(19)
(11)EP 3 105 422 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
10.06.2020 Bulletin 2020/24

(21)Application number: 15792044.8

(22)Date of filing:  12.02.2015
(51)International Patent Classification (IPC): 
F01D 11/08(2006.01)
F02C 7/28(2006.01)
F01D 25/12(2006.01)
F02C 7/18(2006.01)
(86)International application number:
PCT/US2015/015540
(87)International publication number:
WO 2015/175042 (19.11.2015 Gazette  2015/46)

(54)

BLADE OUTER AIR SEAL FIN COOLING ASSEMBLY AND METHOD

ÄUSSERE SCHAUFELLUFTDICHTUNGSRIPPENKÜHLANORDNUNG UND VERFAHREN

ENSEMBLE DE REFROIDISSEMENT D'AILETTE DE JOINT D'ÉTANCHÉITÉ À L'AIR EXTÉRIEUR DE PALE ET PROCÉDÉ


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 14.02.2014 US 201461939841 P

(43)Date of publication of application:
21.12.2016 Bulletin 2016/51

(73)Proprietor: United Technologies Corporation
Farmington, CT 06032 (US)

(72)Inventors:
  • ROMANOV, Dmitriy A.
    Wells, Maine 04090 (US)
  • PAULINO, Jose R.
    Saco, Maine 04072 (US)
  • BLANEY, Ken F.
    Middleton, New Hampshire 03887 (US)

(74)Representative: Dehns 
St. Bride's House 10 Salisbury Square
London EC4Y 8JD
London EC4Y 8JD (GB)


(56)References cited: : 
US-A1- 2009 087 306
US-A1- 2011 044 803
US-A1- 2013 170 963
US-B1- 7 665 962
US-B1- 8 475 122
US-A1- 2009 087 306
US-A1- 2011 044 803
US-A1- 2013 170 963
US-B1- 7 665 962
US-B1- 8 475 122
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    BACKGROUND



    [0001] This disclosure relates generally to a blade outer air seal and, more particularly, to cooled, grooved blade outer air.

    [0002] Gas turbine engines typically include a compressor section, a combustor section, and a turbine section. During operation, air is pressurized in the compressor section and is mixed with fuel and burned in the combustor section to generate hot combustion gases. The hot combustion gases are communicated through the turbine section, which extracts energy from the hot combustion gases to power the compressor section and other gas turbine engine loads.

    [0003] The compressor and turbine sections of a gas turbine engine include alternating rows of rotating blades and stationary vanes. The turbine blades rotate and extract energy from the hot combustion gases that are communicated through the gas turbine engine. The turbine vanes prepare the airflow for the next set of blades. The vanes extend from platforms that may be contoured to manipulate flow.

    [0004] An outer casing of an engine static structure may include one or more blade outer air seals (BOAS) that provide an outer radial flow path boundary for the hot combustion gases. The BOAS are arranged circumferentially adjacent to each other and meet at mate faces. The tips of rotating blades seal against radially inner faces of the BOAS. Complex BOAS geometries have been developed to enhance sealing interfaces between the BOAS and the blade tips. Cooling these complex geometries is often difficult.

    [0005] US8475122B1 discloses a prior art blade outer air seal in accordance with the preamble of claims 1 and 13.

    [0006] US2009/087306A1 discloses a prior art core in accordance with the preamble of claim 10.

    SUMMARY



    [0007] According to a first aspect of the present invention, there is provided a blade outer air seal as set forth in claim 1.

    [0008] In an example of the foregoing blade outer air seal, an axial width of the first groove is the same as an axial width of the second groove.

    [0009] In another example of any of the foregoing blade outer air seals, an axial width of the fin is the same as both the axial width of the first groove and the axial width of the second groove.

    [0010] In another example of any of the foregoing blade outer air seals, an axial width of the fin is from 0.5 to 3.0 percent of an axial width of the body.

    [0011] In another example of any of the foregoing blade outer air seals, an axial width of the fin is less than 1 millimeter.

    [0012] In another example of any of the foregoing blade outer air seals, the fin is one of a plurality of fins extending radially from the body.

    [0013] In another example of any of the foregoing blade outer air seals, the fin is one of from five to twenty-five fins separate and distinct from each other.

    [0014] In another example of any of the foregoing blade outer air seals, the radially inner fin face is configured to interface directly with the blade array.

    [0015] According to a further aspect of the present invention, there is provide a sacrificial structure as set forth in claim 10.

    [0016] In an example of the foregoing sacrificial structure, the refractory metal core extends to a radially inner core face to align with a radially inner fin face of the fin.

    [0017] In another example of any of the foregoing sacrificial structures, an axial width of the fin is from 0.5 to 3.0 percent of an axial width of the body.

    [0018] In another example of any of the foregoing sacrificial structures, the fin is positioned axially between a first circumferentially extending groove and a second circumferentially extending groove in a body of a blade outer air seal.

    [0019] According to a further aspect of the present invention, there is provided a method as set forth in claim 13.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0020] 

    Figure 1 illustrates a schematic, cross-sectional view of a gas turbine engine.

    Figure 2 illustrates a cross-section of a portion of a gas turbine engine.

    Figure 3 illustrates a perspective view of a blade outer air seal (BOAS) segment.

    Figure 4 shows a side view of the Figure 3 BOAS segment.

    Figure 5 shows a section view at line A-A in Figure 4.

    Figure 6 shows a refractory metal core fin to provide a cooling passage in a fin of the BOAS of Figures 3-5.

    Figure 7 shows a refractory metal structure to provide various passages in the BOAS of Figures 3-5.


    DETAILED DESCRIPTION



    [0021] Figure 1 schematically illustrates a gas turbine engine 20. The gas turbine engine 20 is disclosed herein as a two-spool turbofan that generally incorporates a fan section 22, a compressor section 24, a combustor section 26 and a turbine section 28. Alternative engines might include an augmentor section (not shown) among other systems or features. The fan section 22 drives air along a bypass flow path B in a bypass duct defined within a nacelle 15, while the compressor section 24 drives air along a core flow path C for compression and communication into the combustor section 26 then expansion through the turbine section 28. Although depicted as a two-spool turbofan gas turbine engine in the disclosed non-limiting embodiment, it should be understood that the concepts described herein are not limited to use with two-spool turbofans as the teachings may be applied to other types of turbine engines including three-spool architectures.

    [0022] The exemplary engine 20 generally includes a low speed spool 30 and a high speed spool 32 mounted for rotation about an engine central longitudinal axis A relative to an engine static structure 36 via several bearing systems 38. It should be understood that various bearing systems 38 at various locations may alternatively or additionally be provided, and the location of bearing systems 38 may be varied as appropriate to the application.

    [0023] The low speed spool 30 generally includes an inner shaft 40 that interconnects a fan 42, a first (or low) pressure compressor 44 and a first (or low) pressure turbine 46. The inner shaft 40 is connected to the fan 42 through a speed change mechanism, which in exemplary gas turbine engine 20 is illustrated as a geared architecture 48 to drive the fan 42 at a lower speed than the low speed spool 30. The high speed spool 32 includes an outer shaft 50 that interconnects a second (or high) pressure compressor 52 and a second (or high) pressure turbine 54. A combustor 56 is arranged in exemplary gas turbine engine 20 between the high pressure compressor 52 and the high pressure turbine 54. A mid-turbine frame 57 of the engine static structure 36 is arranged generally between the high pressure turbine 54 and the low pressure turbine 46. The mid-turbine frame 57 further supports bearing systems 38 in the turbine section 28. The inner shaft 40 and the outer shaft 50 are concentric and rotate via bearing systems 38 about the engine central longitudinal axis A which is collinear with their longitudinal axes.

    [0024] The core airflow is compressed by the low pressure compressor 44 then the high pressure compressor 52, mixed and burned with fuel in the combustor 56, then expanded over the high pressure turbine 54 and low pressure turbine 46. The mid-turbine frame 57 includes airfoils 59 which are in the core airflow path C. The turbines 46, 54 rotationally drive the respective low speed spool 30 and high speed spool 32 in response to the expansion. It will be appreciated that each of the positions of the fan section 22, compressor section 24, combustor section 26, turbine section 28, and geared architecture 48 may be varied. For example, geared architecture 48 may be located aft of combustor section 26 or even aft of turbine section 28, and fan section 22 may be positioned forward or aft of the location of geared architecture 48.

    [0025] The engine 20 in one example is a high-bypass geared aircraft engine. In a further example, the engine 20 bypass ratio is greater than about six, with an example embodiment being greater than about ten, the geared architecture 48 is an epicyclic gear train, such as a planetary gear system or other gear system, with a gear reduction ratio of greater than about 2.3 and the low pressure turbine 46 has a pressure ratio that is greater than about five. In one disclosed embodiment, the engine 20 bypass ratio is greater than about ten, the fan diameter is significantly larger than that of the low pressure compressor 44, and the low pressure turbine 46 has a pressure ratio that is greater than about five. Low pressure turbine 46 pressure ratio is pressure measured prior to inlet of low pressure turbine 46 as related to the pressure at the outlet of the low pressure turbine 46 prior to an exhaust nozzle. The geared architecture 48 may be an epicycle gear train, such as a planetary gear system or other gear system, with a gear reduction ratio of greater than about 2.3:1. It should be understood, however, that the above parameters are only exemplary of one embodiment of a geared architecture engine and that the present invention is applicable to other gas turbine engines including direct drive turbofans.

    [0026] A significant amount of thrust is provided by the bypass flow B due to the high bypass ratio. The fan section 22 of the engine 20 is designed for a particular flight condition -- typically cruise at about 0.8 Mach and about 35,000 feet (10,668m). The flight condition of 0.8 Mach and 35,000 ft (10,668m), with the engine at its best fuel consumption - also known as "bucket cruise Thrust Specific Fuel Consumption ('TSFC')" - is the industry standard parameter of lbm of fuel being burned divided by lbf of thrust the engine produces at that minimum point. "Low fan pressure ratio" is the pressure ratio across the fan blade alone, without a Fan Exit Guide Vane ("FEGV") system. The low fan pressure ratio as disclosed herein according to one non-limiting embodiment is less than about 1.45. "Low corrected fan tip speed" is the actual fan tip speed in ft/sec divided by an industry standard temperature correction of [(Tram °R) / (518.7 °R)]0.5 (where °R = K x 9/5). The "Low corrected fan tip speed" as disclosed herein according to one non-limiting embodiment is less than about 1150 ft / second (351 m/s).

    [0027] Figure 2 illustrates a portion 62 of a gas turbine engine, such as the gas turbine engine 20 of Figure 1. In this exemplary embodiment, the portion 62 represents the high pressure turbine 54. However, it should be understood that other portions of the gas turbine engine 20 could benefit from the teachings of this disclosure, including but not limited to, the compressor section 24 and the low pressure turbine 46.

    [0028] The example embodiment includes eight fins 110. Other examples may include from four to eight fins separate and distinct from each other. Still other examples, such as BOAS segments used in industrial gas turbine engines, may include from forty to sixty fins.

    [0029] The fins 110 each terminate radially at a radially inner fin face 114. Each of the fins 110 is positioned between grooves 118 extending circumferentially within the body 80. The example BOAS segment 76 includes nine grooves 118 and eight resultant fins 110.

    [0030] One or more of the radially inner fin faces 114 provide at least one cooling outlet 122, which represents the end of a cooling passage 126 extending through the respective one of the fins 110. The cooling passage 126 extends from the cavity 74. The secondary cooling airflow within the cavity 74 flows through the cooling passage 126 during operation and is delivered through the cooling outlet 122 to the radially inner fin face 114, which interfaces with the tip 68T.

    [0031] The cooling passage 126 includes a first radially extending portion 130 from the cavity 74 and a second radially extending portion 134 ending at the cooling outlet 122. A circumferentially extending portion 138 connects the first radially extending portion 130 to the second radially extending portion 134.

    [0032] Each of the example fins 110 includes four separate and distinct cooling passages 126 distributed circumferentially through the fin 110. In another example, each of the fins 110 includes from three to six separate and distinct cooling passages 126. Other quantities of cooling passages 126 are possible. Some of the fins 110 may include more cooling passages 126 than others of the passages 126. The cooling outlets 122 of the cooling passages 126 are distributed circumferentially across the radially inner fin face 114.

    [0033] As can be appreciated, communicating cooling fluid through the cooling passages 126 to the radially inner fin faces 114 helps to cool the fins 110 and the surrounding interfaces during operation of the engine 20.

    [0034] The example fins 110 each have an axial width Wf. The grooves 118 have an axial width Wg. The seal body 80 has an axial width Ws. The axial widths Wf of the fins 110 are each about the same in this example. The axial widths Wg of the grooves 118 are also about the same in this example. In other examples, the axial widths Wf of the fins 110 varies and the axial widths Wg of the grooves 118 varies.

    [0035] The example embodiment includes eight fins 110. Other examples may include from four to eight fins separate and distinct from each other. Still other examples, such as BOAS segments used in industrial gas turbine engines, may include from forty to sixty fins.

    [0036] The fins 110 each terminate radially at a radially inner fin face 114. Each of the fins 110 is positioned between grooves 118 extending circumferentially within the body 80. The example BOAS segment 76 includes nine grooves 118 and eight resultant fins 110.

    [0037] One or more of the radially inner fin faces 114 provide at least one cooling outlet 122, which represents the end of a cooling passage 126 extending through the respective one of the fins 110. The cooling passage 126 extends from the cavity 74. The secondary cooling airflow within the cavity 74 flows through the cooling passage 126 during operation and is delivered through the cooling outlet 122 to the radially inner fin face 114, which interfaces with the tip 68T.

    [0038] The example cooling passage 126 includes a first radially extending portion 130 from the cavity 74 and a second radially extending portion 134 ending at the cooling outlet 122. A circumferentially extending portion 138 connects the first radially extending portion 130 to the second radially extending portion 134.

    [0039] Each of the example fins 110 includes four separate and distinct cooling passages 126 distributed circumferentially through the fin 110. In another example, each of the fins 110 includes from three to six separate and distinct cooling passages 126. Other quantities of cooling passages 126 are possible. Some of the fins 110 may include more cooling passages 126 than others of the passages 126. The cooling outlets 122 of the cooling passages 126 are distributed circumferentially across the radially inner fin face 114.

    [0040] As can be appreciated, communicating cooling fluid through the cooling passages 126 to the radially inner fin faces 114 helps to cool the fins 110 and the surrounding interfaces during operation of the engine 20.

    [0041] The example fins 110 each have an axial width Wf. The grooves 118 have an axial width Wg. The seal body 80 has an axial width Ws. The axial widths Wf of the fins 110 are each about the same in this example. The axial widths Wg of the grooves 118 are also about the same in this example. In other examples, the axial widths Wf of the fins 110 varies and the axial widths Wg of the grooves 118 varies.

    [0042] In this example, the axial width Wg of each of the grooves 118 is about the same as the axial width Wf as each of the fins 110. An axial width Wf of the fin and the axial width Wg of the groove are each less than 1 millimeter in this example.

    [0043] In other examples, the axial widths Wg of one or more of the grooves 118 may vary from the axial widths Wf of some of the fins 110.

    [0044] The axial widths Wf of the fins 110 is from 0.5 to 3.0 percent of the overall axial width Ws of the seal body 80, which represents the distance from the leading edge face 100 to the trailing edge face 104. Lower percentages within the 0.5 to 3.0 range are associated with industrial gas turbines in some examples. The higher percentages within the 0.5 to 3.0 range can be associated with aircraft gas turbines.

    [0045] Since the axial width Wg is about the same as the axial width Wf, the axial width Wg is also from 0.5 to 3.0 percent of the overall axial width Ws of the seal body 80.

    [0046] The example BOAS segment 76 is cast. As can be appreciated, establishing cooling passages 126 in the relatively small and detailed structures of the fins 110 and the grooves 118 can be difficult.

    [0047] In this example, a fin refractory metal (RMC) core 150 is used during casting to provide each of the cooling passages 126 within one of the fins 110. The fin RMC 150 is one of several fin RMCs held within a mold when casting the BOAS segment 76. Each of the fins 110, in this example, is molded about a single fin RMC.

    [0048] The other cavities and structure within the BOAS may be provided utilizing RMC resulting in a BOAS RMC core assembly 154.

    [0049] During casting, the various parts of the BOAS RMC core assembly 154 are placed into a die such as a ceramic mold. Molten metal is then poured into the mold. The BOAS RMC core assembly 154 can be held by rails of the die during the casting after the molten material hardens and the ceramic mold is removed, the BOAS segment 76 and RMC 154 remain. The RMC 154 is subsequently leached out in a chemical bath from the BOAS segment 76.

    [0050] RMC provides flexibility in investment casting enabling the introduction of cooling passages 126 into relatively thin structures. The resulting seal body can then include circumferential grooving and fins, which is often desirable at the BOAS segment 76 interfaces with the blade tip 68T. The circumferentially grooving can create a more effective seal interface with the blade tip 68T.

    [0051] RMC is one example method of providing the cooling passages 126. In another example, the BOAS segment 76 is created through an additive manufacturing process and RMC is not used. Manufacturing processes other than casting with RMC and additive manufacturing are used to create the BOAS segment in other examples.

    [0052] Features of the disclosed examples include a BOAS having fins that are cooled. Since the fins are cooled, the fins (and associated grooves) can be utilized in BOAS exposed to relatively hotter areas of the engine, such as a first stage of the high pressure turbine section.

    [0053] Although the different non-limiting embodiments are illustrated as having specific components, the embodiments of this disclosure are not limited to those particular combinations. It is possible to use some of the components or features from any of the non-limiting embodiments in combination with features or components from any of the other non-limiting embodiments.

    [0054] Although embodiments of this invention have been disclosed, a worker of ordinary skill in the art would recognize that certain modifications would come within the scope of this invention. For that reason, the following claims should be studied to determine the true scope and content of this invention.


    Claims

    1. A blade outer air seal (76), comprising:

    a body (80) to be distributed circumferentially about a blade (68) array, the body (80) having a plurality of grooves (118); and

    a fin (110) positioned between a first groove (118) and a second groove (118) of the plurality of grooves (118), the fin (110) extending radially from the body (80) and terminating at a radially inner fin face (114) that provides one or more cooling outlets (122), wherein the fin (110) provides internal cooling passages (126) extending from a cooling cavity (74), through the fin (110), to at least one of the cooling outlets (122);

    characterised in that:
    the internal cooling passages (126) comprise a first radially extending portion (130) from the cooling cavity (126), a second radially extending portion (134) from the cooling outlet (122), and a circumferentially extending portion (138) connecting the first and second radially extending portions (130,134).


     
    2. The blade outer air seal (76) of claim 1, wherein an axial width (Wg) of the first groove (118) is the same as an axial width (Wg) of the second groove (118).
     
    3. The blade outer air seal of claim 2, wherein an axial width (Wf) of the fin (110) is the same as both the axial width (Wg) of the first groove (118) and the axial width (Wg) of the second groove (118).
     
    4. The blade outer air seal (76) of any of claims 1 to 3, wherein an axial width (Wf) of the fin (110) is from 0.5 to 3.0 percent of an axial width (Ws) of the body (80).
     
    5. The blade outer air seal (76) of any of claims 1 to 4, wherein an axial width (Wf) of the fin (110) is less than 1 millimeter.
     
    6. The blade outer air seal (76) of any preceding claim, wherein the fin (110) is one of a plurality of fins (110) extending radially from the body (80).
     
    7. The blade outer air seal (76) of any preceding claim, wherein the fin (110) is one of from four to eight fins (110) separate and distinct from each other.
     
    8. The blade outer air seal (76) of any preceding claim, wherein the radially inner fin face (114) is configured to interface directly with the blade (68) array.
     
    9. The blade outer air seal (76) of any preceding claim, wherein the fin (110) is positioned axially between the first groove (118) and the second groove (118) of the plurality of grooves (118).
     
    10. A sacrificial structure (150) for forming internal cooling passages within a blade outer air seal (76), comprising a refractory metal core (150) to form an internal cooling passage (126),
    characterised in that:
    the internal cooling passage (126) is within a fin of a blade outer air seal (BOAS) (76), and the refractory metal core (150) includes a first radially extending portion (130), a second radially extending portion (134), and a circumferentially extending portion (138) connecting the first and second radially extending portions (130,134).
     
    11. The sacrificial structure (150) of claim 10, wherein the refractory metal core (150) extends to a radially inner core face to align with a radially inner fin face (114) of the fin (110), and optionally wherein the fin (110) is positioned axially between a first circumferentially extending groove (118) and a second circumferentially extending groove (118) in a body (80) of the blade outer air seal (76).
     
    12. The sacrificial structure (150) in claim 10 or 11, wherein an axial width (Wf) of the fin (110) is from 0.5 to 3.0 percent of an axial width (Wg) of the BOAS (76).
     
    13. A method of cooling an interface between a blade outer air seal (76) and a rotating blade (68) array, comprising:

    communicating a flow of fluid through a cooling passage (126) within a fin (110) of a blade outer air seal (76) to an interface between the blade outer air seal (76) and a rotating blade (68) array, wherein the fin (110) is positioned between circumferentially extending grooves (118) in a body (80) of the blade outer air seal (76); and

    communicating the fluid through the cooling passage (126) to a cooling outlet (122) at a radially inner fin face (114) of the fin (110),

    characterised in that:
    the flow is communicated through the cooling passage (126) in a radial direction, then a circumferential direction, and then a radial direction to the cooling outlet (122).


     


    Ansprüche

    1. Äußere Schaufelluftdichtung (76), umfassend:

    einen Körper (80), der in Umfangsrichtung um ein Schaufel-(68-)Array verteilt werden soll, wobei der Körper (80) eine Vielzahl von Nuten (118) aufweist; und

    eine Rippe (110), die zwischen einer ersten Nut (118) und einer zweiten Nut (118) der Vielzahl von Nuten (118) angeordnet ist, wobei sich die Rippe (110) radial von dem Körper (80) erstreckt und an einer radial inneren Rippenfläche (114) endet, die einen Kühlauslass oder mehrere Kühlauslässe (122) bereitstellt, wobei die Rippe (110) innere Kühlkanäle (126) bereitstellt, die sich von einem Kühlhohlraum (74) durch die Rippe (110) und zu zumindest einem der Kühlauslässe (122) erstrecken;

    dadurch gekennzeichnet, dass:
    die inneren Kühlkanäle (126) einen ersten sich radial erstreckenden Abschnitt (130) von dem Kühlhohlraum (126), einen zweiten sich radial erstreckenden Abschnitt (134) von dem Kühlauslass (122) und einen sich in Umfangsrichtung erstreckenden Abschnitt (138) umfassen, der den ersten und zweiten sich radial erstreckenden Abschnitt (130, 134) verbindet.


     
    2. Äußere Schaufelluftdichtung (76) nach Anspruch 1, wobei eine axiale Breite (Wg) der ersten Nut (118) gleich einer axialen Breite (Wg) der zweiten Nut (118) ist.
     
    3. Äußere Schaufelluftdichtung nach Anspruch 2, wobei eine axiale Breite (Wf) der Rippe (110) sowohl gleich der axialen Breite (Wg) der ersten Nut (118) als auch der axialen Breite (Wg) der zweiten Nut (118) ist.
     
    4. Äußere Schaufelluftdichtung (76) nach einem der Ansprüche 1 bis 3, wobei eine axiale Breite (Wf) der Rippe (110) zwischen 0,5 und 3,0 Prozent einer axialen Breite (Ws) des Körpers (80) beträgt.
     
    5. Äußere Schaufelluftdichtung (76) nach einem der Ansprüche 1 bis 4, wobei eine axiale Breite (Wf) der Rippe (110) kleiner als 1 Millimeter ist.
     
    6. Äußere Schaufelluftdichtung (76) nach einem der vorangehenden Ansprüche, wobei die Rippe (110) eine von einer Vielzahl von Rippen (110) ist, die sich radial von dem Körper (80) erstrecken.
     
    7. Äußere Schaufelluftdichtung (76) nach einem der vorangehenden Ansprüche, wobei die Rippe (110) eine von vier bis acht Rippen (110) ist, die voneinander getrennt und verschieden sind.
     
    8. Äußere Schaufelluftdichtung (76) nach einem der vorangehenden Ansprüche, wobei die radial innere Rippenfläche (114) konfiguriert ist, um eine direkte Schnittstelle mit dem Schaufel-(68-)Array zu bilden.
     
    9. Äußere Schaufelluftdichtung (76) nach einem der vorangehenden Ansprüche, wobei die Rippe (110) axial zwischen der ersten Nut (118) und der zweiten Nut (118) der Vielzahl von Nuten (118) positioniert ist.
     
    10. Opferstruktur (150) zum Bilden von inneren Kühlkanälen innerhalb einer äußeren Schaufelluftdichtung (76), umfassend einen Refraktärmetallkern (150), um einen inneren Kühlkanal (126) zu bilden,
    dadurch gekennzeichnet, dass:
    sich der innere Kühlkanal (126) innerhalb einer Rippe einer äußeren Schaufelluftdichtung (BOAS) (76) befindet und der Refraktärmetallkern (150) einen ersten sich radial erstreckenden Abschnitt (130), einen zweiten sich radial erstreckenden Abschnitt (134) und einen sich in Umfangsrichtung erstreckenden Abschnitt (138) beinhaltet, der den ersten und zwischen sich radial erstreckenden Abschnitt (130, 134) verbindet.
     
    11. Opferstruktur (150) nach Anspruch 10, wobei sich der Refraktärmetallkern (150) zu einer radial inneren Kernfläche erstreckt, um sich mit einer radial inneren Rippenfläche (114) der Rippe (110) auszurichten, und wobei die Rippe (110) gegebenenfalls axial zwischen einer ersten sich in Umfangsrichtung erstreckenden Nut (118) und einer zweiten sich in Umfangsrichtung erstreckenden Nut (118) in einem Körper (80) der äußeren Schaufelluftdichtung (76) positioniert ist.
     
    12. Opferstruktur (150) nach Anspruch 10 oder 11, wobei eine axiale Breite (Wf) der Rippe (110) zwischen 0,5 und 3,0 Prozent einer axialen Breite (Wg) der BOAS (76) beträgt.
     
    13. Verfahren zum Kühlen einer Schnittstelle zwischen einer äußeren Schaufelluftdichtung (76) und einem Laufschaufel-(68-) Array, umfassend:

    Übertragen eines Fluidstromes durch einen Kühlkanal (126) innerhalb einer Rippe (110) einer äußeren Schaufelluftdichtung (76) an eine Schnittstelle zwischen der äußeren Schaufelluftdichtung (76) und einem Laufschaufel-(68-) Array, wobei die Rippe (110) zwischen sich in Umfangsrichtung erstreckenden Nuten (118) in einem Körper (80) der äußeren Schaufelluftdichtung (76) positioniert ist; und

    Übertragen des Fluids durch den Kühlkanal (126) an einen Kühlauslass (122) an einer radial inneren Rippenfläche (114) der Rippe (110),

    dadurch gekennzeichnet, dass:
    der Strom durch den Kühlkanal (126) in einer radialen Richtung, dann in einer Umfangsrichtung und dann in einer radialen Richtung an den Kühlauslass (122) übertragen wird.


     


    Revendications

    1. Joint d'étanchéité à l'air extérieur de pale (76), comprenant :

    un corps (80) à répartir de manière circonférentielle autour d'un jeu de pales (68), le corps (80) ayant une pluralité de rainures (118) ; et

    une ailette (110) positionnée entre une première rainure (118) et une seconde rainure (118) de la pluralité de rainures (118), l'ailette (110) s'étendant radialement depuis le corps (80) et se terminant au niveau d'une face d'ailette radialement intérieure (114) qui fournit une ou plusieurs sorties de refroidissement (122), dans lequel l'ailette (110) fournit des passages de refroidissement internes (126) s'étendant d'une cavité de refroidissement (74) à au moins l'une des sorties de refroidissement (122) en passant par l'ailette (110) ;

    caractérisé en ce que :
    les passages de refroidissement internes (126) comprennent une première partie s'étendant radialement (130) depuis la cavité de refroidissement (126), une seconde partie s'étendant radialement (134) depuis la sortie de refroidissement (122) et une partie s'étendant circonférentiellement (138) reliant les première et seconde parties s'étendant radialement (130, 134).


     
    2. Joint d'étanchéité à l'air extérieur de pale (76) selon la revendication 1, dans lequel une largeur axiale (Wg) de la première rainure (118) est égale à une largeur axiale (Wg) de la seconde rainure (118).
     
    3. Joint d'étanchéité à l'air extérieur de pale selon la revendication 2, dans lequel une largeur axiale (Wf) de l'ailette (110) est égale à la fois à la largeur axiale (Wg) de la première rainure (118) et à la largeur axiale (Wg) de la seconde rainure (118) .
     
    4. Joint d'étanchéité à l'air extérieur de pale (76) selon l'une quelconque des revendications 1 à 3, dans lequel une largeur axiale (Wf) de l'ailette (110) représente 0,5 à 3,0 pour cent d'une largeur axiale (Ws) du corps (80).
     
    5. Joint d'étanchéité à l'air extérieur de pale (76) selon l'une quelconque des revendications 1 à 4, dans lequel une largeur axiale (Wf) de l'ailette (110) est inférieure à 1 millimètre.
     
    6. Joint d'étanchéité à l'air extérieur de pale (76) selon une quelconque revendication précédente, dans lequel l'ailette (110) est l'une d'une pluralité d'ailettes (110) s'étendant radialement depuis le corps (80).
     
    7. Joint d'étanchéité à l'air extérieur de pale (76) selon une quelconque revendication précédente, dans lequel l'ailette (110) est l'une de quatre à huit ailettes (110) séparées et distinctes les unes des autres.
     
    8. Joint d'étanchéité à l'air extérieur de pale (76) selon une quelconque revendication précédente, dans lequel la face d'ailette radialement intérieure (114) est conçue pour s'interfacer directement avec le jeu de pales (68).
     
    9. Joint d'étanchéité à l'air extérieur de pale (76) selon une quelconque revendication précédente, dans lequel l'ailette (110) est positionnée axialement entre la première rainure (118) et la seconde rainure (118) de la pluralité de rainures (118).
     
    10. Structure sacrificielle (150) pour former des passages de refroidissement internes à l'intérieur d'un joint d'étanchéité à l'air extérieur de pale (76), comprenant un noyau en métal réfractaire (150) pour former un passage de refroidissement interne (126),
    caractérisée en ce que :
    le passage de refroidissement interne (126) se trouve à l'intérieur d'une ailette d'un joint d'étanchéité à l'air extérieur de pale (BOAS) (76), et le noyau en métal réfractaire (150) comprend une première partie s'étendant radialement (130), une seconde partie s'étendant radialement (134) et une partie s'étendant circonférentiellement (138) reliant les première et seconde parties s'étendant radialement (130, 134).
     
    11. Structure sacrificielle (150) selon la revendication 10, dans laquelle le noyau en métal réfractaire (150) s'étend jusqu'à une face de noyau radialement intérieure pour s'aligner avec une face d'ailette radialement intérieure (114) de l'ailette (110), et éventuellement dans laquelle l'ailette (110) est positionnée axialement entre une première rainure s'étendant circonférentiellement (118) et une seconde rainure s'étendant circonférentiellement (118) dans un corps (80) du joint d'étanchéité à l'air extérieur de pale (76).
     
    12. Structure sacrificielle (150) selon la revendication 10 ou 11, dans laquelle une largeur axiale (Wf) de l'ailette (110) représente 0,5 à 3,0 pour cent d'une largeur axiale (Wg) du BOAS (76).
     
    13. Procédé de refroidissement d'une interface entre un joint d'étanchéité à l'air extérieur de pale (76) et un jeu de pales rotatives (68), comprenant :

    la communication d'un écoulement de fluide à travers un passage de refroidissement (126) à l'intérieur d'une ailette (110) d'un joint d'étanchéité à l'air extérieur de pale (76) jusqu'à une interface entre le joint d'étanchéité à l'air extérieur de pale (76) et un jeu de pales rotatives (68), dans lequel l'ailette (110) est positionnée entre des rainures s'étendant circonférentiellement (118) dans un corps (80) du joint d'étanchéité à l'air extérieur de pale (76) ; et

    la communication du fluide à travers le passage de refroidissement (126) jusqu'à une sortie de refroidissement (122) au niveau d'une face d'ailette radialement intérieure (114) de l'ailette (110),

    caractérisé en ce que :
    le flux est communiqué à travers le passage de refroidissement (126) dans une direction radiale, puis dans une direction circonférentielle, et ensuite dans une direction radiale vers la sortie de refroidissement (122).


     




    Drawing














    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description