(19)
(11)EP 3 107 357 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
04.11.2020 Bulletin 2020/45

(21)Application number: 16020228.9

(22)Date of filing:  13.06.2016
(51)International Patent Classification (IPC): 
H05K 1/02(2006.01)
H01R 24/44(2011.01)
H05K 1/11(2006.01)
H01R 24/50(2011.01)

(54)

MULTILAYER PRINTED WIRING BOARD AND CONNECTION STRUCTURE OF A MULTILAYER PRINTED WIRING BOARD AND A CONNECTOR

MEHRSCHICHTIGE LEITERPLATTE UND VERBINDUNGSSTRUKTUR EINER MEHRSCHICHTIGEN LEITERPLATTE UND EINES VERBINDERS

CARTE DE CÂBLAGE IMPRIMÉ MULTICOUCHE ET STRUCTURE DE CONNEXION D'UNE CARTE DE CÂBLAGE IMPRIMÉ MULTICOUCHE ET UN CONNECTEUR


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 19.06.2015 JP 2015123401

(43)Date of publication of application:
21.12.2016 Bulletin 2016/51

(73)Proprietor: Hosiden Corporation
Yao-shi, Osaka 581-0071 (JP)

(72)Inventor:
  • Kondo, Hayato
    Yao-shi, Osaka, 581-0071 (JP)

(74)Representative: Gill Jennings & Every LLP 
The Broadgate Tower 20 Primrose Street
London EC2A 2ES
London EC2A 2ES (GB)


(56)References cited: : 
US-A- 6 164 977
US-A1- 2002 130 737
US-A1- 2006 261 825
US-A1- 2009 056 999
US-A1- 2002 034 839
US-A1- 2003 133 279
US-A1- 2009 045 889
  
  • SHUAI JIN ET AL: "Optimization of the transition from connector to PCB board", 2013 IEEE INTERNATIONAL SYMPOSIUM ON ELECTROMAGNETIC COMPATIBILITY, 5 August 2013 (2013-08-05), - 9 August 2013 (2013-08-09), pages 192-196, XP055318335, ISSN: 2158-110X, DOI: 10.1109/ISEMC.2013.6670407 ISBN: 978-1-4799-0409-9
  
Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


Description

Technical Field



[0001] The present invention relates to multilayer printed wiring boards and connection structures of the multilayer printed wiring boards and connectors.

Background Art



[0002] Japanese Unexamined Patent Publication No. 2001-244633 and Japanese Unexamined Patent Publication No. 2009-59873 disclose conventional multilayer printed wiring boards. Each multilayer printed wiring board includes a plurality of layers and a through via hole (through hole) passing therethrough. The layers include a plurality of ground layers, a wiring layer, and a plurality of insulating layers. The ground layers and the wiring layer are provided on the respective insulating layers. The wiring layer has a conductive line connected to the through via hole. The ground layers each have a solid conductor located around the through via hole. The solid conductors are grounded.

[0003] US 2009/056999 A1 discloses a printed wiring board for suppressing characteristic impedance mismatch that occurs when the printed wiring board is equipped with a through-type coaxial connector. The printed wiring board includes ground layers stacked in a plurality of layers via insulating layers; a through-hole; a clearance serving as an anti-pad provided in an area between the through-hole and the ground layers; and signal wiring extending from the through-hole to between prescribed ones of the ground layers through the clearance. The ground layers have a wiring-impedance adjustment area for adjusting the impedance of the signal wiring, the wiring-impedance adjustment area being arranged so as to overlap a portion of the signal wiring in the clearance.

Summary of Invention


Technical Problem



[0004] The through via hole tends to be lower in impedance than the conductive line because the through via hole is surrounded by the solid conductors of the ground layers.

[0005] In view of the above circumstances, the invention provides a multilayer printed wiring board with a via hole of increased impedance. The invention also provides a connection structure of such a multilayer printed wiring board and a connector.

Solution to Problem



[0006] The multilayer printed wiring board according to one aspect of the present invention includes a multilayer printed wiring board according to claim 1.

[0007] In the multilayer printed wiring board of this aspect with the first distance smaller than the second distance, the distance from the solid conductor of the first impedance adjustment layers to the via hole is larger in the first direction than the distance in the first direction from the solid conductor of the wiring layer to the via hole. This distance relationship contributes to increased impedance of the via hole.

[0008] The via hole includes a first land and a plurality of second lands. The first land is provided inside the opening of the wiring layer. Each second land is provided inside the opening of the first impedance adjustment layer.

[0009] Each second land may be smaller in outside dimension than the first land.

[0010] Each second land may include at least one recess recessed toward a central axis of the via hole. In the multilayer printed wiring board of this aspect, the first distance may be a distance in the first direction from the outline of the opening of the wiring layer to the first land of the via hole, and the second distance may be a distance in the first direction from the outline of the opening of the first impedance adjustment layers to a bottom of the recess of each second land of the via hole. The distance relationship "the first distance is less than the second distance" is satisfied in the multilayer printed wiring board of this aspect by providing the recess in each second land. Moreover, the provision of the recess in each second land also facilitates impedance adjustment of the via hole.

[0011] The outline of the opening of the wiring layer may be located closer to the central axis of the via hole than the outline of the opening of each first impedance adjustment layer. This arrangement allows the multilayer printed wiring board to satisfy the distance relationship "the first distance is less than the second distance." Moreover, simply by thus adjusting the positional relationship between the outline of the opening of the wiring layer and the outline of the opening of each first impedance adjustment layer, the impedance of the via hole can be readily adjusted.

[0012] The ground layers may further include a second impedance adjustment layer. The second impedance adjustment layer may include a solid conductor and an impedance adjustment portion. The solid conductor may have an opening. The impedance adjustment portion may be a conductor at the solid conductor of the second impedance adjustment layer. The impedance adjustment portion may overlap the conductive line of the wiring layer. The via hole may be provided in at least one of the ground layers and at least one of the insulating layers such as to be located inside the respective openings of the wiring layer, the first impedance adjustment layers, and the second impedance adjustment layer. In the multilayer printed wiring board of this aspect, the conductive line has decreased impedance because it is overlapped with the impedance adjustment portion of the second impedance adjustment layer.

[0013] The first impedance adjustment layers may be disposed between the wiring layer and the second impedance adjustment layer. In general, the second impedance adjustment layer located too close to the wiring layer will excessively decrease the impedance of the conductive line of the wiring layer. On the contrary, in the multilayer printed wiring board of this aspect, it is possible to sufficiently but not excessively lower the impedance of the conductive line of the wiring layer. This in turn facilitates impedance matching of the conductive line with the via hole.

[0014] The ground layers may further include a connection layer. The connection layer may include a solid conductor having an opening. If the ground layers does not include the second impedance adjustment layer, the via hole may be provided in at least one of the ground layers and at least one of the insulating layers such as to be located in the respective openings of the wiring layer, the first impedance adjustment layers, and the connection layer. If the ground layers include the second impedance adjustment layer, the via hole may be provided in at least one of the ground layers and at least one of insulating layers such that the via hole is located inside the respective openings of the wiring layer, the first impedance adjustment layers, the second impedance adjustment layer, and the connection layer.

[0015] The wiring layer may be a first outermost layer of the multilayer printed wiring board. The connection layer may be a second outermost layer opposite the first outermost layer of the multilayer printed wiring board. If the ground layers do not include the second impedance adjustment layer, if the wiring layer is the first outermost layer, and if the connection layer is the second outermost layer, then the via hole may be provided in the ground layers and the insulating layers such as to be located inside the respective openings of the wiring layer, the first impedance adjustment layers and the connection layer. If the ground layers include the second impedance adjustment layer, and the wiring layer is the first outermost layer, and the connection layer is the second outermost layer, then the via hole may be provided in the ground layers and the insulating layers such as to be located inside the respective openings of the wiring layer, the first impedance adjustment layers, the second impedance adjustment layer, and the connection layer.

[0016] The first impedance adjustment layers may be disposed between the wiring layer and the second impedance adjustment layer and/or between the second impedance adjustment layer and the connection layer.

[0017] The third distance may be smaller than the second distance, where the third distance may be the distance in the first direction from the outline of the opening of the connection layer to the via hole. In the multilayer printed wiring board of this aspect, satisfying the positional relationships "the first distance is less than the second distance" and "the third distance is less than the second distance", the distance from the solid conductor of the first impedance adjustment layers to the via hole is larger in the first direction than the distance from the solid conductor of the wiring layer to the via hole, and the distance from the solid conductor of the first impedance adjustment layers to the via hole is larger in the first direction than the distance from the solid conductor of the connection layer to the via hole. These distance relationships contribute to increased impedance of the via hole.

[0018] The opening of the wiring layer may be generally of circular loop shape. The opening of the first impedance adjustment layers may be generally of circular loop shape. The via hole may be generally of cylindrical shape. The first direction corresponds to a radial direction of the via hole.

[0019] The opening of the second impedance adjustment layer may include a first flat outline, which may be a straight line orthogonal to the conductive line, and a second outline of arc shape. Alternatively, the openings of the wiring layer and the second impedance adjustment layer may be of circular loop shape. In this case, the opening of the second impedance adjustment layer may be located with its center displaced from the center of the opening of the wiring layer, in the direction opposite to the direction in which the conductive line is led out. Still alternatively, the opening of the second impedance adjustment layer may be of trapezial/trapezoidal shape. In this case, the opening may have a first outline that corresponds to the shorter base of the trapezium/trapezoid and is orthogonal to the conductive line.

[0020] A connection structure of an aspect of the invention includes the multilayer printed wiring board of any aspect described above and a connector. The via hole of the multilayer printed wiring board is a through via hole or a blind via hole. The connector includes a terminal. The terminal includes a tail is received in and connected to the via hole. The connection structure of this aspect satisfies the distance relationship "the first distance is less than the second distance", making it possible to increase the impedances of the via hole and the tail of the terminal. When the terminal, the via hole, and the conductive line of the wiring layer are used as elements of a signal transmission path, impedance matching can be easily made between these elements.

Brief Description of Drawings



[0021] 

Fig. 1A is a perspective view of a multilayer printed wiring board according to an embodiment of the invention.

Fig. 1B is a sectional view of the multilayer printed wiring board, taken along 1B-1B in Fig. 1A.

Fig. 1C is a sectional view of the multilayer printed wiring board, taken along 1C-1C in Fig. 1A.

Fig. 2 illustrates a wiring layer of the multilayer printed wiring board.

Fig. 3 illustrates a first impedance adjustment layer of the multilayer printed wiring board.

Fig. 4 illustrates a variant of the first impedance adjustment layer of the multilayer printed wiring board.

Fig. 5A illustrates a second impedance adjustment layer of the multilayer printed wiring board.

Fig. 5B illustrates a modified second impedance adjustment layer of the multilayer printed wiring board.

Fig. 5C illustrates another modified second impedance adjustment layer of the multilayer printed wiring board.

Fig. 6 illustrates a connection layer of the wiring layer of the multilayer printed wiring board.

Fig. 7 is a sectional view of a connection structure of the multilayer printed wiring board and a connector according to the same embodiment of the invention, taken along 1B-1B in Fig. 1A.

Fig. 8 is a graph of impedances obtained from simulating a conductive line and a via hole of a connection structure of a first comparison example.

Fig. 9 is a graph of impedances obtained from simulating a conductive line and a via hole of a connection structure of a second comparison example.

Fig. 10 illustrates a variant of the first impedance adjustment layer of the multilayer printed wiring board.



[0022] In the brief description of the drawings above and the description of embodiments which follows, relative spatial terms such as "upper", "lower", "top", "bottom", "left", "right", "front", "rear", etc., are used for the convenience of the skilled reader and refer to the orientation of the multilayer printed wiring board, the connection structure, and their constituent parts as depicted in the drawings. No limitation is intended by use of these terms, either in use of the invention, during its manufacture, shipment, custody, or sale, or during assembly of its constituent parts or when incorporated into or combined with other apparatus.

Description of Embodiments



[0023] The following describes embodiments of a multilayer printed wiring board of the invention, collectively referred to as a multilayer printed wiring board P or simply as a wiring board P, with reference to Fig. 1A to Fig. 6. The wiring board P includes a plurality of ground layers L1, a plurality of insulating layers L2, and at least one via hole V1 (via hole defined in the claims). These constituents of the wiring board P will be described below in detail. The Y-Y' direction indicated in Fig. 1C is a direction parallel to the plane of the wiring board P, which corresponds to the first direction defined in the claims. The Z-Z' direction indicated in Fig. 1C is a thicknesses direction of the wiring board P. The Z-Z' direction is orthogonal to the Y-Y' direction.

[0024] The ground layers L1 and the insulating layers L2 are disposed alternately in the Z-Z' direction. The via hole V1 may be a through via hole in the ground layers L1 and the insulating layers L2 such as to pass through all of the ground layers L1 and the insulating layers L2, or alternatively be a blind via hole in at least one of the ground layers L1 and at least one of the insulating layers L2 such as to pass through the at least one of the ground layers L1 and the at least one of the insulating layers L2. The blind via hole may open to either face (top face or bottom face as shown) of the wiring board P. In the embodiments of Fig. 1A to Fig. 7, the via hole V1 is a through via hole.

[0025] The ground layers L1 include at least one wiring layer L11, and at least one first impedance adjustment layer L12, L12'. The wiring layer L11 can be any one of the ground layers L1. The wiring layer L11 may be an outermost layer of the wiring board P (the first outermost layer as defined in the claims, top layer as shown in Figs. 1A to 1C).

[0026] As best illustrated in Fig. 2, the wiring layer L11 includes a solid conductor L111, an opening L112, a passage L113, and a conductive line L114. The solid conductor L111 is provided on and in contact with the insulating layer L2, which is located immediately below the wiring layer L11. The solid conductor L111 is connected to the ground and formed with the opening L112 and the passage L113. The conductive line L114 extends along the centre of the passage L113, as will be described. When used herein, the term "solid conductor" means a thin sheet of electrically conductive material. Each solid conductor of the multilayer printed wiring board P serves as a ground plane.

[0027] The opening L112 and the passage L113 are areas of the wiring layer L11 from which the solid conductor L111 has been removed. The opening L112 is of a circular loop shape and is concentric with the via hole V1, and with a first annular land V131 formed from the wiring layer L11 and surrounding the via hole V1. The opening L112 has an arc-shaped outline α1 (seen in Fig. 2). The outline α1 forms the border between the opening L112 and the solid conductor L111. The passage L113 communicates with and extends away from the opening L112. The passage L113 may extend in a straight line or with one or more bends, or may be curved entirely or partially.

[0028] The conductive line L114 is provided on and in contact with the insulating layer L2, which is located immediately below the wiring layer L11, such as to be located inside the opening L112 and the passage L113. The conductive line L114 extends away from, and is connected to, the first annular land V131 surrounding the via hole V1.

[0029] The at least one first impedance adjustment layer L12 may be any one of the ground layers L1 excluding the wiring layer L11. As best illustrated in Fig. 3, the first impedance adjustment layer L12 has a solid conductor L121 and an opening L122. The solid conductor L121 is provided on and in contact with the insulating layer L2, which is located immediately below the first impedance adjustment layer L12. The solid conductor L121 and is connected to the ground and formed with the opening L122.

[0030] The opening L122 is an area of the first impedance adjustment layer L12 in which the solid conductor L121 is absent. The opening L122 is of a circular loop shape and is concentric with the via hole V1. The opening L122 has a ringshaped outline α2. The outline α2 forms the border between the opening L122 and the solid conductor L121.

[0031] As best illustrated in Fig. 1B and Fig. 1C, the via hole V1 is located inside the opening L112 of the wiring layer L11 and the opening L122 of the first impedance adjustment layer L12. The via hole V1 has a hole V11, a tubular connection conductor V12, at least one first land V131, and at least one second land V132. The via hole V1 has an outer diameter (including the outer diameters of the first land V131 and the second land V132) that is smaller than the outer diameters of the openings L112 and L122. If the via hole V1 is a through via hole, the hole V11 should be a cylindrical through hole passing through all of the ground layers L1 and the insulating layers L2. If the via hole V1 is a blind via hole, the hole V11 should be a cylindrical blind hole passing through at least one of the ground layers L1 and through at least one of the insulating layers L2, and the hole V11 may open to either face of the wiring board P (the top or bottom face as shown). The connection conductor V12 is a circular tuboid conductor provided along the circumference of the hole V11.

[0032] The first land V131 is a circular loop shaped conductor on and in contact with the insulating layer L2 immediately below the wiring layer L11, such that the first land V131 is located inside the opening L112 of the wiring layer L11 (see Fig. 2). The first land V131 is smaller in outer diameter than the opening L112 of the wiring layer L11. The first land V131 is concentric with the hole V11 and the opening L112 of the wiring layer L11. The first land V131 is connected to the connection conductor V12 and also to the conductive line L114 of the wiring layer L11.

[0033] The second land V132 is a circular loop shaped conductor on and in contact with the insulating layer L2 immediately below the first impedance adjustment layer L12, such that the second land V132 is located inside the opening L122 of the first impedance adjustment layer L12 (See Fig. 3). The second land V132 is smaller in outer diameter than the opening L122 of the first impedance adjustment layer L12. The second land V132 is concentric with the hole V11, the opening L122 of the first impedance adjustment layer L12, and the first land V131. The second land V132 is connected to the connection conductor V12.

[0034] It should be noted that a distance relationship "the first distance R1 < the distance R2" is established. Here the first distance R1 is the distance in the Y-Y' direction (a radial direction of the via hole VI) from the outline α1 of the opening L112 of the wiring layer L11 to the first land V131 of the via hole V1 as illustrated in Fig. 1C and Fig. 2, and the second distance R2 is a distance in the Y-Y' direction from the outline α2 of the opening L122 of the first impedance adjustment layer L12 to the second land V132 of the via hole V1 as illustrated in Fig. 1C and Fig. 3.

[0035] The distance relationship R1 < R2 can be satisfied in any the following arrangements (1) to (5). Arrangement (2) is adopted in the embodiments of Fig. 1A to Fig. 3.
  1. (1) The second land V132 is smaller in outer diameter than the first land V131, and the outline α1 of the opening L112 overlaps (coincides with) the outline α2 of the opening L122 in the Z-Z' direction, i.e. the opening L112 has the same outer diameter as that of the opening L122.
  2. (2) The second land V132 is smaller in outer diameter (in outside dimension) than the first land V131, and the outline α1 of the opening L112 is located inside of the outline α2 of the opening L122 in the radial direction described above (closer to the central axis of the via hole V1 than the outline α2), i.e. the opening L112 is smaller in outer diameter than the opening L122.
  3. (3) The second land V132 is smaller in outer diameter (in outside dimension) than the first land V131, and the outline α1 of the opening L112 is located outside of the outline α2 of the opening L122 in the radial direction described above (farther apart from the central axis of the via hole V1 than the outline α2), i.e. the opening L112 is larger in outer diameter than the opening L122.
  4. (4) The second land V132 has the same outer diameter (outside dimension) as that of the first land V131, and the outline α1 of the opening L112 is located inside of the outline α2 of the opening L122 in the radial direction described above (closer to the central axis of the via hole VI), i.e. the opening L112 is smaller in outer diameter than the opening L122.
  5. (5) The second land V132 is larger in outer diameter (in outside dimension) than the first land V131, and the outline α1 of the opening L112 is located inside of the outline α2 of the opening L122 in the radial direction described above (closer to the central axis of the via hole VI), i.e. the opening L112 is smaller in outer diameter than the opening L122.
It is to be noted that these five arrangements are exemplary, and other relationships between the diameters of the first and second lands V131 and V132 and the diameters of the openings L112 and L122, in which the distance R1 from the perimeter of the first land V131 to the perimeter of the opening L112 in the wiring layer L11 is less than the distance R2 from the perimeter of the second land V132 to the perimeter of the opening L122 in the impedance adjustment layer L12, are possible.

[0036] The ground layers L1 may include a plurality of first impedance adjustment layers L12, L12'. In this embodiment, the via hole V1 is located inside the opening L112 of the wiring layer L11 and the respective openings L122 of the first impedance adjustment layers L12; the via hole V1 a through via hole or blind via hole as described above; the via hole V1 includes a plurality of second lands V132; the second lands V132 are circular loop shaped conductors on the insulating layers L2 located immediately below the first impedance adjustment layers L12 such that the second lands are located inside the respective openings L122 of the first impedance adjustment layers L12.

[0037] The first impedance adjustment layers L12 may include a first impedance adjustment layer L12'. The first impedance adjustment layer L12' may be located immediately below the insulating layer L2 located immediately below the wiring layer L11. As best illustrated in Fig. 4, the first impedance adjustment layer L12' includes a solid conductor L121', an opening L122', and a passage L123'. The solid conductor L121' is provided on and in contact with the insulating layer L2, which is located immediately below the first impedance adjustment layer L12'. The solid conductor L121' is connected to the ground and formed with the opening L122' and the passage L123'.

[0038] The opening L122' and the passage L123' are areas of the first impedance adjustment layer L12' from which the solid conductor L121' has been removed. The opening L122' is of a circular loop shape and is concentric with the via hole V1. An annular second land V132 formed from the solid conductor L121' also surrounds the via hole V1. The opening L122' has a circular outline α2'. The outline α' forms the border between the opening L122' and the solid conductor L121'. The passage L123' communicates with the opening L122' and extends from the opening L122' in the direction in which the conductive line L114 is led out.

[0039] The ground layers L1 may further include a second impedance adjustment layer L13, examples of which are illustrated in Figs. 5A, 5B, and Fig. 5C. In this case, it is preferable, but not limited, that the at least one first impedance adjustment layer L12, L12' be disposed between the wiring layer L11 and the second impedance adjustment layer L13.

[0040] The second impedance adjustment layer L13, if provided, includes a solid conductor L131, an opening L132, and an impedance adjustment portion L133. An annular land V133 surrounds the via hole V1 within the opening L132. The solid conductor L131 is provided on and in contact with the insulating layer L2 immediately below the second impedance adjustment layer L13, as seen in Fig. 1C. The solid conductor L131 is connected to the ground and formed with the opening L132.

[0041] The opening L132 is an area of the second impedance adjustment layer L13 in which the solid conductor L131 does not exist. The opening L132 may be configured as shown in Fig. 5A, 5B, or Fig. 5C.

[0042] The opening L132 illustrated in Fig. 5A includes a first outline α31 and a second outline α32. The first outline α31 is a straight line that extends in the Y-Y' direction and is orthogonal to the conductive line L114 of the wiring layer L11. The first outline α31 has a first end and a second end opposite to the first end. The second outline α32 is an arc-shaped line connecting between the first and second ends of the first outline α31. The first outline α31 and the second outline α32 forms the border between the opening L132 and the solid conductor L131. In the embodiment illustrated in Fig. 5A, the second outline α32 is generally circular, and the first outline α31 is a chord of that circle.

[0043] The opening L132' illustrated in Fig. 5B is of a circular loop shape and located outside the via hole V1. More particularly, the opening L132' is located with its center displaced from the center of the opening L112 of the wiring layer L11, in the direction opposite to the direction in which the conductive line L114 is led out. The opening L132' has an outline α3'. The outline α3' forms the border between the opening L132' and the solid conductor L131. An annular land V133 surrounds the via hole V1 within the opening L132'.

[0044] An opening L132" illustrated in Fig. 5C is of trapezial/trapezoidal shape. The opening L132" has a first outline α31", a second outline α32", a third outline α33", and a fourth outline α34". The first outline α31", the shorter base of the trapezium/trapezoid, extends in the Y-Y' direction orthogonally to the conductive line L114 of the wiring layer L11. The second outline α32" is the longer base of the trapezium/trapezoid. The third outline α33" and the fourth outline α34" are the legs of the trapezium/trapezoid. These four outlines form the border between the opening L132" and the solid conductor L131.. An annular land V133 surrounds the via hole V1 within the opening L132".

[0045] The impedance adjustment portion L133 is a conductor in the solid conductor L131. The impedance adjustment portion L133 is disposed such as to overlap the conductive line L114 of the wiring layer L11 in the Z-Z' direction, so that the impedance of the conductive line L114 is reduced. In an embodiment where the second impedance adjustment layer L13 includes the opening L132 as shown in Fig. 5A, the impedance adjustment portion L133 is a portion of the solid conductor L131 located outside relative to the first outline α31 of the opening L132 in the direction in which the conductive line L114 is led out. In an embodiment where the second impedance adjustment layer L13 includes the opening L132' as shown in Fig. 5B, the impedance adjustment portion L133 is a portion of the solid conductor L131 located outside relative to the outline α3' of the opening L132' in the direction in which the conductive line L114 is led out, i.e. in the area where the outline of the opening L132' is closest to the land V133. In an embodiment where the second impedance adjustment layer L13 includes the opening L132" as shown in Fig. 5C, the impedance adjustment portion L133 is a portion of the solid conductor L131 located outside relative to the outline α31" of the opening L132" in the direction in which the conductive line L114 is led out.

[0046] In an embodiment where the ground layers L1 further include the second impedance adjustment layer L13, the via hole V1 is located inside the opening L112 of the or each wiring layer L11, the opening L122 of the or each first impedance adjustment layer L12, and the opening (L132, L132', or L132") of the second impedance adjustment layer L13. This via hole V1 is a through via hole or blind via hole configured as described above. The via hole V1 further includes a third land V133. The third land V133 is a circular loop shaped conductor on the insulating layer L2 located immediately below the second impedance adjustment layer L13. The third land V133 is located inside the opening of the second impedance adjustment layer L13 and is concentric with the second land V132. The third land V133 has an outer diameter that is smaller than the outer size of the opening of the second impedance adjustment layer L13. The third land V133 may have the same outer diameter as that of the second land V132. The third land V133 is connected to the connection conductor V12 of the via hole V1.

[0047] The ground layers L1 may further include a connection layer L14. The connection layer L14 may be any one of the ground layers L1 excluding the wiring layer L11 and the first impedance adjustment layer L12, L12'. The connection layer L14 may alternatively be any one of the ground layers L1 excluding the wiring layer L11, the first impedance adjustment layer L12, L12', and the second impedance adjustment layer L13. The connection layer L14 may be the other outermost layer of the wiring board P, i.e. the outermost layer opposed to the first outermost layer of the wiring board P (the bottom layer in the embodiment as shown in Figs. 1A to 1C). In this case, the at least one first impedance adjustment layer L12, L12' may be disposed between the wiring layer L11 and the connection layer L14. In an embodiment where the ground layers L1 include the second impedance adjustment layer L13, the at least one first impedance adjustment layer L12, L12' may be disposed between the wiring layer L11 and the second impedance adjustment layer L13 and/or between the connection layer L14 and the second impedance adjustment layer L13. In the embodiments of Fig. 1A to Fig. 7, there is a plurality of first impedance adjustment layers L12 (including the first impedance adjustment layer L12') disposed between the wiring layer L11 and the second impedance adjustment layer L13, and there is another plurality of first impedance adjustment layers L12 disposed between the connection layer L14 and the second impedance adjustment layer L13.

[0048] As illustrated in Fig. 6, the connection layer L14 includes a solid conductor L141 and an opening L142. The solid conductor L141 is provided on and in contact with the insulating layer L2 which is located immediately above the connection layer L14. The solid conductor L141 is grounded and formed with the opening L142.

[0049] The opening L142 is an area of the connection layer L14 in which the solid conductor L141 does not exist. The opening L142 is of a circular loop shape and concentric with the via hole V1. The opening L142 has a circular outline α4. The outline α4 forms the border between the opening L142 and the solid conductor L141. An annular land V134 is formed within the opening L142, concentric with the via hole V1.

[0050] In an embodiment where the ground layers L1 further include the connection layer L14, the via hole V1 is located inside the opening L112 of the wiring layer L11, the opening L122 of the first impedance adjustment layer L12, and the opening L142 of the connection layer L14. In an embodiment where the ground layers L1 further include the connection layer L14 and the second impedance adjustment layer L13, the via hole V1 is located inside the opening L112 of the wiring layer L11, the opening L122 of the first impedance adjustment layer L12, the opening L132 of the second impedance adjustment layer L13, and the opening L142 of the connection layer L14. In either case, the via hole V1 is a through via hole or blind via hole configured as described above and further includes a fourth land V134. The fourth land V134 a circular loop shaped conductor provided on the insulating layer L2 located immediately above the connection layer L14. The fourth land V134 is located inside the opening L142 of the connection layer L14. The fourth land V134 is concentric with the opening L142, the hole V11, the first land V131, and the second land V132. The fourth land V134 is smaller in outer diameter than the opening L142 of the connection layer L14. The fourth land V134 is connected to the connection conductor V12 of the via hole V1.

[0051] It should be noted that a distance relationship "the third distance R3 is less than the second distance R2" may be established. Here the third distance R3 is the distance in the Y-Y' direction (the radial direction described above) from the outline α4 of the opening L142 of the connection layer L14 to the fourth land V134 of the via hole V1 as illustrated in Fig. 1C and Fig. 6. The distance relationship R3 < R2 can be satisfied in any the following arrangements (6) to (10). Arrangement (7) is adopted in the embodiments of Fig. 1A to Fig. 6.

(6) The second land V132 is smaller in outer diameter (in outside dimension) than the fourth land V134, and the outline α4 of the opening L142 overlaps the outline α2 of the opening L122 in the Z-Z' direction, i.e. the opening L142 has the same outer diameter as that of the opening L122.

(7) The second land V132 is smaller in outer diameter (in outside dimension) than the fourth land V134, and the outline α4 of the opening L142 is located inside of the outline α2 of the opening L122 (closer to the central axis of the via hole V1 than the outline α2), i.e. the opening L142 is smaller in outer diameter than the opening L122.

(8) The second land V132 is smaller in outer diameter (in outside dimension) than the fourth land V134, and the outline α4 of the opening L142 is located outside of the outline α2 of the opening L122 in the radial direction (father apart from the central axis of the via hole V1 than the outline α2), i.e. the opening L142 is larger in outer diameter than the opening L122.

(9) The second land V132 has the same outer diameter (the same outside dimension) as that he fourth land V134, and the outline α4 of the opening L142 is located inside of the outline α2 of the opening L122 in the radial direction (closer to the central axis of the via hole V1 than the outline α2), i.e. the opening L142 is smaller in outer diameter than the opening L122.

(10) The second land V132 is larger in outer diameter (in outside dimension) than the fourth land V134, and the outline α4 of the opening L142 is located inside of the outline α2 of the opening L122 in the radial direction (closer to the central axis of the via hole V1 than the outline α2), i.e. the opening L142 is smaller in outer diameter than the opening L122.

It is to be noted that these five arrangements are exemplary, and other relationships between the diameters of the second and fourth lands V132 and V134 and the diameters of the openings L122 and L142, in which the distance R3 from the perimeter of the fourth land V134 to the perimeter of the opening L142 in the connection layer L14 is less than the distance R2 from the perimeter of the second land V132 to the perimeter of the opening L122 in the impedance adjustment layer L12, are possible.

[0052] Also, a distance relationship "the third distance R3 is less than the first distance R1" may be established. This relationship can satisfied in any of the following arrangements (11) to (15). Arrangement (12) is adopted in the embodiments of Fig. 1A to Fig. 6.

(11) The first land V131 is smaller in outer diameter (in outside dimension) than the fourth land V134, and the outline α4 of the opening L142 overlaps the outline α1 of the opening L112 of the wiring layer L11 in the Z-Z' direction, i.e. the opening L142 has the same outer diameter as that of the opening L112.

(12) The first land V131 is smaller in outer diameter (in outside dimension) than the fourth land V134, and the outline α4 of the opening L142 is located inside of the outline α1 of the opening L112 in the radial direction (closer to the central axis of the via hole V1 than the outline α1), i.e. the opening L142 is smaller in outer diameter than the opening L112.

(13) The first land V131 is smaller in outer diameter (in outside dimension) than the fourth land V134, and the outline α4 of the opening L142 is located outside of the outline α1 of the opening L112 in the radial direction (father apart from the central axis of the via hole V1 than the outline α1), i.e. the opening L142 is larger in outer diameter than the opening L112.

(14) The first land V131 has the same outer diameter (the same outside dimension) as that of the fourth land V134, and the outline α4 of the opening L142 is located inside of the outline α1 of the opening L112 in the radial direction (closer to the central axis of the via hole V1 than the outline α1), i.e. the opening L142 is smaller in outer diameter than the opening L112.

(15) The first land V131 is larger in outer diameter (in outside dimension) than the fourth land V134, and the outline α4 of the opening L142 is located inside of the outline α1 of the opening L11 in the radial direction (closer to the central axis of the via hole V1 than the outline α1), i.e. the opening L142 is smaller in outer diameter than the opening L112.

It is to be noted that these five arrangements are exemplary, and other relationships between the diameters of the first and fourth lands V131 and V134 and the diameters of the openings L112 and L142, in which the distance R3 from the perimeter of the fourth land V134 to the perimeter of the opening L142 in the connection layer L14 is less than the distance R1 from the perimeter of the first land V131 to the perimeter of the opening L112 in the impedance adjustment layer L12, are possible.

[0053] The wiring board P may further include at least two further via holes V2. The two further via holes V2, or two of the further via holes V2, may be symmetrically arranged outside the opening L112 of the wiring layer L11 and/or outside the passage L113. In the embodiments of Fig. 1A to Fig. 6, there are eight further via holes V2 symmetrically arranged outside the opening L112 and outside the passage L113. The via holes V2 establish connection between the solid conductors of the ground layers L1. The via holes V2 may be through via holes in the ground layers L1 and the insulating layers L2 such as to pass through all of the ground layers L1 and the insulating layers L2, or may be blind via holes in at least one of the ground layers L1 and at least one of the insulating layers L2 such as to pass through the at least one of the ground layers L1 and the at least one of the insulating layers L2. The blind via hole may preferably open to either face (top face or bottom face as shown)of the wiring board P. In the embodiments of Fig. 1A to Fig. 6, the further via holes V2 are through via holes.

[0054] The wiring board P may further include at least two larger via holes V3. The via holes V3 may be symmetrically arranged outside the opening L112 of the wiring layer L11. In the embodiments of Fig. 1A to Fig. 6, there are two via holes V3 symmetrically arranged outside the opening L112, and there are two more via holes V3 symmetrically arranged outside the opening L112. The via holes V3 are connected to the solid conductors of the ground layers L1. The via holes V3 may be through via holes in the ground layers L1 and the insulating layers L2 such as to pass through all of the ground layers L1 and the insulating layers L2, or may be blind via holes in at least one of the ground layers L1 and at least one of the insulating layers L2 such as to pass through the at least one of the ground layers L1 and the at least one of the insulating layers L2. The blind via hole may preferably open to either face (top face or bottom face as shown) of the wiring board P. In the embodiments of Fig. 1A to Fig. 6, the via hole V3 is a through via hole.

[0055] The wiring board P of any aspect described above can be connected to a connector C to form a connection structure for as illustrated in Fig. 7. The connector C is a coaxial connector mounted on the wiring board P of any aspect described above. The connector C includes a terminal T, a body 10, a shell 20, and a case 30. These constituents of the connector C will be described below.

[0056] The body 10 is an insulating body to hold the terminal T. The shell 20 is a metallic housing to accommodate the body 10 and the terminal T. The shell 20 has at least two legs (not shown). The legs of the shell 20 are inserted into and connected to the associated via holes V3 of the wiring board P. The case 30 is a housing of insulating resin, which serves to accommodate the shell 20, the body 10, and the terminal T. The terminal T is a generally L-shaped metallic plate. The terminal T includes a tail T1. The tail T1 extends through the via hole V1 of the wiring board P and protrudes in the Z' direction out of the body 10 at a distal portion. The distal portion of the tail T1 is connected to the fourth land V134 of the via hole V1 by soldering or other means. The terminal T, the via hole V1, and the conductive line L114 form a signal transmission path capable of transmitting high-frequency signals.

[0057] The wiring board P and the connection structure described above have at least the following technical features. First, increased impedance can be obtained in the via hole V1 of the wiring board P for the following reason. The distance relationship R1 < R2, or the distance relationships R1 < R2 and R3 < R2 are satisfied, making it possible to leave space from the solid conductors L121 of the first impedance adjustment layers L12 to the via hole V1. This arrangement results in increased impedance of the via hole V1. As a result, increased impedance is achieved both in the via hole V1 and in the tail T1 of the terminal T connected thereto.

[0058] Second, it is easy to regulate the impedance of the via hole V1 of the wiring board P, and accordingly easy to regulate the impedances of the via hole V1 and the tail T1 of the terminal in the signal transmission path of the connection structure. Particularly, the impedance of the via hole V1 can be regulated simply by making the outside dimension of the first land V131 different from the outside dimension of the second land V132, and/or making the outside dimension of the opening L112 different from the outside dimension of the opening L122. Alternatively, the impedance of the via hole V1 can be regulated simply by making the outside dimension of the first land V131 different from the outside dimension of the second land V132, making the outside dimension of the opening L112 different from the outside dimension of the opening L122, making the outside dimension of the fourth land V134 different from the outside dimension of the second land V132, and/or making the outside dimension of the opening L142 different from the outside dimension of the opening L122.

[0059] Third, decreased impedance can be obtained in the conductive line L114 of the wiring layer L11 of the wiring board P. This is because of the arrangement that the impedance adjustment portion L133 of the second impedance adjustment layer L13 of the wiring board P is disposed such as to overlap the conductive line L114 of the wiring layer L11 in the Z-Z' direction. That is, the via hole V1 and the tail T1 of the terminal T provides increased impedances while the conductive line L114 provides decreased impedance, facilitating impedance matching in the signal transmission path of the connection structure.

[0060] To support the above technical features, simulations are conducted on a conductive line and a via hole in a signal transmission path for each of the connection structures that will be hereinafter referred to as first and second comparison examples. The connection structure of the first comparison example includes the a connector equivalent to the connector illustrated in Fig. 7, and a wiring board. The wiring board of the first comparison example includes a plurality of ground layers, a plurality of insulating layers, and a via hole. The ground layers and the insulating layers are alternately arranged. The ground layers include a wiring layer that is a first outermost layer of the wiring board and has the same configuration as the wiring layer L11, a connection layer that is a second outermost layer of the wiring board and has the same configuration as the connection layer L14, and a plurality of remaining ground layers that are inner layers of the wiring board. The remaining ground layers each include a solid conductor and an opening. Each solid conductor is provided on the insulating layer located immediately below each of the remaining ground layers, and is connected to the ground. Each opening is of a circular loop shape, concentric with the via hole, and provided in the solid conductor. The opening has the same outer diameter as that of the opening of the wiring layer. The via hole has the same configuration as the that of the via hole V1 of Fig. 1A to Fig. 1C, except that the first land is provided inside each of the openings of the remaining ground layers. The first lands are at the same distance in the Y-Y' direction (in a radial direction of the via hole) from the outlines of the openings of the wiring layer and the remaining ground layers. The connection structure of the second comparison example includes a connector equivalent to the connector illustrated in Fig. 7, and the wiring board P illustrated in Fig. 1A to Fig. 1C. This wiring board P includes the second impedance adjustment layer L13 as illustrated in Fig. 5A.

[0061] Simulation results show that in the connection structure of the first comparison example, the conductive line of the wiring layer and the via hole exhibited impedances as shown in Fig. 8. On the other hand, in the connection structure of the second comparison example, the conductive line L114 of the wiring layer L11 and the via hole V1 exhibited impedances as shown in Fig. 9. Specifically, the conductive line L114 decreased in impedance by about 2Ω, compared to the conductive line of the connection structure of the first comparison example. The via hole V1 increased in impedance by about 3Ω, compared to the via hole of the connection structure of the first comparison example, and exhibited a value close to 50 Ω. It can be inferred from these results that in practice, the conductive line L114 will further decrease in impedance than the values obtained in the simulation, and the via hole V1 will further increase in impedance than the values obtained in the simulation.

[0062] The fourth technical feature is easy impedance matching between the conductive line L114 of the wiring layer L11 and the via hole V1 for the reasons below. Generally speaking, when a multilayer printed wiring board is designed to transmit high frequency signals (high-speed signals) through a conductive line of a wiring layer and a via hole of the wiring board, or to transmit high frequency signals (high-speed signals) superimposed with power form the power supply through a conductive line of a wiring layer and a via hole of the wiring board, it is desirable to make the conductive line as wide as possible in order to minimize its resistive loss. However, too wide a conductive line may exhibit excessively low impedance. Generally in a multilayer printed wiring board, conductor layers, such as ground layers and wiring layers, are thin in thickness, i.e. are arranged at a small distance therebetween. Also, if a second impedance adjustment portion is too close to a wiring layer, the conductive line of the wiring layer may exhibit excessively low impedance. In view of the above, the wiring board P may be designed such that the at least one first impedance adjustment layer L12 is disposed between the wiring layer L11 and the second impedance adjustment layer L13, in which the existence of the at least one first impedance adjustment layer L12 serves to keep a certain distance from the second impedance adjustment layer L13 to the wiring layer L11. As a result, the conductive line L114 of the wiring layer L11 can exhibit sufficiently low impedance while maximizing the width of the conductive line L114. In addition to the sufficiently low impedance of the conductive line L114, the via hole V1 is increased in impedance as described above, facilitating impedance matching between the conductive line L114 and the via hole V1. This in turn facilitate impedance matching between elements of the signal transmission path of the connection structure.

[0063] Fifth, the wiring board P provides improved high frequency characteristics and electromagnetic compatibility (EMC) characteristics while preventing excessive impedance decrease of the via hole V1. This is because the via hole V1 is surrounded by the solid conductors of the ground layers L1, which are interconnected via the via holes V2. Generally, interconnecting the solid conductors of the ground layers results in impedance decrease of a via hole surrounded by the solid conductors of the ground layers. However, the wiring board P is configured to establish the distance relationship R1 < R2. By virtue of this distance relationship, interconnecting the solid conductors of the ground layers L1 via the via holes V2 will not result in excessive impedance decrease of the via hole V1.

[0064] The multilayer printed wiring board P and connector C are not limited to the embodiments described above and may be modified in any manner within the scope of the claims.

Reference Signs List



[0065] 

P: Multilayer printed wiring board

L1: Ground layer L11:

Wiring layer

L111: Solid conductor

L112: Opening
α1: Outline

L113: Passage

L114: Conductive line

L12: First impedance adjustment layer

L121: Solid conductor

L122: Opening
α2: Outline

L12': First impedance adjustment layer

L121': Solid conductor

L122': Opening
α2': Outline

L123': Passage

L13: Second impedance adjustment layer

L131: Solid conductor

L132: Opening

α31: First outline

α32: Second outline

L133: Impedance adjustment portion

L132': Opening
α3': Outline

L132": Opening

α31": First outline

α32": Second outline

α33": Third outline

α34": Fourth outline

L14: Connection layer

L141: Solid conductor

L142: Opening
α4: Outline

L2: Insulating layer

V1: Via hole (via hole defined in the claims)

V11: Hole

V12: Connection conductor

V131: First land

V132: Second land

V133: Third land

V134: Fourth land

V2: Via hole

V3: Via hole

R1: First distance

R2: Second distance

R3: Third distance

C: Connector

10: Body

20: Shell

30: Case

T: Terminal
T1: Tail.




Claims

1. A multilayer printed wiring board (P) comprising:

a plurality of insulating layers (L2);

a plurality of ground layers (L1) on the respective insulating layers, the ground layers including:

a wiring layer (L11) including:

a solid conductor (L111) having an opening (L112) and a passage (L113), the passage communicating with the opening, and

a conductive line (L114) inside the opening (L112) and the passage (L113), and

a plurality of first impedance adjustment layers (L12, L12') each including a solid conductor (L121, L121'), the solid conductor of each first impedance adjustment layer having a respective opening (L122, L122'); and

a via hole (V1) in the wiring layer (L11), the first impedance adjustment layers (L12, L12'), the insulating layer (L2) on the wiring layer and the insulating layers (L2) on the first impedance adjustment layers, the via hole being located inside the opening of the wiring layer and inside the respective openings of the first impedance adjustment layers and being connected to the conductive line, wherein

the via hole (V1) includes:

a hole (V11);

a connection conductor (V12) of tuboid shape along the circumference of the hole (V11);

a first land (V131) provided inside the opening (L112) of the wiring layer (L11) and connected to the connection conductor (V12); and

a plurality of respective second lands (V132) each provided inside a respective opening (L122, L122') of one of the first impedance adjustment layers (L12, L12') and connected to the connection conductor (V12);

a first distance (R1) is smaller than each of a plurality of second distances (R2) and all of the second distances are equal, where

the first distance (R1) is a distance in a first direction (Y-Y') from an outline (α1) of the opening of the wiring layer to the first land (V131) of the via hole (V1), and each second distance (R2) is a distance in the same direction (Y-Y') as the direction of the first distance (R1) from an outline (α2, α2') of the opening of each first impedance adjustment layer (L12, L12') to the corresponding second land (V131) of the via hole, and

the first direction (Y-Y') is a plane direction of the multilayer printed wiring board extending radially from the central axis of the via hole.


 
2. The multilayer printed wiring board (P) according to claim 1, wherein each second land (V132) is smaller in outside dimension than the first land (V131).
 
3. The multilayer printed wiring board (P) according to claim 1, wherein the second lands each include at least one recess (V1321') recessed toward a central axis of the via hole, and
each second distance (R2) is a distance, in the same direction (Y-Y') as the direction of the first distance, from the outline (α2) of the opening of each first impedance adjustment layer to the bottom of the recess (V1321') of the corresponding second land of the via hole.
 
4. The multilayer printed wiring board (P) according to any one of claims 1 to 3, wherein the outline (α1) of the opening (L112) of the wiring layer (L11) is located closer to a central axis of the via hole than the outline (α2, α2') of the opening (L122) of each first impedance adjustment layer (L12).
 
5. The multilayer printed wiring board (P) according to claim 2 or claim 3, wherein the outline (α1) of the opening (L112) of the wiring layer (L11) overlaps the outline (α2, α2') of the opening (L122) of each first impedance adjustment layer (L12) in a second direction (Z-Z') orthogonal to the first direction (Y-Y').
 
6. The multilayer printed wiring board (P) according to any one of claims 1 to 5, wherein
the ground layers (L1) further include a second impedance adjustment layer (L13),
the second impedance adjustment layer includes:

a solid conductor (L131) having an opening (L132); and

an impedance adjustment portion (L132) being a conductor at the solid conductor of the second impedance adjustment layer, the impedance adjustment portion overlapping the conductive line (L114) of the wiring layer (L11), and

the via hole (V1) is provided in at least one of the ground layers (L1) and at least one of the insulating layers (L2) such as to be located inside the respective openings of the wiring layer (L11), the first impedance adjustment layers (L12, L12'), and the second impedance adjustment layer (L13).
 
7. The multilayer printed wiring board (P) according to claim 6, wherein at least one of the first impedance adjustment layers (L12, L12') is disposed between the wiring layer (L11) and the second impedance adjustment layer (L13).
 
8. The multilayer printed wiring board (P) according to claim 6, wherein
the wiring layer (L11) is a first outermost layer of the multilayer printed wiring board,
the ground layers further include a connection layer (L14) being a second outermost layer opposite the first outermost layer of the multilayer printed wiring board,
the connection layer includes a solid conductor (L141) having an opening (L142),
the via hole (V1) is provided in the ground layers (L1) and the insulating layers (L2) such as to be located in the respective openings of the wiring layer, the first impedance adjustment layers (L12, L12'), the second impedance adjustment layer (L13), and the connection layer, and
at least one of the first impedance adjustment layers is disposed between the wiring layer and the second impedance adjustment layer and/or between the second impedance adjustment layer (L13) and the connection layer (L14).
 
9. The multilayer printed wiring board (P) according to any one of claims 1 to 8, wherein
the wiring layer (L11) is a first outermost layer of the multilayer printed wiring board,
the ground layers each further include a connection layer (L14) being a second outermost layer opposite the first outermost layer of the multilayer printed wiring board,
the connection layer includes a solid conductor (L141) having an opening (L142),
the via hole (V1) is provided in the ground layers (L1) and the insulating layers (L2) such as to be located in the respective openings of the wiring layer (L11), the first impedance adjustment layers (L12, L12'), and the connection layer (L14),
a third distance (R3) is smaller than the second distance (R2), and
the third distance is a distance in the same direction as the first direction (Y-Y') from an outline (α4) of the opening (L142) of the connection layer (L14) to the via hole.
 
10. The multilayer printed wiring board (P) according to claim 9, wherein
the via hole (V1) further includes a fourth land (V134) provided inside the opening (L142) of the connection layer (L14) and connected to the connection conductor (V12),
the second land (V132) is smaller in outside dimension than the fourth land (V134), and
the third distance (R3) is a distance in the same direction as the first direction (Y-Y') from the outline (α4) of the opening of the connection layer to the fourth land (V134) of the via hole.
 
11. The multilayer printed wiring board (P) according to claim 9 or claim 10, wherein the outline (α4) of the opening (L142) of the connection layer (L14) is closer to the central axis of the via hole (V1) than the outline (α2, α2') of the opening (L122) of each first impedance adjustment layer (L12).
 
12. The multilayer printed wiring board (P) according to claim 10, wherein the outline (α4) of the opening (L141) of the connection layer (L14) overlaps the outline (α2, α2') of the opening (L122) of each first impedance adjustment layer (L12) in a second direction (Z-Z') orthogonal to the first direction (Y-Y').
 
13. The multilayer printed wiring board (P) according to any one of claims 1 to 12, wherein
the opening (L112) of the wiring layer (L11) is generally of circular loop shape,
the opening (L122) of each first impedance adjustment layer (L12) is generally of circular loop shape,
the via hole (V1) is generally of cylindrical shape, and
the first direction (Y-Y') is a radial direction of the via hole.
 
14. The multilayer printed wiring board (P) according to any one of claims 1 to 13, wherein
the ground layers (L1) and the insulating layers (L2) are disposed alternately in a second direction (Z-Z') orthogonal to the first direction (Y-Y'),
the wiring layer (L11) is one of the ground layers (L1), and
each of the first impedance adjustment layers (L12, L12') is one of the ground layers (L1) excluding the wiring layer.
 
15. A connection structure of a multilayer printed wiring board and a connector, the connection structure comprising:

the multilayer printed wiring board (P) according to any one of claims 1 to 14, the via hole (V1) of the multilayer printed wiring board being a through via hole or a blind via hole; and

a connector (C) including a terminal (T), the terminal including a tail (T1) received in and connected to the via hole of the multilayer printed wiring board.


 


Ansprüche

1. Mehrschichtige Leiterplatte (P), die Folgendes umfasst:

mehrere Isolierschichten (L2);

mehrere Grundschichten (L1) auf den jeweiligen Isolierschichten, wobei die Grundschichten Folgendes einschließen:
eine Verdrahtungsschicht (L11), einschließlich:

eines festen Leiters (L111), der eine Öffnung (L112) und einen Durchgang (L113) aufweist, wobei der Durchgang mit der Öffnung in Verbindung steht, und einer leitenden Leitung (L114) innerhalb der Öffnung (L112) und des Durchgangs (L113) und mehrere erste Impedanzanpassungsschichten (L12, L12'), die jeweils einen festen Leiter (L121, L121') einschließen, wobei der feste Leiter jeder ersten Impedanzanpassungsschicht eine entsprechende Öffnung (L122, L122') aufweist; und

ein Kontaktloch (V1) in der Verdrahtungsschicht (L11), die ersten Impedanzanpassungsschichten (L12, L12'), die Isolierschicht (L2) auf der Verdrahtungsschicht und die Isolierschichten (L2) auf den ersten Impedanzanpassungsschichten, wobei das Kontaktloch sich innerhalb der Öffnung der Verdrahtungsschicht und innerhalb der jeweiligen Öffnungen der ersten Impedanzanpassungsschichten befindet und mit der leitenden Leitung verbunden ist, wobei das Kontaktloch (V1) Folgendes einschließt:

ein Loch (V11);

einen schlauchförmigen Verbindungsleiter (V12) entlang des Umfangs des Lochs (V11);

ein erstes Anschlussauge (V131), das innerhalb der Öffnung (L112) der Verdrahtungsschicht (L11) bereitgestellt und mit dem Verbindungsleiter (V12) verbunden ist; und

mehrere jeweilige zweite Anschlussaugen (V132), die jeweils innerhalb einer jeweiligen Öffnung (L122, L122') einer der ersten Impedanzanpassungsschichten (L12, L12') bereitgestellt und mit dem Verbindungsleiter (V12) verbunden sind;

wobei ein erster Abstand (R1) kleiner ist als jeder von mehreren zweiten Abständen (R2) und alle zweiten Abstände gleich sind, wobei der erste Abstand (R1) ein Abstand in einer ersten Richtung (Y-Y') von einem Umriss (α1) der Öffnung der Verdrahtungsschicht zu dem ersten Anschlussauge (V131) des Kontaktlochs (V1) ist, und jeder zweite Abstand (R2) ein Abstand in derselben Richtung (Y-Y') wie die Richtung des ersten Abstands (R1) von einem Umriss (α2, α2') der Öffnung jeder ersten Impedanzanpassungsschicht (L12, L12') zu dem entsprechenden zweiten Anschlussauge (V132) des Kontaktlochs ist, und die erste Richtung (Y-Y') eine ebene Richtung der mehrschichtigen Leiterplatte ist, die sich radial aus der Mittelachse des Kontaktlochs erstreckt.


 
2. Mehrschichtige Leiterplatte (P) nach Anspruch 1, wobei jedes zweite Anschlussauge (V132) in der Außenabmessung kleiner ist als das erste Anschlussauge (V131).
 
3. Mehrschichtige Leiterplatte (P) nach Anspruch 1, wobei die zweiten Anschlussaugen jeweils wenigstens eine Aussparung (V1321'), die in Richtung einer Mittelachse des Kontaktlochs ausgespart sind, einschließen, und jeder zweite Abstand (R2) ein Abstand, in derselben Richtung (Y-Y') wie die Richtung des ersten Abstands, von dem Umriss (α2) der Öffnung jeder ersten Impedanzanpassungsschicht bis zu dem Boden der Aussparung (V1321') des entsprechenden zweiten Anschlussauges des Kontaktlochs ist.
 
4. Mehrschichtige Leiterplatte (P) nach einem der Ansprüche 1 bis 3, wobei der Umriss (α1) der Öffnung (L112) der Verdrahtungsschicht (L11) sich näher an einer Mittelachse des Kontaktlochs befindet als der Umriss (α2, α2') der Öffnung (L122) jeder ersten Impedanzanpassungsschicht (L12).
 
5. Mehrschichtige Leiterplatte (P) nach Anspruch 2 oder 3, wobei der Umriss (α1) der Öffnung (L112) der Verdrahtungsschicht (L11) den Umriss (α2, α2') der Öffnung (L122) jeder ersten Impedanzanpassungsschicht (L12) in einer zweiten Richtung (Z-Z') orthogonal zu der ersten Richtung (Y-Y') überlappt.
 
6. Mehrschichtige Leiterplatte (P) nach einem der Ansprüche 1 bis 5, wobei die Erdungsschichten (L1) ferner eine zweite Impedanzanpassungsschicht (L13) einschließen, wobei die zweite Impedanzanpassungsschicht Folgendes einschließt:

einen festen Leiter (L131), der eine Öffnung (L132) aufweist; und

einen Impedanzanpassungsabschnitt (L132), der ein Leiter an dem festen Leiter der zweiten Impedanzanpassungsschicht ist, wobei der Impedanzanpassungsabschnitt die leitende Leitung (L114) der Verdrahtungsschicht (L11) überlappt, und das Kontaktloch (V1) in wenigstens einer der Erdungsschichten (L1) und wenigstens einer der Isolierschichten (L2) bereitgestellt ist, wie etwa, um sich innerhalb der jeweiligen Öffnungen der Verdrahtungsschicht (L11), der ersten Impedanzanpassungsschichten (L12, L12') und der zweiten Impedanzanpassungsschicht (L13) zu befinden.


 
7. Mehrschichtige Leiterplatte (P) nach Anspruch 6, wobei wenigstens eine der ersten Impedanzanpassungsschichten (L12, L12') zwischen der Verdrahtungsschicht (L11) und der zweiten Impedanzanpassungsschicht (L13) angeordnet ist.
 
8. Mehrschichtige Leiterplatte (P) nach Anspruch 6, wobei die Verdrahtungsschicht (L11) eine erste äußerste Schicht der mehrschichtigen Leiterplatte ist, wobei die Erdungsschichten ferner eine Verbindungsschicht (L14) einschließen, die eine zweite äußerste Schicht gegenüber der ersten äußersten Schicht der mehrschichtigen Leiterplatte ist, die Verbindungsschicht einen festen Leiter (L141), der eine Öffnung (L142) aufweist, einschließt, das Kontaktloch (V1) in den Erdungsschichten (L1) und den Isolierschichten (L2) bereitgestellt ist, wie etwa, um sich innerhalb der jeweiligen Öffnungen der Verdrahtungsschicht, der ersten Impedanzanpassungsschichten (L12, L12') und der zweiten Impedanzanpassungsschicht (L13) zu befinden, und wenigstens eine der ersten Impedanzanpassungsschichten zwischen der Verdrahtungsschicht und der zweiten Impedanzanpassungsschicht und/oder zwischen der zweiten Impedanzanpassungsschicht (L13) und der Verbindungsschicht (L14) angeordnet ist.
 
9. Mehrschichtige Leiterplatte (P) nach einem der Ansprüche 1 bis 8, wobei die Verdrahtungsschicht (L11) eine erste äußerste Schicht der mehrschichtigen Leiterplatte ist, wobei die Erdungsschichten jeweils ferner eine Verbindungsschicht (L14), die eine zweite äußerste Schicht gegenüber der ersten äußersten Schicht der mehrschichtigen Leiterplatte ist, einschließen, die Verbindungsschicht einen festen Leiter (L141), der eine Öffnung (L142) aufweist, einschließt, das Kontaktloch (V1) in den Erdungsschichten (L1) und den Isolierschichten (L2) bereitgestellt ist, wie etwa, um sich innerhalb der jeweiligen Öffnungen der Verdrahtungsschicht (L11), der ersten Impedanzanpassungsschichten (L12, L12') und der Verbindungsschicht (L14), ein dritter Abstand (R3) kleiner ist als der zweite Abstand (R2), und der dritte Abstand ein Abstand in der gleichen Richtung wie die erste Richtung (Y-Y') von einem Umriss (α4) der Öffnung (L142) der Verbindungsschicht (L14) zu dem Kontaktloch ist.
 
10. Mehrschichtige Leiterplatte (P) nach Anspruch 9, wobei das Kontaktloch (V1) ferner ein viertes Anschlussauge (V134) einschließt, das innerhalb der Öffnung (L142) der Verbindungsschicht (L14) bereitgestellt und mit dem Verbindungsleiter (V12) verbunden ist, das zweite Anschlussauge (V132) in der äußeren Abmessung kleiner ist als das vierte Anschlussauge (V134), und der dritte Abstand (R3) ein Abstand in derselben Richtung wie die erste Richtung (Y-Y') von dem Umriss (α4) der Öffnung der Verbindungsschicht zu dem vierten Anschlussauge (V134) des Kontaktlochs ist.
 
11. Mehrschichtige Leiterplatte (P) nach Anspruch 9 oder 10, wobei der Umriss (α4) der Öffnung (L142) der Verbindungsschicht (L14) näher an der Mittelachse des Kontaktlochs (V1) ist als der Umriss (α2, α2') der Öffnung (L122) jeder ersten Impedanzanpassungsschicht (L12).
 
12. Mehrschichtige Leiterplatte (P) nach Anspruch 10, wobei der Umriss (α4) der Öffnung (L142) der Verbindungsschicht (L14) den Umriss (α2, α2') der Öffnung (L122) jeder ersten Impedanzanpassungsschicht (L12) in einer zweiten Richtung (Z-Z') orthogonal zu der ersten Richtung (Y-Y') überlappt.
 
13. Mehrschichtige Leiterplatte (P) nach einem der Ansprüche 1 bis 12, wobei die Öffnung (L112) der Verdrahtungsschicht (L11) im Allgemeinen eine kreisförmige Schleifenform hat, die Öffnung (L122) jeder ersten Impedanzanpassungsschicht (L12) im Allgemeinen eine kreisförmige Schleifenform hat, das Kontaktloch (V1) im Allgemeinen eine zylindrische Form hat und die erste Richtung (Y-Y') eine radiale Richtung des Kontaktlochs ist.
 
14. Mehrschichtige Leiterplatte (P) nach einem der Ansprüche 1 bis 13, wobei die Erdungsschichten (L1) und die Isolierschichten (L2) abwechselnd in einer zweiten Richtung (Z-Z') orthogonal zu der ersten Richtung (Y-Y') angeordnet sind, die Verdrahtungsschicht (L11) eine der Erdungsschichten (L1) ist, und jede der ersten Impedanzanpassungsschichten (L12, L12') eine der Erdungsschichten (L1) ausschließlich der Verdrahtungsschicht ist.
 
15. Verbindungsstruktur einer mehrschichtigen Leiterplatte und eines Verbinders, wobei die Verbindungsstruktur Folgendes umfasst:

die mehrschichtige Leiterplatte (P) nach einem der Ansprüche 1 bis 14, wobei das Kontaktloch (V1) der mehrschichtigen Leiterplatte ein Kontaktloch oder ein Blindkontaktloch ist; und

einen Verbinder (C) einschließlich einer Klemme (T), wobei die Klemme einen Schwanz (T1) einschließt, der in das Kontaktloch der mehrschichtigen Leiterplatte aufgenommen und mit dieser verbunden ist.


 


Revendications

1. Carte de circuit imprimé multicouche (P) comprenant :

une pluralité de couches isolantes (L2) ;

une pluralité de couches de masse (L1) sur les couches isolantes respectives, les couches de masse comportant :
une couche de câblage (L11) comportant :

un conducteur massif (L111) ayant une ouverture (L112) et un passage (L113), le passage communiquant avec l'ouverture, et une ligne conductrice (L114) à l'intérieur de l'ouverture (L112) et du passage (L113), et une pluralité de premières couches de réglage d'impédance (L12, L12') comportant chacune un conducteur massif (L121, L121'), le conducteur massif de chaque première couche de réglage d'impédance ayant une ouverture respective (L122, L122') ; et

un trou d'interconnexion (V1) dans la couche de câblage (L11), les premières couches de réglage d'impédance (L12, L12'), la couche isolante (L2) sur la couche de câblage et les couches isolantes (L2) sur les premières couches de réglage d'impédance, le trou d'interconnexion étant situé à l'intérieur de l'ouverture de la couche de câblage et à l'intérieur des ouvertures respectives des premières couches de réglage d'impédance et étant connecté à la ligne conductrice, le trou d'interconnexion (V1) comportant :

un trou (V11) ;

un conducteur de connexion (V12) de la forme d'un tube le long de la circonférence du trou (V11) ;

une première pastille (V131) prévue à l'intérieur de l'ouverture (L112) de la couche de câblage (L11) et connectée au conducteur de connexion (V12) ; et

une pluralité de deuxièmes pastilles respectives (V132), chacune étant prévue à l'intérieur d'une ouverture respective (L122, L122') de l'une des premières couches de réglage d'impédance (L12, L12') et connectée au conducteur de connexion (V12) ;

une première distance (R1) est plus petite que chacune d'une pluralité de deuxièmes distances (R2) et toutes les deuxièmes distances sont égales, où la première distance (R1) est une distance dans une première direction (Y-Y') d'un profil externe (α1) de l'ouverture de la couche de câblage vers la première pastille (V131) du trou d'interconnexion (V1), et chaque deuxième distance (R2) est une distance dans la même direction (Y-Y') que la direction de la première distance (R1) à partir d'un profil externe (α2, α2') de l'ouverture de chaque première couche de réglage d'impédance (L12, L12') vers la seconde pastille correspondante (V132) du trou d'interconnexion, et la première direction (Y-Y') est une direction plane de la carte de circuit imprimé multicouche s'étendant radialement à partir de l'axe central du trou d'interconnexion.


 
2. Carte de circuit imprimé multicouche (P) selon la revendication 1, dans laquelle chaque seconde pastille (V132) est plus petite en dimension extérieure que la première pastille (V131).
 
3. Carte de circuit imprimé multicouche (P) selon la revendication 1, dans laquelle les secondes pastilles comportent chacune au moins un évidement (V1321') encastré vers un axe central du trou d'interconnexion, et chaque deuxième distance (R2) est une distance, dans la même direction (Y-Y') que la direction de la première distance, du profil externe (α2) de l'ouverture de chaque première couche de réglage d'impédance au fond de l'évidement (V1321') de la seconde pastille correspondante du trou d'interconnexion.
 
4. Carte de circuit imprimé multicouche (P) selon l'une quelconque des revendications 1 à 3, dans laquelle le profil externe (α1) de l'ouverture (L112) de la couche de câblage (L11) est situé plus près d'un axe central du trou d'interconnexion que le profil externe (α2, α2') de l'ouverture (L122) de chaque première couche de réglage d'impédance (L12).
 
5. Carte de circuit imprimé multicouche (P) selon la revendication 2 ou la revendication 3, dans laquelle le profil externe (α1) de l'ouverture (L112) de la couche de câblage (L11) chevauche le profil externe (α2, α2') de l'ouverture (L122) de chaque première couche de réglage d'impédance (L12) dans une seconde direction (Z-Z') orthogonale à la première direction (Y-Y').
 
6. Carte de circuit imprimé multicouche (P) selon l'une quelconque des revendications 1 à 5, dans laquelle les couches de masse (L1) comportent en outre une seconde couche de réglage d'impédance (L13), la seconde couche de réglage d'impédance comporte :

un conducteur massif (L131) ayant une ouverture (L132) ; et

une partie de réglage d'impédance (L132) étant un conducteur au niveau du conducteur massif de la seconde couche de réglage d'impédance, la partie de réglage d'impédance chevauchant la ligne conductrice (L114) de la couche de câblage (L11), et le trou d'interconnexion (V1) est prévu dans au moins l'une des couches de masse (L1) et au moins l'une des couches isolantes (L2) de manière à être situées à l'intérieur des ouvertures respectives de la couche de câblage (L11), les premières couches de réglage d'impédance (L12, L12'), et la seconde couche de réglage d'impédance (L13).


 
7. Carte de circuit imprimé multicouche (P) selon la revendication 6, dans laquelle au moins l'une des premières couches de réglage d'impédance (L12, L12') est disposée entre la couche de câblage (L11) et la seconde couche de réglage d'impédance (L13).
 
8. Carte de circuit imprimé multicouche (P) selon la revendication 6, dans laquelle la couche de câblage (L11) est une première couche la plus à l'extérieur de la carte de circuit imprimé multicouche, les couches de masse comportent en outre une couche de connexion (L14) étant une seconde couche la plus à l'extérieur opposée à la première couche la plus à l'extérieur de la carte de circuit imprimé multicouche, la couche de connexion comporte un conducteur massif (L141) ayant une ouverture (L142), le trou d'interconnexion (V1) est prévu dans les couches de masse (L1) et les couches isolantes (L2) de manière à être situées dans les ouvertures respectives de la couche de câblage, les premières couches de réglage d'impédance (L12, L12'), la seconde couche de réglage d'impédance (L13) et la couche de connexion, et au moins l'une des premières couches de réglage d'impédance est disposée entre la couche de câblage et la seconde couche de réglage d'impédance et/ou entre la seconde couche de réglage d'impédance (L13) et la couche de connexion (L14).
 
9. Carte de circuit imprimé multicouche (P) selon l'une quelconque des revendications 1 à 8, dans laquelle la couche de câblage (L11) est une première couche la plus à l'extérieur de la carte de circuit imprimé multicouche, les couches de masse comportant chacune en outre une couche de connexion (L14) étant une seconde couche la plus à l'extérieur opposée à la première couche la plus à l'extérieur de la carte de circuit imprimé multicouche, la couche de connexion comporte un conducteur massif (L141) ayant une ouverture (L142), le trou d'interconnexion (V1) est prévu dans les couches de masse (L1) et les couches isolantes (L2) de manière à être situées dans les ouvertures respectives de la couche de câblage (L11), des premières couches de réglage d'impédance (L12, L12') et de la couche de connexion (L14), une troisième distance (R3) est plus petite que la deuxième distance (R2), et la troisième distance est une distance dans la même direction que la première direction (Y-Y') d'un profil externe (α4) de l'ouverture (L142) de la couche de connexion (L14) au trou d'interconnexion.
 
10. Carte de circuit imprimé multicouche (P) selon la revendication 9, dans laquelle le trou d'interconnexion (V1) comporte en outre une quatrième pastille (V134) prévue à l'intérieur de l'ouverture (L142) de la couche de connexion (L14) et connectée au conducteur de connexion (V12), la seconde pastille (V132) est plus petite en dimension extérieure que la quatrième pastille (V134), et la troisième distance (R3) est une distance dans la même direction que la première direction (Y-Y') du profil externe (α4) de l'ouverture de la couche de connexion à la quatrième pastille (V134) du trou d'interconnexion.
 
11. Carte de circuit imprimé multicouche (P) selon la revendication 9 ou la revendication 10, dans laquelle le profil externe (α4) de l'ouverture (L142) de la couche de connexion (L14) est plus proche de l'axe central du trou d'interconnexion (V1) que le profil externe (α2, α2') de l'ouverture (L122) de chaque première couche de réglage d'impédance (L12).
 
12. Carte de circuit imprimé multicouche (P) selon la revendication 10, dans laquelle le profil externe (α4) de l'ouverture (L142) de la couche de connexion (L14) chevauche le profil externe (α2, α2') de l'ouverture (L122) de chaque première couche de réglage d'impédance (L12) dans une seconde direction (Z-Z') orthogonale à la première direction (Y-Y').
 
13. Carte de circuit imprimé multicouche (P) selon l'une quelconque des revendications 1 à 12, dans laquelle l'ouverture (L112) de la couche de câblage (L11) est généralement en forme de boucle circulaire, l'ouverture (L122) de chaque première couche de réglage d'impédance (L12) est généralement en forme de boucle circulaire, le trou d'interconnexion (V1) est généralement de forme cylindrique, et la première direction (Y-Y') est une direction radiale du trou d'interconnexion.
 
14. Carte de circuit imprimé multicouche (P) selon l'une quelconque des revendications 1 à 13, dans laquelle les couches de masse (L1) et les couches isolantes (L2) sont disposées en alternance dans une seconde direction (Z-Z') orthogonale à la première direction (Y-Y'), la couche de câblage (L11) est l'une des couches de masse (L1), et chacune des premières couches de réglage d'impédance (L12, L12') est l'une des couches de masse (L1) à l'exclusion de la couche de câblage.
 
15. Structure de connexion d'une carte de circuit imprimé multicouche et d'un connecteur, la structure de connexion comprenant :

la carte de circuit imprimé multicouche (P) selon l'une quelconque des revendications 1 à 14, le trou d'interconnexion (V1) de la carte de circuit imprimé multicouche étant un trou d'interconnexion ou un trou d'interconnexion borgne ; et

un connecteur (C) comportant une borne (T), la borne comportant une queue (T1) reçue et connectée au trou d'interconnexion de la carte de circuit imprimé multicouche.


 




Drawing
































Cited references

REFERENCES CITED IN THE DESCRIPTION



This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description