(19)
(11)EP 3 102 995 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
04.11.2020 Bulletin 2020/45

(21)Application number: 14703806.1

(22)Date of filing:  05.02.2014
(51)International Patent Classification (IPC): 
G06F 1/3231(2019.01)
G06F 1/32(2019.01)
(86)International application number:
PCT/EP2014/052254
(87)International publication number:
WO 2015/117648 (13.08.2015 Gazette  2015/32)

(54)

DISPLAY DEVICE, COMPUTER SYSTEM AND METHOD FOR MANAGING THE OPERATING STATES OF A COMPUTER SYSTEM

ANZEIGEVORRICHTUNG, COMPUTERSYSTEM UND VERFAHREN ZUR VERWALTUNG DER BETRIEBSZUSTÄNDE EINES COMPUTERSYSTEMS

DISPOSITIF D'AFFICHAGE, SYSTÈME INFORMATIQUE ET PROCÉDÉ DE GESTION DES ÉTATS DE FONCTIONNEMENT D'UN SYSTÈME INFORMATIQUE


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(43)Date of publication of application:
14.12.2016 Bulletin 2016/50

(60)Divisional application:
20196006.9

(73)Proprietor: Fujitsu Client Computing Limited
Kawasaki-shi, Kanagawa-ken 211-8588 (JP)

(72)Inventor:
  • CHEN, Angel
    Taipei 220 (TW)

(74)Representative: Epping - Hermann - Fischer 
Patentanwaltsgesellschaft mbH Schloßschmidstraße 5
80639 München
80639 München (DE)


(56)References cited: : 
EP-A1- 2 315 439
US-A1- 2009 109 015
WO-A1-2012/172679
  
  • Video Electronics Standards Association: "VESA Monitor Control Command Set Standard Version 2.2a", , 13 January 2011 (2011-01-13), XP055642076, Retrieved from the Internet: URL:https://milek7.pl/ddcbacklight/mccs.pd f [retrieved on 2019-11-13]
  
Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


Description


[0001] The present invention relates to a display device comprising interface circuitry configured for receiving at least one display signal, a display screen and an energy management function configured for controlling the operating state of the display device. The present invention further relates to a computer system comprising a display device and a computing device connected thereto. The present invention also relates to a method for managing the operating states of such a computer system.

[0002] Display devices are commonly used for displaying display signals received from external electronic devices, in particular computing devices such as personal computers (PC). In particular in office environments, the display device itself or the computing device connected thereto are often left running for extensive periods of time, resulting in an unnecessary consumption of electric energy. While the energy consumption of the individual devices has been decreasing due to advances of technology, such as the widespread use of liquid crystal displays (LCD) rather than conventional cathode ray tubes (CRT), the ever increasing use of information technology (IT) still results in a considerable waste of electrical energy.

[0003] In this context, various solutions aimed at reducing the power consumption of computing devices and display devices have been developed. In particular, most modern operating systems (OS) provide some form of energy management. Known operating systems, for example the Microsoft Windows operating system family, can usually be configured to send predetermined devices into an energy saving mode, if a user ceases to perform input operations, such as typing via a keyboard or handling a pointing device such as a computer mouse. In response thereto, components like hard disk drives (HDD) of the computing device can be deactivated or the processor can be switched into a standby mode, for example.

[0004] With regard to display devices in particular, the so-called Display Power Management Signaling (DPMS) standard of the Video Electronics Standards Association (VESA) provides a mechanism of switching a display device into a power saving mode. According to VESA DPMS, the display device can be switched into a standby mode, for example by means of deactivating synchronization or similar control systems transmitted from the computing device to the display device. In response, the display device may deactivate a display screen or other electronic components.

[0005] While the described approaches have improved the energy efficiency of computer systems in general, they are not always effective. For example, a user needs to provide certain timeout periods for the deactivation of particular functions of a computer system. If the selected timeout period is too short, the user will be inconvenienced by the unexpected deactivation of parts of the computer system during relatively short input breaks. If the timeout period is too long, the energy efficiency of the computer system will be reduced by keeping its components in an operating state too long.

[0006] To solve the above mentioned problem, European patent application EP 2 000 881 A1 describes a computing system having an integrated display and an integrated energy management device. The electronic device further comprises a sensor indicating whether a user is present in front of the electronic device. In case the user is present in front of the electronic device, the activation of a predetermined energy saving mode by the operating system can be prevented. Consequently, relatively short timeout periods for the activation of energy saving modes can be specified without inconveniencing the user.

[0007] While the described system has many advantages regarding the energy efficiency of integrated computing devices, it is not applicable to computing devices without an internal sensor. Furthermore, the proposed solution still heavily depends on the proper configuration of an energy management system of the operating system of the computing device.

[0008] US 2009/0109015 A1 discloses a display device having an anti-crime security function.

[0009] WO 2012/172679 discloses a display apparatus carrying a human sensitive sensor.

[0010] EP 2315439 A1 discloses an image display device comprising a face detection unit.

[0011] Therefore, it is an object of the present invention to propose an alternative approach to managing the operating states of a computer system comprising at least one display device and at least one computing device connected thereto.

[0012] The above-mentioned problems are solved or at least mitigated by the device, system and method in accordance with the attached claims.

[0013] According to a first aspect of the present invention, a display device according to claim 1 is described.

[0014] The display device is configured for use in a computer system comprising the display device and a computing device external to the display device. The display device comprises:
  • interface circuitry configured for receiving a display signal from the external computing device via at least one cable connecting the display device and the external computing device,
  • a display screen configured for displaying the received display signal;
  • a sensor configured for providing at least one control signal indicative of the presence of a user in a predefined area in front of the display screen; and
  • a controller configured to control an operating state of the display device and to select an energy saving mode from a plurality of energy saving modes based at least on the control signal provided by the sensor;
    wherein the controller is further configured such that in operation of the display device, the controller immediately selects a first energy saving mode without any waiting time when an absence of the user is detected by the sensor and selects a second energy saving mode if a presence of the user is not detected within a predetermined time period after entering the first energy saving mode, and controls the operating state based on the selected energy saving mode, such that the brightness of the display screen is reduced in the first energy saving mode, and a backlight illumination unit of the display screen is completely deactivated in the second energy saving mode; and
  • wherein the interface circuitry is further configured such that in operation of the display device the interface circuitry transmits control information regarding a determination of an operating state of the external computing device via the at least one cable back to an energy management function of the external computing device when the second energy saving mode is entered, wherein the control information indicates the absence of a user to the energy management function of the external computing device, and the control information is transmitted to the energy management function by means of a manufacturer-specific virtual control panel, 'VCP', in the monitor command control set, 'MCCS', language according to the Display Data Channel, 'DDC' standard.


[0015] The described display device can enter an energy saving mode irrespective of the control of an external computing device. Therefore, the energy efficiency of at least the display device can be improved irrespective of the setting of an energy management function of an operating system. Furthermore, by means of the transmission of control information regarding a determination of an operating state of the external computing device, the energy management of an attached computing device can also be optimized based on the control signal provided by the sensor. Among others, the present invention recognizes the fact that a display device is an important human interface between a user and the computing device and can therefore better control the energy saving mode of the computer system than the computing device itself.

[0016] The energy management function is configured for selecting at least a suspend state, a sleep state and/or an off or standby state of the display device. In the suspend state, the display screen may be switched off or operated with reduced brightness and at least one other circuit component of the display device, in particular the sensor and/or a scaler, remain in a normal operating state. Hence, while the energy consumption of the display device can be reduced in the suspend state, most other operations, including a wake-up operation of the display device, remain available. In the sleep state, both the display screen and the at least one other circuit component may be switched off in order to save even more electrical energy. Lastly, in the off or standby state, essentially all circuit components not required to switch the display device back into an active state may be switched off. For example, an off state may be selected and deselected by a user manually by pressing a power button on the front of the display device. In this state, an automatic wake-up operation of the display may no longer be available for the benefit of increased power saving.

[0017] According to one embodiment, the interface circuitry comprises at least one of a Video Graphics Array (VGA) interface, Digital Visual Interface (DVI), High Definition Multimedia Interface (HDMI), or DisplayPort (DP) interface and is configured for transmitting the control information based on the Display Data Channel Command Interface (DDC/CI) interface, using the monitor control command set (MCCS). The use of a bidirectional communication channel of an interface used for providing the display signal to the display device facilitates the integration of the proposed solution into existing computer systems.

[0018] In an alternative example, the interface circuitry comprises a Universal Serial Bus (USB) controller and is configured for transmitting the control information using the USB controller to the external computing device. In particular, an upstream port of a USB hub integrated into the display device may be used to transmit back control information from the control unit of the display device to the computer system. For example, sensor data could be transmitted using the USB device class and associated driver software used for human interface devices (HID) and in this way be provided to an energy management function of an operating system of the computing device.

[0019] In at least one embodiment, the control information comprises an interrupt request, in particular an unsolicited attention call, to alert the external computing device to the selection of an energy saving mode by the control unit.

[0020] The control information may comprise control data regarding the presence of the user in the predefined area in front of the display screen, an energy saving mode selected by the control unit of the display device and/or a requested operating state of the external computing device. Each piece of information may be used by the external computing device in order to enter an appropriate operating state.

[0021] According to one further embodiment, the display device further comprises at least one timer function, wherein the control unit is configured to select the first energy saving mode in response to the detection of the absence of a user in the predefined area in front of the display device and at least one second energy saving mode in response to the expiry of the timer after the detection of the absence without any intervening detection of a presence of the user in the predefined area in front of the display screen. The described configuration allows the immediate reduction of energy consumption of the display device without any waiting time. However, after a predetermined waiting time, further components, such as internal components of an external computing device, may also be deactivated.

[0022] According to a second aspect of the present invention, a computer system comprises a display device as described with respect to the first aspect and a computing device connected to the display device. The computing device comprises an energy management function configured to switch the computing device into an operating state based at least on the control information provided by the display device. For example, by provision of an additional or modified software module of an energy saving component of an operating system, the energy saving component may be configured to switch the computing device into an appropriate energy saving mode based on the control signal provided by the sensor of the display device.

[0023] In an embodiment of the present invention, the energy management function is configured for reading a manufacture-specific control variable of the display device on occurrence of at least one of an interrupt request transmitted by the display device or a timeout of a timer of the computer system. Querying manufacture-specific control variables allows the energy management function of a computer system to consider information provided by the display device.

[0024] According to a third aspect of the invention, a method for managing the operating states of a computer system comprising a display device and an external computing device is provided. The method comprises the steps specified in claim 8, wherein the method comprises:
  • sensing, by a sensor of the display device, an absence of a user of the computer system from a predefined area in front of the display device;
  • selecting, by a controller of the display device, a first energy saving mode from a plurality of energy saving modes immediately in response to the sensed absence of the user without any waiting time and a second energy saving mode from the plurality of energy saving modes in response expiry of a predetermined time period after entering the first energy saving mode;
  • controlling the operating state of the display device based on the selected energy saving mode wherein brightness of the display screen is reduced in the first energy saving mode and a backlight illumination unit of the display screen is completely deactivated in the second energy saving mode;
  • transmitting control information from the display device by means of the manufacturer-specific virtual control panel, 'VCP', in the monitor command control set, 'MCCS', language according to the Display Data Channel, 'DDC', standard via the at least one cable to an energy management function of the external computing device when the second energy saving mode is entered, the control information indicating the absence of a user to the energy management function of the external computing device; and
  • controlling, by the energy management function of the external computing device, the operating state of the external computing device based at least on the transmitted control information.


[0025] The above-mentioned method steps can be used to implement a display device driven energy management in a computer system comprising a computing device and an external display device.

[0026] According to a further embodiment, the method further comprises the following steps as specified in claim 9:
  • sensing the presence of a user of the computer system in the predefined area in front of the display device;
  • selecting, by the controller of the display device, a normal operating mode in response to the sensed presence of the user;
  • controlling the operating state of the display device based on the selected normal operating mode;
  • transmitting wake-up information from the display device to the external computing device; and
  • controlling the operating state of the external computing device based at least on the transmitted wake-up information.


[0027] By also providing wake-up information from the display device to an external computing device, the display device can also act as a wake-up source for the energy management of a computer system. Accordingly, the operating state of the computing system may be completely controlled by the display device attached to it.

[0028] Further details of the present invention are disclosed in the attached claims as well as the description of exemplary embodiments provided below. The various embodiments are described with reference to the attached drawings, wherein
Figure 1
shows a computer system according to a first embodiment of the invention,
Figure 2
shows a flowchart regarding the energy saving modes of the computer system of Figure 1,
Figure 3 shows a flowchart regarding the operating states of the computer system of Figure 1, and
Figure 4 shows a computer system according to an alternative example.


[0029] Figure 1 shows a schematic arrangement of a computer system 100 comprising a display device 110 and a computing device 170. The display device 110 comprises a printed circuit board 120, for example a so-called scaler board. The printed circuit board 120 comprises various electronic components, such as an interface 130 for connecting the display device 110 to the computing device 170 using appropriate interface circuitry and connectors, such as VGA, DVI, HDMI or DP. Furthermore, the printed circuit board 120 comprises at least one controller 140 operable to transform received display signals from the interface 130 to a format suitable for displaying by means of a display screen 150 of the display device 110.

[0030] In the described embodiment, the controller 140 is further configured to perform energy management based on sensor signals provided by a sensor 160 integrated into the display device 110. In the example, the sensor 160 is a so-called long distance proximity sensor (LDPS), which measures reflected infrared energy to detect the presence of a person in front of the display screen 150. Other sensor technologies include ultra sound sensors or cameras attached to advanced digital image analysis systems. For detecting the presence of a user in front of the display device 110 in general and in front of the display screen 150 in particular, the sensor 160 is integrated into a housing of the display device 110, for example in the lower right corner of a front bezel.

[0031] In the described embodiment, the LDPS sensor 160 comprises a photodiode, amplifiers and analog or digital circuits integrated into a single integrated circuit (IC). It provides an output signal according to the Inter-Integrated Circuit (I2C) interface protocol, which can be easily processed by the controller 140 of the printed circuit board 120. The sensor 160 detects a user's presence or absence in front of the display device 110 by detecting the distance between the user and the display screen 150. This information is analysed by the controller 140 and used to control the operating state of the display device 110, and, optionally, the operating state of the computing device 170 as detailed below.

[0032] In the described embodiment, the controller 140 provides control data indicating the presence or absence of a user in front of the display device 110 by means of a so-called manufacturer-specific virtual control panel (VCP) in the monitor command control set (MCCS) language. For example, a data value of 00h may be used to indicate the presence of a user while a data value of 01h may be used to indicate the absence of a user in a VCP with the code E0h. In the VESA DDC standard, VCP codes E0h to FFh are reserved for manufacturer specific functions. VCP data may be transmitted using the so-called DDC2Bi protocol over one or more known electrical interface connectors, such as VGA, DVI, HDMI and DP. In alternative embodiments, the sensor data provided by the sensor 160 may be transmitted essentially unchanged to the computing device 170. For example, using appropriate data lines such as a serial clock line (SCL) and a corresponding data line (SDA) of a VGA, DVI, HDMI or DP cable, the sensor data may be transmitted directly using the I2C protocol.

[0033] The control information provided by the controller 140 via the interface 130 is received by a graphics component (not shown) of the computing device 170, such as a graphics board or an integrated graphics controller. This information is provided to an energy management function 180 using an additional software module 190. For example, the energy management function 180 maybe the built-in energy management system of an operating system such as Microsoft Windows 8 or another known operating system. The software module 190 may be a vendor-specific driver software which provides the DDC communication between the display device 110 and the energy management function 180. The effect the received control information has on the energy management function 180 will be described below with reference to Figure 2.

[0034] Figure 2 shows a combined flow and mode diagram of a computer system in accordance with an embodiment of the present invention. Below, the operation of the display device 110 and the computing device 170 in accordance with Figure 1 are used as an example.

[0035] Initially, the computer system 100 is in a normal operating mode M2-0. In this mode, most components of the computer system 100, including all electronic components of the display device 110 and the components of the computing device 170 shown in Figure 1 are in a fully active state. Nonetheless, the computer system 100 may comprise further components temporarily not used, such as a printer, which can remain in a state of reduced functionality even in the mode M2-0. The computer system 100 remains in the mode M2-0, as long as the presence of a user is detected by the sensor 160 in step P2-1.

[0036] If the absence of the user is detected by the sensor 160, the computer system 100 enters a first energy saving mode M2-1. Upon entering the energy saving mode M2-1, the brightness of the display screen 150 is immediately reduced in a step P2-2. At the same time, a timer, for example a built-in timer of the controller 140, is started in order to determine the length of the absence of the user.

[0037] Upon return of the user, the sensor 160 will provide a corresponding user presence signal. If the return of the user is detected, in a step P2-3, within a relatively short, first time period, for example ten minutes, the brightness of the display screen 150 is returned back to its initial value in a step P2-4 and the timer is cleared. Subsequently, the computer system 100 returns into the normal operating mode M2-0.

[0038] Alternatively, if the user does not return in the predetermined first time period, the computer system 100 will enter a second energy saving mode M2-2. In this energy saving mode, the backlight illumination unit of the display screen 150 will be deactivated completely by the controller 140. Furthermore, in a step P2-5, the controller 140 will provide control information back to the computing device 170 regarding the entering of the second energy saving mode M2-2. This information will be received, for example, by the energy management function 180. In response, the computing device 170 will lock its screen such that the user, upon his return, must provide a password or other login credentials in order to unlock the computing device 170. While this does not necessarily contribute to an energy saving on the part of the computing device 170, it greatly increases the data security of the computer system. In particular, during recognized absences of the user of the computer system 100, the document or documents a user was working with are protected against access from unauthorized users.

[0039] If in step P2-6, the return of a user is detected within a second prescribed time period, for example 30 minutes from the initially detected absence, the backlight unit of the display screen 150 is switched back on in a step P2-7 and returns to its initial brightness in step P2-4. Furthermore, as the energy management function 180 has blocked the computing screen 170, a corresponding login screen will be displayed to the user of the computer system 100.

[0040] If the user does not return within the second time period, the computer system 100 will enter a third energy saving mode M2-3. Therein, in a step P2-8, the controller 140 will send appropriate control information to the computing device 170 requesting the computing device 170 to enter a power saving state. For example, the controller 140 may transmit a VCP code specifying the user's absence and that a corresponding power saving state should be selected by the energy management function 180. The power saving state to be used may be either specified by the controller 140 directly as part of the control information or maybe determined by the energy management function 180 in response to the general information from the controller 140 that an energy saving state should be entered. Examples of suitable energy saving states are specified, for example, in the Advanced Configuration and Power Interface (ACPI) standard and comprise the ACPI states ACPI-S4 ("hibernate" or "suspend to disk"), ACPI-S3 ("standby" or "suspend to RAM") or ACPI-S2 ("sleep").

[0041] If, in a step P2-9, the return of the user is detected within a third time period, for example two hours from the start of the detected absence, the controller 130 will send an appropriate control code back to the computing device 130. For example, the graphics board of a computing device 170 may be configured as a wake-up source by the software module 190 and may be woken up by a so-called unsolicited attention call acting as an interrupt request. Accordingly, in a step P2-10, the energy management function 180 will wake up the computing device 170 by returning to a normal operating state, such as ACPI-S0 ("working"). Correspondingly, in the steps P2-6 and P2-4, the display device 110 is also returned to a fully active state.

[0042] If, however, in step P2-9, no user presence is determined for the third time period, the computer system 100 will enter a fourth energy saving mode M2-4. Therein, in a step P2-11, the controller 140 issues control information requesting the computing device 170 to be fully switched off. For example, a state transition to the ACPI-S5 state ("soft off") or an even lower state may be requested. For example, patent US 8,472,216 as well as published patent applications US 2011/101775 A1 and US 2012/163056 A1 disclose circuits for power supply units capable of reducing the energy consumption of a computer system in a standby state even further. Furthermore, the controller 140 will deactivate all components of the display device 110, including the sensor 160, a display screen 150 and PCB 120. Consequently, the return of the user can no longer be automatically detected by the display device 110. In order to re-enter the normal operating mode M2-0, a user of the computer system 100 must therefore press an appropriate control button, such as a power on button of the display device 110 or the computing device 170 in order to return to the normal operating mode M2-0.

[0043] While the operation presented with respect to the flowchart of Figure 2 and detailed above makes use of a normal operating mode M2-0, three intermediate energy saving modes M2-1 to M2-3 and a further, completely switched off, energy saving mode M2-4, attention is drawn to the fact that the controller 140 may provide more or less energy saving modes, and/or that the energy management function 180 may implement more or less operating states. In particular, the display device 110 can be programmed to go sequentially through all or only selected ones of the energy saving modes M2-1 to M2-4 described above or alternatively to directly go into any of the described modes as required by the system design or configured by a user.

[0044] Furthermore, while the above-mentioned description only concerns components of the display device 110 and the computing system 170, the controller 140 may be programmed to keep other electrical function blocks active, such as a USB hub, a scaler, an audio component and the like in selected energy saving modes, such as modes M2-2 and M2-3. Keeping selected electrical function blocks active helps to immediately recover the display device 110 on occurrence of a detection of the user presence. Alternatively, such additionally function blocks may also be turned off one by one as defined by the system design or configured by a user in order to reach a lower power consumption of the computer system 100.

[0045] As detailed above, integrating the user detection into a display system 110 and managing various energy saving modes via the controller 140 of the display device 110 has various advantages. Firstly, the power saving mode M2-1 can be entered immediately after detection of the absence of a user, without the need for any waiting period. Furthermore, information security of the computer 100 as a whole can be improved by means of the energy saving mode M2-2. Moreover, a very fast recovery from the first and second energy saving modes M2-1 and M2-2 can be enabled, leading to greater acceptance of the energy management by a user of the computer system 100. Finally, the energy saving modes M2-1, M2-2 and M2-3 can be left automatically upon detection of a return of the user.

[0046] Figure 3 shows an internal state diagram of the display device 110 of the computer system 100 in accordance with Figure 1. By means of the description provided below, it will become apparent how a display device driven energy management system can co-exist and/or co-operate with existing, operating system driven energy management system, such as VESA DPMS. In particular, even in the absence of a vendor specific software module 190, at least some power saving of the display device 110 may still be achieved.

[0047] At any time, the display device 110 may be switched in a step P3-1 from any operating state into an off state S3-3 by means of a power button. In the off state S3-3, the energy consumption of the display device 110 is as low as possible. In particular, only a discrete electronic circuit may be provided with operational energy in order to reactive the display device 110. The energy required for the operation of said circuit may be supplied as s standby voltage provided by either a power supply unit of the display device 110 or, alternatively, by the computing device 170 through an auxiliary voltage supply line of the display signal interface. Appropriate power supply circuits, suitable to implement display devices causing practically no power losses in standby are described, among others in US 8,421,277 and US 8,098,242.

[0048] From the off state S3-3, by pressing the power button again in step P3-1, the display device 110 may be switched into an active state S3-0. In the active state S3-0, in a step P3-2, the presence of the user is monitored by the sensor 160. As long as the presence of a user is detected in step P3-2, the display device 110 remains in the active state S3-0.

[0049] If the absence of a user is detected in step P3-2, in a subsequent step P3-3, the controller 140 checks whether the proximity sensor 160 is generally enabled. If this is not the case, i.e. if user detection by the display device 110 has been deactivated, the display device 110 will operate in accordance with standard energy saving protocols, such as VESA DPMS. For this purpose, in a step P3-4, the controller 140 will check whether a connected computing device 170 is in a sleep mode, for example if it has entered one of the ACPI sates S2, S3, or S4. If the computing device 170 is not in a sleep mode, signalled for example by the presence of a synchronization signal, the display device 110 will remain in the active state S3-0. Otherwise, that is in case the computing device 170 signals the activation of a sleep mode, for example by deactivating horizontal or vertical synchronisation signals of a display signal, the display device 110 itself will enter a sleep state S3-2.

[0050] If, in the step P3-3, the controller 140 recognizes that the proximity sensor 160 is activated, i.e. if the energy management function is provided by the display device 110 itself, it will check in a subsequent step P3-5 if an attached computer device 170 is in a sleep mode. If this is not the case, the display device 110 will enter a suspend state S3-1. In the suspend state S3-1, the power consumption of the display device 110 will be reduced to a value of, for example, below 1 Watt. This can be achieved, for example, by deactivating parts of the display screen 150, in particular any backlight illumination system used to illuminate the display screen 150. However, the changing of the display device 110 into the suspend state S3-1 does not have an effect on the operating state of the computing device 470, such that user applications may continue uninterrupted. In the suspend state S3-1, upon detection of the presence of a user, the display device 110 will return to the active state S3-0 in a step P3-6. Otherwise, if in the step P3-5 the controller 140 detects that the attached computing device 170 has entered a sleep mode, the display device 110 will enter the sleep state S3-2 as described above.

[0051] The display device 110 will remain in the sleep state S3-2 until a connected computing device 170 signals a wake-up signal in a step P3-7. For example, the computing device 170 may reactivate synchronization signals in order to bring the display device 110 back into the active state S3-0. In the sleep state S3-2, the power consumption is preferably almost as low as in the off state S3-3. In contrast to the off state S3-3, at least the controller 140 needs to be provided with a standby operating energy. As detailed above with respect to state S3-3, a standby voltage may either be provided by an internal power supply unit of the display device 110 or over a graphics interface, such as VGA, DVI or HDMI.

[0052] Figure 4 shows a computer system 400 according to an alternative example. The computer system 400 comprises a display device 410 and a computing device 470. The display device 410 comprises a display screen 150 and a sensor 160 as detailed above with respect to the display device 110. In addition, the display device 410 comprises a printed circuit board 420 comprising, amongst others, a microcontroller unit 430. The microcontroller unit 430 provides, amongst others, an electrical interface (not shown) to connect the display device to an appropriate graphics controller 480 of the computing device 470.

[0053] Furthermore, the printed circuit board 420 comprises a USB hub 440. The USB hub 440 comprises several downstream ports 450 and one upstream port 460. The downstream ports 450 may be used to connect peripheral devices, such as a keyboard, a printer, a scanner or a mouse to the computer system 400. The upstream port 460 is connected to a USB host controller 490 of the computer device 470.

[0054] In the described example, the microcontroller unit 430 provides information to the computing device 470 by means of an USB interface. In particular, the microcontroller unit 430 may be configured to be recognized as a human interface device by the USB host controller 490 of the computing device 470. As such, control information supplied by the microcontroller unit 430 may be provided to an energy management function 180 of the computing device. For example, the microcontroller unit 430 may provide a simulated keyboard input signal or mouse input signal to the energy management function 180 of an operating system, simulating the activity of a user as long as the sensor 160 detects the proximity of a user.

[0055] The solution described with reference to Figure 4 has the advantage that no further software components in addition to the standard energy management function 180 are required on the side of the computing device 470. However, in contrast to the solution presented with reference to Figure 1, typically two cables are required between the display device 410 and an attached computing device 470, namely a first cable for transmitting a graphics signal from the graphics controller 480 of the computing device 470 to the microcontroller unit 430 of the display device 410 and a USB cable for the exchange of information between the USB hub 430 and the USB host controller 490 of the computing device 170.

[0056] While the different energy saving states and operational modes shown in Figures 2 and 3, respectively, have been described with reference to the embodiment shown in Figure 1, attention is drawn to the fact that similar modes and states may also be implemented in the example shown in Figure 4. In general, the individual features described above may be combined in various ways in order to achieve the stated effects in accordance with the attached claims.

List of Reference Signs



[0057] 
100
computer system
110
display device
120
printed circuit board
130
interface
140
controller
150
display screen
160
sensor
170
computing device
180
energy management function
190
software module
M2-0
normal operating mode
M2-1
first energy saving mode
M2-2
second energy saving mode
M2-3
third energy saving mode
M2-4
fourth energy saving mode
S3-0
active state
S3-1
suspend state
S3-2
sleep state
S3-3
off state
400
computer system
410
display device
420
printed circuit board
430
microcontroller unit
440
USB hub
450
downstream port
460
upstream port
470
computing device
480
graphics controller
490
USB host controller



Claims

1. A display device (110, 410) for use in a computer system comprising the display device (110, 410) and a computing device (170, 470) external to the display device (110, 410), the display device (110, 410) comprising:

- interface circuitry configured for receiving a display signal from the external computing device (170, 470) via at least one cable connecting the display device (110, 410) and the external computing device (170, 470),

- a display screen (150) configured for displaying the received display signal;

- a sensor (160) configured for providing at least one control signal indicative of the presence of a user in a predefined area in front of the display screen (150); and

- a controller (140) configured to control an operating state of the display device (110, 410) and to select an energy saving mode from a plurality of energy saving modes based at least on the control signal provided by the sensor (160);
wherein the controller (140) is further configured such that in operation of the display device (110, 410), the controller (140) immediately selects a first energy saving mode without any waiting time when an absence of the user is detected by the sensor and selects a second energy saving mode if a presence of the user is not detected within a predetermined time period after entering the first energy saving mode, and controls the operating state based on the selected energy saving mode, such that the brightness of the display screen (150) is reduced in the first energy saving mode, and a backlight illumination unit of the display screen (150) is completely deactivated in the second energy saving mode; and

- wherein the interface circuitry is further configured such that in operation of the display device (110, 410) the interface circuitry transmits control information regarding a determination of an operating state of the external computing device (170, 470) via the at least one cable back to an energy management function of the external computing device (170, 470) when the second energy saving mode is entered, wherein the control information indicates the absence of a user to the energy management function of the external computing device (170, 470), and the control information is transmitted to the energy management function by means of a manufacturer-specific virtual control panel, 'VCP', in the monitor command control set, 'MCCS', language according to the Display Data Channel, 'DDC', standard.


 
2. The display device (110) according to claim 1, wherein the interface circuitry comprises at least one of a VGA, DVI, HDMI or DP interface, and is configured for transmitting the control information based on a Display Data Channel Command Interface, 'DDC/CI'.
 
3. The display device (110, 410) according to any one of the claims 1 to 2, wherein the control information comprises control data, comprising data regarding at least one of the presence of the user in the predefined area in front of the display screen (150); an energy saving mode selected by the controller (140); and a requested operating state of the external computing device (170, 470).
 
4. The display device (110, 410) according to any one of the claims 1 to 3, further comprising at least one timer function, when the controller (140) is configured to select the first energy saving mode (M2-1) in response to the detection of the absence of a user in the predefined area in front of the display screen (150) and at least the second energy saving mode (M2-2, M2-3, M2-4) in response to the expiry of the timer after the detection of the absence without any intervening detection of a presence of the user in the predefined area in front of the display screen (150).
 
5. The display device (110, 410) according to any one of the claims 1 to 4, wherein the controller is configured to select at least one of the following operating states of the display device (110, 410):

- a suspend state (S3-1), in which at least the display screen (150) is switched off or operating with reduced brightness and at least one other circuit component of the display device, in particular the sensor (160) and/or a scaler, remain in a normal operating state;

- a sleep state (S3-2), in which both the display screen (150) and the at least one other circuit component are switched off; and

- an off state (S3-3) or standby state, in which all circuit components of the display device (110, 410) not required to switch the display device (110, 410) back into an active state (S3-0) are switched off.


 
6. A computer system (100, 400) comprising:

- the display device (110, 410) according to any one of the claims 1 to 5; and

- a computing device (170, 470) external to the display device (110, 410) connected to the display device (110, 410) via at least one cable, wherein the computing device (170, 470) comprises an energy management function (180), which is configured such that, in operation of the computer system, it switches the computing device (170, 470) into an operating state based at least on the control information provided by the display device (110, 410).


 
7. The computer system (100, 400) according to claim 6, wherein the energy management function (180) is configured for reading a manufacturer-specific control variable of the display device (110, 410) on occurrence of at least one of an interrupt request transmitted by the display device (110, 410) or a timeout of a timer of the computing device (170, 470).
 
8. A method for managing the operating states of a computer system (100, 400) comprising a display device (110, 410) according to one or more of claims 1 to 5 connected to an external computing device (170, 470) via at least one cable, the method comprising:

- sensing, by a sensor of the display device, an absence of a user of the computer system (100) from a predefined area in front of the display device (110, 410);

- selecting, by a controller (140) of the display device (110, 410), a first energy saving mode from a plurality of energy saving modes immediately in response to the sensed absence of the user without any waiting time and a second energy saving mode from the plurality of energy saving modes in response expiry of a predetermined time period after entering the first energy saving mode;

- controlling the operating state of the display device (110, 410) based on the selected energy saving mode wherein brightness of the display screen (150) is reduced in the first energy saving mode and a backlight illumination unit of the display screen (150) is completely deactivated in the second energy saving mode;

- transmitting control information from the display device (110, 410) by means of the manufacturer-specific virtual control panel, 'VCP', in the monitor command control set, 'MCCS', language according to the Display Data Channel, 'DDC', standard via the at least one cable to an energy management function of the external computing device (170, 470) when the second energy saving mode is entered, the control information indicating the absence of a user to the energy management function of the external computing device (170, 470); and

- controlling, by the energy management function of the external computing device (170, 470), the operating state of the external computing device (170, 470) based at least on the transmitted control information.


 
9. The method according to claim 8, further comprising:

- sensing the presence of a user of the computer system (100, 400) in the predefined area in front of the display device (110, 410);

- selecting, by the controller (140) of the display device (110, 410), a normal operating mode in response to the sensed presence of the user;

- controlling the operating state of the display device (110, 410) based on the selected normal operating mode;

- transmitting wake-up information from the display device (110, 410) to the external computing device (170, 470); and

- controlling the operating state of the external computing device (170, 470) based at least on the transmitted wake-up information.


 


Ansprüche

1. Anzeigevorrichtung (110, 410) zur Verwendung in einem Computersystem, das die Anzeigevorrichtung (110, 410) und eine zur Anzeigevorrichtung (110, 410) externe Rechenvorrichtung (170, 470) umfasst, wobei die Anzeigevorrichtung (110, 410) umfasst:

- eine Schnittstellenschaltung, die dazu ausgelegt ist, ein Anzeigesignal von der externen Rechenvorrichtung (170, 470) über mindestens ein Kabel zu empfangen, das die Anzeigevorrichtung (110, 410) und die externe Rechenvorrichtung (170, 470) verbindet,

- einen Anzeigebildschirm (150), der dazu ausgelegt ist, das empfangene Anzeigesignal anzuzeigen;

- einen Sensor (160), der dazu ausgelegt ist, mindestens ein Steuersignal, das die Anwesenheit eines Nutzers in einem vordefinierten Bereich vor dem Anzeigebildschirm (150) angibt, bereitzustellen; und

- eine Steuereinheit (140), die dazu ausgelegt ist, einen Betriebszustand der Anzeigevorrichtung (110, 410) zu steuern und eine Energieeinsparungsbetriebsart aus mehreren Energieeinsparungsbetriebsarten auf Grundlage zumindest des durch den Sensor (160) bereitgestellten Steuersignal auszuwählen;
wobei die Steuereinheit (140) darüber hinaus derart ausgelegt ist, dass im Betrieb der Anzeigevorrichtung (110, 410) die Steuereinheit (140) unmittelbar eine erste Energieeinsparungsbetriebsart ohne irgendeine Wartezeit auswählt, wenn durch den Sensor eine Abwesenheit des Nutzers erfasst wird, und eine zweite Energieeinsparungsbetriebsart auswählt, wenn eine Anwesenheit des Nutzers nicht innerhalb eines vorbestimmten Zeitraums nach dem Eintritt in die erste Energieeinsparungsbetriebsart erfasst wird, und den Betriebszustand auf Grundlage der ausgewählten Energieeinsparungsbetriebsart steuert, derart, dass die Helligkeit des Anzeigebildschirms (150) in der ersten Energieeinsparungsbetriebsart gesenkt wird, und eine Hintergrundlichtbeleuchtungseinheit des Anzeigebildschirms (150) in der zweiten Energieeinsparungsbetriebsart vollständig deaktiviert wird; und

- wobei die Schnittstellenschaltung darüber hinaus derart ausgelegt ist, dass im Betrieb der Anzeigevorrichtung (110, 410) die Schnittstellenschaltung Steuerinformationen in Bezug auf eine Bestimmung eines Betriebszustands der externen Rechenvorrichtung (170, 470) über das mindestens eine Kabel zurück an eine Energieverwaltungsfunktion der externen Rechenvorrichtung (170, 470) überträgt, wenn in die zweite Energieeinsparungsbetriebsart eingetreten wird, wobei die Steuerinformationen die Abwesenheit eines Nutzers an die Energieverwaltungsfunktion der externen Rechenvorrichtung (170, 470) angeben, und die Steuerinformationen an die Energieverwaltungsfunktion mittels eines herstellerspezifischen virtuellen Steuerpanels, 'VCP', in der Monitorbefehlssteuersatz-, 'MCCS', -Sprache gemäß dem Anzeigedatenkanal-, 'DDC', -Standard übertragen werden.


 
2. Anzeigevorrichtung (110) nach Anspruch 1, wobei die Schnittstellenschaltung eine VGA-, DVI-, HDMI- und/oder DP-Schnittstelle umfasst und dazu ausgelegt ist, die Steuerinformationen auf Grundlage einer Anzeigedatenkanalbefehlsschnittstelle, 'DDC/CI', zu übertragen.
 
3. Anzeigevorrichtung (110, 410) nach einem der Ansprüche 1 bis 2, wobei die Steuerinformationen Steuerdaten umfassen, die Daten in Bezug auf die Anwesenheit des Nutzers in dem vordefinierten Bereich vor dem Anzeigebildschirm (150); eine durch die Steuereinheit (140) ausgewählte Energieeinsparungsbetriebsart; und/oder einen angeforderten Betriebszustand der externen Rechenvorrichtung (170, 470) umfassen.
 
4. Anzeigevorrichtung (110, 410) nach einem der Ansprüche 1 bis 3, darüber hinaus mindestens eine Zeitgeberfunktion umfassend, wenn die Steuereinheit (140) dazu ausgelegt ist, die erste Energieeinsparungsbetriebsart (M2-1) im Ansprechen auf die Erfassung der Abwesenheit eines Nutzers in dem vordefinierten Bereich vor dem Anzeigebildschirm (150) und zumindest die zweite Energieeinsparungsbetriebsart (M2-2, M2-3, M2-4) im Ansprechen auf den Ablauf des Zeitgebers nach der Erfassung der Abwesenheit ohne dazwischenkommende Erfassung einer Anwesenheit des Nutzers in dem vordefinierten Bereich vor dem Anzeigebildschirm (150) auszuwählen.
 
5. Anzeigevorrichtung (110, 410) nach einem der Ansprüche 1 bis 4, wobei die Steuereinheit dazu ausgelegt ist, mindestens einen der folgenden Betriebszustände der Anzeigevorrichtung (110, 410) auszuwählen:

- einen Unterbrechungszustand (S3-1), in dem zumindest der Anzeigebildschirm (150) ausgeschaltet ist oder mit gesenkter Helligkeit arbeitet, und mindestens eine andere Schaltungskomponente der Anzeigevorrichtung, insbesondere der Sensor (160) und/oder ein Scaler, in einem normalen Betriebszustand bleibt;

- einen Schlafzustand (S3-2), in dem sowohl der Anzeigebildschirm (150) als auch die mindestens eine andere Schaltungskomponente ausgeschaltet sind; und

- einen Ausschaltzustand (S3-3) oder Bereitschaftszustand, in dem alle Schaltungskomponenten der Anzeigevorrichtung (110, 410), die nicht erforderlich sind, um die Anzeigevorrichtung (110, 410) zurück in einen aktiven Zustand (S3-0) zu schalten, ausgeschaltet sind.


 
6. Computersystem (100, 400), umfassend:

- die Anzeigevorrichtung (110, 410) nach einem der Ansprüche 1 bis 5; und

- eine zur Anzeigevorrichtung (110, 410) externe Rechenvorrichtung (170, 470), die über mindestens ein Kabel an die Anzeigevorrichtung (110, 410) angeschlossen ist, wobei die Rechenvorrichtung (170, 470) eine Energieverwaltungsfunktion (180) umfasst, die derart ausgelegt ist, dass sie im Betrieb des Computersystems die Rechenvorrichtung (170, 470) auf Grundlage zumindest der durch die Anzeigevorrichtung (110, 410) bereitgestellten Steuerinformationen in einen Betriebszustand schaltet.


 
7. Computersystem (100, 400) nach Anspruch 6, wobei die Energieverwaltungsfunktion (180) dazu ausgelegt ist, eine herstellerspezifische Steuervariable der Anzeigevorrichtung (110, 410) beim Auftreten einer durch die Anzeigevorrichtung (110, 410) übertragene Unterbrechungsanforderung und/oder einem Zeitablauf eines Zeitgebers der Rechenvorrichtung (170, 470) zu lesen.
 
8. Verfahren zum Verwalten der Betriebszustände eines Computersystems (100, 400), das eine Anzeigevorrichtung (110, 410) nach einem oder mehreren der Ansprüche 1 bis 5 umfasst, das über mindestens ein Kabel an eine externe Rechenvorrichtung (170, 470) angeschlossen ist, wobei das Verfahren umfasst:

- Erkennen, durch einen Sensor der Anzeigevorrichtung, einer Abwesenheit eines Nutzers des Computersystems (100) aus einem vordefinierten Bereich vor der Anzeigevorrichtung (110, 410);

- Auswählen, durch eine Steuereinheit (140) der Anzeigevorrichtung (110, 410), einer ersten Energieeinsparungsbetriebsart aus mehreren Energieeinsparungsbetriebsarten unmittelbar im Ansprechen auf die erkannte Abwesenheit des Nutzers ohne irgendeine Wartezeit und der zweiten Energieeinsparungsbetriebsart aus den mehreren Energieeinsparungsbetriebsarten im Ansprechen auf den Ablauf eines vorbestimmten Zeitraums nach dem Eintritt in die erste Energieeinsparungsbetriebsart;

- Steuern des Betriebszustands der Anzeigevorrichtung (110, 410) auf Grundlage der ausgewählten Energieeinsparungsbetriebsart, wobei die Helligkeit des Anzeigebildschirms (150) in der ersten Energieeinsparungsbetriebsart gesenkt wird, und eine Hintergrundlichtbeleuchtungseinheit des Anzeigebildschirms (150) in der zweiten Energieeinsparungsbetriebsart vollständig deaktiviert wird;

- Übertragen von Steuerinformationen ausgehend von der Anzeigevorrichtung (110, 410) mittels eines herstellerspezifischen virtuellen Steuerpanels, 'VCP', in der Monitorbefehlssteuersatz-, 'MCCS' ,-Sprache gemäß dem Anzeigedatenkanal-, 'DDC', -Standard über das mindestens eine Kabel an eine Energieverwaltungsfunktion der externen Rechenvorrichtung (170, 470), wenn in die zweite Energieeinsparungsbetriebsart eingetreten wird, wobei die Steuerinformationen die Abwesenheit eines Nutzers an die Energieverwaltungsfunktion der externen Rechenvorrichtung (170, 470) angeben; und

- Steuern, durch die Energieverwaltungsfunktion der externen Rechenvorrichtung (170, 470), des Betriebszustands der externen Rechenvorrichtung (170, 470) auf Grundlage zumindest der übertragenen Steuerinformationen.


 
9. Verfahren nach Anspruch 8, darüber hinaus umfassend:

- Erkennen der Anwesenheit eines Nutzers des Computersystems (100, 400) in dem vordefinierten Bereich vor der Anzeigevorrichtung (110, 410);

- Auswählen, durch die Steuereinheit (140) der Anzeigevorrichtung (110, 410), einer normalen Betriebsart im Ansprechen auf die erkannte Anwesenheit des Nutzers;

- Steuern des Betriebszustands der Anzeigevorrichtung (110, 410) auf Grundlage der ausgewählten normalen Betriebsart;

- Übertragen von Aufweckinformationen ausgehend von der Anzeigevorrichtung (110, 410) an die externe Rechenvorrichtung (170, 470); und

- Steuern des Betriebszustands der externen Rechenvorrichtung (170, 470) auf Grundlage zumindest der übertragenen Aufweckinformationen.


 


Revendications

1. Dispositif d'affichage (110, 410) destiné à être utilisé dans un système informatique comprenant le dispositif d'affichage (110, 410) et un dispositif informatique (170, 470) externe au dispositif d'affichage (110, 410), le dispositif d'affichage (110, 410) comprenant :

- un circuit d'interface configuré pour recevoir un signal d'affichage depuis le dispositif informatique externe (170, 470) via au moins un câble connectant le dispositif d'affichage (110, 410) et le dispositif informatique externe (170, 470),

- un écran d'affichage (150) configuré pour afficher le signal d'affichage reçu ;

- un capteur (160) configuré pour fournir au moins un signal de commande indiquant la présence d'un utilisateur dans une zone prédéfinie devant l'écran d'affichage (150) ; et

- un dispositif de commande (140) configuré pour commander un état de fonctionnement du dispositif d'affichage (110, 410) et pour sélectionner un mode d'économie d'énergie parmi une pluralité de modes d'économie d'énergie au moins sur la base du signal de commande fourni par le capteur (160) ;
sachant que le dispositif de commande (140) est en outre configuré de telle sorte que, en fonctionnement du dispositif d'affichage (110, 410), le dispositif de commande (140) sélectionne immédiatement un premier mode d'économie d'énergie sans aucun temps d'attente lorsqu'une absence de l'utilisateur est détectée par le capteur et sélectionne un deuxième mode d'économie d'énergie si une présence de l'utilisateur n'est pas détectée au cours d'une période prédéterminée après l'entrée dans le premier mode d'économie d'énergie, et commande l'état de fonctionnement sur la base du mode d'économie d'énergie sélectionné, de telle sorte que la luminosité de l'écran d'affichage (150) soit réduite dans le premier mode d'économie d'énergie, et qu'une unité de rétroéclairage de l'écran d'affichage (150) soit entièrement désactivée dans le deuxième mode d'économie d'énergie ; et

- sachant que le circuit d'interface est en outre configuré de telle sorte que, en fonctionnement du dispositif d'affichage (110, 410), le circuit d'interface transmette des informations de commande relatives à une détermination d'un état de fonctionnement du dispositif informatique externe (170, 470) via l'au moins un câble en retour à une fonction de gestion d'énergie du dispositif informatique externe (170, 470) lors de l'entrée dans le deuxième mode d'économie d'énergie, sachant que les informations de commande indiquent l'absence d'un utilisateur à la fonction de gestion d'énergie du dispositif informatique externe (170, 470), et les informations de commande sont transmises à la fonction de gestion d'énergie moyennant un panneau de commande virtuel spécifique au fabricant (VCP) dans le langage de contrôle-commande de moniteur (MCCS) conformément au référentiel de canal de données d'affichage (DDC).


 
2. Le dispositif d'affichage (110) selon la revendication 1, sachant que le circuit d'interface comprend au moins l'une d'une interface VGA, DVI, HDMI ou DP, et est configuré pour transmettre les informations de commande sur la base d'une interface de contrôle-commande de canal de données d'affichage (DDC/CI).
 
3. Le dispositif d'affichage (110, 410) selon l'une quelconque des revendications 1 à 2, sachant que les informations de commande comprennent des données de commande, comprenant des données relatives à au moins l'un des termes suivants : la présence de l'utilisateur dans la zone prédéfinie devant l'écran d'affichage (150) ; un mode d'économie d'énergie sélectionné par le dispositif de commande (140) ; et un état de fonctionnement demandé du dispositif informatique externe (170, 470).
 
4. Le dispositif d'affichage (110, 410) selon l'une quelconque des revendications 1 à 3, comprenant en outre au moins une fonction de temporisateur, lorsque le dispositif de commande (140) est configuré pour sélectionner le premier mode d'économie d'énergie (M2-1) en réponse à la détection de l'absence d'un utilisateur dans la zone prédéfinie devant l'écran d'affichage (150) et au moins le deuxième mode d'économie d'énergie (M2-2, M2-3, M2-4) en réponse à l'expiration du temporisateur après la détection de l'absence sans aucune détection effectuée entre-temps d'une présence de l'utilisateur dans la zone prédéfinie devant l'écran d'affichage (150).
 
5. Le dispositif d'affichage (110, 410) selon l'une quelconque des revendications 1 à 4, sachant que le dispositif de commande est configuré pour sélectionner au moins l'un des états de fonctionnement suivants du dispositif d'affichage (110, 410) :

- un état de suspension (S3-1), dans lequel au moins l'écran d'affichage (150) est arrêté ou fonctionne avec une luminosité réduite et au moins un autre composant de circuit du dispositif d'affichage, en particulier le capteur (160) et/ou un dispositif d'échelle, reste dans un état de fonctionnement normal ;

- un état de repos (S3-2), dans lequel à la fois l'écran d'affichage (150) et l'au moins un autre composant de circuit sont arrêtés ; et

- un état d'arrêt (S3-3) ou un état de veille, dans lequel tous les composants de circuit du dispositif d'affichage (110, 410) non nécessaires pour remettre le dispositif d'affichage (110, 410) dans un état actif (S3-0) sont arrêtés.


 
6. Système informatique (100, 400) comprenant :

- le dispositif d'affichage (110, 410) selon l'une quelconque des revendications 1 à 5 ; et

- un dispositif informatique (170, 470) externe au dispositif d'affichage (110, 410), connecté au dispositif d'affichage (110, 410) via au moins un câble, sachant que le dispositif informatique (170, 470) comprend une fonction de gestion d'énergie (180), laquelle est configurée de telle sorte que, en fonctionnement du système informatique, elle mette le dispositif informatique (170, 470) dans un état de fonctionnement au moins sur la base des informations de commande fournies par le dispositif d'affichage (110, 410) .


 
7. Le système informatique (100, 400) selon la revendication 6, sachant que la fonction de gestion d'énergie (180) est configurée pour lire une variable de commande spécifique au fabricant du dispositif d'affichage (110, 410) en cas de survenance d'au moins un terme parmi une demande d'interruption transmise par le dispositif d'affichage (110, 410) ou un dépassement de temps d'un temporisateur du dispositif informatique (170, 470).
 
8. Procédé de gestion des états de fonctionnement d'un système informatique (100, 400) comprenant un dispositif d'affichage (110, 410) selon l'une ou plusieurs des revendications 1 à 5 connecté à un dispositif informatique externe (170, 470) via au moins un câble, le procédé comprenant :

- la détection, par un capteur du dispositif d'affichage, d'une absence d'un utilisateur du système informatique (100) depuis une zone prédéfinie devant le dispositif d'affichage (110, 410) ;

- la sélection, par un dispositif de commande (140) du dispositif d'affichage (110, 410), d'un premier mode d'économie d'énergie parmi une pluralité de modes d'économie d'énergie immédiatement en réponse à l'absence détectée de l'utilisateur sans aucun temps d'attente et d'un deuxième mode d'économie d'énergie parmi la pluralité de modes d'économie d'énergie en réponse à l'expiration d'une période prédéterminée après l'entrée dans le premier mode d'économie d'énergie ;

- la commande de l'état de fonctionnement du dispositif d'affichage (110, 410) sur la base du mode d'économie d'énergie sélectionné, sachant que la luminosité de l'écran d'affichage (150) est réduite dans le premier mode d'économie d'énergie et une unité de rétroéclairage de l'écran d'affichage (150) est entièrement désactivée dans le deuxième mode d'économie d'énergie ;

- la transmission d'informations de commande depuis le dispositif d'affichage (110, 410) moyennant le panneau de commande virtuel spécifique au fabricant (VCP) dans le langage de contrôle-commande de moniteur (MCCS) conformément au référentiel de canal de données d'affichage (DDC) via l'au moins un câble à une fonction de gestion d'énergie du dispositif informatique externe (170, 470) lors de l'entrée dans le deuxième mode d'économie d'énergie, les informations de commande indiquant l'absence d'un utilisateur à la fonction de gestion d'énergie du dispositif informatique externe (170, 470) ; et

- la commande, par la fonction de gestion d'énergie du dispositif informatique externe (170, 470), de l'état de fonctionnement du dispositif informatique externe (170, 470) au moins sur la base des informations de commande transmises.


 
9. Le procédé selon la revendication 8, comprenant en outre :

- la détection de la présence d'un utilisateur du système informatique (100, 400) dans la zone prédéfinie devant le dispositif d'affichage (110, 410) ;

- la sélection, par le dispositif de commande (140) du dispositif d'affichage (110, 410), d'un mode de fonctionnement normal en réponse à la présence détectée de l'utilisateur ;

- la commande de l'état de fonctionnement du dispositif d'affichage (110, 410) sur la base du mode de fonctionnement normal sélectionné ;

- la transmission d'informations de réveil depuis le dispositif d'affichage (110, 410) au dispositif informatique externe (170, 470) ; et

- la commande de l'état de fonctionnement du dispositif informatique externe (170, 470) au moins sur la base des informations de réveil transmises.


 




Drawing

















Cited references

REFERENCES CITED IN THE DESCRIPTION



This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description