(19)
(11)EP 3 104 414 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
06.05.2020 Bulletin 2020/19

(21)Application number: 15171314.6

(22)Date of filing:  10.06.2015
(51)Int. Cl.: 
H01L 27/146  (2006.01)

(54)

IMAGE SENSOR, OPTOELECTRONIC SYSTEM COMPRISING SAID IMAGE SENSOR, AND METHOD FOR MANUFACTURING SAID IMAGE SENSOR

BILDSENSOR, OPTOELEKTRONISCHES SYSTEM MIT BESAGTEM BILDSENSOR UND VERFAHREN ZUR HERSTELLUNG DES BESAGTEN BILDSENSORS

CAPTEUR D'IMAGE, SYSTÈME OPTOÉLECTRONIQUE COMPRENANT LEDIT CAPTEUR ET PROCÉDÉ DE FABRICATION DUDIT CAPTEUR


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(43)Date of publication of application:
14.12.2016 Bulletin 2016/50

(73)Proprietor: Fundació Institut de Ciències Fotòniques
08860 Castelldefels (Barcelona) (ES)

(72)Inventors:
  • Konstantatos, Gerasimos
    08860 Castelldefels (ES)
  • Koppens, Frank
    08860 Castelldefels (ES)
  • Goossens, Stijn
    08860 Castelldefels (ES)
  • Piqueras, Juan José
    08860 Castelldefels (ES)
  • Pérez, Raúl
    08860 Castelldefels (ES)

(74)Representative: Ponti & Partners, S.L.P 
C. de Consell de Cent 322
08007 Barcelona
08007 Barcelona (ES)


(56)References cited: : 
EP-A1- 1 628 348
US-A1- 2011 315 949
GB-A- 2 514 576
  
  • KONSTANTATOS G ET AL: "Solution-Processed Quantum Dot Photodetectors", PROCEEDINGS OF THE IEEE, IEEE. NEW YORK, US, vol. 97, no. 10, 1 October 2009 (2009-10-01), pages 1666-1683, XP011276720, ISSN: 0018-9219, DOI: 10.1109/JPROC.2009.2025612
  • RYZHII V ET AL: "Terahertz and infrared photodetection using p-i-n multiple-graphene-layer structures", JOURNAL OF APPLIED PHYSICS, AMERICAN INSTITUTE OF PHYSICS, US, vol. 107, no. 5, 9 March 2010 (2010-03-09) , pages 54512-54512, XP012133637, ISSN: 0021-8979, DOI: 10.1063/1.3327441
  
Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


Description

FIELD OF THE INVENTION



[0001] The present invention relates to the field of image sensors, in particular image sensors comprising a plurality of pixels operatively connected to a control unit that includes a readout circuit for selectively reading out the plurality of pixels. An image sensor according to the present invention achieves a simple and efficient integration of the plurality of pixels with the control unit in a small footprint, leading to a compact integrated circuit architecture, and attains an improved pixel sensitivity. Moreover, the particular pixel design of the image sensor of the invention makes it possible to obtain pixels with high photoconductive gain, enhanced responsivity, and/or short response time. The present invention also relates to an optoelectronic system comprising said image sensor, and to a method for manufacturing said image sensor.

BACKGROUND OF THE INVENTION



[0002] The use of image sensors is known in numerous applications ranging from the general-consumer gadgets sector, to the professional photography, and to industrial, medical and/or scientific uses, just to cite a few.

[0003] A typical image sensor comprises a plurality of pixels, each comprising a photosensitive element or photodetector, that are operatively connected to a control unit that includes a readout circuit for selectively reading out the photo-signal generated by the light impinging on the photosensitive element of each pixel of the plurality of pixels.

[0004] Most image sensors use a photodiode as the photosensitive element in their pixels. Given that the quantum efficiency of typical photodiodes cannot exceed one for the visible and infrared ranges, such image sensors critically rely on reaching very low noise levels and/or on using long exposure times, to achieve high signal-to-noise ratios.

[0005] However, both of these techniques have important shortcomings. For example, designing the image sensor circuitry to achieve low noise requires placing a pre-amplification stage as close to the charge-generating element (i.e., the photodiode) as possible, as it is done for instance in an active pixel sensors in which the an amplifier is integrated inside the pixel. Moreover, the design of the overall readout circuit becomes more sophisticated. On the other hand, increasing the exposure time reduces the effective frame rate of the image sensor and may lead to blurring effects. Moreover, a longer exposure time enhances the adverse effect of thermal noise, which in turn makes the design requirements for the readout circuit even more demanding.

[0006] Other known technologies, such as for instance avalanche photodiodes or image intensifiers, despite being able to provide photodetectors with some photoconductive gain via carrier multiplication effects, have proven to be difficult to integrate into high-resolution image sensors. Moreover, these technologies require operation conditions that are unsuitable for practical image sensors (e.g. avalanche photodiodes typically require very high reverse bias voltages for proper operation), as described for example in chapter 2 of "Smart CMOS Image Sensors and Applications", Jun Ohta, CRC Press, September 19 2007.

[0007] The use of active devices based on two-dimensional (2D) materials, such as for instance graphene, for different applications is the object of on-going research. For example, single-pixel photodetectors having a photosensitive element made of graphene have been demonstrated as proof of concept. The use of photodetectors based on 2D materials (e.g., graphene, as disclosed in for instance US 8,053,782 B2) or on semiconductor nanocrystals (e.g. quantum dots, see for example patent US 8,803,128 B2) in the pixels of full-size image sensors has also been proposed. However, such image sensors typically exhibit limited photoconductive gain.

[0008] Document WO 2013/017605 A1 discloses a phototransistor comprising a transport layer made of graphene, and a sensitizing layer disposed above the transport layer and that is made of colloidal quantum dots. The sensitizing layer absorbs incident light and induces changes in the conductivity of the transport layer to which is associated. The high carrier mobility of graphene and the long carrier lifetime in the quantum dots make it possible for the phototransistor disclosed therein to obtain a large photoconductive gain. However, the device can only achieve desired responsivity levels at the expense of increased dark current levels, which in turn degrade the sensitivity and the shot-noise limit of the device.

[0009] Therefore, it would be highly desirable to have image sensors in which the photosensitive element of their pixels was capable of providing a high photoconductive gain, but without compromising the pixel sensitivity due to, for example, high dark current levels.

[0010] Another important aspect to take into account is the spectral range in which an image sensor is to operate as it will greatly determine the choice of the available light-absorbing materials for the fabrication of the photosensitive element of the pixels.

[0011] In that sense, silicon is widely used in image sensors operating in the visible and near infrared ranges. In contrast, compounds such as InGaAs or HgCdTe, among others, are often employed for the infrared range (including short-wave infrared and/or long-wave infrared subranges). Finally, for image sensors operating in the ultraviolet region, and shorter-wave ranges, some known suitable materials include wide-gap semiconductors, such as for instance AIGaN. Alternatively, technologies based on back-thinning of silicon or on intensified imagers, such as for example microchannel plate (MCP) photodetectors, can also be used for shorter-wave ranges.

[0012] On the other hand, in most image sensors the readout circuit (usually also referred to as readout integrated circuit, or ROIC) is implemented in silicon, for example using CMOS technology.

[0013] This means that a monolithic integration of the plurality of pixels of an image sensor with the readout circuit of said pixels can only be achieved for those image sensors designed to operate in the visible and/or near infrared ranges. However, image sensors operating in other spectral ranges will require hybrid integration of silicon (e.g., CMOS technology) with other materials used for the photodetectors of the pixels, such as InGaAs. Such hybrid integration involves difficult and costly bonding processes, as described for example in US 2008/093554 A1 and in US 6,107,618 A, which in turn impose a lower limit on the pixel size.

[0014] Developed in the last years, three dimensional (3D) integrated circuit technology allows the fabrication of integrated circuits by arranging active devices (e.g. transistors) in several levels at different heights, hence advantageously exploiting the third dimension of the structure.

[0015] In addition to obtaining very compact structures with reduced footprint, 3D integrated circuits offer an improved electrical performance compared to conventional integrated circuits. For example, as electrical interconnects can be distributed over an entire surface between levels of active devices, a higher density of shorter interconnects is possible, which results in faster circuits featuring more bandwidth. In addition, heterogeneous integration of circuits of different manufacturing technologies and/or materials becomes possible, by using for example wafer bumping processes to form interconnects.

[0016] A first type of 3D fabrication technology, known as 3D packaging, consists of stacking several semiconductor wafers and/or dies and interconnecting them vertically using through-substrate vias (TSVs) and traditional interconnect technology such as wire and/or flip-chip bonding to achieve a fully-operative vertical stack. Alternatively, monolithic 3D integration is another type of 3D fabrication technology in which layers of active devices are grown or deposited sequentially on a same substrate.

[0017] Document US 8,796,741 B2 discloses a monolithic 3D integrated circuit device that includes a first level comprising a first plurality of active devices, and a second level comprising a second plurality of active devices that comprise a layer of graphene. A further imager sensor is disclosed in US2011/315949A1.

[0018] It is therefore an object of the present invention to provide an enhanced image sensor in which the integration of its pixels with the control unit can be done in a simple and efficient manner while leading to a highly compact integrated circuit architecture.

[0019] It is also an object of the present invention to provide an image sensor in which its pixels comprise an improved photosensitive element capable of high photoconductive gain, enhanced responsivity, and/or short response time.

[0020] It is yet another object of the present invention to provide an image sensor with an improved sensitivity of its pixels, and that does not require deep cooling of the device to achieve high signal-to-noise ratios.

SUMMARY OF THE INVENTION



[0021] The objects of the present invention are solved with the image sensor of claim 1, the optoelectronic system of claim 15 and the method for manufacturing an image sensor of claim 16. Other favorable embodiments of the invention are defined in the dependent claims.

[0022] Because of the use of a monolithic three-dimensional integrated circuit, it is possible to obtain an image sensor having a very compact architecture. In particular, by arranging the photosensitive element of the pixels in the upper level and the active device of the pixels in the lower level, the footprint of the pixels can be made very small without compromising the pixel fill factor, which can still be very high or even close to 100%. Moreover, efficient use of the height of the structure is obtained by providing the control unit partially, or even entirely, in the lower level.

[0023] In the context of the present invention a monolithic three-dimensional integrated circuit preferably refers to a stacked arrangement of layers grown or deposited sequentially on a same substrate.

[0024] The control unit may be arranged in one or more layers of the lower level of the monolithic three-dimensional integrated circuit, wherein one of said one or more layers is a layer of a semiconductor material. In some embodiments the layer of a semiconductor material of the control unit is disposed above or below the layer of a semiconductor material of the active element of the pixels. However, in other embodiments they are a same layer.

[0025] In the context of the present invention the term two-dimensional material preferably refers to a material that comprises a plurality of atoms or molecules arranged as a two-dimensional sheet with a thickness substantially equal to the thickness of the atoms or molecules that constitute it.

[0026] In some embodiments, the transport layer of the photosensitive element of one or more pixels includes at least five, ten, twenty, forty or even fifty layers of a two-dimensional material.

[0027] Also in the context of the present invention a photosensitizing layer being associated to a transport layer preferably refers to the fact that an electron (or a hole) from an electron-hole pair generated in the photosensitizing layer by the absorption of a photon can be transferred to the transport layer while the hole (or the electron) of said electron-hole pair remains trapped in the photosensitizing layer, or an interface between the photosensitizing layer and the transport layer, such as for instance in a dielectric layer disposed therebetween. In some embodiments, the photosensitizing layer is disposed above, such as for example directly above, the transport layer. Alternatively, in some other embodiments the photosensitizing layer is disposed below, such as for example directly below, the transport layer, so that a photon must cross the transport layer before reaching the photosensitizing layer where it will be absorbed.

[0028] In this sense, the heterojunction formed by the photosensitizing layer and the transport layer slows down recombination and makes it possible to collect several electric carriers for a single absorbed photon, which compounded with the high carrier mobility of the two-dimensional material comprised in the transport layer, results in the photosensitive element of the pixels featuring very high photoconductive gain and responsivity.

[0029] In addition, the spectral sensitivity of the photosensitive element of the pixels can be advantageously tailored by appropriately selecting the material of the photosensitizing layer. In this manner, the spectral range for photodetection of the photosensitive element can be extended over a large bandwidth.

[0030] Finally, the dark current suppressing circuit makes it possible to substantially suppress the dark current generated in the photosensitive elements as a result of the biasing voltage. In this way it is no longer needed to give up in terms of electrical performance of the photosensitive elements (e.g. in terms of responsivity) in order to keep the dark current levels low. In consequence, regardless the biasing voltage applied, the image sensor of the present invention makes it possible to obtain enhanced pixel sensitivity and high signal-to-noise ratios, even without cooling the device.

[0031] In the context of the present invention, the dark current generated by the photosensitive element of a pixel during an exposure cycle is considered to have been substantially suppressed if the residual dark current at an output node of the dark current suppressing circuit is smaller than a 25%, 20%, 15%, 10%, 8%, 5%, 3% or even 1% of the original dark current at an input node of the dark current suppressing circuit.

[0032] Alternatively, in some embodiments of the present invention, the control unit of the image sensor is configured to, when a given pixel is to be read out, circuitally connect the first intermediate terminal of said pixel with the output terminal of said pixel, said output terminal being circuitally connected to the readout circuit through the dark current suppressing circuit.

[0033] In some embodiments, the photosensitizing layer of the photosensitive element of one or more pixels comprises a photo-absorbing semiconductor, a polymer, a dye, quantum dots (such as for instance colloidal quantum dots), Perovskite and/or a combination thereof.

[0034] The photosensitizing layer may for example comprise nanocomposite films containing blends of the aforementioned materials. It may also be a single-layered structure or, alternatively, a multi-layered structure, in which one or more of the aforementioned materials constitute different layers stacked on each other, each having thicknesses preferably between approximately 5nm and approximately 400nm.

[0035] In those embodiments in which the photosensitizing layer comprises quantum dots, these are preferably of one or more of the following types: Ag2S, Bi2S3, CdS, CdSe, CdHgTe, Cu2S, CIS (copper indium disulfide), CIGS (copper indium gallium selenide), CZTS (copper zinc tin sulfide), Ge, HgTe, InAs, InSb, ITO (indium tin oxide), PbS, PbSe, Si, SnO2, ZnO, and ZnS.

[0036] Similarly, in some embodiments the at least one layer of a two-dimensional material comprised in the transport layer of the photosensitive element of one or more pixels comprises one or more of the following materials: graphene, MoS2, MoSe2, WS2, WSe2, black phosphorus, SnS2, and h-BN (hexagonal boron nitride).

[0037] In some embodiments of the present invention, the dark current suppressing circuit comprises at least one level shifter adapted to subtract a voltage level that is substantially equal to the voltage level generated by the dark current of the photosensitive element of the pixels during an exposure cycle. Moreover, in these embodiments, the control unit is configured to, when a given pixel is to be read out, circuitally connect the first intermediate terminal with an input node of a given level shifter of said at least one level shifter and the output terminal of said pixel with an output node of said given level shifter.

[0038] The level shifter performs dark frame subtraction by advantageously removing an estimate of the mean fixed-pattern noise due to the dark current integration during the exposure cycle.

[0039] In the context of the present invention, two voltage levels are considered to be substantially equal if one differs from the other in less than a 25%, 20%, 15%, 10%, 8%, 5%, 3% or even 1%.

[0040] In the context of the present invention, a layer (or an element or a device) of the monolithic three-dimensional integrated circuit is considered to be above another, if the former is farther from the at least one layer of a semiconductor material of the lower level of the monolithic three-dimensional integrated circuit than the latter, along a direction perpendicular to said at least one layer of a semiconductor material.

[0041] Similarly, a layer (or an element or a device) of the monolithic three-dimensional integrated circuit is considered to be below another, if the former is closer to the at least one layer of a semiconductor material of the lower level of said monolithic three-dimensional integrated circuit than the latter, along said perpendicular direction.

[0042] Also in accordance with the present invention, the term above (or below) is not to be construed as implying than one layer (or element or device) is immediately or directly above (or below) another unless explicitly stated otherwise. In that sense, a layer being disposed above (or below) another does not preclude the possibility of additional layers being arranged in between those two.

[0043] In the same manner, in the context of the present invention the term circuitally connected preferably refers to the fact that a first entity (e.g., a terminal, an element or a circuit) may be connected to a second entity by means of a circuit, which may comprise one or more conductive traces and/or one or more circuit components operatively arranged between said two entities. Thus, the term circuitally connected is not to be construed as requiring a direct ohmic connection of the first entity to the second entity (i.e., without any intervening circuit components) unless explicitly stated.

[0044] In some other embodiments, the control unit comprises a biasing circuit for biasing the plurality of pixels, and the dark current suppressing circuit comprises at least one reference element having a dark conductance that matches the dark conductance of the photosensitive element of the pixels. The/each reference element is circuitally connected between a second intermediate terminal and a second biasing terminal, the second biasing terminal being circuitally connected to the biasing circuit. Moreover, the photosensitive element of each pixel is circuitally connected between the first intermediate terminal of said pixel and a first biasing terminal provided in said pixel, the first biasing terminal of each pixel being circuitally connected to the biasing circuit. In these embodiments, the biasing circuit is adapted to provide a biasing voltage between the first biasing terminal of the photosensitive element of the pixels of the plurality of pixels and the second biasing terminal of the at least one reference element. Additionally, the control unit is configured to, when a given pixel is to be read out, circuitally connect the first intermediate terminal of said pixel and the second intermediate terminal of a reference element of said at least one reference element with the output terminal of said pixel.

[0045] In this manner, the reference or blind element simulates the behavior of the photosensitive element of the pixels during the exposure cycle, enabling a balanced readout scheme of the photo-signal generated in the photosensitive element of the pixels by the incident light.

[0046] In accordance with the present invention, the dark conductance of a reference element substantially matches the dark conductance of the photosensitive element of the pixels if the dark conductance of the reference element does not differ from the dark conductance of the photosensitive element of the pixels by more than 25%, 20%, 15%, 15%, 10%, 8%, 5%, 3% or even 1%.

[0047] In these embodiments, the biasing voltage applied between the first biasing terminal of the photosensitive element of the pixels and the second biasing terminal of the at least one reference element is preferably a balanced voltage. That is, a first biasing voltage applied between said first biasing terminal and a reference terminal of the biasing circuit is symmetrical (i.e., same magnitude but opposite sign) to a second biasing voltage applied between said second biasing terminal and said reference terminal.

[0048] Then, by circuitally connecting the first intermediate terminal of said pixel and the second intermediate terminal of a reference element of said at least one reference element with the output terminal of said pixel, the differential voltage at the resulting node formed by the connection of the two intermediate terminals contains directly the photo-signal of said pixel.

[0049] Preferably, a reference element of the at least one reference element is arranged in said upper level and comprises a transport layer including at least one layer of a two-dimensional material. More preferably, said reference element further comprises a photosensitizing layer associated to the transport layer of said reference element.

[0050] As the structure of the reference element mimics that of the photosensitive elements of the pixels, it is possible to obtain in a simple manner a reference element with a dark conductance that accurately matches the dark conductance of the photosensitive elements.

[0051] In some embodiments, said reference element has the same geometry as the photosensitive element of the pixels but smaller transversal dimensions. In this way, the overhead in real estate due to the presence of the reference element is minimized without altering the dark conductance of said reference element, which must substantially match the dark conductance of the photosensitive elements.

[0052] In an embodiment the transversal dimensions of the at least one reference element are below the diffraction limit for the range of wavelengths of operation of the photosensitive element of the plurality of pixels. In this way, the at least one reference element does not block any light incident on the image sensor.

[0053] In some examples in which a reference element comprises a transport layer and a photosensitizing layer associated thereto, said reference element further comprises a first light-blocking layer disposed above the photosensitizing layer and the transport layer of said reference element.

[0054] The first light-blocking layer advantageously cover the photosensitizing layer and the transport layer of said reference element, ensuring that no photo-signal is generated in the reference element by light impinging on the image sensor. Otherwise, the dark conductance of said reference element would be undesirably modified and, hence, its ability to subtract the dark current component from the photo-signal generated at the photosensitive element of the pixels would be degraded.

[0055] More preferably, said reference element also comprises a second light-blocking layer disposed below the photosensitizing layer and the transport layer of said reference element.

[0056] The second light-blocking layer protects the photosensitizing layer and the transport layer of said reference element from light that could arrive through the layers of the lower level of the monolithic three-dimensional integrated circuit, as it could happen in those cases in which the image sensor comprises a transparent or partially transparent substrate.

[0057] In an embodiment, the first and/or second light-blocking layers take the form of a passivation layer, said passivation layer preferably comprising an oxide.

[0058] Alternatively, in other examples of such cases, the photosensitizing layer of said reference element is not sensitive in the range of wavelengths of operation of the photosensitive element of the plurality of pixels.

[0059] This results in a simpler reference element design because it eliminates the need for light-blocking layers, as the light impinging on said reference element cannot be absorbed by its photosensitive layer.

[0060] In the context of the present invention, a photosensitizing layer of a reference element is considered not to be sensitive in the range of wavelengths of operation of the photosensitive element of the plurality of pixels if the spectral absorbance of the photosensitizing layer of said reference element at any given wavelength within that range is smaller than a 25% of the lowest spectral absorbance of the photosensitive element for the range of wavelengths of operation.

[0061] Optionally, said reference element is arranged below the photosensitive element of a pixel of the plurality of pixels. Such an arrangement advantageously exploits the third dimension of the integrated circuit to obtain an even more compact architecture. Moreover, by disposing the reference element below the photosensitive element, light absorption by the transport layer and/or the photosensitizing layer of the reference element is further prevented.

[0062] However, in other embodiments said reference element is disposed on a same layer as the photosensitive element of a pixel.

[0063] Alternatively, a reference element of the at least one reference element may be arranged in said lower level and comprise a resistor. Such resistor may be a fixed resistor or, alternatively, a variable resistor (such as for instance an analog and/or digital variable resistor).

[0064] Said resistor can be advantageously implemented in the lower level of the monolithic three-dimensional integrated circuit using inexpensive silicon-based technologies, such as for instance CMOS technology. Furthermore, by taking one or more reference elements to the lower levels, more space on the upper level becomes available for the photosensitive element of the pixels.

[0065] In some cases, the upper level comprises one or more insulating layers associated to the photosensitive element of the plurality of pixels. In such cases, at least one pixel of the plurality of pixels may preferably comprise:
  • a back-gate terminal disposed below the photosensitive element of said at least one pixel, between an insulating layer disposed below the photosensitive element of the plurality of pixels and the lower level of the monolithic three-dimensional integrated circuit; and/or
  • a top-gate terminal disposed above the photosensitive element of said at least one pixel.


[0066] Preferably, said one or more insulating layers comprise an oxide.

[0067] In accordance with the present invention, an insulating layer associated to a photosensitive element preferably refers to the fact that the insulating layer is disposed above (such as for instance directly above) or alternatively below (such as for instance directly below) both the transport layer and the photosensitizing layer of said photosensitive element.

[0068] By providing a back-gate terminal and/or a top-gate terminal, the photosensitive element of the pixels can be gated to finely control the conduction and photosensitivity of the photosensitizing layer.

[0069] Preferably, the top-gate terminal is made of a transparent material, so as to not hinder the light absorption capabilities of the photosensitive element of the pixels.

[0070] In those cases in which a reference element of the at least one reference element comprises a transport layer, said reference element may also comprise a back-gate terminal disposed below its transport layer and/or a top-gate terminal disposed above its transport layer. More preferably, an insulation layer is provided between the transport layer of said reference element and the back-gate terminal (or the top-gate terminal).

[0071] The photosensitive element of each pixel comprises at its ends a drain contact and a source contact. The drain contact is circuitally connected to the first intermediate terminal of the pixel, while the source contact may be circuitally connected to the first biasing terminal of the pixel.

[0072] In some embodiments, the biasing circuit is further adapted to provide a voltage offset on both the source contact and the drain contact of the photosensitive element of the pixels. In such cases, a voltage at the source contact of the photosensitive element is preferably given by VSRC = VOFFSET + VBIAS, while the voltage at the drain contact is preferably given by VDRN = VOFFSET. VOFFSET is the common-mode voltage, or voltage offset, applied to the drain and source contacts, while VBIAS is the voltage drop across the ends of the photosensitive element.

[0073] Similarly, in those cases in which a reference element of the at least one reference element comprises a transport layer, said reference element preferably comprises at its ends a drain contact and a source contact. In such cases, the biasing circuit may be further adapted to provide a voltage offset on both the source contact and the drain contact of said reference element in the same way as just described above for the photosensitive element.

[0074] Preferably, at least one pixel of the plurality of pixels comprises a conductive interconnect to couple the active device of said pixel to the photosensitive element of said pixel.

[0075] In some cases, the conductive interconnect comprises a vertical contact extending from the lower level to the upper level of the monolithic three-dimensional integrated circuit and having a first section connected to the active device of said pixel, said first section being disposed on the at least one semiconductor layer of said active device, and a second section ohmically connected to the transport layer of the photosensitive element of said pixel.

[0076] Such type of conductive interconnect is particularly advantageous when the active device of a pixel is in the perpendicular projection of the transport layer of the photosensitive element of said pixel. In these cases, the transport layer of said photosensitive element intersects the vertical contact perpendicularly at the second section, and a good ohmic connection can be obtained between the vertical contact and the at least one layer of a two-dimensional material comprised in the transport layer.

[0077] The first section and/or the second section may be at an end of the vertical contact or, alternatively, at an intermediate point of the vertical contact. In a preferred embodiment, the first section and the second section are at the opposite ends of the vertical contact.

[0078] Alternatively, in some other cases the conductive interconnect comprises a vertical contact extending from the lower level to the upper level of the monolithic three-dimensional integrated circuit and having a first section connected to the active device of said pixel, said first section being disposed on the at least one semiconductor layer of said active device; and a lateral contact arranged on said upper level and connected to a second section of the vertical contact. The lateral contact is ohmically connected to the transport layer of the photosensitive element of said pixel and comprises a portion being parallel to the transport layer of said photosensitive element.

[0079] The lateral contact makes it possible to overcome surface roughness, and even trenches on the surface of the integrated circuit, and establish a good electrical connection with the transport layer of the photosensitive elements in a more flexible manner, especially when the vertical contact of the conductive interconnect cannot be arranged underneath the transport layer of the photosensitive element of said pixel.

[0080] Preferably, said portion parallel to the transport layer of said photosensitive element is disposed directly above, directly below or coplanar to said transport layer. Such an arrangement facilitates, structurally and electrically, the connection of the lateral contact with the one or more layers of two-dimensional material comprised in the transport layer of the photosensitive element of the pixel

[0081] The active device of each pixel of the plurality of pixels may comprise a switch, an amplifier, a filter, a digitizer, a level shifter and/or a storage element.

[0082] According to the present invention, the term active device preferably refers to a device comprising at least one transistor and requiring at least one control signal or a biasing voltage, regardless whether said device achieves any gain.

[0083] Embedding more electronics in each pixel may be preferred for those applications of the image sensor in which high bandwidth and throughput is required.

[0084] In some embodiments of the image sensor of the present invention, the plurality of pixels are grouped into clusters, each cluster comprising one or more pixels, with the photosensitizing layer of the photosensitive element of the one or more pixels of each cluster being sensitive to a different range of the spectrum.

[0085] This makes it possible to obtain an image sensor with an extended frequency range of operation, covering from X-ray photons and the ultraviolet (UV) to the infrared (IR), including near-infrared (NIR), short-wave infrared (SWIR), mid-wave infrared (MWIR) and long-wave infrared (LWIR), and even THz frequencies. It also allows implementing image sensors having multicolor pixels by, for example, tailoring the properties of the material selected for the photosensitizing layer.

[0086] Preferably, for at least one pixel of the plurality of pixels, the active device of said at least one pixel is operatively coupled to the first intermediate terminal of the photosensitive element of said at least one pixel. Such an interconnection scheme allows the active device to implement part or even all of the circuitry required to bring the photo-signal generated at the photosensitive element of a given pixel to the output terminal of said pixel.

[0087] In certain embodiments of the image sensor of the present invention, the plurality of pixels are arranged as a two-dimensional array comprising a plurality of rows and columns. Preferably, the rows and/or columns of the array are sequentially addressable.

[0088] In a first group of such embodiments, the dark current suppressing circuit comprises as many reference elements as there are columns in the array, each reference element being associated to the pixels of a different column; the active device of each pixel comprises a first switch configured to selectively connect the first intermediate terminal of the pixel to the second intermediate terminal of the reference element associated to the column of said pixel, and a second switch configured to selectively connect the first intermediate terminal of the pixel to its output terminal; and the readout circuit comprises:
  • as many amplifiers as there are columns, each amplifier having an input terminal, circuitally connected to the output terminal of the pixels of a given column; and
  • a storage element connected in series to an output terminal of each amplifier, each storage element being configured to store a voltage proportional to the photo-signal generated in a pixel of said given column.


[0089] Given that a same reference element and most of the readout circuitry is shared by the pixels of an entire column, the resulting pixel design in these embodiments is greatly simplified.

[0090] In a second group of such embodiments, the dark current suppressing circuit comprises a reference element arranged in each pixel of the plurality of pixels, each reference element having its second intermediate terminal connected to the first intermediate terminal of the pixel; and the active device of each pixel comprises a row-select switch connected to its output terminal.

[0091] Despite increasing the complexity of the pixel design, having a reference element in each pixel provides a better control to suppress the dark current generated by the photosensitive element of the pixels, as each reference element can be fine-tuned so that its dark conductance closely matches the dark conductance of the photosensitive element to which said reference element is associated.

[0092] In an embodiment of said second group, the row-select switch of the active device of each pixel is configured to selectively connect the output terminal of the pixel to its first intermediate terminal; and the readout circuit comprises:
  • as many amplifiers as there are columns, each amplifier having an input terminal, circuitally connected to the output terminal of the pixels of a given column; and
  • a storage element connected in series to an output terminal of each amplifier, each storage element being configured to store a voltage proportional to the photo-signal generated in a pixel of said given column.


[0093] Such an embodiment constitutes a good trade-off in terms of pixel design as the inclusion of the reference element into the pixel is counterbalanced with a simplified design of the active device of the pixels.

[0094] In an alternative embodiment of said second group, the active device of each pixel further comprises:
  • an amplifier having an input terminal, circuitally connected to the first intermediate terminal, and an output terminal; and
  • a storage element connected in series to the output terminal of the amplifier, the storage element being configured to store a voltage proportional to the photo-signal generated in the photosensitive element of the pixel; and
wherein the row-select switch is configured to selectively connect the output terminal of the pixel to the storage element.

[0095] In-pixel amplification makes the pixel more robust to noise and allows faster pixel readout, improving the scalability of the pixel array of the image sensor.

[0096] In some further embodiments of the image sensor according to the present invention, the dark current suppressing circuit comprises level shifters instead of reference elements. However, the topology of the readout circuit and the active device of the pixels are similar to those already discussed.

[0097] In a third group of such embodiments the dark current suppressing circuit comprises as many level shifters as there are columns in the array, each level shifter being associated to the pixels of a different column; the active device of each pixel comprises a first switch configured to selectively connect the first intermediate terminal of the pixel to the input node of the level shifter associated to the column of said pixel, and a second switch configured to selectively connect the output node of said level shifter to the output terminal of said pixel; and the readout circuit comprises:
  • as many amplifiers as there are columns, each amplifier having an input terminal, circuitally connected to the output terminal of the pixels of a given column; and
  • a storage element connected in series to an output terminal of each amplifier, each storage element being configured to store a voltage proportional to the photo-signal generated in a pixel of said given column.


[0098] In a fourth group of such embodiments, the dark current suppressing circuit comprises a level shifter arranged in each pixel of the plurality of pixels, each level shifter having its input node connected to the first intermediate terminal of the pixel; and the active device of each pixel comprises a row-select switch connected to its output terminal.

[0099] In an embodiment of said fourth group, the row-select switch of the active device of each pixel is configured to selectively connect the output terminal of the pixel to the output node of the level shifter comprised in said pixel; and the readout circuit comprises:
  • as many amplifiers as there are columns, each amplifier having an input terminal, circuitally connected to the output terminal of the pixels of a given column; and
  • a storage element connected in series to an output terminal of each amplifier, each storage element being configured to store a voltage proportional to the photo-signal generated in a pixel of said given column.


[0100] In an alternative embodiment of said fourth group, the active device of each pixel further comprises:
  • an amplifier having an input terminal, circuitally connected to the output node of the level shifter of said pixel, and an output terminal; and
  • a storage element connected in series to the output terminal of the amplifier, the storage element being configured to store a voltage proportional to the photo-signal generated in the photosensitive element of the pixel; and
wherein the row-select switch is configured to selectively connect the output terminal of the pixel to the storage element.

[0101] The control unit preferably includes an interconnection circuit (such as for example, but not limited to, a multiplexor) operatively connected to the readout circuit and that comprises a plurality of output nodes. The interconnection circuit allows circuitally connecting, through the readout circuit, the output terminal of any of the pixels of the array with one or more output nodes.

[0102] In some embodiments, the control unit comprises a post-amplification stage operatively connected to at least one output node of the plurality of output nodes of the interconnection circuit.

[0103] Optionally, the control unit further comprises a correlation double sampling stage operatively connected between said at least one output node of the interconnection circuit and the post-amplification stage. The correlation double sampling stage advantageously removes any undesired offset in the values detected from the photo-signals read out from the pixels and reduces readout noise components.

[0104] Also optionally, the control unit further comprises an analog-to-digital converter operatively connected after the post-amplification stage. In this way, the image sensor outputs can be directly interfaced with digital circuitry, such as for example a field-programmable gate array (FPGA), a digital signal processor (DSP), a microprocessor or a microcontroller.

[0105] Another aspect of the present invention relates to an optoelectronic system that comprises:
  • an image sensor according to the present invention;
  • an optical module operatively interfaced to the image sensor, the optical module being adapted to focus incoming light on the plurality of pixels;
  • a power supply module operatively connected to the control unit of the image sensor, the power supply module being configured to provide a biasing voltage to the image sensor;
  • an analog and/or digital control module operatively connected to the control unit of the image sensor, the analog and/or digital control module being configured to provide control signals to the control unit to selectively read out the pixels, and to receive a plurality of detected values corresponding to the photo-signals read out from the plurality of pixels by the readout circuit; and
  • a peripheral module operatively connected to the analog and/or digital control module, the peripheral module being configured to process, store and/or render an image obtained from the plurality of detected values.


[0106] In some embodiments, the optoelectronic system of the present invention forms part of a camera, which can be used for day and/or night vision, photography, automotive applications, machine vision for inspection applications (such as for instance SWIR inspection of food or semiconductors), or surveillance, among other applications.

[0107] Yet another aspect of the present invention relates to a method for manufacturing an image sensor as a monolithic three-dimensional integrated circuit, wherein the image sensor comprises a plurality of pixels operatively connected to a control unit that includes a readout circuit for selectively reading out the photo-signals generated by the light impinging on the plurality of pixels, the method comprising the steps of:
  1. a) providing at least one layer of semiconductor material on a substrate, said at least one layer of semiconductor material forming a lower level of the monolithic three-dimensional integrated circuit;
  2. b) for each pixel of the plurality of pixels, arranging an active device at a selected location of the at least one layer of semiconductor material of said lower level, and providing an output terminal to the pixel;
  3. c) arranging at least a part of the control unit in said lower level, and circuitally connecting the output terminal of each pixel to the readout circuit of the control unit;
  4. d) providing a transport layer including at least one layer of a two-dimensional material, and a photosensitizing layer associated to the transport layer, the transport layer and the photosensitizing layer forming an upper level of the monolithic three-dimensional integrated circuit, said upper level being disposed above said lower level;
  5. e) for each pixel of the plurality of pixels, arranging a photosensitive element at a selected location of said upper level, and circuitally connecting the photosensitive element to a first intermediate terminal being provided in said pixel;
  6. f) operatively coupling the photosensitive element of each pixel to the active device of said pixel; and
  7. g) providing a dark current suppressing circuit configured to substantially suppress the dark current generated by the photosensitive element of the pixels during an exposure cycle.


[0108] Moreover, the control unit is configured to, when a given pixel is to be read out, circuitally connect the first intermediate terminal of said pixel with the output terminal of said pixel through the dark current suppressing circuit.

[0109] In some preferred embodiments, the control unit further includes a biasing circuit for biasing the plurality of pixels, and the dark current suppressing circuit comprises at least one reference element having a dark conductance that substantially matches the dark conductance of the photosensitive element of the pixels. In such embodiments, the method further comprises the steps of:
  • for each pixel of the plurality of pixels, circuitally connecting the photosensitive element between the first intermediate terminal and a first biasing terminal being provided in said pixel;
  • circuitally connecting the/each reference element between a second intermediate terminal and a second biasing terminal being provided in the monolithic three-dimensional integrated circuit; and
  • circuitally connecting the first biasing terminal of each pixel of the plurality of pixels and the second biasing terminal of the at least one reference element to the biasing circuit.


[0110] Additionally, in these embodiments, the control unit is configured to, when a given pixel is to be read out, circuitally connect the first intermediate terminal of said pixel and the second intermediate terminal of a reference element of said at least one reference element with the output terminal of said pixel.

[0111] In some embodiments, the method further comprises the step of providing an encapsulation layer above the transport layer and the photosensitizing layer. In this manner, the photosensitive elements of the pixels are advantageously protected.

BRIEF DESCRIPTION OF THE FIGURES



[0112] In the following some preferred embodiments of the invention will be described with reference to the enclosed figures. They are provided only for illustration purposes without however limiting the scope of the invention.

Figure 1 a is a top plan view of a block diagram of an exemplary image sensor according to the present invention.

Figure 1b corresponds to a cross-sectional view of the image sensor of figure 1a along a line B-B'.

Figures 2a-2f are cross-sectional views of a pixel of an image sensor according to the present invention that comprises two conductive interconnects to couple the active device of the pixel to the transport layer of the photosensitive element of said pixel, in which: (a) the conductive interconnects comprise a lateral contact with a portion disposed directly below and parallel to the transport layer; (b) the conductive interconnects comprise a lateral contact with a portion disposed coplanar to the transport layer; (c) the conductive interconnects comprise a lateral contact with a portion disposed directly above and parallel to the transport layer; (d) the conductive interconnects comprise a lateral contact with a portion above and parallel to the transport layer and an additional vertical portion; (e) the conductive interconnects comprise a vertical contact with an end disposed directly below and ohmically connected to the transport layer; (f) the conductive interconnects comprise a vertical contact ohmically connected to the transport layer at an intermediate point of the vertical contact.

Figure 2g depicts, in a cross-sectional view, an alternative to the embodiment shown in figure 1b in which the photosensitive elements of a row of pixels share a common source contact.

Figure 3 is a cross-sectional view of a pixel for an image sensor according to the present invention, in which the pixel comprises a back-gate terminal and a top-gate terminal.

Figure 4 illustrates three different examples of a dark current suppressing circuit of the image sensor of the present invention, the dark current suppressing circuit being circuitally connected to the photosensitive element of a pixel, in which: (a) the dark current suppressing circuit comprises a reference element that is directly connected to the photosensitive element of the pixel; (b) the dark current suppressing circuit comprises a reference element that is connected to the photosensitive element of the pixel through a current skimming circuit; and (c) the dark current suppressing circuit comprises a level shifter cascaded to a transimpedance amplifier, and is connected in series with the photosensitive element of the pixel.

Figure 5 shows four different examples of a reference element comprised in an image sensor according to the present invention, the reference element being circuitally connected to the photosensitive element of a pixel: (a) the reference element is a fixed resistor; (b) the reference element is a variable resistor; (c) the reference element comprises a transport layer without any photosensitizing layer associated thereto; and (d) the reference element comprises a transport layer, a photosensitizing layer associated thereto and a first light-blocking layer.

Figure 6 corresponds to a cross-sectional view of a pixel suitable for an image sensor in accordance with the present invention, in which the pixel comprises a reference element arranged below the photosensitive element of the pixel.

Figure 7a shows a schematic block diagram of an embodiment of an image sensor according to the present invention in which a same reference element and a same amplifier cascaded to a storage element is shared by several pixels.

Figure 7b is a schematic block diagram of another embodiment of an image sensor according to the present invention in which each pixel comprises a reference element, but a same amplifier cascaded to a storage element is shared by several pixels.

Figure 7c shows a schematic block diagram of yet another embodiment of an image sensor according to the present invention in which each pixel comprises its own reference element, amplifier and storage element cascaded thereto.

Figure 7d depicts a schematic block diagram of a further embodiment of an image sensor according to the present invention in which several pixels share a same level shifter, amplifier and storage element.

Figure 8 represents a cross-sectional view of a pixel for an image sensor according to the present invention, in which the active device of the pixel comprises an amplifier arranged in the lower level of the monolithic three-dimensional integrated circuit of the image sensor.

Figure 9 is a schematic representation of an exemplary image sensor in which its pixels are grouped into clusters, each cluster being sensitive to a different range of the spectrum.

Figure 10 is a block diagram of an optoelectronic system in accordance with an embodiment of the present invention.


DESCRIPTION OF THE PREFERRED EMBODIMENTS



[0113] In figure 1a it is illustrated a top plan view of a block diagram of an embodiment of the image sensor according to present invention. In particular the image sensor 100 comprises a plurality of pixels 101 arranged as a two-dimensional array of M rows and N columns. The plurality of pixels 101 are operatively connected to a control unit that includes a biasing circuit 103 for biasing the plurality of pixels 101 and a readout circuit 102 for selectively reading out the photo-signals generated by the light impinging on the plurality of pixels 101.

[0114] As it can be better seen in the cross-sectional view of figure 1b, the image sensor 100 comprises a monolithic three-dimensional integrated circuit 104 comprising an upper level 105 having a first plurality of stacked layers and a lower level 106, disposed underneath the upper level, having a second plurality of stacked layers.

[0115] Each pixel 101 of the plurality of pixels comprises a photosensitive element 107 arranged at a selected location of said upper level 105 (in particular there are three pixels 101 fully represented in figure 1b). The photosensitive element 107 comprises a photosensitizing layer 108 associated to a transport layer 109 that includes at least one layer of a two-dimensional material. In this example the photosensitizing layer 108 is disposed above (and in particular, directly above) the transport layer 109. However, in other examples the photosensitizing layer can be below the transport layer of the photosensitive element of the pixels.

[0116] In addition, each pixel 101 also comprises an active device 110 arranged at a selected location of said lower level 106. The active device 110 comprises at least one layer of a semiconductor material (e.g., silicon) and is operatively coupled to the photosensitive element 107. Although the active device 110 in the example illustrated in figure 1b is made using CMOS technology, other manufacturing technologies known in the state of the art can be equally used. Finally, the each pixel 101 comprises a first intermediate terminal circuitally connected to the photosensitive element 107 and an output terminal circuitally connected to the readout circuit 102.

[0117] The monolithic three-dimensional integrated circuit 104 includes a CMOS substrate 118 disposed at the bottom of the lower level 106, and an insulating layer 119 arranged below the transport layer 109 to separate the photosensitive element 107 from a CMOS dielectric stack 117.

[0118] The image sensor 100 further comprises a dark current suppressing circuit configured to substantially suppress the dark current generated by the photosensitive element 107 of the pixels 101 during an exposure cycle. In that sense, the control unit of the image sensor 100, which is arranged in part in said lower level 106, is configured to, when a given pixel 101 is to be read out, circuitally connect the first intermediate terminal of said pixel 101 with the output terminal of said pixel 101 through the dark current suppressing circuit.

[0119] Each pixel 101 comprises two conductive interconnects 111a, 111b to couple the active device 110 of said pixel to the photosensitive element 107 of said pixel. The conductive interconnects 111a, 111b implement, respectively, the source contact and the drain contact of the photosensitive element 107.

[0120] The conductive interconnects 111a, 111b comprise a vertical contact 112a, 112b (e.g., a via) extending from the lower level 106 to the upper level 105 of the monolithic three-dimensional integrated circuit 104 and having a first section 113a, 113b (in the present example the lower end of the vertical contacts 112a, 112b) connected to the active device 110 of said pixel. The first sections 113a, 113b are disposed on the at least one semiconductor layer of said active device 110. The conductive interconnects 111a, 111b also include lateral contacts 114a, 114b to interface properly with the layer of two-dimensional material of the transport layer 109. Said lateral contacts 114a, 114b are arranged on the upper level 105 and connected to a second section 115a, 115b of the vertical contact (in this example, the upper end of the vertical contacts 112a, 112b). The lateral contacts 114a, 114b can be deposited on the insulating layer 119 by sputtering or by means of any other known deposition technique, and are ohmically connected to the transport layer 109 of the photosensitive element 107 of said pixel by means of a portion that is disposed directly below and parallel to the transport layer 109 of said photosensitive element 107.

[0121] The readout circuit 102 comprises a plurality of metal tracks 116 than run parallel to the columns of pixels 101 of a plurality of columns. Each metal track 116 is connected to the output terminal of the pixels 101 of a given column. As it can be seen in figure 1b, the metal tracks 116 are provided in the CMOS dielectric stack 117 comprised in the lower level 106. Each metal track 116 is connected to the vertical contact 112b of the conductive interconnect 111b, which in this particular example is the output terminal of the pixel 101.

[0122] Figures 2a-2f provide further examples of pixels suitable for the image sensor 100, showing different alternatives on how to couple the active device of the pixel to the transport layer of its photosensitive element. For simplicity, elements in common with the pixel structure of figure 1b have been labeled with the same reference numerals.

[0123] The configuration shown in figure 2a is equivalent to that of figure 1b, as the conductive interconnects 200 disposed at both ends of the photosensitive element 107 comprise a vertical contact 201 extending from the lower level to the upper level of the monolithic three-dimensional integrated circuit and having a first end 202 disposed on the at least one semiconductor layer of the active device 110 and connected to said active device 110. The conductive interconnects 200 further comprise a lateral contact 204 arranged on the upper level and connected to a second end 203 of the vertical contact 201. The lateral contacts 204 are ohmically connected to the transport layer 109 of the photosensitive element 107 of the pixel and comprise a portion 205 disposed directly below and parallel to the transport layer 109 of the photosensitive element 107.

[0124] Figure 2b depicts an alternative example in which two conductive interconnects 210 comprise lateral contacts 214 connected to the second end 203 of the vertical contacts 201, and that are coplanar to the transport layer 109 and, hence, ohmically connected to the sides of transport layer 109. In figure 2c it is illustrated the case in which two conductive interconnects 220 have lateral contacts 224 ohmically connected to the transport layer 109 of the photosensitive element 107 and comprise a portion 225 disposed directly above and parallel to the transport layer 109.

[0125] Figure 2d provides a variation to the example of figure 2c, in which the conductive interconnects 230 comprise a lateral contact 234 connected to an upper end of the vertical contacts 201. As in the case of figure 2c, the lateral contacts 234 comprise a portion 235 disposed above and parallel to the transport layer 109. However, the portion 235 is now arranged at a distance from the transport layer 109. To establish ohmic contact with the transport layer 109, the lateral contacts 234 further comprise an additional vertical portion 236 that connects the parallel portion 235 with the transport layer 109.

[0126] A further example is illustrated in figure 2e, in which a pixel comprises two conductive interconnects 240 disposed at the ends of its photosensitive element 107. Each conductive interconnect 240 comprises a vertical contact 241 extending from the lower level 106 to the upper level 105 of the monolithic three-dimensional integrated circuit 104. The vertical contact 241 has a first section 242 (i.e., lower end of vertical contact 241) disposed on the at least one semiconductor layer of the active device 110 of the pixel and connected to said active device 110, and a second section 243 (i.e., upper end of vertical contact 241) ohmically connected to the transport layer 109 of the photosensitive element 107. That is, in this example the conductive interconnects 241 are below the transport layer 109.

[0127] It can also be observed in figure 2e that the vertical contacts 241 of the conductive interconnects 240 have different transversal dimensions. However, in other examples they could have the same transversal dimensions.

[0128] Figure 2f shows a slight variation with respect to the example of figure 2e. Each of the two conductive interconnects 250 comprises vertical contact 251 that is intersected by the transport layer 109 of the photosensitive element 107. That is, in this example the second section 253 of the vertical contact 251 is provided at an intermediate point rather than at the upper end of the vertical contact 251.

[0129] Alternatively to the arrangement shown in figure 1b, the photosensitive elements of a row of pixels may share a common source contact (see figure 2g), so that each photosensitive element is defined in the area between a different drain contact (implemented by each conductive interconnect 260) and the common source contact (implemented by the conductive interconnect 261). In this way, the total number of conductive interconnects required for the two-dimensional array of pixels is greatly reduced.

[0130] The geometry of the photosensitive elements can be defined via patterning of the transport layer, which allows either maximizing the light-collection area or tailoring specific aspect ratios for the optimization of different performance parameters (such as for instance, but not limited to, noise, responsivity, and resistance).

[0131] Referring now to figure 3, it is there shown a cross-sectional view of a pixel suitable for an image sensor according to the present invention. In particular, the pixel 300 comprises a photosensitive element 301 arranged on the upper level of a monolithic three-dimensional integrated circuit 302. The photosensitive element 301 comprises a photosensitizing layer 303 associated to a transport layer 304, which is disposed below the photosensitizing layer 303 and includes a layer of a two-dimensional material. In a lower level of the monolithic three-dimensional integrated circuit 302 there a plurality of layers including a semiconductor substrate 305 and a dielectric stack 306.

[0132] The upper level further comprises a first insulating layer 307 and a second insulating layer 308 comprising an oxide and associated to the photosensitive element 301. Specifically, the first insulating layer 307 is disposed above the photosensitizing layer 303, while the second insulating layer 308 is disposed below the transport layer 303 and isolates the photosensitive element 301 from the dielectric stack 306 of said lower level.

[0133] The pixel comprises two conductive interconnects 309a, 309b at the opposite ends of the transport layer 304 that implement, respectively, the source and drain contacts of the photosensitive element 301. When the photosensitive element 301 is operated as a two-terminal device, a biasing voltage (generally a time-dependent signal) is applied between the source and drain contacts.

[0134] The pixel 300 also comprises a back-gate terminal 310 disposed below the photosensitive element 301, between the second insulating layer 308 and the lower level of the monolithic three-dimensional integrated circuit 302. The back-gate terminal 310 is connected to a vertical contact 311 to make it accessible through the semiconductor substrate 305. In addition, the pixel 300 includes a top-gate terminal 312 made of a transparent material and disposed above the photosensitive element 301. The first insulating layer 307 acts as spacer separating the top-gate terminal 312 from the photosensitizing layer 303.

[0135] Figures 4a-c represent some possible configurations for the dark current suppressing circuit comprised in the image sensor 100, when circuitally connected to the photosensitive element of a given pixel.

[0136] The example of figure 4a shows a balanced scheme, in which the dark current suppressing circuit 400 comprises a reference element 401 having a dark conductance that substantially matches the dark conductance of the photosensitive element 403 of the pixel 402.

[0137] The photosensitive element 403 of the pixel 402 is circuitally connected between the first intermediate terminal 404a of said pixel and a first biasing terminal 405 provided in said pixel and circuitally connected to the biasing circuit 103. Moreover, the reference element 401 is circuitally connected between a second intermediate terminal 404b and a second biasing terminal 406 circuitally connected to the biasing circuit 103. In this example, the biasing circuit 103 is adapted to provide a balanced biasing voltage between the first biasing terminal 405 and the second biasing terminal 406.

[0138] In this example, the control unit is configured to, when the pixel 402 is to be read out, circuitally connect the first intermediate terminal 404a and the second intermediate terminal 404b (which form a same node) with the output terminal of the pixel 402. Because of the applied balanced biasing voltage, the differential voltage at the resulting node formed by the connection of the two intermediate terminals 404a, 404b contains directly the photo-signal of said pixel 402.

[0139] Figure 4b is a variation of the dark current suppressing circuit depicted in figure 4a including a current skimming circuit. As in the previous example, the dark current suppressing circuit 420 comprises a reference element 421 having a dark conductance that substantially matches the dark conductance of the photosensitive element 423 of a pixel 422.

[0140] The photosensitive element 423 has an end connected to a first intermediate terminal 424a through a first skimming transistor 427, and an opposite end connected to a first biasing terminal 425 circuitally connected to the biasing circuit 103. Similarly, the reference element 421 has an end connected to a second intermediate terminal 424b through a second skimming transistor 428, and an opposite end connected to a second biasing terminal 426 circuitally connected to the biasing circuit 103.

[0141] The biasing circuit 103 is adapted to provide a balanced biasing voltage between the first biasing terminal 425 and the second biasing terminal 426. Moreover, the control unit is adapted to provide appropriate control signals to the first and second skimming transistors 427, 428 to suppress the dark current generated by the photosensitive element 423.

[0142] An alternative dark current suppressing circuit is represented schematically in figure 4c. The dark current suppressing circuit 440 comprises a level shifter 452 adapted to subtract a voltage level that is substantially equal to the voltage level generated by the dark current of the photosensitive element 443 of the pixel 442 during an exposure cycle. The level shifter 452 is cascaded to a transimpedance amplifier 451, which is connected in series with the photosensitive element 443. In this case, the control unit is configured to, when the pixel 442 is to be read out, connect the first intermediate terminal 444 of the photosensitive element 443 with an input node 453 of the level shifter 452 through the transimpedance amplifier 451 and the output terminal of said pixel with an output node 454 of the level shifter 452.

[0143] In those examples in which the dark current suppressing circuit comprises a reference element that can be circuitally connected to the photosensitive element of a pixel, said reference element can be implemented in different ways.

[0144] In some cases, such as illustrated in figures 5a and 5b, a reference element is either a fixed resistor 501, or a variable resistor 502, circuitally connected to a photosensitive element 500.

[0145] In some other cases (figure 5c), a reference element 503 is arranged in the upper level of the monolithic three-dimensional integrated circuit and comprises a transport layer including a layer of a two-dimensional material without any photosensitizing layer associated thereto.

[0146] Figure 5d shows a further example in which the reference element is structurally equivalent to a photosensitive element. In particular, reference element 504 comprises a transport layer associated to a photosensitizing layer. The reference element 503 further comprises a a first light-blocking layer 505 disposed above its photosensitizing layer. The first light-blocking layer 505 is a passivation layer comprises an oxide.

[0147] Although the example of figure 5d comprises only one light-blocking layer, the reference element 504 could additionally comprise a second light-blocking layer disposed below its transport layer to prevent the absorption of light passing through the substrate of the lower level of the monolithic three-dimensional integrated circuit on which the reference element 504 is laid out.

[0148] When the reference element or elements of a dark current suppressing circuit are arranged in the upper level of a monolithic three-dimensional integrated circuit, rather than being disposed on the same layer as the photosensitive elements of the pixels, they can be advantageously arranged below the photosensitive elements, as it is represented in the cross-sectional view of a pixel of figure 6.

[0149] A pixel 600 comprises a photosensitive element 601 and an active device 603 arranged, respectively, in the upper level 604 and the lower level 605 of a monolithic three-dimensional integrated circuit. The photosensitive element 601 comprises a photosensitizing layer 606 disposed above a transport layer 607 to which is associated. A transparent top-gate terminal 612 is provided above the transport layer 607 to finely adjust the electrical parameters of the photosensitive element 601.

[0150] The bottom level 605 comprises a substrate 608 on which a CMOS dielectric stack 609 is disposed. The active device 603 comprises at least one layer of a semiconductor material embedded in the CMOS dielectric stack 609, which is coupled to the photosensitive element 601 by means of two conductive interconnects 610, 611 that contact the transport layer 607 at two opposite ends, implementing respectively the source and drain contacts of the photosensitive element 601.

[0151] A reference element 602 has been implemented inside the pixel 600, arranged in the upper level 604 between the transport layer 607 of the photosensitive element 601 and the CMOS dielectric stack 609. The reference element 602 comprises a second photosensitizing layer 613 sandwiched between a second transport layer 614 and a light-blocking layer 615, disposed respectively below and above the second photosensitizing layer 613. The coupling of the reference element 602 to the active device 603 is done by means of a conductive interconnect 616, which implements the source contact for said reference element 602, and conductive interconnect 611, which is shared with the photosensitive element 601 and implements the drain contact for said reference element 602.

[0152] The structure of the pixel 600 is completed with a first insulating layer 617 to isolate the photosensitive element 601 from the reference element 602, and a second insulating layer 618 to isolate the reference element 602 from the CMOS dielectric stack 609.

[0153] The design of the readout circuit of the control unit, and that of the active device of the pixels of the image sensor, can take different forms depending on how much of the processing of the photo-signal generated by the photosensitive element of the pixels is carried out locally at the pixel level.

[0154] Figure 7a shows a first example of an image sensor in which a same reference element is shared by several pixels. In particular, the image sensor 700 comprises a plurality pixels 701 arranged as a two-dimensional array with a number of rows and columns. The image sensor 700 includes a dark current suppressing circuit comprising as many reference elements 702 as there are columns in the array, so that each reference element 702 is associated to the pixels 701 of a different column. Moreover, each reference element 702 is circuitally connected to a second intermediate terminal 707.

[0155] Each pixel 701 comprises a photosensitive element 710 circuitally connected to a first intermediate terminal 703 and an active device that comprises: a first switch 704 configured to selectively connect the first intermediate terminal 703 of said pixel to the second intermediate terminal 707 of the reference element associated to the column of said pixel; and a second switch 705 configured to selectively connect the first intermediate terminal 703 of the pixel to its output terminal 706. Upon readout of a given pixel 701, the first and second switches 704, 705 are closed, connecting the photosensitive element 710 to the reference element 702, so that the dark suppressing circuit is in the electrical path between the first intermediate terminal 703 and the output terminal 706.

[0156] The image sensor 700 also has a control unit that comprises a readout circuit with as many amplifiers 708 as there are columns, each amplifier 708 having an input terminal circuitally connected to the output terminal 706 of the pixels of a given column, and a storage element 709 connected in series to an output terminal of each amplifier 708, each storage element 709 being configured to store a voltage proportional to the photo-signal generated in a pixel 701 of said given column.

[0157] Additionally, the control unit includes an interconnection circuit 720 operatively connected to the readout circuit and that comprises a plurality of output nodes 721. The interconnection circuit 720 allows circuitally connecting, through the readout circuit, the output terminal 706 of any of the pixels 701 of the array with the output nodes 721. Moreover, connected to each output node 721, the control unit also comprises a cascade of a correlation double sampling stage 722, followed by a post-amplification stage 723, and by an analog-to-digital converter 724. In this way, the outputs of the image sensor 700 can be directly interfaced with digital circuitry.

[0158] In figure 7b it is shown a second example of an image sensor similar in topology to the one just described in the context of figure 7a, but in which the dark current suppressing circuit has been moved into the pixels, so that each pixel comprises its own reference element.

[0159] The image sensor 725 comprises a two-dimensional arrangement of pixels 726. Each pixel 726 comprises a photosensitive element 727 circuitally connected to a first intermediate terminal 730, and a reference element 728 having its second intermediate terminal 731 permanently connected to the first intermediate terminal 730. Additionally, each pixel 726 also comprises an active device that includes a row-select switch 729 operatively coupled between the first intermediate terminal 730 and the output terminal 732 of the pixel.

[0160] It is not needed to further describe the readout circuit, the interconnection circuit and the additional blocks comprised in the control unit of the image sensor 725, as they are similar to the ones comprised in the image sensor 700 which has already been described in detail above in the context of figure 7a.

[0161] Figure 7c shows a third example of an image sensor in which, compared to the image sensor 725 shown in figure 7b, most of the electronics of the readout circuit has been moved into the pixels.

[0162] In particular, each of the pixels 751 of the image sensor 750 comprises a photosensitive element 752 and a reference element 753 connected thereto. The active device comprised in each pixel 751 further comprises:
  • an amplifier 754 having an input terminal, circuitally connected to the first intermediate terminal, and an output terminal; and
  • a storage element 755 connected in series to the output terminal of the amplifier 754, the storage element 755 being configured to store a voltage proportional to the photo-signal generated in the photosensitive element 752 of the pixel; and
  • a row-select switch 756 connected between the storage element 755 and an output terminal 757 of the pixel, and configured to selectively connect said output terminal 757 to the storage element 755.


[0163] Given that in this example the active device of the pixel 751 includes more electronics, it is advantageous to exploit once again the third dimension of the monolithic three-dimensional integrated circuit of the image sensor 750 and split the circuitry of the active device in two different layers of its lower level, as illustrated in figure 8.

[0164] The photosensitive element 752 of a pixel 751 is disposed in the upper level of the monolithic three-dimensional integrated circuit 800. The active device of the pixel 751 is arranged in first and second semiconductor layers 801, 802 of the lower level of the monolithic three-dimensional integrated circuit 800. The first semiconductor layer 801 comprises the amplifier 754, while the storage element 755 and the row-select switch 756 are comprised in the second semiconductor layer 802.

[0165] In figure 7d it is shown a fourth example of an image sensor in which the dark current suppressing circuit comprises level shifters instead of reference elements.

[0166] The image sensor 775 comprises a two-dimensional arrangement of pixels 776, each comprising a photosensitive element 777 circuitally connected between a first intermediate terminal 778 and a biasing terminal 779. An active device included in each pixel 776 comprises a first switch 781 configured to selectively connect said first intermediate terminal 778 to an output terminal 780 of said pixel, and a second switch 782 configured to selectively connect the biasing terminal 779 to a biasing circuit.

[0167] The dark current suppressing circuit of the image sensor 775 comprises as many level shifters 783 as there are columns in the array, each level shifter 783 being associated to the pixels 776 of a different column. In addition, each level shifter 783 is preceded by a transimpedance amplifier 784 having an input terminal circuitally connected to the output terminal of the pixels 776 of a given column. Finally, the readout circuit of the image sensor 775 comprises a storage element 785 connected in series to the output node of each level shifter 783.

[0168] As in the previous examples, the interconnection circuit and the additional blocks comprised in the control unit of the image sensor 775 are similar to the ones comprised in the image sensor 700 and already described above in the context of figure 7a.

[0169] Referring now to figure 9, it is there shown an example of an image sensor capable of multispectral response. The image sensor 900 comprises a plurality of pixels arranged as a two-dimensional array and grouped into clusters s1-s9. Each cluster comprises at least one pixel having a photosensitive element with a photosensitizing layer sensitive to a different range of the spectrum. In this particular example, the photosensitizing layer of the photosensitive elements comprises quantum dots, whose size is progressively varied to tune their light absorption properties to different wavelengths.

[0170] In figure 10 it is represented the block diagram of an optoelectronic system, in particular a camera system, which incorporates an image sensor according to the present invention.

[0171] The optoelectronic system 1000 comprises the image sensor 100 described in figures 1a and 1b, which is operatively interfaced to an optical module including a lens arrangement 1002. The lens arrangement 1002 is adapted to focus incoming light on the plurality of pixels 101 of the image sensor 100. The optoelectronic system 1000 also comprises a power supply module 1003 and control module 1004, both operatively connected to the control unit of the image sensor 100.

[0172] The power supply module 1003 is configured to provide a biasing voltage to the image sensor 100, while the control module 1004 is configured to provide control signals 1012 to the control unit of the image sensor 100 to selectively read out the pixels 101, and to receive a plurality of detected values 1005 corresponding to the photo-signals read out from the plurality of pixels 101 by the readout circuit 102.

[0173] As it can be seen in the figure, the control module 1004 includes an analog-to-digital converter 1006 to digitize the detected values 1005 before they are provided to a digital control circuit 1007 implemented into an FPGA.

[0174] The optoelectronic system 1000 further comprises a peripheral module 1008 operatively connected to the control module 1004 that includes a display 1009, a memory unit 1010 and a microprocessor 1011. In this manner, the detected values 1005 can be processed, stored and/or projected as an image.

[0175] Finally, the image sensor 100 described above in the context of figures 1a and 1b can be manufactured as a monolithic three-dimensional integrated circuit 104 by means of a method that comprises the steps of:
  1. a) providing at least one layer of semiconductor material on a substrate 118, said at least one layer of semiconductor material forming a lower level 106 of the monolithic three-dimensional integrated circuit 104;
  2. b) for each pixel 101 of the plurality of pixels, arranging an active device 110 at a selected location of the at least one layer of semiconductor material of said lower level 106, and providing an output terminal 111b to the pixel 101;
  3. c) arranging at least a part of the control unit in said lower level 106, and circuitally connecting the output terminal 111b of each pixel to the readout circuit 102 of the control unit;
  4. d) providing a transport layer 109 including at least one layer of a two-dimensional material, and a photosensitizing layer 108 associated to the transport layer 109, the transport layer and the photosensitizing layer forming an upper level 105 of the monolithic three-dimensional integrated circuit 104, said upper level being disposed above said lower level;
  5. e) for each pixel 101 of the plurality of pixels, arranging, for example by means of patterning and/or etching, a photosensitive element 107 at a selected location of said upper level 105, and circuitally connecting the photosensitive element 107 to a first intermediate terminal being provided in said pixel;
  6. f) operatively coupling the photosensitive element 107 of each pixel to the active device 110 of said pixel; and
  7. g) providing a dark current suppressing circuit configured to substantially suppress the dark current generated by the photosensitive element of the pixels 101 during an exposure cycle.



Claims

1. Image sensor (100, 700, 725, 750, 775, 900) comprising a plurality of pixels (101, 300, 402, 422, 442, 600, 701, 726, 751, 776) operatively connected to a control unit that includes a readout circuit (102) for selectively reading out the photo-signals generated by the light impinging on the plurality of pixels,
wherein the image sensor comprises a monolithic three-dimensional integrated circuit (104, 302, 800) comprising an upper level (105, 604) having a first plurality of stacked layers and a lower level (106, 605) having a second plurality of stacked layers, the lower level being disposed underneath the upper level;
wherein each pixel of the plurality of pixels comprises:

- a photosensitive element (107, 301,403, 423, 443, 500, 601, 710, 727, 752, 777) arranged at a selected location of said upper level;

- an active (110, 603) device arranged at a selected location of said lower level, the active device comprising at least one layer of a semiconductor material and being operatively coupled to the photosensitive element;

- a first intermediate terminal (404a, 424a, 444, 703, 730, 778) circuitally connected to the transport layer of the photosensitive element; and

- an output terminal (706, 732, 757, 780) circuitally connected to the readout circuit (102);

characterized in that:

- the photosensitive element comprises a photosensitizing layer (108, 303, 606) associated to a transport layer (109, 304, 607), the transport layer including at least one layer of a two-dimensional material, wherein the photosensitizing layer and the transport layer are stacked, and the photosensitizing layer (108, 303, 606) being configured to absorb incident light so that an electron or a hole from an electron-hole pair generated in the photosensitizing layer by the absorption of a photon can be transferred to the transport layer, while the hole or the electron of said electron-hole pair remains trapped in the photosensitizing layer, or in an interface between the photosensitizing layer and the transport layer;

- the image sensor further comprises a dark current suppressing circuit (400, 420, 440) configured to suppress the dark current generated by the photosensitive element of the pixels during an exposure cycle; and

- the control unit is arranged, at least partially, in said lower level (106, 605) and configured to, when a given pixel is to be read out, circuitally connect the first intermediate terminal (404a, 424a, 444, 703, 730, 778) of said pixel:

- with the output terminal (780) of said pixel, said output terminal (780) being circuitally connected to the readout circuit (102) through said dark current suppressing circuit (400, 420, 440) which comprises a level shifter (452, 783) and an amplifier (451, 784); or

- with the output terminal (706, 732, 757) of said pixel and with said dark current suppressing circuit (400, 420, 440) which comprises at least one reference element (401, 421, 501, 502, 503, 504, 602, 702, 728, 753) having a dark conductance that matches the dark conductance of the photosensitive element of the pixel.


 
2. The image sensor according to claim 1, wherein the control unit comprises a biasing circuit (103) for biasing the plurality of pixels;
wherein the dark current suppressing circuit (400, 420) comprises the at least one reference element (401, 421, 501, 502, 503, 504, 602, 702, 728, 753) having a dark conductance that matches the dark conductance of the photosensitive element (403, 423, 500, 601, 710, 727, 752) of the pixels; wherein the/each reference element is circuitally connected between a second intermediate terminal (404b, 424b, 707, 731) and a second biasing terminal (406, 426), the second biasing terminal being circuitally connected to the biasing circuit (103);
wherein the photosensitive element of each pixel is circuitally connected between the first intermediate terminal (404a, 424a, 444, 703, 730) of said pixel and a first biasing terminal (405, 425) provided in said pixel, the first biasing terminal of each pixel being circuitally connected to the biasing circuit (103);
wherein the biasing circuit (103) is adapted to provide a biasing voltage between the first biasing terminal of the photosensitive element of the pixels of the plurality of pixels and the second biasing terminal of the at least one reference element; and
wherein the control unit is configured to, when a given pixel is to be read out, circuitally connect the first intermediate terminal (404a, 424a, 444, 703, 730) of said pixel and the second intermediate terminal (404b, 424b, 707, 731) of a reference element of said at least one reference element with the output terminal (706, 732, 757) of said pixel.
 
3. The image sensor according to claim 2, wherein a reference element (503, 504, 602) of the at least one reference element is arranged in said upper level and comprises a transport layer (614) including at least one layer of a two-dimensional material.
 
4. The image sensor according to claim 3, wherein said reference element further comprises a photosensitizing layer (613) associated to the transport layer (614) of said reference element (600).
 
5. The image sensor according to claim 4, wherein said reference element (504, 602) further comprises: a first light-blocking layer (505, 615) disposed above the photosensitizing layer (613) and the transport layer (614) of said reference element; and, preferably, a second light-blocking layer disposed below the photosensitizing layer and the transport layer of said reference element.
 
6. The image sensor according to any of claims 3 to 5, wherein said reference element (602) is arranged below the photosensitive element (601) of a pixel of the plurality of pixels.
 
7. The image sensor according to any of claims 2 to 6, wherein a reference element of the at least one reference element is arranged in said lower level and comprises a variable resistor (502).
 
8. The image sensor according to any of claims 1 to 7, wherein the upper level (105, 604) comprises one or more insulating layers (119, 307, 308, 617) associated to the photosensitive element (107, 301, 601) of the plurality of pixels; and wherein preferably at least one pixel (300, 600) of the plurality of pixels comprises:

- a back-gate terminal (310) disposed below the photosensitive element (301) of said at least one pixel, between an insulating layer (308) disposed below the photosensitive element (301) of the plurality of pixels and the lower level of the monolithic three-dimensional integrated circuit; and/or

- a top-gate terminal (312, 612) disposed above the photosensitive element (301, 601) of said at least one pixel.


 
9. The image sensor according to any of claims 1 to 8, wherein at least one pixel of the plurality of pixels comprises a conductive interconnect (200, 210, 220, 230) to couple the active device (110) of said pixel to the photosensitive element (107) of said pixel, the conductive interconnect comprising:

- a vertical contact (201) extending from the lower level to the upper level of the monolithic three-dimensional integrated circuit (104) and having a first section (202) connected to the active device (110) of said pixel, said first section being disposed on the at least one semiconductor layer of said active device; and

- a lateral contact (204, 214, 224, 234) arranged on said upper level and connected to a second section (203) of the vertical contact;

wherein the lateral contact (204, 214, 224, 234) is ohmically connected to the transport layer (109) of the photosensitive element (107) of said pixel and comprises portion (205, 225, 235) being parallel to the transport layer (109) of said photosensitive element (107).
 
10. The image sensor according to any of claims 1 to 9, wherein the active device (110, 603) of each pixel of the plurality of pixels comprises a switch (704, 705, 729, 781, 782), an amplifier (754), a filter, a digitizer, a level shifter and/or a storage element (755).
 
11. The image sensor according to any of claims 1 to 10, wherein the plurality of pixels are grouped into clusters (s1 - s9), each cluster comprising one or more pixels; and wherein the photosensitizing layer of the photosensitive element of the one or more pixels of each cluster is sensitive to a different range of the spectrum.
 
12. The image sensor according to any of claims 1 to 11, wherein, for at least one pixel (701, 726, 751, 776) of the plurality of pixels, the active device of said at least one pixel is operatively coupled to the first intermediate terminal (703, 730, 778) of the photosensitive element of said at least one pixel.
 
13. The image sensor according to any of claims 2 to 12, wherein the plurality of pixels are arranged as a two-dimensional array comprising a plurality of rows and columns; wherein the dark current suppressing circuit comprises as many reference elements (702) as there are columns in the array, each reference element being associated to the pixels (701) of a different column; wherein the active device of each pixel comprises a first switch (704) configured to selectively connect the first intermediate terminal (703) of the pixel to the second intermediate terminal (707) of the reference element associated to the column of said pixel, and a second switch (705) configured to selectively connect the first intermediate terminal (703) of the pixel to its output terminal (706); and wherein the readout circuit comprises:

- as many amplifiers (708) as there are columns, each amplifier having an input terminal, circuitally connected to the output terminal of the pixels (701) of a given column; and

- a storage element (709) connected in series to an output terminal of each amplifier (708), each storage element being configured to store a voltage proportional to the photo-signal generated in a pixel (701) of said given column.


 
14. The image sensor according to any of claims 2 to 12, wherein the plurality of pixels are arranged as a two-dimensional array comprising a plurality of rows and columns; wherein the dark current suppressing circuit comprises a reference element (728, 753) arranged in each pixel (726, 751) of the plurality of pixels, each reference element (728, 753) having its second intermediate terminal (731) connected to the first intermediate terminal (730) of the pixel; and wherein the active device of each pixel comprises a row-select switch (729, 756) connected to its output terminal (732, 757).
 
15. Optoelectronic system (1000) comprising:

- an image sensor (100) according to any of claims 1 to 14;

- an optical module (1002) operatively interfaced to the image sensor (100), the optical module (1002) being adapted to focus incoming light on the plurality of pixels;

- a power supply module (1003) operatively connected to the control unit of the image sensor (100), the power supply module (1003) being configured to provide a biasing voltage to the image sensor (100);

- an analog and/or digital control module (1004) operatively connected to the control unit of the image sensor (100), the analog and/or digital control module (1004) being configured to provide control signals (1012) to the control unit to selectively read out the pixels, and to receive a plurality of detected values (1005) corresponding to the photo-signals read out from the plurality of pixels by the readout circuit; and

- a peripheral module (1008) operatively connected to the analog and/or digital control module (1004), the peripheral module (1008) being configured to process, store and/or render an image obtained from the plurality of detected values (1005).


 
16. Method for manufacturing an image sensor (100, 700, 725, 750, 775, 900) as a monolithic three-dimensional integrated circuit (104, 302, 800), wherein the image sensor comprises a plurality of pixels (101, 300, 402, 422, 442, 600, 701, 726, 751, 776) operatively connected to a control unit that includes a readout circuit (102) for selectively reading out the photo-signals generated by the light impinging on the plurality of pixels, the method comprising the steps of:

a) providing at least one layer of semiconductor material on a substrate, said at least one layer of semiconductor material forming a lower level (106, 605) of the monolithic three-dimensional integrated circuit (104, 302, 800);

b) for each pixel of the plurality of pixels, arranging an active device (110, 603) at a selected location of the at least one layer of semiconductor material of said lower level (106, 605), and providing an output terminal (706, 732, 757, 780) to the pixel;

c) arranging at least a part of the control unit in said lower level (106, 605), and circuitally connecting the output terminal (706, 732, 757, 780) of each pixel to the readout circuit (102) of the control unit;

d) providing a transport layer (109, 304, 607) including at least one layer of a two-dimensional material, and a photosensitizing layer (108, 303, 606) associated to the transport layer, wherein the photosensitizing layer and the transport layer are stacked, and the photosensitizing layer (108, 303, 606) being configured to absorb incident light so that an electron or a hole from an electron-hole pair generated in the photosensitizing layer by the absorption of a photon can be transferred to the transport layer, while the hole or the electron of said electron-hole pair remains trapped in the photosensitizing layer, or in an interface between the photosensitizing layer and the transport layer, the transport layer and the photosensitizing layer forming an upper level (105, 604) of the monolithic three-dimensional integrated circuit (104, 302, 800), said upper level being disposed above said lower level;

e) for each pixel of the plurality of pixels, arranging a photosensitive element (107, 301, 403, 423, 443, 500, 601, 710, 727, 752, 777) at a selected location of said upper level (105, 604), and circuitally connecting the transport layer of the photosensitive element to a first intermediate terminal (404a, 424a, 444, 703, 730, 778) being provided in said pixel;

f) operatively coupling the photosensitive element (107, 301, 403, 423, 443, 500, 601, 710, 727, 752, 777) of each pixel to the active device (110, 603) of said pixel; and

g) providing a dark current suppressing circuit (400, 420, 440) configured to suppress the dark current generated by the photosensitive element of the pixels during an exposure cycle;

wherein the control unit is configured to, when a given pixel is to be read out, circuitally connect the first intermediate terminal (404a, 424a, 444, 703, 730, 778) of said pixel:

- with the output terminal (780) of said pixel, said output terminal (780) being circuitally connected to the readout circuit (102) through said dark current suppressing circuit (400, 420, 440) which comprises a level shifter (452, 783) and an amplifier (451, 784); or

- with the output terminal (706, 732, 757) of said pixel and with said dark current suppressing circuit (400, 420, 440) which comprises at least one reference element (401, 421, 501, 502, 503, 504, 602, 702, 728, 753) having a dark conductance that matches the dark conductance of the photosensitive element of the pixel.


 
17. The method according to claim 16, wherein the control unit further includes a biasing circuit (103) for biasing the plurality of pixels; wherein the dark current suppressing circuit (400, 420) comprises the at least one reference element (401, 421, 501, 502, 503, 504, 602, 702, 728, 753) having a dark conductance that matches the dark conductance of the photosensitive element (403, 423, 500, 601, 710, 727, 752) of the pixels; wherein the method further comprises the step of:

- for each pixel of the plurality of pixels, circuitally connecting the photosensitive element between the first intermediate terminal (404a, 424a, 444, 703, 730) and a first biasing terminal (405, 425) being provided in said pixel;

- circuitally connecting the/each reference element between a second intermediate terminal (404b, 424b, 707, 731) and a second biasing terminal (406, 426) being provided in the monolithic three-dimensional integrated circuit (104, 302, 800);

- circuitally connecting the first biasing terminal (405, 425) of each pixel of the plurality of pixels and the second biasing terminal (406, 426) of the at least one reference element to the biasing circuit (103); and

wherein the control unit is configured to, when a given pixel is to be read out, circuitally connect the first intermediate terminal (404a, 424a, 444, 703, 730) of said pixel and the second intermediate terminal (404b, 424b, 707, 731) of a reference element of said at least one reference element with the output terminal (706, 732, 757) of said pixel.
 


Ansprüche

1. Bildsensor (100, 700, 725, 750, 775, 900), der mehrere Pixel (101, 300, 402, 422, 442, 600, 701, 726, 751, 776) umfasst, die mit einer Steuereinheit operativ verbunden sind, die eine Ausleseschaltung (102) zum selektiven Auslesen der Photosignale, die durch das Licht, das auf die mehreren Pixel auftrifft, erzeugt werden, enthält,
wobei der Bildsensor eine monolithische, dreidimensionale integrierte Schaltung (104, 302, 800) umfasst, die eine obere Ebene (105, 604) mit einer ersten Mehrzahl gestapelter Schichten und eine untere Ebene (106, 605) mit einer zweiten Mehrzahl gestapelter Schichten umfasst, wobei die untere Ebene unterhalb der oberen Ebene angeordnet ist;
wobei jeder Pixel der mehreren Pixel umfasst:

- ein lichtempfindliches Element (107, 301, 403, 423, 443, 500, 601, 710, 727, 752, 777), das an einem ausgewählten Ort der oberen Ebene angeordnet ist;

- eine aktive Vorrichtung (110, 603), die an einem ausgewählten Ort der unteren Ebene angeordnet ist, wobei die aktive Vorrichtung mindestens eine Schicht eines Halbleitermaterials umfasst und mit dem lichtempfindlichen Element operativ gekoppelt ist;

- einen ersten Zwischenanschluss (404a, 424a, 444, 703, 730, 778), der mit der Transportschicht des lichtempfindlichen Elements schaltungstechnisch verbunden ist; und

- einen Ausgangsanschluss (706, 732, 757, 780), der mit der Ausleseschaltung (102) schaltungstechnisch verbunden ist;

dadurch gekennzeichnet, dass:

- das lichtempfindliche Element eine Photosensibilisierungsschicht (108, 303, 606) umfasst, die einer Transportschicht (109, 304, 607) zugeordnet ist, wobei die Transportschicht mindestens eine Schicht eines zweidimensionalen Materials enthält, wobei die Photosensibilisierungsschicht und die Transportschicht gestapelt sind und die Photosensibilisierungsschicht (108, 303, 606) konfiguriert ist, einfallendes Licht zu absorbieren, derart, dass ein Elektron oder ein Loch eines Elektron-Loch-Paars, das durch die Absorption eines Photons in der Photosensibilisierungsschicht erzeugt wird, zu der Transportschicht übertragen werden kann, während das Loch oder das Elektron des Elektron-Loch-Paars in der Photosensibilisierungsschicht oder in einer Grenzschicht zwischen der Photosensibilisierungsschicht und der Transportschicht gefangen bleibt;

- der Bildsensor ferner eine Dunkelstrom-Unterdrückungsschaltung (400, 420, 440) umfasst, die konfiguriert ist, den Dunkelstrom, der durch das lichtempfindliche Element der Pixel während eines Belichtungszyklus erzeugt wird, zu unterdrücken; und

- die Steuereinheit zumindest teilweise in der unteren Ebene (106, 605) angeordnet und konfiguriert ist, dann, wenn ein gegebener Pixel ausgelesen werden soll, den ersten Zwischenanschluss (404a, 424a, 444, 703, 730, 778) des Pixels schaltungstechnisch zu verbinden:

- mit dem Ausgangsanschluss (780) des Pixels, wobei der Ausgangsanschluss (780) über die Dunkelstrom-Unterdrückungsschaltung (400, 420, 440), die einen Pegelumsetzer (452, 783) und einen Verstärker (451, 784) umfasst, mit der Ausleseschaltung (102) schaltungstechnisch verbunden ist; oder

- mit dem Ausgangsanschluss (706, 732, 757) des Pixels und mit der Dunkelstrom-Unterdrückungsschaltung (400, 420, 440), die mindestens ein Referenzelement (401, 421, 501, 502, 503, 504, 602, 702, 728, 753) umfasst, das eine Dunkelleitfähigkeit aufweist, die der Dunkelleitfähigkeit des lichtempfindlichen Elements des Pixels angepasst ist.


 
2. Bildsensor nach Anspruch 1, wobei die Steuereinheit eine Vorspannungsschaltung (103) zum Anlegen einer Vorspannung an die mehreren Pixel umfasst;
wobei die Dunkelstrom-Unterdrückungsschaltung (400, 420) das mindestens eine Referenzelement (401, 421, 501, 502, 503, 504, 602, 702, 728, 753) umfasst, das eine Dunkelleitfähigkeit aufweist, die der Dunkelleitfähigkeit des lichtempfindlichen Elements (403, 423, 500, 601, 710, 727, 752) der Pixel angepasst ist; wobei das bzw. jedes Referenzelement zwischen einem zweiten Zwischenanschluss (404b, 424b, 707, 731) und einem zweiten Vorspannungsanschluss (406, 426) schaltungstechnisch verbunden ist, wobei der zweite Vorspannungsanschluss mit der Vorspannungsschaltung (103) schaltungstechnisch verbunden ist;
wobei das lichtempfindliche Element jedes Pixels zwischen dem ersten Zwischenanschluss (404a, 424a, 444, 703, 730) des Pixels und einem ersten Vorspannungsanschluss (405, 425), der in dem Pixel vorgesehen ist, schaltungstechnisch verbunden ist, wobei der erste Vorspannungsanschluss jedes Pixels mit der Vorspannungsschaltung (103) schaltungstechnisch verbunden ist;
wobei die Vorspannungsschaltung (103) ausgelegt ist, zwischen dem ersten Vorspannungsanschluss des lichtempfindlichen Elements der Pixel der mehreren Pixel und dem zweiten Vorspannungsanschluss des mindestens einen Referenzelements eine Vorspannung bereitzustellen; und
wobei die Steuereinheit konfiguriert ist, dann, wenn ein gegebenes Pixel ausgelesen werden soll, den ersten Zwischenanschluss (404a, 424a, 444, 703, 730) des Pixels und den zweiten Zwischenanschluss (404b, 424b, 707, 731) eines Referenzelements des mindestens einen Referenzelements mit dem Ausgangsanschluss (706, 732, 757) des Pixels schaltungstechnisch zu verbinden.
 
3. Bildsensor nach Anspruch 2, wobei ein Referenzelement (503, 504, 602) des mindestens einen Referenzelements in der oberen Ebene angeordnet ist und eine Transportschicht (614) umfasst, die mindestens eine Schicht eines zweidimensionalen Materials enthält.
 
4. Bildsensor nach Anspruch 3, wobei das Referenzelement ferner eine Photosensibilisierungsschicht (613) umfasst, die der Transportschicht (614) des Referenzelements (600) zugeordnet ist.
 
5. Bildsensor nach Anspruch 4, wobei das Referenzelement (504, 602) ferner umfasst: eine erste Lichtsperrschicht (505, 615), die über der Photosensibilisierungsschicht (613) und der Transportschicht (614) des Referenzelements angeordnet ist; und vorzugsweise eine zweite Lichtsperrschicht, die unter der Photosensibilisierungsschicht und der Transportschicht des Referenzelements angeordnet ist.
 
6. Bildsensor nach einem der Ansprüche 3 bis 5, wobei das Referenzelement (602) unter dem lichtempfindlichen Element (601) eines Pixels der mehreren Pixel angeordnet ist.
 
7. Bildsensor nach einem der Ansprüche 2 bis 6, wobei ein Referenzelement des mindestens einen Referenzelements in der unteren Ebene angeordnet ist und einen variablen Widerstand (502) umfasst.
 
8. Bildsensor nach einem der Ansprüche 1 bis 7, wobei die obere Ebene (105, 604) eine oder mehrere Isolierschichten (119, 307, 308, 617) umfasst, die dem lichtempfindlichen Element (107, 301, 601) der mehreren Pixel zugeordnet ist; und wobei vorzugsweise mindestens ein Pixel (300, 600) der mehreren Pixel umfasst:

- einen Back-Gate-Terminal (310), der unter dem lichtempfindlichen Element (301) des mindestens einen Pixels zwischen einer Isolierschicht (308), die unter dem lichtempfindlichen Element (301) der mehreren Pixel angeordnet ist, und der unteren Ebene der monolithischen, dreidimensionalen integrierten Schaltung angeordnet ist; und/oder

- einen Top-Gate-Terminal (312, 612), der über dem lichtempfindlichen Element (301, 601) des mindestens einen Pixels angeordnet ist.


 
9. Bildsensor nach einem der Ansprüche 1 bis 8, wobei mindestens ein Pixel der mehreren Pixel eine leitfähige Kopplung (200, 210, 220, 230), um die aktive Vorrichtung (110) des Pixels mit dem lichtempfindlichen Element (107) des Pixels zu koppeln, umfasst, wobei die leitfähige Kopplung umfasst:

- einen vertikalen Kontakt (201), der sich von der unteren Ebene zur oberen Ebene der monolithischen, dreidimensionalen integrierten Schaltung (104) erstreckt und einen ersten Abschnitt (202) aufweist, der mit der aktiven Vorrichtung (110) des Pixels verbunden ist, wobei der erste Abschnitt auf der mindestens einen Halbleiterschicht der aktiven Vorrichtung angeordnet ist; und

- einen Seitenkontakt (204, 214, 224, 234), der auf der oberen Ebene angeordnet ist und mit einem zweiten Abschnitt (203) des vertikalen Kontakts verbunden ist;

wobei der Seitenkontakt (204, 214, 224, 234) mit der Transportschicht (109) des lichtempfindlichen Elements (107) des Pixels ohmisch verbunden ist und einen Abschnitt (205, 225, 235) umfasst, der zur Transportschicht (109) des lichtempfindlichen Elements (107) parallel ist.
 
10. Bildsensor nach einem der Ansprüche 1 bis 9, wobei die aktive Vorrichtung (110, 603) jedes Pixels der mehreren Pixel einen Schalter (704, 705, 729, 781, 782), einen Verstärker (754), ein Filter, einen Digitalisierer, einen Pegelumsetzer und/oder ein Speicherelement (755) umfasst.
 
11. Bildsensor nach einem der Ansprüche 1 bis 10, wobei die mehreren Pixel in Cluster (s1-s9) gruppiert sind, wobei jeder Cluster einen oder mehrere Pixel umfasst; und wobei die Photosensibilisierungsschicht des lichtempfindlichen Elements des einen oder der mehreren Pixel jedes Clusters für einen unterschiedlichen Bereich des Spektrums empfindlich ist.
 
12. Bildsensor nach einem der Ansprüche 1 bis 11, wobei für mindestens ein Pixel (701, 726, 751, 776) der mehreren Pixel die aktive Vorrichtung des mindestens einen Pixels mit dem ersten Zwischenanschluss (703, 730, 778) des lichtempfindlichen Elements des mindestens einen Pixels operativ gekoppelt ist.
 
13. Bildsensor nach einem der Ansprüche 2 bis 12, wobei die mehreren Pixel als ein zweidimensionales Array angeordnet sind, das mehrere Reihen und Spalten umfasst; wobei die Dunkelstrom-Unterdrückungsschaltung so viele Referenzelemente (702), wie in dem Array Spalten vorhanden sind, umfasst, wobei jedes Referenzelement den Pixeln (701) einer unterschiedlichen Spalte zugeordnet ist; wobei die aktive Vorrichtung jedes Pixels einen ersten Schalter (704), der konfiguriert ist, den ersten Zwischenanschluss (703) des Pixels selektiv mit dem zweiten Zwischenanschluss (707) des Referenzelements, das der Spalte des Pixels zugeordnet ist, zu verbinden, und einen zweiten Schalter (705), der konfiguriert ist, den ersten Zwischenanschluss (703) des Pixels selektiv mit seinem Ausgangsanschluss (706) zu verbinden, umfasst; und wobei die Ausleseschaltung umfasst:

- so viele Verstärker (708), wie Spalten vorhanden sind, wobei jeder Verstärker einen Eingangsanschluss aufweist, der mit dem Ausgangsanschluss der Pixel (701) einer gegebenen Spalte schaltungstechnisch verbunden ist; und

- ein Speicherelement (709), das mit einem Ausgangsanschluss jedes Verstärkers (708) in Reihe vorhanden ist, wobei jedes Speicherelement konfiguriert ist, eine Spannung proportional zu dem in einem Pixel (701) der gegebenen Spalte erzeugten Photosignal zu speichern.


 
14. Bildsensor nach einem der Ansprüche 2 bis 12, wobei die mehreren Pixel als ein zweidimensionales Array angeordnet sind, das mehrere Reihen und Spalten umfasst; wobei die Dunkelstrom-Unterdrückungsschaltung ein Referenzelement (728, 753) umfasst, das in jedem Pixel (726, 751) der mehreren Pixel angeordnet ist, wobei der zweite Zwischenanschluss (731) jedes Referenzelements (728, 753) mit dem ersten Zwischenanschluss (730) des Pixels verbunden ist; und wobei die aktive Vorrichtung jedes Pixels einen Reihenauswahlschalter (729, 756) umfasst, der mit ihrem Ausgangsanschluss (732, 757) verbunden ist.
 
15. Optoelektronisches System (1000), umfassend:

- einen Bildsensor (100) nach einem der Ansprüche 1 bis 14;

- ein optisches Modul (1002), das mit dem Bildsensor (100) operativ gekoppelt ist, wobei das optische Modul (1002) ausgelegt ist, eingehendes Licht auf die mehreren Pixel zu fokussieren;

- ein Energieversorgungsmodul (1003), das mit der Steuereinheit des Bildsensors (100) operativ gekoppelt ist, wobei das Energieversorgungsmodul (1003) konfiguriert ist, dem Bildsensor (100) eine Vorspannung bereitzustellen;

- ein analoges und/oder digitales Steuermodul (1004), das mit der Steuereinheit des Bildsensors (100) operativ verbunden ist, wobei das analoge und/oder digitale Steuermodul (1004) konfiguriert ist, der Steuereinheit Steuersignale (1012), um die Pixel selektiv auszulesen, bereitzustellen und mehrere detektierte Werte (1005) zu empfangen, die den Photosignalen, die durch die Ausleseschaltung aus den mehreren Pixeln ausgelesen werden, entsprechen; und

- ein peripheres Modul (1008), das mit dem analogen und/oder digitalen Steuermodul (1004) operativ verbunden ist, wobei das periphere Modul (1008) konfiguriert ist, ein Bild, das aus den mehreren detektierten Werten (1005) erhalten wird, zu verarbeiten, zu speichern und/oder wiederzugeben.


 
16. Verfahren zum Herstellen eines Bildsensors (100, 700, 725, 750, 775, 900) als eine monolithische, dreidimensionale integrierte Schaltung (104, 302, 800), wobei der Bildsensor mehrere Pixel (101, 300, 402, 422, 442, 600, 701, 726, 751, 776) umfasst, die mit einer Steuereinheit operativ verbunden sind, die eine Ausleseschaltung (102) zum selektiven Auslesen der Photosignale, die durch das Licht, das auf die mehreren Pixel auftrifft, erzeugt werden, enthält, wobei das Verfahren die Schritte umfasst:

a) Bereitstellen mindestens einer Schicht eines Halbleitermaterials auf einem Substrat, wobei die mindestens eine Schicht eines Halbleitermaterials eine untere Ebene (106, 605) der monolithischen, dreidimensionalen integrierten Schaltung (104, 302, 800) bildet;

b) für jeden Pixel der mehreren Pixel, Anordnen einer aktiven Vorrichtung (110, 603) an einem ausgewählten Ort der mindestens einen Schicht eines Halbleitermaterials der unteren Ebene (106, 605) und Bereitstellen eines Ausgangsanschlusses (706, 732, 757, 780) für das Pixel;

c) Anordnen zumindest eines Teils der Steuereinheit in der unteren Ebene (106, 605) und schaltungstechnisches Verbinden des Ausgangsanschlusses (706, 732, 757, 780) jedes Pixels mit der Ausleseschaltung (102) der Steuereinheit;

d) Bereitstellen einer Transportschicht (109, 304, 607), die mindestens eine Schicht eines zweidimensionalen Materials enthält, und einer Photosensibilisierungsschicht (108, 303, 606), die der Transportschicht zugeordnet ist, wobei die Photosensibilisierungsschicht und die Transportschicht gestapelt sind und die Photosensibilisierungsschicht (108, 303, 606) konfiguriert ist, einfallendes Licht zu absorbieren, derart, dass ein Elektron oder ein Loch eines Elektron-Loch-Paars, das durch die Absorption eines Photons in der Photosensibilisierungsschicht erzeugt wird, zur Transportschicht übertragen werden kann, während das Loch oder das Elektron des Elektron-Loch-Paars in der Photosensibilisierungsschicht oder in einer Grenzschicht zwischen der Photosensibilisierungsschicht und der Transportschicht gefangen bleibt, wobei die Transportschicht und die Photosensibilisierungsschicht eine obere Ebene (105, 604) der monolithischen, dreidimensionalen integrierten Schaltung (104, 302, 800) bilden, wobei die obere Ebene über der unteren Ebene angeordnet ist;

e) für jedes Pixel der mehreren Pixel, Anordnen eines lichtempfindlichen Elements (107, 301, 403, 423, 443, 500, 601, 710, 727, 752, 777) an einem ausgewählten Ort der oberen Ebene (105, 604) und schaltungstechnisches Verbinden der Transportschicht des lichtempfindlichen Elements mit einem ersten Zwischenanschluss (404a, 424a, 444, 703, 730, 778), der in dem Pixel vorgesehen ist;

f) operatives Koppeln des lichtempfindlichen Elements (107, 301, 403, 423, 443, 500, 601, 710, 727, 752, 777) jedes Pixels mit der aktiven Vorrichtung (110, 603) des Pixels; und

g) Bereitstellen einer Dunkelstrom-Unterdrückungsschaltung (400, 420, 440), die konfiguriert ist, den Dunkelstrom, der durch das lichtempfindliche Element der Pixel während eines Belichtungszyklus erzeugt wird, zu unterdrücken;

wobei die Steuereinheit konfiguriert ist, dann, wenn ein gegebener Pixel ausgelesen werden soll, den ersten Zwischenanschluss (404a, 424a, 444, 703, 730, 778) des Pixels schaltungstechnisch zu verbinden:

- mit dem Ausgangsanschluss (780) des Pixels, wobei der Ausgangsanschluss (780) über die Dunkelstrom-Unterdrückungsschaltung (400, 420, 440), die einen Pegelumsetzer (452, 783) und einen Verstärker (451, 784) umfasst, mit der Ausleseschaltung (102) schaltungstechnisch verbunden ist; oder

- mit dem Ausgangsanschluss (706, 732, 757) des Pixels und mit der Dunkelstrom-Unterdrückungsschaltung (400, 420, 440), die mindestens ein Referenzelement (401, 421, 501, 502, 503, 504, 602, 702, 728, 753) umfasst, das eine Dunkelleitfähigkeit aufweist, die der Dunkelleitfähigkeit des lichtempfindlichen Elements des Pixels angepasst ist.


 
17. Verfahren nach Anspruch 16, wobei die Steuereinheit ferner eine Vorspannungsschaltung (103) zum Anlegen einer Vorspannung an die mehreren Pixel umfasst; wobei die Dunkelstrom-Unterdrückungsschaltung (400, 420) das mindestens eine Referenzelement (401, 421, 501, 502, 503, 504, 602, 702, 728, 753) umfasst, das eine Dunkelleitfähigkeit aufweist, die mit der Dunkelleitfähigkeit des lichtempfindlichen Elements (403, 423, 500, 601, 710, 727, 752) der Pixel angepasst ist; wobei das Verfahren ferner den Schritt umfasst:

- für jeden Pixel der mehreren Pixel, schaltungstechnisches Verbinden des lichtempfindlichen Elements zwischen dem ersten Zwischenanschluss (404a, 424a, 444, 703, 730) und einem ersten Vorspannungsanschluss (405, 425), der in dem Pixel vorgesehen ist;

- schaltungstechnisches Verbinden des bzw. jedes Referenzelements zwischen einem zweiten Zwischenanschluss (404b, 424b, 707, 731) und einem zweiten Vorspannungsanschluss (406, 426), der in der monolithischen, dreidimensionalen integrierten Schaltung (104, 302, 800) vorgesehen ist;

- schaltungstechnisches Verbinden des ersten Vorspannungsanschlusses (405, 425) jedes Pixels der mehreren Pixel und des zweiten Vorspannungsanschlusses (406, 426) des mindestens einen Referenzelements mit der Vorspannungsschaltung (103); und

wobei die Steuereinheit konfiguriert ist, dann, wenn ein gegebenes Pixel ausgelesen werden soll, den ersten Zwischenanschluss (404a, 424a, 444, 703, 730) des Pixels und den zweiten Zwischenanschluss (404b, 424b, 707, 731) eines Referenzelements des mindestens einen Referenzelements mit dem Ausgangsanschluss (706, 732, 757) des Pixels schaltungstechnisch zu verbinden.
 


Revendications

1. Capteur d'image (100, 700, 725, 750, 775, 900) comprenant une pluralité de pixels (101, 300, 402, 422, 442, 600, 701, 726, 751, 776) connectés en fonctionnement à une unité de commande qui comprend un circuit de lecture (102) destiné à lire de manière sélective des signaux photo générés par la lumière qui frappe la pluralité de pixels,
où le capteur d'image comprend un circuit intégré tridimensionnel monolithique (104, 302, 800) comprenant un niveau supérieur (105, 604) présentant une première pluralité de couches empilées, et un niveau inférieur (106, 605) présentant une seconde pluralité de couches empilées, le niveau inférieur étant disposé sous le niveau supérieur ;
où chaque pixel de la pluralité de pixels comprend :

- un élément photosensible (107, 301, 403, 423, 443, 500, 601, 710, 727, 752, 777) agencé à un emplacement sélectionné dudit niveau supérieur ;

- un dispositif actif (110, 603) agencé à un emplacement sélectionné dudit niveau inférieur, le dispositif actif comprenant au moins une couche d'un matériau semi-conducteur, et étant couplé en fonctionnement à l'élément photosensible ;

- une première borne intermédiaire (404a, 424a, 444, 703, 730, 778) connectée par un circuit à la couche transport de l'élément photosensible ; et

- une borne de sortie (706, 732, 757, 780) connectée par un circuit au circuit de lecture (102) ;

caractérisé en ce que :

- l'élément photosensible comprend une couche photosensibilisante (108, 303, 606) associée à une couche transport (109, 304, 607), la couche transport comprenant au moins une couche d'un matériau bidimensionnel, où la couche photosensibilisante et la couche transport sont empilées, et la couche photosensibilisante (108, 303, 606) étant configurée afin d'absorber la lumière incidente, de telle sorte qu'un électron ou qu'un trou provenant d'une paire électron - trou générée dans la couche photosensibilisante par l'absorption d'un photon, puisse être transféré vers la couche transport, tandis que le trou ou l'électron de ladite paire électron - trou reste piégé dans la couche photosensibilisante, ou dans une interface entre la couche photosensibilisante et la couche transport ;

- le capteur d'image comprend en outre un circuit de suppression du courant d'obscurité (400, 420, 440), configuré afin de supprimer le courant d'obscurité généré par l'élément photosensible des pixels au cours d'un cycle d'exposition ; et

- l'unité de commande est agencée, en partie au moins, dans ledit niveau inférieur (106, 605), et est configurée, quand un pixel donné doit être lu, afin de connecter par un circuit la première borne intermédiaire (404a, 424a, 444, 703, 730, 778) dudit pixel :

- à la borne de sortie (780) dudit pixel, ladite borne de sortie (780) étant connectée par un circuit, au circuit de lecture (102) par l'intermédiaire dudit circuit de suppression du courant d'obscurité (400, 420, 440) qui comprend un dispositif de décalage de niveau (452, 783) et un amplificateur (451, 784) ; ou

- à la borne de sortie (706, 732, 757) dudit pixel et audit circuit de suppression du courant d'obscurité (400, 420, 440) qui comprend au moins un élément de référence (401, 421, 501, 502, 503, 504, 602, 702, 728, 753) présentant une conductance d'obscurité qui correspond à la conductance d'obscurité de l'élément photosensible du pixel.


 
2. Capteur d'image selon la revendication 1,
où l'unité de commande comprend un circuit de polarisation (103) destiné à polariser la pluralité de pixels ;
où le circuit de suppression du courant d'obscurité (400, 420) comprend l'un au moins des éléments de référence (401, 421, 501, 502, 503, 504, 602, 702, 728, 753) présentant une conductance d'obscurité qui correspond à la conductance d'obscurité de l'élément photosensible (403, 423, 500, 601, 710, 727, 752) des pixels ;
où le ou chaque élément de référence est connecté par un circuit entre une seconde borne intermédiaire (404b, 424b, 707, 731) et une seconde borne de polarisation (406, 426), la seconde borne de polarisation étant connectée par un circuit au circuit de polarisation (103) ;
où l'élément photosensible de chaque pixel est connecté par un circuit entre la première borne intermédiaire (404a, 424a, 444, 703, 730) dudit pixel, une première borne de polarisation (405, 425) prévue dans ledit pixel, la première borne de polarisation de chaque pixel étant connectée par un circuit au circuit de polarisation (103) ;
où le circuit de polarisation (103) est adapté afin de fournir une tension de polarisation entre la première borne de polarisation de l'élément photosensible des pixels de la pluralité de pixels, et la seconde borne de polarisation de l'un au moins des éléments de référence ; et
où l'unité de commande est configurée, quand un pixel donné doit être lu, afin de connecter par un circuit la première borne intermédiaire (404a, 424a, 444, 703, 730) dudit pixel et la seconde borne intermédiaire (404b, 424b, 707, 731) d'un élément de référence de l'un au moins desdits éléments de référence, à la borne de sortie (706, 732, 757) dudit pixel.
 
3. Capteur d'image selon la revendication 2,
où un élément de référence (503, 504, 602) de l'un au moins des éléments de référence, est agencé dans ledit niveau supérieur et comprend une couche transport (614) comprenant au moins une couche d'un matériau bidimensionnel.
 
4. Capteur d'image selon la revendication 3,
où ledit élément de référence comprend en outre une couche photosensibilisante (613) associée à la couche transport (614) dudit élément de référence (600).
 
5. Capteur d'image selon la revendication 4,
où ledit élément de référence (504, 602) comprend en outre :

une première couche de blocage de la lumière (505, 615) disposée au-dessus de la couche photosensibilisante (613) et de la couche transport (614) dudit élément de référence ;

et, de préférence, une seconde couche de blocage de la lumière disposée en dessous de la couche photosensibilisante et de la couche transport dudit élément de référence.


 
6. Capteur d'image selon l'une quelconque des revendications 3 à 5,
où ledit élément de référence (602) est agencé en dessous de l'élément photosensible (601) d'un pixel de la pluralité de pixels.
 
7. Capteur d'image selon l'une quelconque des revendications 2 à 6,
où un élément de référence de l'un au moins des éléments de référence, est agencé dans ledit niveau inférieur et comprend un résisteur variable (502).
 
8. Capteur d'image selon l'une quelconque des revendications 1 à 7,
où le niveau supérieur (105, 604) comprend une ou plusieurs couches isolantes (119, 307, 308, 617) associées à l'élément photosensible (107, 301, 601) de la pluralité de pixels ; et
où de préférence, au moins un pixel (300, 600) de la pluralité de pixels comprend :

- une borne de grille arrière (310) disposé en dessous de l'élément photosensible (301) dudit un pixel au moins, entre une couche isolante (308) disposée en dessous de l'élément photosensible (301) de la pluralité de pixels, et le niveau inférieur du circuit intégré tridimensionnel monolithique ; et / ou

- une borne de grille supérieure (312, 612) disposée au-dessus de l'élément photosensible (301, 601) dudit un pixel au moins.


 
9. Capteur d'image selon l'une quelconque des revendications 1 à 8,
où au moins un pixel de la pluralité de pixels comprend une interconnexion conductrice (200, 210, 220, 230) destinée à coupler le dispositif actif (110) dudit pixel, à l'élément photosensible (107) dudit pixel, l'interconnexion conductrice comprenant :

- un contact vertical (201) s'étendant à partir du niveau inférieur vers le niveau supérieur du circuit intégré tridimensionnel monolithique (104), et présentant une première section (202) connectée au dispositif actif (110) dudit pixel, ladite première section étant disposée sur l'une au moins des couches semi-conductrices dudit dispositif actif ; et

- un contact latéral (204, 214, 224, 234) agencé sur ledit niveau supérieur et connecté à une seconde section (203) du contact vertical ;

où le contact latéral (204, 214, 224, 234) est connecté de manière ohmique à la couche transport (109) de l'élément photosensible (107) dudit pixel, et comprend une partie (205, 225, 235) parallèle à la couche transport (109) dudit élément photosensible (107).
 
10. Capteur d'image selon l'une quelconque des revendications 1 à 9,
où le dispositif actif (110, 603) de chaque pixel de la pluralité de pixels, comprend un commutateur (704, 705, 729, 781, 782), un amplificateur (754), un filtre, un numériseur, un dispositif de décalage de niveau et / ou un élément de stockage (755).
 
11. Capteur d'image selon l'une quelconque des revendications 1 à 10,
où la pluralité de pixels sont groupés en groupes (s1 - s9), chaque groupe comprenant un ou plusieurs pixels ; et
où la couche photosensibilisante de l'élément photosensible du pixel ou de plusieurs pixels de chaque groupe est sensible à une plage de spectre différente.
 
12. Capteur d'image selon l'une quelconque des revendications 1 à 11,
où, pour au moins un pixel (701, 726, 751, 776) de la pluralité de pixels, le dispositif actif de l'un au moins desdits pixels est couplé en fonctionnement à la première borne intermédiaire (703, 730, 778) de l'élément photosensible dudit au moins un pixel.
 
13. Capteur d'image selon l'une quelconque des revendications 2 à 12,
où la pluralité de pixels sont agencés en un réseau bidimensionnel comprenant une pluralité de lignes et de colonnes ;
où le circuit de suppression du courant d'obscurité comprend autant d'éléments de référence (702) qu'il y a de colonnes dans le réseau, chaque élément de référence étant associé aux pixels (701) d'une colonne différente ;
où le dispositif actif de chaque pixel comprend un premier commutateur (704) configuré afin de connecter de manière sélective la première borne intermédiaire (703) du pixel, à la seconde borne intermédiaire (707) de l'élément de référence associé à la colonne dudit pixel, et un second commutateur (705) configuré afin de connecter de manière sélective la première borne intermédiaire (703) du pixel à sa borne de sortie (706) ; et
où le circuit de lecture comprend :

- autant d'amplificateurs (708) qu'il y a de colonnes, chaque amplificateur présentant une borne d'entrée, connectée par un circuit à la borne de sortie des pixels (701) d'une colonne donnée ; et

- un élément de stockage (709) connecté en série à la borne de sortie de chaque amplificateur (708), chaque élément de stockage étant configuré afin de stocker une tension proportionnelle au signal photo généré dans un pixel (701) de ladite colonne donnée.


 
14. Capteur d'image selon l'une quelconque des revendications 2 à 12,
où la pluralité de pixels sont agencés en un réseau bidimensionnel comprenant une pluralité de lignes et de colonnes ;
où le circuit de suppression du courant d'obscurité comprend un élément de référence (728, 753) agencé dans chaque pixel (726, 751) de la pluralité de pixels, la seconde borne intermédiaire (731) de chaque élément de référence (728, 753) étant connectée à la première borne intermédiaire (730) du pixel ; et
où le dispositif actif de chaque pixel comprend un commutateur de sélection de ligne (729, 756) connecté à sa borne de sortie (732, 757).
 
15. Système optoélectronique (1000) comprenant :

- un capteur d'image (100) selon l'une quelconque des revendications 1 à 14 ;

- un module optique (1002) interfacé en fonctionnement avec le capteur d'image (100), le module optique (1002) étant adapté afin de focaliser la lumière entrante sur la pluralité de pixels ;

- un module d'alimentation (1003) connecté en fonctionnement à l'unité de commande du capteur d'image (100), le module d'alimentation (1003) étant configuré afin de fournir une tension de polarisation au capteur d'image (100) ;

- un module de commande analogique et / ou numérique (1004) connecté en fonctionnement à l'unité de commande du capteur d'image (100), le module de commande analogique et / ou numérique (1004) étant configuré afin de fournir des signaux de commande (1012) à l'unité de commande de façon à lire de manière sélective les pixels, et de recevoir une pluralité de valeurs détectées (1005) correspondant aux signaux photo lus en provenance de la pluralité de pixels par le circuit de lecture ; et

- un module périphérique (1008) connecté en fonctionnement au module de commande analogique et / ou numérique (1004), le module périphérique (1008) étant configuré afin de traiter, de stocker et / ou de rendre une image obtenue à partir de la pluralité de valeurs détectées (1005).


 
16. Procédé de fabrication d'un capteur d'image (100, 700, 725, 750, 775, 900) en tant que circuit intégré tridimensionnel monolithique (104, 302, 800), où le capteur d'image comprend une pluralité de pixels (101, 300, 402, 422, 442, 600, 701, 726, 751, 776) connectés en fonctionnement à une unité de commande qui comprend un circuit de lecture (102) destiné à lire de manière sélective des signaux photo générés par la lumière qui frappe la pluralité de pixels, le procédé comprenant les étapes suivantes :

a) fournir au moins une couche de matériau semi-conducteur sur un substrat, l'une au moins desdites couches de matériau semi-conducteur formant un niveau inférieur (106, 605) du circuit intégré tridimensionnel monolithique (104, 302, 800) ;

b) pour chaque pixel de la pluralité de pixels, agencer un dispositif actif (110, 603) à un emplacement sélectionné de l'une au moins des couches de matériau semi-conducteur dudit niveau inférieur (106, 605), et fournir une borne de sortie (706, 732, 757, 780) au pixel ;

c) agencer une partie au moins de l'unité de commande dans ledit niveau inférieur (106, 605), et connecter par un circuit la borne de sortie (706, 732, 757, 780) de chaque pixel au circuit de lecture (102) de l'unité de commande ;

d) fournir une couche transport (109, 304, 607) comprenant au moins une couche d'un matériau bidimensionnel, et une couche photosensibilisante (108, 303, 606) associée à la couche transport, où la couche photosensibilisante et la couche transport sont empilées, et la couche photosensibilisante (108, 303, 606) étant configurée afin d'absorber la lumière incidente, de telle sorte qu'un électron ou qu'un trou provenant d'une paire électron - trou générée dans la couche photosensibilisante par l'absorption d'un photon, puisse être transféré vers la couche transport, tandis que le trou ou l'électron de ladite paire électron - trou reste piégé dans la couche photosensibilisante, ou dans une interface entre la couche photosensibilisante et la couche transport, la couche transport et la couche photosensibilisante formant un niveau supérieur (105, 604) du circuit intégré tridimensionnel monolithique (104, 302, 800), ledit niveau supérieur étant disposé au-dessus dudit niveau inférieur ;

e) pour chaque pixel de la pluralité de pixels, agencer un élément photosensible (107, 301, 403, 423, 443, 500, 601, 710, 727, 752, 777) à un emplacement sélectionné dudit niveau supérieur (105, 604), et connecter par un circuit la couche transport de l'élément photosensible à une première borne intermédiaire (404a, 424a, 444, 703, 730, 778) fournie dans ledit pixel ;

f) coupler en fonctionnement l'élément photosensible (107, 301, 403, 423, 443, 500, 601, 710, 727, 752, 777) de chaque pixel, au dispositif actif (110, 603) dudit pixel ; et

g) fournir un circuit de suppression du courant d'obscurité (400, 420, 440), configuré afin de supprimer le courant d'obscurité généré par l'élément photosensible des pixels au cours d'un cycle d'exposition ;

où l'unité de commande est configurée, quand un pixel donné doit être lu, afin de connecter par un circuit la première borne intermédiaire (404a, 424a, 444, 703, 730, 778) dudit pixel :

- à la borne de sortie (780) dudit pixel, ladite borne de sortie (780) étant connectée par un circuit, au circuit de lecture (102) par l'intermédiaire dudit circuit de suppression du courant d'obscurité (400, 420, 440) qui comprend un dispositif de décalage de niveau (452, 783) et un amplificateur (451, 784) ; ou

- à la borne de sortie (706, 732, 757) dudit pixel et audit circuit de suppression du courant d'obscurité (400, 420, 440) qui comprend au moins un élément de référence (401, 421, 501, 502, 503, 504, 602, 702, 728, 753) présentant une conductance d'obscurité qui correspond à la conductance d'obscurité de l'élément photosensible du pixel.


 
17. Procédé selon la revendication 16,
où l'unité de commande comprend en outre un circuit de polarisation (103) destiné à polariser la pluralité de pixels ;
où le circuit de suppression du courant d'obscurité (400, 420) comprend l'un au moins des éléments de référence (401, 421, 501, 502, 503, 504, 602, 702, 728, 753) présentant une conductance d'obscurité qui correspond à la conductance d'obscurité de l'élément photosensible (403, 423, 500, 601, 710, 727, 752) des pixels ;
où le procédé comprend en outre les étapes suivantes :

- pour chaque pixel de la pluralité de pixels, connecter par un circuit l'élément photosensible entre la première borne intermédiaire (404a, 424a, 444, 703, 730) et une première borne de polarisation (405, 425) fournie dans ledit pixel ;

- connecter par un circuit le ou chaque élément de référence entre une seconde borne intermédiaire (404b, 424b, 707, 731) et une seconde borne de polarisation (406, 426) fournie dans le circuit intégré tridimensionnel monolithique (104, 302, 800) ;

- connecter par un circuit la première borne de polarisation (405, 425) de chaque pixel de la pluralité de pixels, et la seconde borne de polarisation (406, 426) de l'un au moins des éléments de référence au circuit de polarisation (103) ; et

où l'unité de commande est configurée, quand un pixel donné doit être lu, afin de connecter par un circuit la première borne intermédiaire (404a, 424a, 444, 703, 730) dudit pixel et la seconde borne intermédiaire (404b, 424b, 707, 731) d'un élément de référence de l'un dit au moins des éléments de référence, à la borne de sortie (706, 732, 757) dudit pixel.
 




Drawing
















































REFERENCES CITED IN THE DESCRIPTION



This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description




Non-patent literature cited in the description