(19)
(11)EP 3 106 824 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
06.11.2019 Bulletin 2019/45

(21)Application number: 16174732.4

(22)Date of filing:  16.06.2016
(51)Int. Cl.: 
F28F 9/18  (2006.01)
F28F 1/02  (2006.01)

(54)

MINI-CHANNEL HEAT EXCHANGER TUBE SLEEVE

MINIKANAL-WÄRMETAUSCHERSCHLAUCHHÜLSE

MANCHON À TUBE ÉCHANGEUR DE CHALEUR À MINI-CANAUX


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 16.06.2015 US 201514740806

(43)Date of publication of application:
21.12.2016 Bulletin 2016/51

(73)Proprietor: Hamilton Sundstrand Corporation
Charlotte, NC 28217 (US)

(72)Inventors:
  • MILLER, Matthew William
    Enfield, CT 06082 (US)
  • DeLUGAN, Anthony
    Agawam, MA 01001 (US)
  • DOE, Michael Jr.
    Southwick, MA 01077 (US)

(74)Representative: Dehns 
St. Bride's House 10 Salisbury Square
London EC4Y 8JD
London EC4Y 8JD (GB)


(56)References cited: : 
EP-A2- 2 159 514
WO-A2-2006/083450
JP-A- H11 264 686
WO-A2-03/093751
DE-A1- 19 608 049
US-A1- 2012 151 950
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    BACKGROUND



    [0001] The present invention relates to a heat exchanger tube assembly according to the preamble of claim 1, and to a heat exchanger assembly according to the preamble of claim 4. Such assemblies are known from JP 11-264686. Mini-channel heat exchangers are used in many systems to reduce the temperature of a working fluid (e.g., hydraulic fluid, compressor bleed air, liquid coolant, water, refrigerant, etc.). Mini-channel heat exchangers are designed to be no heavier than necessary. This is particularly true for mini-channel heat exchangers used in the aerospace industry. One way of reducing weight of the mini-channel heat exchanger is by forming the mini-channel heat exchanger from as thin of a material as possible.

    [0002] If the material is too thin, however, the high temperature working fluid flowing through the mini-channel heat exchanger can impart transient thermal stresses to the mini-channel heat exchanger, which can weaken the mini-channel heat exchanger's structure. This can increase the risk of the mini-channel heat exchanger being damaged during operation. One way to decrease the risk of damage from transient thermal stresses is to thicken the material that the mini-channel heat exchanger is formed from, but this can result in unnecessary weight increase. It is, therefore, desirable to optimize the thickness of the material forming the mini-channel heat exchanger without adding unnecessary weight.

    SUMMARY



    [0003] According to one embodiment, the invention comprises a heat exchanger tube assembly as defined in claim 1.

    [0004] According to another embodiment, the invention comprises a heat exchanger assembly as defined in claim 4.

    [0005] A method of constructing a heat exchanger is described herein.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0006] 

    FIG. 1 is an exploded view of a mini-channel heat exchanger.

    FIG. 2A is a top perspective view of a mini-channel heat exchanger manifold having slots configured to receive a mini-channel tube.

    FIG. 2B is a bottom perspective view of the mini-channel heat exchanger manifold of FIG. 2A.

    FIG. 3A is a partial sectional view of the mini-channel heat exchanger taken along line 3-3 having the mini-channel tubes inserted in a first and second manifolds.

    FIG. 3B is a partial sectional view of an alternative embodiment of the multi-channel heat exchanger of FIG. 3A taken along line 3-3 having sleeves of the mini-channel tubes inserted in the first and second manifolds.

    FIG. 3C is a partial sectional view of an alternative embodiment of the multi-channel heat exchanger of FIG. 3A taken along line 3-3 having an end of each of the sleeves flush with an end of the mini-channel tube.

    FIG. 4A is a sectional view of the mini-channel heat exchanger tube having the sleeve attached.

    FIG. 4B is a sectional view of a mini-channel heat exchanger tube having a plurality of channels formed from a brazed insert.

    FIG. 5 is a flow diagram illustrating a method of assembling a mini-channel heat exchanger.


    DETAILED DESCRIPTION



    [0007] FIG. 1 is an exploded view of mini-channel heat exchanger 10. FIG. 1 illustrates first manifold 12, second manifold 14, and heat exchanger core 16, which includes mini-channel tubes 18. Both first manifold 12 and second manifold 14 include inner surface 20, side flanges 22, chambers 24, fluid channel 26, outer surface 28, first end 30, second end 32, outer surface plugs 34, side plugs 36, end panel 38, and liquid fittings 40.

    [0008] First manifold 12 is disposed opposite second manifold 14 so inner surface 20 of first manifold 12 and inner surface 20 of second manifold 14 face each other. Heat exchanger core 16 is disposed between first manifold 12 and second manifold 14 so mini-channel tubes 18 of heat exchanger core 16 extend in length between first manifold 12 and second manifold 14. Each mini-channel tube 18 is fluidically connected to both first manifold 12 and second manifold 14. As shown in FIG. 1, first manifold 12 and second manifold 14 are substantially identical to each other. As a result, those components discussed with respect to first manifold 12 are equally applicable to second manifold 14.

    [0009] Inner surface 20 of first manifold 12 is rectangular and side flanges 22 are connected to inner surface 20. Side flanges 22 extend perpendicular to inner surface 20. Chambers 24 and fluid channel 26 are formed between inner surface 20 and outer surface 28 and extend from first end 30 to second end 32. Chambers 24 and fluid channel 26 are discussed further below with reference to FIGs. 3A-3C. Inner surface 20, side flanges 22, fluid channel 26, and outer surface 28 can all be formed as single extruded piece, or as a single casted piece. Outer surface plugs 34 seal outer surface 28 and side plugs 36 seal chambers 24.

    [0010] Two end panels 38 extend between first manifold 12 and second manifold 14 with heat exchanger core 16 being disposed between end panels 38. Both end panels 38 are connected to side flanges 22 of first manifold 12 and side flanges 22 of second manifold 14. End panels 38, along with first manifold 12 and second manifold 14, can form a supportive frame for heat exchanger 10. Two of liquid fittings 40 are connected to fluid channel 26 of first manifold 12, with one of liquid fittings 40 connected to each end of fluid channel 26 of first manifold 12. Two liquid fittings 40 are also connected to fluid channel 26 of second manifold 14, with one of liquid fittings 40 connected to each end of fluid channel 26 of second manifold 14. During operation, pressurized fluid enters heat exchanger 10 through each of liquid fittings 40 connected to fluid channel 26 of first manifold 12. After traveling through mini-channel tubes 18 of heat exchanger core 16, the pressurized fluid exits heat exchanger 10 through liquid fittings 40 connected to fluid channel 26 of second manifold 14.

    [0011] First manifold 12 and second manifold 14 can be formed from aluminum alloys 6063, 31104, 6951, or any other metal or material possessing the necessary strength and thermal properties to withstand the operating pressures and temperatures of heat exchanger 10. Mini-channel tubes 18 of heat exchanger core 16 can be formed from any of the materials stated above or any other metal or material possessing the necessary strength to withstand the operating pressures of heat exchanger 10 and the necessary thermal conductivity to meet the heat transfer requirements of heat exchanger 10. Air fins (not shown) connected to mini-channel tubes 18 can be formed from any of the materials stated above or any other metal or material possessing the necessary thermal conductivity to meet the heat transfer requirements of heat exchanger 10.

    [0012] FIG. 2A is a top perspective view of first manifold 12. FIG. 2A illustrates chamber 24A, chamber 24B, dividing walls 46, and baffles 48. FIG. 2B is bottom perspective view of first manifold 12 and illustrates slots 50A, 50B, 50C, 50D, and 50E.

    [0013] As shown in FIG. 2A, chamber 24A, Chamber 24B and fluid channel 26 are defined in part by inner surface 20 and outer surface 28. Inner surface 20 is rectangular and outer surface 28 has a generally arched profile. Chamber 24A, chamber 24B, and fluid channel 26 are separated by dividing walls 46. Dividing walls 46 are solid and prevent fluid from flowing directly between chamber 24A, chamber 24B, and fluid channel 26. Dividing walls 46 also provide structural support to first manifold 12. Baffles 48 are disposed within chamber 24A and chamber 24B. Baffles 48 provide structural support for first manifold 12 and do not prevent fluid from flowing within either chamber 24A or chamber 24B. Baffles 48 can be integral with inner surface 20 and outer surface 28 or can be formed from an insert brazed to first manifold 12.

    [0014] As shown in FIG. 2B, inner surface 20 defines a plurality of slots 50 which are dimensioned to receive a portion of mini-channel tubes 18. First manifold 12 includes multiple rows of slots 50, which extend between side flanges 22. First slot 50A is aligned with fluid channel 26; second slot 50B and third slot 50C are aligned with chamber 24A; and fourth slot 50D and fifth slot 50E are aligned with chamber 24B. As shown, each row includes five slots 50 but, other embodiments of first manifold 12 can include other numbers of slots 50.

    [0015] FIG. 3A is a partial sectional view of heat exchanger 10 taken along line 3-3 of FIG. 1. FIG. 3A illustrates first end 52, second end 54, outer surface 56, sleeve 58, first portion 60, second portion 62, and third portion 64 of mini-channel tube 18. FIG. 3A also illustrates working fluid 66.

    [0016] Mini-channel tubes 18 include first end 52 and second end 54. Outer surface 56 of mini-channel tube 18 spans between first end 52 and second end 54. First end 52 is disposed within one of slots 50 of first manifold 12 and second end 54 is disposed within one of slots 50 of second manifold 14. Sleeves 58 are located on mini-channel tubes 18 near first end 52 and second end 54, respectively. As shown, with respect to mini-channel tube 18A, for example, first portion 60 of mini-channel tube 18A extends from first end 52 to sleeve 58A, second portion 62 of tube 18A extends in length from sleeve 58A to sleeve 58B, and third portion 64 of tube 18A extends in length from sleeve 58B to second end 54. Second portion 62 of mini-channel tube 18A has a substantially greater length than either first portion 60 or second portion 62. As shown, first portion 60 of mini-channel tube 18A is disposed within first manifold 12 and third portion 64 of mini-channel tube 18A is disposed within second manifold 14. As shown, an end of sleeve 58A and an end of sleeve 58B each abut inner surface 20 of first manifold 12 and second manifold 14, respectively. Sleeves 58 effectively increase the thickness of mini-channel tube 18 where they are attached. Sleeves 58 can be made from an aluminum alloy such as aluminum alloys 6063, 31104, and 6951.

    [0017] FIG. 3B is a partial sectional view of heat exchanger 10 taken along line 3-3 and shows an alternative embodiment of heat exchanger 10. FIG. 3B illustrates first portion 68A and second portion 70A of first sleeve 58A. FIG. 3B also illustrates first portion 68B and second portion 70B of second sleeve 58B.

    [0018] As shown with respect to mini-channel tube 18A, for example, first portion 68A of sleeve 58A is disposed within first manifold 12 and second portion 70A of sleeve 58A is disposed between first manifold 12 and second manifold 14. Similarly, first portion 68B of sleeve 58B is disposed within second manifold 14 and second portion 70B is disposed between second manifold 14 and first manifold 12.

    [0019] FIG. 3C is a partial sectional view of heat exchanger 10 taken along line 3-3 and shows a further embodiment of heat exchanger 10. As shown with respect to mini-channel tube 18A, for example, first portion 68A of sleeve 58A is flush with first end 52 of mini-channel tube 18 and first portion 68B of sleeve 58B is flush with second 54 of mini-channel tube 18.

    [0020] In operation, working fluid 66 enters heat exchanger 10 through liquid fitting 40. Working fluid 66 flows from liquid fitting 40 to fluid channel 26. Fluid channel 26 on first manifold 12 is not fluidly connected to chamber 24A of first manifold 12 directly. As a result, working fluid 66 flows from fluid channel 26 through mini-channel tube 18A to chamber 24B of second manifold 14. Chamber 24B of second manifold 14 is not fluidly connected to chamber 24A of second manifold 14 directly. As a result, working fluid 66 flows from chamber 24B through mini-channel tube 18B to chamber 24A of first manifold 12. Chamber 24A of first manifold 12 is not fluidly connected to chamber 24B of first manifold 12 directly. As a result, working fluid 66 flows from chamber 24A through mini-channel tube 18C to chamber 24A of second manifold 14. Chamber 24A of second manifold 14 is not fluidly connected to fluid channel 26 of second manifold 14 directly. As a result, working fluid 66 flows from chamber 24A through mini-channel tube 18D to chamber 24B of first manifold 12 and through mini-channel tube 18E to fluid channel 26 of second manifold 14. Working fluid 66 flows through fluid channel 26 to liquid fitting 40 and exits heat exchanger 10.

    [0021] Working fluid 66 enters heat exchanger 10 at a temperature that can range from about -40 degrees Celsius (-40 degrees Fahrenheit) to about 85 degrees Celsius (185 degrees Fahrenheit). As shown, heat exchanger 10 is configured to be a cooling heat exchanger. Cooling heat exchangers are used to cool working fluid 66 (e.g., hydraulic fluid, compressor bleed air, liquid coolant, water, refrigerant, etc.). As non-limiting examples, working fluid 66 can be used to cool electronics, engine components, air used in air conditioning systems, auxiliary power units, gearboxes, and many other components in an aircraft that require cooling.

    [0022] In operation, the temperature of working fluid 66 decreases as it flows through mini-channel tubes 18. This is due, in part, to working fluid 66 being divided into channels within mini-channel tubes 18, which helps to turbulate working fluid 66. Turbulating working fluid 66 helps to increase the heat transferability of working fluid 66. While working fluid 66 flows through mini-channel tubes 18, cooling air passes over outer surface 56 of tubes 18 to help cool fluid 66. Cooling air can be ducted from a ram air source in an aircraft. When working fluid 66 exits heat exchanger 10 the temperature of fluid 66 is lower than when it entered heat exchanger 10.

    [0023] During operation, first manifold 12, second manifold 14, and mini-channel tubes 18 are subjected to various levels of transient thermal stresses resulting from the high temperatures of working fluid 66. Transient thermal stresses imparted to first manifold 12, second manifold 14, and mini-channel tubes 18 can cause those components to expand and contract. This can weaken the connection of mini-channel tubes 18 to manifolds 12 and 14. If the connection between mini-channel tubes 18 and first or second manifolds 12 or 14 is weakened, then working fluid 66 can leak from heat exchanger 10. The thermal stresses can also weaken mini-channel tube 18 so a load imparted to tube 18 by manifold 12 or 14 can damage tube 18. For example, the load imparted by first manifold 12 or second manifold 14 can crush a weakened mini-channel tube 18.

    [0024] The degree of transient thermal stress imparted to first manifold 12, second manifold 14, and mini-channel tubes 18 can differ depending on the temperature of working fluid 66 contacting each component. The differing levels of stress are a result of working fluid 66 being cooled as it passes through mini-channel tubes 18. For example mini-channel tube 18A can be subjected to a higher thermal stress than mini-channel tube 18E. This is because mini-channel tube 18A is near the point of entry for working fluid 66 and thus receives fluid 66 at a higher temperature. Mini-channel tube 18E, conversely, leads working fluid to the outlet of heat exchanger 10. Through operation of heat exchanger 10, working fluid 66 is substantially cooled by the time it reaches mini-channel tube 18E. Thus, mini-channel tube 18E, and the portion of first manifold 12 and second manifold 14 adjacent tube 18E are subjected to lower transient thermal stresses than mini-channel tube 18A and those portions of first manifold 12 and second manifold 14 adjacent tube 18A.

    [0025] FIG. 4A is a sectional view of mini-channel tube 18 having sleeve 58 attached. FIG. 4A illustrates several components of mini-channel tube 18 including inner surface 72, inner passage 74, channels 76 and ribs 78. FIG. 4A also illustrates outer surface 80 and inner surface 82 of sleeve 58. FIG. 4B shows another embodiment of mini-channel tube 18 where channels 76 are formed from insert 84. Insert 84 is brazed to mini-channel tube 18.

    [0026] Mini-channel tube 18 includes outer surface 56 and inner surface 72 and thickness T1 is defined therebetween. As an example, mini-channel tube 18 can have a thickness of about 0.254 millimeters (0.010 inches) Inner surface 72 extends from first end 52 to second end 54 and defines inner passage 74. Channels 76 are formed by ribs 78, which extend from one side of mini-channel tube 18 to an opposite side. As shown, nine channels are formed but in other embodiments of mini-channel tube 18 any other number of channels 76 can be formed. Mini-channel tube 18 can be formed through an extrusion process.

    [0027] Sleeve 58 includes outer surface 80 and inner surface 82 and thickness T2 is defined therebetween. Thickness T2 can range from about 0.254 mm to about 0.762 mm (0.030 inches). Thus, thickness T2 can be equivalent to thickness T1 of mini-channel tube 18 or can be as much as three times greater than the thickness of tube 18.

    [0028] As shown above, with respect to FIGs. 3A and 3B, heat exchanger 10 includes a plural number of sleeves 58. Each mini-channel tube 18 can include two sleeves 58. For example, mini-channel tube 18A includes sleeves 58A and 58B. Sleeves 58A and 58B can have the same thickness or can have different thicknesses. In further embodiments of heat exchanger 10, sleeve 58C on tube 18B can have a different thickness than either sleeve 58A or 58B. Additionally some of mini-channel tubes 18 can be configured not to include any of sleeves 58.

    [0029] Sleeve 58 can be casted, machined, milled, or extruded. Sleeve 58 can be fixed to mini-channel tube 18 many different ways. For example, sleeve 58 can be fitted to mini-channel tube 18, bolted to tube 18, or brazed to tube 18. A method of brazing sleeve 58 to mini-channel tube 18 is discussed more thoroughly below.

    [0030] FIG. 5 is a flow diagram illustrating method 90 of constructing heat exchanger 10. Method 90 includes coating step 92, coating step 94, positioning step 96, heating step 98, and filling step 100.

    [0031] In coating step 92, outer surface 56 of mini-channel tube 18 is coated with a flux material. Flux materials help to prevent oxide formation on surfaces during a brazing process. Many flux materials are known in the art. A proper flux material can be chosen depending on the temperature mini-channel tube 18 will be exposed to during the brazing process. In coating step 94, inner surface 82 of sleeve 58 is coated with a flux material. The flux material can be the same material used in coating step 92. In positioning step 96, inner surface 82 of sleeve 58 is positioned around outer surface 56 of mini-channel tube 18. A gap is formed between inner surface 82 and outer surface 56 so they do not contact each other. In heating step 98, mini-channel tube 18 and sleeve 58 are heated to a brazing temperature. Heat can be supplied, for example, by a handheld torch. The specific brazing temperature depends on the brazing material used in filling step 100. In filling step 100, the gap between outer surface 56 of mini-channel tube 18 and inner surface 82 of sleeve 58 is filled with molten filler metal. The filler metal fills in the gap and solidifies thus, forming a brazed joint between mini-channel tube 18 and sleeve 58. The filler material can, alternatively, be a powder that deposited in the gap and heated. Additional steps can include coating one of slots 50 with flux material and positioning mini-channel tube 18 or sleeve 58 within slot 50. Filling material can be deposited within the gap formed therebetween and the assembly can be elevated to a brazing temperature.

    [0032] There are many reasons to include sleeve 58 on mini-channel tube 18 including the following non-limiting reasons. First, by effectively thickening mini-channel tube 18 where sleeve 58 is located, tube 18 is strengthened. As described above, sleeves 58 are generally located near first manifold 12 and second manifold 14. Those regions on mini-channel tube 18 where sleeves 58 are located can be most susceptible to damage caused by the expansion and contraction of first manifold 12 and second manifold 14. Therefore, strengthening mini-channel tube 18 with sleeves 58 in those regions can help to prevent mini-channel tube 18 from being damaged during operation of heat exchanger 10.

    [0033] Another reason to use sleeves 58 is because they can help strengthen the structure of heat exchanger 10 as a whole. In the configuration of heat exchanger 10 shown in FIG. 3A, for example, first manifold 12 and second manifold 14 are brazed to multi-channel tubes 18. Additionally, inner surface surfaces 20 are brazed to sleeves 58. The surface of sleeve 58 that abuts inner surfaces 20 essentially acts as a platform on which to position manifolds 12 or 14.

    [0034] Another reason to use sleeve 58 is because sleeve 58 effectively thickens mini-channel tube 18 only at locations where additional strength is required. Thus, weight is saved by not thickening mini-channel tube 18 as a whole. As stated above, the regions on mini-channel tube 18 where additional thickness can be desirable are those portions immediately adjacent manifolds 12 and 14 or those portions extending through slot 50. This is because those portions of mini-channel tube 18 are subjected to loads imparted by the expansion and contraction of first manifold 12 or second manifold 14. Third portion 64 of mini-channel tube 18 between sleeves 58 does not require additional thickness because that portion does not interact with first manifold 12 or second manifold 14. Therefore, thickening third portion 64 of mini-channel tube 18 would add unnecessary weight to tube 18.

    [0035] Mini-channel tube 18 can be further optimized using sleeve 58 in that each tube 18 can be designed to be only as thick as required. As stated above, different sleeves 58 can have different thicknesses depending on the temperatures of working fluid 66 they are exposed too. For example, if sleeve 58E of FIGs. 3A and 3B is exposed to cooled working fluid 66, then sleeve 58E does not need to be as thick as sleeve 58A, which is exposed to hotter working fluid 66. This is because sleeve 58E will be exposed to lower transient thermal stresses than sleeve 58A. Thus, depending on the location of sleeve 58, its thickness can be adjusted to an optimal thickness. This can help to save weight as the instances of sleeves 58 being unnecessarily thick can be decreased.

    Discussion of Possible Embodiments



    [0036] The following are non-exclusive descriptions of possible embodiments of the present invention.

    [0037] A heat exchanger tube assembly according to an exemplary embodiment of this disclosure, among other possible things includes a tube comprising: a first end; a second end disposed opposite from the first end; an outer surface; an inner surface defining an interior space; and a plurality of channels formed within the interior space; a first sleeve is fixed to the outer surface of the tube near the first end; and a second sleeve is fixed to the outer surface of the tube near the second end.

    [0038] The heat exchanger tube assembly of the preceding paragraph can optionally include, additionally and/or alternatively, any one or more of the following features, configurations and/or additional components:
    A further embodiment of the foregoing heat exchanger tube assembly, wherein a thickness of the first sleeve can be greater than or equal to a thickness of the tube.

    [0039] A further embodiment of the foregoing heat exchanger tube assembly, wherein the thickness of the first sleeve can be no more than three times greater than the thickness of the tube.

    [0040] A further embodiment of the foregoing heat exchanger tube assembly, wherein the thickness of the first sleeve can be no more than one and a half times greater than the thickness of the tube.

    [0041] A further embodiment of the foregoing heat exchanger tube assembly, wherein the thickness of the first sleeve can be different than a thickness of the second sleeve.

    [0042] A further embodiment of the foregoing heat exchanger tube assembly, wherein the first and second sleeves can be formed from an aluminum alloy.

    [0043] A further embodiment of the foregoing heat exchanger tube assembly, wherein a first portion of the tube can extend between the first end of the tube and the first sleeve, a second portion of the tube can extend between the first sleeve and the second sleeve, and a third portion of the tube can extend between the second sleeve and the second end of the tube, and wherein the second portion of the tube can have a substantially greater length than a length of the first portion and a length of the second portion of the tube.

    [0044] A further embodiment of the foregoing heat exchanger tube assembly, wherein an end of the first sleeve can be flush with the first end of the tube and an end of the second sleeve is flush with the second end of the tube.

    [0045] A heat exchanger tube assembly according to an exemplary embodiment of this disclosure, among other possible things includes a plurality of adjacent tubes, each of the tubes comprising: a first end; a second end disposed opposite from the first end; an outer surface; an inner surface defining an interior space; and a plurality of channels formed within the interior space; a first sleeve fixed to the outer surface of a first tube belonging to the plurality of adjacent tubes; a second sleeve fixed to the outer surface of the first tube; a first manifold body configured to receive a first portion of the first tube; and a second manifold body configured to receive a second portion of the first tube.

    [0046] The heat exchanger assembly of the preceding paragraph can optionally include, additionally and/or alternatively, any one or more of the following features, configurations and/or additional components:
    A further embodiment of the foregoing heat exchanger assembly, wherein a thickness of the first sleeve can be greater than or equal to a thickness of the first tube.

    [0047] A further embodiment of the foregoing heat exchanger assembly, wherein the thickness of the first sleeve can be no more than three times greater than the thickness of the first tube.

    [0048] A further embodiment of the foregoing heat exchanger assembly, wherein the thickness of the first sleeve can be different than a thickness of the second sleeve.

    [0049] A further embodiment of the foregoing heat exchanger assembly, wherein a first portion of the first sleeve can be disposed within the first manifold body and a second portion of the first sleeve can be disposed between the first manifold body and the second manifold body.

    [0050] A further embodiment of the foregoing heat exchanger assembly, wherein a first portion of the second sleeve can be disposed within the second manifold body and a second portion of the second sleeve can be disposed between the second manifold body and the first manifold body.

    [0051] A further embodiment of the foregoing heat exchanger assembly, wherein the heat exchanger can further comprise a third sleeve fixed to an outer surface of a second tube belonging to the plurality of adjacent tubes, wherein a thickness of the third sleeve is less than the thickness of the first sleeve.

    [0052] A further embodiment of the foregoing heat exchanger assembly, wherein the heat exchanger can further comprise a third tube belonging to the plurality of adjacent tubes that does not include a sleeve.

    [0053] A further embodiment of the foregoing heat exchanger assembly, wherein the plurality of channels can be defined by a plurality of integral ribs extending across the interior space of the tube.

    [0054] A further embodiment of the foregoing heat exchanger assembly, wherein the plurality of channels can be defined by a brazed insert.

    [0055] A method of constructing a heat exchanger according to an exemplary embodiment of this disclosure, among other possible things includes the steps of coating an outer surface of a tube with a flux material; coating an inner surface of a sleeve with the flux material; positioning the inner surface of the sleeve about the outer surface of the tube, wherein a first gap is formed therebetween; heating the tube and sleeve to a brazing temperature; and filling the first gap with a filler metal.

    [0056] The method of the preceding paragraph can optionally include, additionally and/or alternatively, any one or more of the following features, configurations and/or additional components:
    A further embodiment of the foregoing method, wherein the method can further comprise the steps of coating a slot defined by an inner surface of a manifold with the flux material; positioning one of the outer surface of the tube or the outer surface of the sleeve within the slot, wherein a second gap can be formed therebetween; and filling the second gap with a filler material.

    [0057] While the invention has been described with reference to an exemplary embodiment(s), it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiment(s) disclosed, but that the invention will include all embodiments falling within the scope of the appended claims.


    Claims

    1. A heat exchanger tube assembly comprising:

    a tube (18) comprising:

    a first end (52);

    a second end (54) disposed opposite from the first end (52);

    an outer surface (56);

    an inner surface defining an interior space; and

    a plurality of channels formed within the interior space;

    a first sleeve (58A) fixed to the outer surface of the tube (18) near the first end (52); and

    a second sleeve (58B) fixed to the outer surface of the tube (18) near the second end (54);

    and a first portion (60) of the tube (18) extends between the first end (52) of the tube (18) and the first sleeve (58A), a second portion (62) of the tube (18) extends between the first sleeve (58A) and the second sleeve (58B), and a third portion (64) of the tube (18) extends between the second sleeve (58B) and the second end (54) of the tube (18), and wherein the second portion (62) of the tube (18) has a substantially greater length than a length of the first portion (60) and a length of the second portion (62) of the tube (18); characterised in that

    a thickness of the first sleeve (58A) is greater than or equal to a thickness of the tube; and

    wherein the thickness of the first sleeve (58A) is different than a thickness of the second sleeve (58B).


     
    2. The heat exchanger tube assembly of claim 1, wherein a thickness of the first sleeve (58) is greater than or equal to a thickness of the tube (18), and preferably wherein the thickness of the first sleeve (58) is no more than three times greater than the thickness of the tube (18), and preferably wherein the thickness of the first sleeve (58) is no more than one and a half times greater than the thickness of the tube (18).
     
    3. The heat exchanger tube assembly of any preceding claim, wherein the first and second sleeves (58A, 58B) are formed from an aluminum alloy.
     
    4. A heat exchanger assembly comprising:

    a plurality of adjacent tubes (18), each of the tubes comprising:

    a first end (52);

    a second end (54) disposed opposite from the first end;

    an outer surface (56);

    an inner surface defining an interior space; and

    a plurality of channels formed within the interior space;

    a first sleeve (58A) fixed to the outer surface of a first tube (18) belonging to the plurality of adjacent tubes (18);

    a second sleeve (58B) fixed to the outer surface (56) of the first tube;

    a first manifold (12) body configured to receive a first portion of the first tube; and

    a second manifold (14) body configured to receive a second portion of the first tube; and a first portion of the first sleeve (58A) is disposed within the first manifold body and a second portion of the first sleeve (58A) is disposed between the first manifold (12) body and the second manifold (14) body, or wherein a first portion of the second sleeve (58B) is disposed within the second manifold (14) body and a second portion of the second sleeve (58B) is disposed between the second manifold (14) body and the first manifold (12) body; characterised in that

    a thickness of the first sleeve (58A) is greater than or equal to a thickness of the first tube; and

    wherein the thickness of the first sleeve (58A) is different than a thickness of the second sleeve (58B).


     
    5. The heat exchanger assembly of claim 4, wherein the thickness of the first sleeve (58A) is no more than three times greater than the thickness of the first tube.
     
    6. The heat exchanger assembly of claim 4, and further comprising:
    a third sleeve (58C) fixed to an outer surface of a second tube belonging to the plurality of adjacent tubes, wherein a thickness of the third sleeve (58C) is less than the thickness of the first sleeve (58A).
     
    7. The heat exchanger assembly of claim 6, and further comprising:
    a third tube belonging to the plurality of adjacent tubes that does not include a sleeve.
     
    8. The heat exchanger assembly of claim 4, wherein the plurality of channels are defined by a plurality of integral ribs extending across the interior space of the tube (18), or wherein the plurality of channels are defined by a brazed insert (84).
     
    9. The heat exchanger assembly of claim 4, wherein the thickness of the second sleeve is less than a thickness of the first sleeve.
     


    Ansprüche

    1. Wärmetauscherschlauchbaugruppe, umfassend:
    einen Schlauch (18), umfassend:

    ein erstes Ende (52);

    ein zweites Ende (54), das gegenüber dem ersten Ende (52) angeordnet ist;

    eine Außenfläche (56);

    eine Innenfläche, die einen Innenraum definiert; und

    eine Vielzahl von Kanälen, die innerhalb des Innenraums gebildet ist;

    eine erste Hülse (58A), die an der Außenfläche des Schlauchs (18) nahe dem ersten Ende (52) befestigt ist; und

    eine zweite Hülse (58B), die an der Außenfläche des Schlauchs (18) nahe dem zweiten Ende (54) befestigt ist;

    und wobei sich ein erster Abschnitt (60) des Schlauchs (18) zwischen dem ersten Ende (52) des Schlauchs (18) und der ersten Hülse (58A) erstreckt, sich ein zweiter Abschnitt (62) des Schlauchs (18) zwischen der ersten Hülse (58A) und der zweiten Hülse (58B) erstreckt und sich ein dritter Abschnitt (64) des Schlauchs (18) zwischen der zweiten Hülse (58B) und dem zweiten Ende (54) des Schlauchs (18) erstreckt, und wobei der zweite Abschnitt (62) des Schlauchs (18) eine im Wesentlichen größere Länge als eine Länge des ersten Abschnitts (60) und eine Länge des zweiten Abschnitts (62) des Schlauchs (18) aufweist; dadurch gekennzeichnet, dass

    eine Dicke der ersten Hülse (58A) größer als eine oder gleich einer Dicke des Schlauchs ist; und

    wobei sich die Dicke der ersten Hülse (58A) von einer Dicke der zweiten Hülse (58B) unterscheidet.


     
    2. Wärmetauscherschlauchbaugruppe nach Anspruch 1, wobei eine Dicke der ersten Hülse (58) größer als eine oder gleich einer Dicke des Schlauchs (18) ist und wobei die Dicke der ersten Hülse (58) bevorzugt nicht mehr als dreimal größer als die Dicke des Schlauchs (18) ist, und wobei die Dicke der ersten Hülse (58) bevorzugt nicht mehr als eineinhalbmal größer als die Dicke des Schlauchs (18) ist.
     
    3. Wärmetauscherschlauchbaugruppe nach einem vorhergehenden Anspruch, wobei die erste und die zweite Hülse (58A, 58B) aus einer Aluminiumlegierung gebildet sind.
     
    4. Wärmetauscherbaugruppe, umfassend:
    eine Vielzahl von benachbarten Schläuchen (18), wobei jeder der Schläuche Folgendes umfasst:

    ein erstes Ende (52);

    ein zweites Ende (54), das gegenüber dem ersten Ende angeordnet ist;

    eine Außenfläche (56);

    eine Innenfläche, die einen Innenraum definiert; und

    eine Vielzahl von Kanälen, die innerhalb des Innenraums gebildet ist;

    eine erste Hülse (58A), die an der Außenfläche eines ersten Schlauchs (18) befestigt ist, der zu der Vielzahl von benachbarten Schläuchen (18) gehört;

    eine zweite Hülse (58B), die an der Außenfläche (56) des ersten Schlauchs befestigt ist;

    einen ersten Verteilerkörper (12), der konfiguriert ist, um einen ersten Abschnitt des ersten Schlauchs aufzunehmen; und

    einen zweiten Verteilerkörper (14), der konfiguriert ist, um einen zweiten Abschnitt des ersten Schlauchs aufzunehmen; und

    wobei ein erster Abschnitt der ersten Hülse (58A) innerhalb des ersten Verteilerkörpers angeordnet ist und ein zweiter Abschnitt der ersten Hülse (58A) zwischen dem ersten Verteilerkörper (12) und dem zweiten Verteilerkörper (14) angeordnet ist, oder wobei ein erster Abschnitt der zweiten Hülse (58B) innerhalb des zweiten Verteilerkörpers (14) angeordnet ist und ein zweiter Abschnitt der zweiten Hülse (58B) zwischen dem zweiten Verteilerkörper (14) und dem ersten Verteilerkörper (12) angeordnet ist; dadurch gekennzeichnet, dass

    eine Dicke der ersten Hülse (58A) größer als eine oder gleich einer Dicke des ersten Schlauchs ist; und

    wobei sich die Dicke der ersten Hülse (58A) von einer Dicke der zweiten Hülse (58B) unterscheidet.


     
    5. Wärmetauscherbaugruppe nach Anspruch 4, wobei die Dicke der ersten Hülse (58A) mehr als dreimal größer als die Dicke des ersten Schlauchs ist.
     
    6. Wärmetauscherbaugruppe nach Anspruch 4, und ferner umfassend:
    eine dritte Hülse (58C), die an einer Außenfläche eines zweiten Schlauchs befestigt ist, der zu der Vielzahl von benachbarten Schläuchen gehört, wobei eine Dicke der dritten Hülse (58C) weniger als die Dicke der ersten Hülse (58A) ist.
     
    7. Wärmetauscherbaugruppe nach Anspruch 6, und ferner umfassend:
    einen dritten Schlauch, der zu der Vielzahl von benachbarten Schläuchen gehört, der keine Hülse beinhaltet.
     
    8. Wärmetauscherbaugruppe nach Anspruch 4, wobei die Vielzahl von Kanälen durch eine Vielzahl von einstückigen Rippen definiert ist, die sich quer durch den Innenraum des Schlauchs (18) erstreckt, oder wobei die Vielzahl von Kanälen durch einen gelöteten Einsatz (84) definiert ist.
     
    9. Wärmetauscherbaugruppe nach Anspruch 4, wobei die Dicke der zweiten Hülse weniger als eine Dicke der ersten Hülse ist.
     


    Revendications

    1. Ensemble tube échangeur de chaleur comprenant :
    un tube (18) comprenant :

    une première extrémité (52) ;

    une seconde extrémité (54) disposée à l'opposé de la première extrémité (52) ;

    une surface externe (56) ;

    une surface interne définissant un espace intérieur ; et

    une pluralité de canaux formés à l'intérieur de l'espace intérieur ;

    un premier manchon (58A) fixé à la surface externe du tube (18) près de la première extrémité (52) ; et

    un deuxième manchon (58B) fixé à la surface externe du tube (18) près de la seconde extrémité (54) ;

    et une première partie (60) du tube (18) s'étend entre la première extrémité (52) du tube (18) et le premier manchon (58A), une deuxième partie (62) du tube (18) s'étend entre le premier manchon (58A) et le deuxième manchon (58B), et une troisième partie (64) du tube (18) s'étend entre le deuxième manchon (58B) et la seconde extrémité (54) du tube (18), et dans lequel la deuxième partie (62) du tube (18) possède une longueur sensiblement supérieure à une longueur de la première partie (60) et une longueur de la deuxième partie (62) du tube (18) ;

    caractérisé en ce que

    une épaisseur du premier manchon (58A) est supérieure ou égale à une épaisseur du tube ; et

    dans lequel l'épaisseur du premier manchon (58A) est différente d'une épaisseur du deuxième manchon (58B).


     
    2. Ensemble tube échangeur de chaleur selon la revendication 1, dans lequel une épaisseur du premier manchon (58) est supérieure ou égale à une épaisseur du tube (18), et de préférence dans lequel l'épaisseur du premier manchon (58) n'est pas plus de trois fois supérieure à l'épaisseur du tube (18), et de préférence dans lequel l'épaisseur du premier manchon (58) n'est pas plus d'une fois et demie supérieure à l'épaisseur du tube (18).
     
    3. Ensemble tube échangeur de chaleur selon une quelconque revendication précédente, dans lequel les premier et deuxième manchons (58A, 58B) sont formés à partir d'un alliage d'aluminium.
     
    4. Ensemble échangeur de chaleur comprenant :
    une pluralité de tubes adjacents (18), chacun des tubes comprenant :

    une première extrémité (52) ;

    une seconde extrémité (54) disposée à l'opposé de la première extrémité ;

    une surface externe (56) ;

    une surface interne définissant un espace intérieur ; et

    une pluralité de canaux formés à l'intérieur de l'espace intérieur ;

    un premier manchon (58A) fixé à la surface externe d'un premier tube (18) appartenant à la pluralité de tubes adjacents (18) ;

    un deuxième manchon (58B) fixé à la surface externe (56) du premier tube ;

    un premier corps de collecteur (12) configuré pour recevoir une première partie du premier tube ; et

    un second corps de collecteur (14) configuré pour recevoir une deuxième partie du premier tube ; et une première partie du premier manchon (58A) est disposée à l'intérieur du premier corps de collecteur et une deuxième partie du premier manchon (58A) est disposée entre le premier corps de collecteur (12) et le second corps de collecteur (14), ou dans lequel une première partie du deuxième manchon (58B) est disposée à l'intérieur du second corps de collecteur (14) et une deuxième partie du deuxième manchon (58B) est disposée entre le second corps de collecteur (14) et le premier corps de collecteur (12) ; caractérisé en ce que

    une épaisseur du premier manchon (58A) est supérieure ou égale à une épaisseur du premier tube ; et

    dans lequel l'épaisseur du premier manchon (58A) est différente d'une épaisseur du deuxième manchon (58B).


     
    5. Ensemble échangeur de chaleur selon la revendication 4, dans lequel l'épaisseur du premier manchon (58A) n'est pas plus de trois fois supérieure à l'épaisseur du premier tube.
     
    6. Ensemble échangeur de chaleur selon la revendication 4, et comprenant en outre :
    un troisième manchon (58C) fixé à une surface externe d'un deuxième tube appartenant à la pluralité de tubes adjacents, dans lequel une épaisseur du troisième manchon (58C) est inférieure à l'épaisseur du premier manchon (58A).
     
    7. Ensemble échangeur de chaleur selon la revendication 6, et comprenant en outre :
    un troisième tube appartenant à la pluralité de tubes adjacents qui n'inclut pas de manchon.
     
    8. Ensemble échangeur de chaleur selon la revendication 4, dans lequel la pluralité de canaux sont définis par une pluralité de nervures intégrées s'étendant à travers l'espace intérieur du tube (18), ou dans lequel la pluralité de canaux sont définis par un insert brasé (84).
     
    9. Ensemble échangeur de chaleur selon la revendication 4, dans lequel l'épaisseur du deuxième manchon est inférieure à une épaisseur du premier manchon.
     




    Drawing



























    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description