turned off.

    [0061] A graph showing smoothing stage voltage profile according to input power ON/OFF during the control of the inverter is shown in FIG. 8. When voltage is applied to an inverter, the smoothing stage voltage is gradually charged during an initial charge circuit operation, and the SMPS begins to operate (①). Then, when the smoothing stage is continuously charged to reach a predetermined level, an initial charge relay operates such that the smoothing stage is charged with the voltage equal to the input power (②).

    [0062] When a safety signal is input to the inverter, the input power is interrupted through the I/O failure output relay signal (③), and the control for speeding up the discharge of the smoothing stage (the zero voltage drive and the fan drive) is performed to discharge the smoothing stage.

    [0063] It is to be noted that the discharge of the smoothing stage is performed even during the low voltage trip mode (④) of the inverter, and thus residual energy can be discharged more quickly than in existing inverters. Then, when the smoothing stage voltage becomes less than V1 (V1 > SMPS_off), the sequence is completed.

    [0064] As described above, the risk of secondary accidents such as electric shock when an inverter is stopped for an emergency can be reduced. In addition, an inverter control apparatus capable of quickly discharging residual energy at a smoothing stage of an inverter without requiring any additional element such as a discharge resistor can be implemented, as well as a method for controlling the same.

    [0065] Accordingly, a time taken for resuming service by an inverter can be shortened.

    [0066] Although the exemplary embodiments of the present disclosure have been described in detail, these are merely illustrative. Accordingly, the true scope of the present disclosure sought to be protected is defined only by the appended claims.


    Claims

    1. A method for controlling an inverter (2) driven with an input power (1), to speed up residual energy discharge at the inverter (2) when a safety signal is input to the inverter (2), the method comprising:

    determining whether the safety signal is input to the inverter (2);

    generating an I/O failure output relay signal to interrupt the input power (1) if it is determined that the safety signal is input; and

    performing a process of discharging residual energy at a smoothing stage (22) of the inverter (2) and a fan drive;

    characterized in that the process of discharging the residual energy comprises:

    when the inverter (2) performs current control, performing a DC excitation process, or

    when the inverter (2) performs V/F control, performing zero vector drive;

    determining whether a low voltage trip occurs in the inverter (2);

    resuming the DC excitation process or zero vector drive, and the fan drive, if it is determined that the low voltage trip occurs; and

    determining whether a voltage of the smoothing stage (22) of the inverter (2) is less than a predetermined voltage.


     
    2. The method of claim 1, wherein the performing the DC excitation process comprises:

    converting currents in an abc coordinate system output from the inverter (2) to currents in a rotational coordinate system;

    generating a voltage command in the rotational coordinate system by using the currents in the rotational coordinate system and a current command;

    converting the voltage command in the rotational coordinate system to the voltage command in a stationary coordinate system; and

    applying the voltage command in the stationary coordinate system to the inverter (2).


     
    3. The method of claim 2, wherein the current command comprises a d-axis current command having a value equal to the voltage of the smoothing stage (22) of the inverter (2) and a q-axis current command having a value equal to zero.
     
    4. The method of any one of the preceding claims, wherein the determining whether the voltage at the smoothing stage (22) of the inverter (2) is less than the predetermined voltage, comprising:
    completing the DC excitation process or the zero vector drive, and the fan drive, if it is determined that the voltage of the smoothing stage (22) of the inverter (2) is less than the predetermined voltage.
     
    5. The method of any one of the preceding claims, wherein the predetermined voltage is larger than a switched-mode power supply, SMPS (25) off voltage of the inverter (2).
     


    Ansprüche

    1. Verfahren zum Steuern eines mit einer Eingangsleistung (1) betriebenen Wechselrichters (2), um eine Restenergieentladung an dem Wechselrichter (2) zu beschleunigen, wenn ein Sicherheitssignal in den Wechselrichter (2) eingegeben wird, das Verfahren umfassend:

    Ermitteln, ob das Sicherheitssignal in den Wechselrichter (2) eingegeben wird;

    Erzeugen eines E/A-Fehler-Ausgangsrelaissignals, um die Eingangsleistung (1) zu unterbrechen, wenn ermittelt wird, dass das Sicherheitssignal eingegeben wird; und

    Durchführen eines Prozesses zum Entladen von Restenergie in einer Glättungsstufe (22) des Wechselrichters (2) und einer Lüfteransteuerung;

    dadurch gekennzeichnet, dass der Prozess zum Entladen der Restenergie Folgendes umfasst:

    wenn der Wechselrichter (2) eine Stromsteuerung durchführt, Durchführen eines Gleichstromerregungsprozesses, oder

    wenn der Wechselrichter (2) eine V/F-Steuerung durchführt, Durchführen einer Nullvektor-Ansteuerung;

    Ermitteln, ob eine Niederspannungsauslösung in dem Wechselrichter (2) auftritt;

    Fortsetzen des Gleichstromerregungsprozesses oder der Nullvektor-Ansteuerung sowie der Lüfteransteuerung, wenn ermittelt wird, dass der Niederspannungsauslöser auftritt; und

    Ermitteln, ob eine Spannung der Glättungsstufe (22) des Wechselrichters (2) geringer als eine vorbestimmte Spannung ist.


     
    2. Verfahren nach Anspruch 1, wobei das Durchführen des Gleichstromerregungsprozesses Folgendes umfasst:

    Umwandeln von Strömen in einem abc-Koordinatensystem, die von dem Wechselrichter (2) ausgegeben werden, zu Strömen in einem Rotationskoordinatensystem;

    Erzeugen eines Spannungsbefehls in dem

    Rotationskoordinatensystem unter Verwendung der Ströme in dem Rotationskoordinatensystem und eines Strombefehls;

    Umwandeln des Spannungsbefehls in dem

    Rotationskoordinatensystem zu dem Spannungsbefehl in einem stationären Koordinatensystem; und

    Anwenden des Spannungsbefehls in dem stationären Koordinatensystem auf den Wechselrichter (2).


     
    3. Verfahren nach Anspruch 2, wobei der Strombefehl einen d-Achsen-Strombefehl mit einem Wert gleich der Spannung der Glättungsstufe (22) des Wechselrichters (2) und einen q-Achsen-Strombefehl mit einem Wert gleich Null umfasst.
     
    4. Verfahren nach einem der vorhergehenden Ansprüche, wobei das Ermitteln, ob die Spannung an der Glättungsstufe (22) des Wechselrichters (2) geringer als die vorbestimmte Spannung ist, Folgendes umfasst:
    Abschließen des Gleichstromerregungsprozesses oder der Nullvektor-Ansteuerung sowie der Lüfteransteuerung, wenn ermittelt wird, dass die Spannung der Glättungsstufe (22) des Wechselrichters (2) geringer als die vorbestimmte Spannung ist.
     
    5. Verfahren nach einem der vorhergehenden Ansprüche, wobei die vorbestimmte Spannung größer als eine Abschaltspannung für ein Schaltnetzteil (SMPS) (25) des Wechselrichters (2) ist.
     


    Revendications

    1. Procédé de commande d'un onduleur (2) entraîné par une puissance d'entrée (1), pour accélérer la décharge d'énergie résiduelle au niveau de l'onduleur (2) lorsqu'un signal de sécurité est fourni en entrée à l'onduleur (2), le procédé comprenant :

    le fait de déterminer si le signal de sécurité est fourni en entrée à l'onduleur (2) ;

    la génération d'un signal de relais de sortie de défaillance E/S pour interrompre la puissance d'entrée (1) s'il est déterminé que le signal de sécurité est fourni en entrée ; et

    la réalisation d'un processus de décharge d'énergie résiduelle au niveau d'un étage de lissage (22) de l'onduleur (2) et d'un entraînement de ventilateur ;

    caractérisé en ce que le processus de décharge de l'énergie résiduelle comprend :

    lorsque l'onduleur (2) réalise une commande de courant, la réalisation d'un processus d'excitation CC, ou

    lorsque l'onduleur (2) réalise une commande V/F, la réalisation d'un entraînement à vecteur zéro ;

    le fait de déterminer si un déclenchement basse tension se produit dans l'onduleur (2) ;

    la reprise du processus d'excitation CC ou de l'entraînement à vecteur zéro, et de l'entraînement de ventilateur, s'il est déterminé que le déclenchement basse tension se produit ; et

    le fait de déterminer si une tension de l'étage de lissage (22) de l'onduleur (2) est inférieure à une tension prédéterminée.


     
    2. Procédé selon la revendication 1, dans lequel la réalisation du processus d'excitation CC comprend :

    la conversion de courants dans une sortie de système de coordonnées abc à partir de l'onduleur (2) en courants dans un système de coordonnées en rotation ;

    la génération d'un ordre de tension dans le système de coordonnées en rotation à l'aide des courants dans le système de coordonnées en rotation et d'un ordre de courant ;

    la conversion de l'ordre de tension dans le système de coordonnées en rotation en l'ordre de tension dans un système de coordonnées stationnaire ; et

    l'application de l'ordre de tension dans le système de coordonnées stationnaire à l'onduleur (2).


     
    3. Procédé selon la revendication 2, dans lequel l'ordre de courant comprend un ordre de courant d'axe d ayant une valeur égale à la tension de l'étage de lissage (22) de l'onduleur (2) et un ordre de courant d'axe q ayant une valeur égale à zéro.
     
    4. Procédé selon l'une quelconque des revendications précédentes, dans lequel le fait de déterminer si la tension à l'étage de lissage (22) de l'onduleur (2) est inférieure à la tension prédéterminée, comprend :
    l'achèvement du processus d'excitation CC ou de l'entraînement à vecteur zéro, et de l'entraînement de ventilateur, s'il est déterminé que la tension de l'étage de lissage (22) de l'onduleur (2) est inférieure à la tension prédéterminée.
     
    5. Procédé selon l'une quelconque des revendications précédentes, dans lequel la tension prédéterminée est supérieure à une tension d'arrêt d'alimentation à découpage, SMPS (25) de l'onduleur (2).
     




    Drawing





























    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description