(19)
(11)EP 3 108 699 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
26.06.2019 Bulletin 2019/26

(21)Application number: 14710662.9

(22)Date of filing:  21.02.2014
(51)International Patent Classification (IPC): 
H04W 48/00(2009.01)
H04W 4/70(2018.01)
H04W 12/06(2009.01)
H04W 48/20(2009.01)
H04W 4/80(2018.01)
(86)International application number:
PCT/SE2014/050214
(87)International publication number:
WO 2015/126294 (27.08.2015 Gazette  2015/34)

(54)

METHOD AND APPARATUS FOR CGW SELECTION

VERFAHREN UND APPARAT ZUR CGW AUSWAHL

PROCÉDÉ ET APPAREIL POUR CGW SÉLECTION


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(43)Date of publication of application:
28.12.2016 Bulletin 2016/52

(73)Proprietor: Telefonaktiebolaget LM Ericsson (publ)
164 83 Stockholm (SE)

(72)Inventors:
  • SACHS, Joachim
    SE-191 34 Sollentuna (SE)
  • KERÄNEN, Ari
    FI-00100 Helsinki (FI)
  • RUNE, Johan
    SE-181 29 Lidingö (SE)
  • ERIKSSON E, Anders
    SE-164 36 Kista (SE)
  • MILITANO, Francesco
    112 51 Stockholm (SE)
  • BEIJAR, Nicklas
    FI-02400 Kirkkonummi (FI)
  • TSIATSIS, Vlasios
    SE-17160 Solna (SE)

(74)Representative: Zacco Sweden AB 
Valhallavägen 117 Box 5581
114 85 Stockholm
114 85 Stockholm (SE)


(56)References cited: : 
EP-A2- 2 309 790
WO-A1-2013/157577
WO-A1-2011/112683
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    TECHNICAL FIELD



    [0001] The invention relates to a method of selecting a capillary gateway node via which a Machine Type Communication (MTC) device is to be connected to a radio access network, an MTC device performing the method and a network node performing the method. The invention further relates to computer programs performing the methods according to the present invention, and computer program products comprising computer readable medium having the computer programs embodied therein.

    BACKGROUND



    [0002] Over the last years, a cellular communications network structure known as the Internet of Things has emerged. Generally, this network structure comprises a huge number of small autonomous devices, which typically, more or less infrequently (e.g. once per week to once per minute) transmit and receive only small amounts of data, or are polled for data. These devices are sometimes referred to as Machine Type Communication (MTC) devices, Machine-to-Machine (M2M) devices or just Machine Devices (MDs), and are assumed not to be associated with humans, but are rather sensors or actuators of different kinds, which typically communicate with application servers (which configure and receive data from the devices) within or outside the cellular network.

    [0003] With the nature of MTC devices and their assumed typical uses follow that these devices generally will have to be energy efficient, since external power supplies not necessarily are available and since it is neither practically nor economically feasible to frequently replace or recharge their batteries. In some scenarios the MTC devices may not even be battery powered, but may instead rely on energy harvesting, i.e. gathering energy from the environment, opportunistically utilizing (the often very limited) energy that may be tapped from sun light, temperature gradients, vibrations, etc.

    [0004] So far, the MTC related work in 3rd Generation Partnership Project (3GPP) has focused on MTC devices directly connected to the cellular network via the radio interface of the cellular network. However, a scenario which is likely to be more prevalent is that most MTC devices connect to the cellular network via a gateway. In such scenarios the gateway acts like a User Equipment (UE) towards the cellular network while maintaining a local network, typically based on a short range radio technology towards the MTC devices. Such a local network, which in a sense extends the reach of the cellular network (to other radio technologies but not necessarily in terms of radio coverage) has been coined capillary network and the gateway connecting the capillary network to the cellular network is thus referred to as a capillary network gateway (CGW). Hence, the capillary network comprises one or more CGWs and a plurality of MTC devices, which connect to a Radio Access Network (RAN) of an available cellular communications network via the one or more CGWs.

    [0005] Radio technologies that are expected to be common in capillary networks include e.g. IEEE 802.15.4 (e.g. with IPv6 over Low power Wireless Personal Area Networks (6LoWPAN) or ZigBee as higher layers), Bluetooth Low Energy or low energy versions of the IEEE 802.11 family (i.e. Wi-Fi). A capillary network may be single hop (i.e. all MTC devices have a direct link to the CGW), e.g. a Wi-Fi network with the CGW as the access point, or multi-hop (i.e. some MTC devices may have to communicate via one or more other MTC devices to reach the CGW), e.g. an IEEE 802.15.4+ZigBee network with the CGW being a Personal Area Network (PAN) controller. In multi-hop cases, the Routing Protocol for Low-Power and Lossy Networks (RPL) may be used. In principle, RPL may be used also in single hop networks, but there is less need for a routing protocol in such networks.

    [0006] The field of capillary networks is still not abundantly explored and many issues are still to be resolved. For instance, a problem to be solved is to how handle authentication, identification and/or secure communication of the MTC devices towards the cellular network.

    [0007] WO 2013/157577 discloses: a capillary network which connects to a public wireless communications networks via capillary gateways. The selection of the gateway may be undertaken on a number of criteria either separately or in combination. Examples of criteria disclosed are signal strength and the number of registrations the gateway is capable of supporting.

    [0008] WO 2011/112683 discloses: An M2M system including the use of M2M gateways. M2M entities (including gateways) may receive and indicate an M2M service indication. Gateways may advertise M2M service identifiers which may include reachability, routing, proxy gateway info, device application enabling (registration) and security capability, which includes keys for authentication. M2M devices discover the capabilities of M2M Gateways and select a gateway on the basis of discovered capabilities.

    SUMMARY



    [0009] It is an object of the present invention to solve, or at least mitigate this problem in the art and to provide an improved method and device for selecting a capillary network gateway node for connecting a wireless device, such an MTC device, to a radio access network.

    [0010] This object is attained in a first aspect of the present invention by a method of selecting a capillary network gateway node for connecting an MTC device to a radio access network. The method comprises obtaining an indication of a number of credentials available of a plurality of capillary network gateway nodes being capable of connecting the MTC device to the radio access network, wherein the credentials includes MTC device identification (ID), encryption keys and shared secrets. The method comprises comparing the number of credentials available at each of the plurality of capillary network gateway nodes with a credential threshold value. The method further comprises selecting one of the plurality of capillary network gateway nodes via which the MTC device is to be connected to the radio access network based at least in part on the number of credentials of the plurality of capillary network gateway nodes and for which the number of authorisation credentials is equal to or exceeds the credential threshold value.

    [0011] This object is attained in a second aspect of the present invention by a network node configured to select a capillary network gateway node for connecting an MTC device to a radio access network. The network node comprises a processing unit and a memory containing instructions executable by the processing unit. The network node is thereby operative to obtain an indication of number of credentials available at each of a plurality of capillary network gateway nodes being capable of connecting the MTC device to the radio access network, wherein the credentials includes MTC device identification (ID), encryption keys and shared secrets. The network node is operative to compare the number of credentials available at each of the plurality of capillary network gateway nodes with a credential threshold value. Further, the network node is operative to select one of the plurality of capillary network gateway nodes via which the MTC device is to be connected to the radio access network based at least in part on the number of credentials available at each of the plurality of capillary network gateway nodes and for which the number of credentials is equal to or exceeds the credential threshold value. The network node is further operative to instruct the selection of the capillary network gateway node through configuration data to one or more of the CGWs 11A, 11B to be forwarded to the MTC devices.

    [0012] This object is attained in a third aspect of the present invention by an MTC device configured to select a capillary network gateway node for connecting to a radio access network. The MTC device comprises a processing unit and a memory containing instructions executable by the processing unit. The MTC device is thereby operative to obtain an indication of a number of credentials of a plurality of capillary network gateway nodes being capable of connecting the MTC device to the radio access network, wherein the credentials includes MTC device identification (ID), encryption keys and shared secrets . The MTC device is operative to compare the number of credentials available at each of the plurality of capillary network gateway nodes (11A, 11B) with a credential threshold value. Further, MTC device is operative to select one of the plurality of capillary network gateway nodes via which the MTC device is to be connected to the radio access network based at least in part on the number of credentials available at each of the plurality of capillary network gateway nodes and for which the number of credentials is equal to or exceeds the credential threshold value.

    [0013] In a further aspect a computer program product is provided in accordance with appended claim 18. connecting the MTC device to the radio access network, and to select one of the plurality of capillary network gateway nodes via which the MTC device is to be connected to the radio access network based at least in part on the availability of credentials of the plurality of capillary network gateway nodes.

    [0014] Further provided are computer programs performing the methods according to the present invention, and computer program products comprising computer readable medium having the computer programs embodied therein.

    [0015] Advantageously, by implementing a capillary gateway (CGW) selection process for connecting a wireless device, referred to in the following as an MTC device, to a radio access network according to embodiments of the present invention, a control mechanism for selecting one out of a plurality of available CGWs is provided. In particular, selection of a CGW is enabled while taking into account authentication, identification and/or security requirements of e.g. a telecommunication operator in the cellular network. This is undertaken by determining which one out of a plurality of CGWs to select for connecting the MTC device to the radio access network based on the availability of credentials of the plurality of CGWs, such as the number of credentials available, the credentials being embodied for instance in the form of a shared secret such as a secret encryption key, passwords, identifiers, etc. held by an authenticating entity in the network (and the selected CGW).

    [0016] In an embodiment of the present invention, the CGW having the greatest number of credentials available, in order to have the MTC device engage in communication relating to authentication, identification and/or confidentiality using the credentials, is selected. Advantageously, the risk of depleting a CGW of credentials is less when turning to the CGW having the greatest number of credentials.

    [0017] In another embodiment of the present invention, it is determined whether the number of credentials available at the respective CGW in equal to or exceeds a predetermined credential threshold value. If that is the case, one of the CGWs having a number of credentials exceeding the threshold value may be connected to. Advantageously, great flexibility is offered in that the threshold can be set such that no CGW is selected which is at the risk of being depleted of credentials. For instance, the credential threshold value could be set to correspond to a number of credentials enough to serve two MTC devices. By choosing such a threshold value, at least two MTC devices can be served with credentials.

    [0018] The CGW selection is in further embodiments complemented with additional criteria which must be fulfilled for a CGW to be selected (even though it has a great number of credentials available), such as one or more of: channel quality, required transmission power, battery/energy status of the MTC device, physical location, distance to CWG or capillary network technology used by the various CGWs, etc. Thus, even though a CGW may have access to credentials, these credentials may still not be available to the MTC device, e.g. due to the CGW being unreachable for the MTC device.

    [0019] The present invention improves the CGW selection in capillary networks by taking credential information into account when making the selection, thereby enabling the network to have more control of the choice of CGW of the MTC devices. In addition, enabling selection of CGWs with appropriate availability of credentials avoids the risk of MTC devices not being able to authenticate or identify themselves towards appropriate nodes in the cellular network and/or to engage in secure communication requiring the appropriate credentials.

    [0020] Thus, the MTC device, or a network node such as the CGW itself being for instance a Wi-Fi Access Point (AP), or any other appropriate network node, determines which CGW out of a plurality of CGWs should be selected on the basis of the availability of credentials at the CGWs.

    [0021] In further embodiments of the present invention, the network node is a Serving Gateway (SGW), a Packet Data Network Gateway (PGW) or an Evolved NodeB (eNodeB) in a Long Term Evolution (LTE) network, a Serving General Packet Service Support Node (SGSN), a Gateway General Packet Service Support Node (GGSN), a Radio Network Controller (RNC), or a NodeB in a Universal Mobile Telecommunication System, UMTS, network, or an SGSN, a GGSN, a Base Station Controller (BSC), or a Base Transceiver Station (BTS) in a Global System for Mobile communications (GSM) network. The network node may further be a Services Capability Server (SCS).

    [0022] Further embodiments of the present invention will be described in the detailed description of the invention.

    [0023] Generally, all terms used in the claims are to be interpreted according to their ordinary meaning in the technical field, unless explicitly defined otherwise herein. All references to "a/an/the element, apparatus, component, means, step, etc." are to be interpreted openly as referring to at least one instance of the element, apparatus, component, means, step, etc., unless explicitly stated otherwise. The steps of any method disclosed herein do not have to be performed in the exact order disclosed, unless explicitly stated.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0024] The invention is now described, by way of example, with reference to the accompanying drawings, in which:

    Figure 1 illustrates a capillary network according to an embodiment of the present invention;

    Figure 2A illustrates a flow chart of an embodiment of the method according to the present invention;

    Figure 2B illustrates a flow chart of a further embodiment of the method according to the present invention;

    Figure 2C illustrates a flow chart of yet a further embodiment of the method according to the present invention;

    Figure 3 shows a schematic overview of an exemplifying wireless communication system in which the present invention can be implemented;

    Figure 4 shows a schematic overview of the exemplifying wireless communication system of Figure 3 with an embodiment of the present invention implemented;

    Figure 5 shows a schematic overview of the exemplifying wireless communication system of Figure 3 with another embodiment of the present invention implemented;

    Figure 6a shows a network node according to an embodiment of the present invention; and

    Figure 6b shows an MTC device according to an embodiment of the present invention.


    DETAILED DESCRIPTION



    [0025] The invention will now be described more fully hereinafter with reference to the accompanying drawings, in which certain embodiments of the invention are shown. This invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided by way of example so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. Like numbers refer to like elements throughout the description.

    [0026] Figure 1 illustrates a capillary network according to an embodiment of the present invention. A number of wireless devices referred to as Machine Devices (MDs) or Machine Type Communication (MTC) devices 10A, 10B, 10C connect to a plurality of Capillary Network Gateways (CGWs) 11A, 11B, typically via short range radio communication such as Near Field Communications (NFC), Radio-Frequency Identification (RFID), Wireless Local Area Network (WLAN), Bluetooth or any technology utilizing the IEEE 802.15.4 standard, such as ZigBee or MiWi. The capillary network may for instance be implemented in a factory setting where the MTC devices 10A, 10B, 10C could amount to hundreds or even thousands of sensors for measuring physical properties (such as temperature, pressure, energy consumption, etc.) of an industrial process and reporting via the CGWs 11A, 11B in the form of Wi-Fi Access Points (APs) to an application server 12 via an eNodeB 13 of a RAN in an LTE network 14.

    [0027] Now, for authentication, identification and/or security reasons, it may be necessary to communicate 3GPP credentials to the MTC devices 10A, 10B, 10C for communication with for instance the application server 12. These credentials could include MTC device identification (ID) data in the form of e.g. a serial number, an International Mobile Subscriber Identity (IMSI), encryption keys, shared secrets, etc. In another example, to be able to perform authentication or communicate securely, the MTC devices 10A, 10B, 10C may need to have access to a subscription token stored in an application, such as an ISIM (Internet Protocol Multimedia Services Identity Module) or USIM (Universal Subscriber Identity Module) or an electronically transferable subscriber identity module such as an MCIM (Machine Communications Identity Module), which can be downloaded from the network 14 via the CGWs 11A, 11B. It is also possible that the credentials and/or subscription token(s) are not conveyed to the MTC device(s), but are only downloaded to, or otherwise stored in the CGW. In this alternative scenario the CGW may execute the authentication procedure on behalf of an MTC device.

    [0028] To conclude, a variety of credentials can be envisaged for providing network identification, authentication and/or security in communication between the MTC devices 10A, 10B, 10C and any suitable authenticating entity in the network 14 such as the server 12. Further, the MTC devices 10A, 10B, 10C may be authenticated by the application server 12 in accordance with any appropriate authentication procedure, such as for instance Generic Bootstrapping Architecture (see 3GPP TS 33.220 V12.0.0). Generally, but not necessarily, the CGWs 11A, 11B are under the control of an operator of the cellular network 14 even though the cellular network operator does not necessarily own the CGW.

    [0029] With further reference to Figure 1, the network node in which embodiments of the present invention is implemented could, as previously has been discussed, be any one of the CGWs 11A, 11B. In practice, the method at the CGW 11A, 11B of connecting the MTC devices 10A, 10B, 10C to the RAN of the 3GPP network 14 is performed by a processing unit 15 embodied in the form of one or more microprocessors arranged to execute a computer program 17 downloaded to a suitable storage medium 16 associated with the microprocessor, such as a Random Access Memory (RAM), a Flash memory or a hard disk drive. Thus, as is illustrated by means of dashed lines in Figure 1, the processing unit 15 and the storage medium are included in the CGW 11B. The processing unit 15 is arranged to carry out the method according to embodiments of the present invention when the appropriate computer program 17 comprising computer-executable instructions is downloaded to the storage medium 16 and executed by the processing unit 15. The storage medium 16 may also be a computer program product comprising the computer program 17. Alternatively, the computer program 17 may be transferred to the storage medium 16 by means of a suitable computer program product, such as a Digital Versatile Disc (DVD) or a memory stick. As a further alternative, the computer program 17 may be downloaded to the storage medium 16 over a network. The processing unit 15 may alternatively be embodied in the form of a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field-programmable gate array (FPGA), a complex programmable logic device (CPLD), etc. Further, even though not shown in Figure 1, the MTC devices typically comprise a corresponding processing unit and memory unit comprising a computer program executable by the processing unit.

    [0030] There are two potential ways for the 3GPP credentials (will be referred to in the following as "the credentials") to be used for MTC device authentication. Either the CGWs 11A, 11B (or some other appropriate network node) act on behalf of the MTC devices 10A, 10B, 10C in an authentication procedure or the CGWs 11A, 11B assign the credentials to the MTC devices, so that they can use the credentials themselves during an authentication procedure.

    [0031] To this end, a CGW may have a set, or a pool, of such credentials, which are dynamically used for - or by - different MTC devices that are connected to the CGW. Hence, the number of available credentials in a CGW may vary and the pool of credentials may even be depleted. The CGW may then have to turn to a supervising node in the network for more credentials.

    [0032] When the availability of credentials in the CGWs is taken into account in the CGW selection in accordance with embodiments of the present invention, the CGW selection is improved, thereby enabling the network to have more control of the choice of CGW of the MTC devices. In addition, enabling selection of CGWs with appropriate availability of credentials avoids the risk of MTC devices not being able to authenticate or identify themselves towards appropriate nodes in the cellular network and/or to engage in secure communication requiring the appropriate credentials. Further, by carefully selecting CGWs on the basis of availability of credentials, a more even distribution of credentials among the CGWs is attained, thereby potentially decreasing the rate with which the CGWs may have to turn to the network for more credentials.

    [0033] Figure 2A illustrates a flow chart of an embodiment of the method according to the present invention. Reference is further made to network elements shown in Figure 1. Thus, assuming that a first MTC device 10A is about to connect to the eNodeB 13 of the RAN of the network 14 (via one of the available CGWs). This may either imply establishing a new connection to a CGW or handing over an established connection from one CGW to another. In a first step S101, availability of credentials of a first CGW 11A and a second CGW 11B being capable of connecting the MTC device 10A to the RAN is obtained. Thus, either the first MTC device 10A acquires an indication of the number of credentials of the first and second CGW 11A, 11B, respectively, or any one or both of the CGWs (or another network node being responsible for this particular task) acquire said indication and inform the first MTC device 10A accordingly. It is possible that all CGWs in a certain capillary network are aware of the number of credentials available at each individual CGW, and that an MTC device simply acquires an indication of the number of credentials by receiving the indication either from the respective CGW, or from a single CGW reporting to the MTC device on behalf of the other CGWs. This single CGW may for instance be the CGW which subsequently is to be selected for connecting the MTC device to the RAN. In this particular exemplifying embodiment, the first CGW 11A has access to more credentials than the second CGW 11B, assuming for instance that the first CGW 11A has access to 20 credentials while the second CGW 11B has access to 10 credentials. Hence, in step S102, the first MTC device 10A connects to the radio access network via one of the at least two gateway based on the number of credentials available at the two gateway nodes, wherein in this particular exemplifying embodiment, the CGW 11A having the greatest number of credentials available is selected for connecting the first MTC device 10A to the RAN.

    [0034] Figure 2B illustrates a flow chart of a further embodiment of the method according to the present invention. Reference is further made to network elements shown in Figure 1. In this exemplifying embodiment, the first CGW 11A and the second CGW 11B still have 20 and 10 credentials, respectively, as determined in step S101, but a further criterion is also considered before a CGW is selected for connecting the MTC device 10A, 10B, 10C to the RAN. This criterion includes for example any one or more of: channel quality, required transmission power, battery/energy status of the MTC device, physical location, distance to CWG or capillary network technology used by the various CGWs, etc. Thus, assuming for example that the quality is poor for a channel to be established between the first MTC device 10A and the first CGW 11A having the greatest number of credentials available, implying that the first CGW 11A does not satisfy predetermined quality criteria for the communication, the first MTC device 10A is connected to the RAN via the selected second CGW 11B having a sufficiently good estimated communication quality in step S102a, even though its number of credentials are lower. As mentioned, other exemplifying criteria that may have to be satisfied are e.g. a maximum distance to the CGW, maximum required transmission power of the MTC device, compliance of MTC device with CGW technology, no increase in required MTC device transmission power is allowed, etc.

    [0035] In a further embodiment, the CGWs available to the MTC devices are listed in order of priority in accordance with number of credentials available at the respective CGW, where the list is complemented with one or more criteria to be satisfied. For instance, the list could further include expected communication quality of using the respective CGW, such that selection of a CGW having inferior expected communication quality is avoided even though it has access to a great number of credentials. Thus, if the CGW having the greatest number of credentials available does not fulfil a predetermined quality criterion, a next highest CGW fulfilling the criteria is connected to. In case two or more CGWs have the same (greatest) number of credentials, such a CGW is evaluated before turning to a CGW having a lower number of credentials. Another example is that the criterion to be used in combination with the CGW priority list is that the CGW has to be available to the MTC device, i.e. reachable from the MTC device. In such a case the MTC device would select the first CGW in the list that is available/reachable. This example alternative may be useful e.g. if the CGW priority list is created by an entity that is not aware of which CGWs that are available/reachable to/from the MTC device.

    [0036] Figure 2C illustrates a flow chart of yet a further embodiment of the method according to the present invention. Reference is further made to network elements shown in Figure 1. In this further embodiment of the present invention, the CGW selection indicates preference for CGWs where the number of credentials available obtained in step S101 equals to or exceeds a predetermined credential threshold value T. For instance, the credential threshold value is set in step S101b such that a CGW 11A, 11B is selected only if it has credentials left to serve more than two MTC devices 10A, 10B, 10C. Hence, a CGW whose pool of credentials would be depleted if the MTC device connects to it is avoided when possible thereby giving other MTC devices, which may have no other CGW in reach, a chance to be served. Thus, in an embodiment, the credential threshold value is advantageously set to correspond to a number of credentials enough to serve at least two MTC devices. As can be seen in step S102b, only a CGW for which the number of credentials equals to or exceeds the threshold value is connected to.

    [0037] Further, in case more than one CGW have a number of credentials available being equal to or exceeding the credential threshold value, the CGW having the greatest number of credentials could advantageously be selected for connection to the RAN. In line with previously discussed embodiments, one or more additional criteria (such as e.g. communication quality) may have to be satisfied for a CGW to be selected even though the CGW has a number of credentials exceeding the credential threshold value. In a further example, assuming for instance that the quality of the channel between an MTC device and a first CGW is not considered sufficiently good, a second CGW having a fewer number of credentials - but better channel quality - is selected for connecting the MTC device to the RAN.

    [0038] As has been described in the above, even though an MTC device 10A, 10B itself may be responsible for executing selection of, and subsequent connection to, CGWs 11A, 11B, e.g. in terms of association with a Wi-Fi CGW, appropriate entities in the network 14 may preferably be allowed to maintain some level of control over the MTC devices' selections. This control may be implemented in the form of explicit instructions, policies/rules based on contextual input parameters, and/or modification of contextual parameters that may indirectly affect the MTC devices selection of CGW. The information about the availability of 3GPP/USIM credentials in the CGWs may be communicated in a number of different manners and from a number of different network entities.

    [0039] Figure 3 shows a schematic overview of an exemplifying wireless communication system 200 in which the present invention can be implemented. The wireless communication system 200 is an LTE based system. It should be pointed out that the terms "LTE" and "LTE based" system is here used to comprise both present and future LTE based systems, such as, for example, advanced LTE systems. It should be appreciated that although Figure 3 shows a wireless communication system 200 in the form of an LTE based system, the example embodiments herein may also be utilized in connection with other wireless communication systems, such as e.g. GSM or UMTS, comprising nodes and functions that correspond to the nodes and functions of the system in Figure 3.

    [0040] The wireless communication system 200 comprises one or more base stations in the form of eNodeBs, operatively connected to a Serving Gateway (SGW), in turn operatively connected to a Mobility Management Entity (MME) and a Packet Data Network Gateway (PGW), which in turn is operatively connected to a Policy and Charging Rules Function (PCRF). The eNodeB is a radio access node that interfaces with a mobile radio terminal, e.g. a UE or an Access Point. The eNodeB of the system forms the radio access network called Evolved Universal Terrestrial Radio Access Network (E-UTRAN) for LTE communicating with the UE over an air interface such as LTE-Uu. The core network in LTE is known as Evolved Packet Core (EPC), and the EPC together with the E-UTRAN is referred to as Evolved Packet System (EPS). The SGW routes and forwards user data packets over the Si-U interface, whilst also acting as the mobility anchor for the user plane during inter-eNodeB handovers and as the anchor for mobility between LTE and other 3rd Generation Partnership Project (3GPP) technologies (terminating S4 interface and relaying the traffic between 2G/3G systems and PGW). For idle state UEs, the SGW terminates the downlink data path and triggers paging when downlink data arrives for the UE, and further manages and stores UE contexts, e.g. parameters of the IP bearer service, network internal routing information. It also performs replication of the user traffic in case of lawful interception. The SGW communicates with the MME via interface S11 and with the PGW via the S5 interface. Further, the SGW may communicate with the UMTS radio access network UTRAN and with the GSM EDGE ("Enhanced Data rates for GSM Evolution") Radio Access Network (GERAN) via the S12 interface.

    [0041] The MME is responsible for idle mode UE tracking and paging procedure including retransmissions. It is involved in the bearer activation/deactivation process and is also responsible for choosing the SGW for a UE at the initial attach and at time of intra-LTE handover involving core network node relocation. It is responsible for authenticating the user by interacting with the Home Subscriber Server (HSS). The Non-Access Stratum (NAS) signaling terminates at the MME and it is also responsible for generation and allocation of temporary identities to UEs via the Si-MME interface. It checks the authorization of the UE to camp on the service provider's Public Land Mobile Network (PLMN) and enforces UE roaming restrictions. The MME is the termination point in the network for ciphering/integrity protection for NAS signaling and handles the security key management. Lawful interception of signaling is also supported by the MME. The MME also provides the control plane function for mobility between LTE and 2G/3G access networks with the S3 interface terminating at the MME from the Serving General Packet Radio Service (GPRS) Support Node (SGSN). The MME also terminates the S6a interface towards the home HSS for roaming UEs. Further, there is an interface S10 configured for communication between MMEs for MME relocation and MME-to-MME information transfer.

    [0042] The PGW provides connectivity to the UE to external packet data networks (PDNs) by being the point of exit and entry of traffic for the UE. A UE may have simultaneous connectivity with more than one PGW for accessing multiple PDNs. The PGW performs policy enforcement, packet filtering for each user, charging support, lawful Interception and packet screening. Another key role of the PGW is to act as the anchor for mobility between 3GPP and non-3GPP technologies such as WiMAX and 3GPP2 (CDMA 1X and EvDO). The interface between the PGW and the packet data network, being for instance the Internet, is referred to as the SGi. The packet data network may be an operator external public or private packet data network or an intra operator packet data network, e.g. for provision IP Multimedia Subsystem (IMS) services.

    [0043] The PCRF determines policy rules in real-time with respect to the radio terminals of the system. This may e.g. include aggregating information in real-time to and from the core network and operational support systems, etc. of the system so as to support the creation of rules and/or automatically making policy decisions for user radio terminals currently active in the system based on such rules or similar. The PCRF provides the PGW with such rules and/or policies or similar to be used by the acting PGW as a Policy and Charging Enforcement Function (PCEF) via interface Gx. The PCRF further communicates with the packet data network via the Rx interface.

    [0044] Figure 4 illustrates the LTE network of Figure 3 but with the capillary network according to embodiments of the present invention further implemented. Thus, the MTC devices 10A, 10B, 10C select (and subsequently connect to) one or more of the CGWs 11A, 11B based at least in part on the number of credentials available at the CGWs, and further connect to the cellular EPC network 14 via eNodeB 13 in the E-UTRAN (and possibly to the application server 12 via the Internet).

    [0045] In an embodiment of the present invention, the obtaining of availability of credentials at the CGWs 11A, 11B and the taking of a decision to connect the MTC devices to a selected CGW based on the available credentials, as has been described throughout various embodiments in the above, may be undertaken at a network node in the EPC 14 by a functional network entity referred to as a Capillary Network Function (CNF). The CNF may for instance be implemented at a network hierarchical level of the SGW, the PGW or another supervising network node. The CNF is intended to handle various tasks related to the capillary network, in particular the CGW, such as configuration and may possibly also to some extent be involved in traffic processing.

    [0046] The CNF may thus exercise network control of the MTC devices 10A,10B, 10C regarding the choice of CGW 11A, 11B to connect to through explicit instructions submitted to the MTC devices 10A, 10B, 10C, such as an instruction to connect to another CGW than the CGW that an MTC device currently camps on.

    [0047] In an alternative, the CGWs 11A, 11B exchange information, e.g. across the capillary network, about their respective availability of credentials. In another variant all CGWs 11A, 11B send their respective credential information to the CNF, which in turn distributes the information to the other CGWs connected to the same capillary network. In yet an alternative, the CNF is inherently aware of the credentials that are available in the different CGWs 11A, 11B and distributes this information to the CGWs of the same capillary network. The CNF may have access to this information for instance since it may be involved in the configuring of the CGWs 11A, 11B with the credentials and may also have capability to keep track of the MTC devices 10A, 10B, 10C communicating via the CGWs, thereby keeping track of the credentials currently being used. Either way, the result is that all the CGWs 11A, 11B connected to the same capillary network will be aware of the credentials that are available in all the other CGWs and hence any of the CGWs can determine which CGW an MTC device should select at least partly based on the credentials available at the CGWs, and possible additional criteria, as previously has been described. When determining which CGW to select, CGWs may also take into account information about the MTC devices 10A, 10B, 10C and/or a particular application the respective MTC device is running. The CGW may e.g. derive such information from monitoring of the traffic of the MTC devices, or from information received from the MTC devices.

    [0048] In case one of the CGWs 11A, 11B to which an MTC device currently is connected sends an instruction to the MTC device to select a certain alternative CGW, the current CGW could send the instruction e.g. in the form of a field in a RPL message, as a link layer message, in a Constrained Application Protocol (CoAP) message, in an Open Mobile Alliance Lightweight M2M (OMA-LWM2M) message or as a parameter in a unicast IPv6 router advertisement.

    [0049] It is possible to implement the CNF at a dedicated Operations & Maintenance (O&M) network node for management of MTC devices, CGWs and/or capillary networks (even though the MTC device data traffic typically would not pass through the O&M network node).

    [0050] Irrespective of whether the CGW, the CNF or another appropriate network node makes the CGW selection decision on behalf of an MTC device, the network node may, depending on the scenario, have to be provided with the CGWs that are currently reachable for a given MTC device and possibly also other contextual parameters such as the channel quality of the MTC device with respect to different CGWs and/or the type of application the MTC device is running or the communication requirements of this application.

    [0051] Instead of submitting explicit instructions to the MTC devices 10A, 10B, 10C to connect to a selected CGW 11A, 11B, the EPC network 14 may exercise its control over the selection of a CGW of an MTC device based on credentials according to embodiments of the present invention indirectly through policies/rules. These policies/rules are preferably configured in the MTC device by the previously mentioned O&M entity (not shown in Figure 4), possibly via the CNF/PGW (in this particular example). If the O&M entity or the CNF does not have a direct relation to the MTC devices 10A, 10B, 10C, configuration data may be sent to one or more of the CGWs 11A, 11B to be forwarded to the MTC devices. All the MTC devices 10A, 10B, 10C in the capillary network may be configured with the same policies/rules, but individually adapted policies/rules provides for a more flexible network, e.g. in order to allow different types of MTC devices and/or applications in the same capillary network. One approach for implementing individual policy/rule adaptation without sending individual policy/rule instructions to each and every MTC device in a capillary network is to consider type of MTC device/application during configuration of the policy/rule, i.e. making the type of MTC device/application a contextual parameter and include the parameter in network policy configuration data. That is, the type of MTC device/application becomes an input parameter to a policy/rule, which affects the outcome of the algorithm defined by the policy/rule.

    [0052] Figure 5 illustrates the LTE network of Figure 4 implementing the capillary network according to embodiments of the present invention, but with a number of further network nodes implemented as proposed in 3GPP TS 23.682 V11.3.0, "3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Architecture enhancements to facilitate communications with packet data networks and applications (Release 11)", December 2012, which are generally implemented for handling MTC devices in a cellular network. In the LTE network of Figure 5, a Machine Type Communication InterWorking Function (MTC-IWF) node and a Services Capability Server (SCS) have been added. The previously discussed CNF, which in Figure 4 was exemplified as being implemented at a level of the PGW is in this particular exemplifying embodiment implemented at the SCS level, which SCS is connected to the PGW via the SGi interface, the MTC-IWF via a Tsp interface and to the application server 12 via the Internet or another packet data network, even though the application server 12 could be directly connected to the SCS.

    [0053] Figure 6a shows a network node 11 according to an embodiment of the present invention. The network node 11 comprises obtaining means 301 adapted to obtain an indication of availability of credentials of a plurality of capillary network gateway nodes being capable of connecting an MTC device to the radio access network. Further, the network node 11 comprises selecting means 302 adapted to select one of the plurality of capillary network gateway nodes via which the MTC device is to be connected to the radio access network based at least in part on the availability of credentials of the plurality of capillary network gateway nodes.The obtaining means 301 and/or the selecting means 302 may comprise a communications interface for receiving and providing information to other devices. The obtaining means 301 may further comprise a local storage for storing obtained data. The obtaining means 301 and selecting means 302, may (in analogy with the description given in connection to Figure 1) be implemented by a processor embodied in the form of one or more microprocessors arranged to execute a computer program downloaded to a suitable storage medium associated with the microprocessor, such as a RAM, a Flash memory or a hard disk drive. The obtaining means 301 and selecting means 302 may comprise one or more transmitters and/or receivers and/or transceivers, comprising analogue and digital components and a suitable number of antennae for radio communication.

    [0054] Figure 6b shows an MTC device 10 according to an embodiment of the present invention. The MTC device 10 comprises obtaining means 401 adapted to obtain an indication of availability of credentials of a plurality of capillary network gateway nodes being capable of connecting the MTC device to the radio access network. Further, the MTC device 10 comprises selecting means 402 adapted to select one of the plurality of capillary network gateway nodes via which the MTC device is to be connected to the radio access network based at least in part on the availability of credentials of the plurality of capillary network gateway nodes.The obtaining means 401 and/or the selecting means 402 may comprise a communications interface for receiving and providing information to other devices. The obtaining means 401 may further comprise a local storage for storing obtained data. The obtaining means 401 and selecting means 402, may (in analogy with the description given in connection to Figure 1) be implemented by a processor embodied in the form of one or more microprocessors arranged to execute a computer program downloaded to a suitable storage medium associated with the microprocessor, such as a RAM, a Flash memory or a hard disk drive. The obtaining means 401 and selecting means 402 may comprise one or more transmitters and/or receivers and/or transceivers, comprising analogue and digital components and a suitable number of antennae for radio communication.

    [0055] The invention has mainly been described above with reference to a few embodiments. However, as is readily appreciated by a person skilled in the art, other embodiments than the ones disclosed above are equally possible within the scope of the invention, as defined by the appended patent claims.


    Claims

    1. A method of selecting a capillary network gateway node for connecting a Machine Type Communication, MTC, device to a radio access network, comprising:

    obtaining (Sioi) an indication of a number of credentials available at each of a plurality of capillary network gateway nodes being capable of connecting the MTC device to the radio access network, wherein the credentials includes MTC device identification (ID), encryption keys and shared secrets;

    comparing (S101b) the number of credentials available at each of the plurality of capillary network gateway nodes with a credential threshold value; and

    selecting (S102) one of the plurality of capillary network gateway nodes via which the MTC device is to be connected to the radio access network based at least in part on the number of credentials available at each of the plurality of capillary network gateway nodes and for which the number of credentials is equal to or exceeds the credential threshold value.


     
    2. The method of claim 1, wherein the credential threshold value is set to correspond to a number of credentials enough to serve two MTC devices.
     
    3. The method of any one of claims 1, wherein the step of selecting comprises:
    selecting the one of the plurality of capillary network gateway nodes having the greatest number of credentials available.
     
    4. The method of claim 1, wherein the step of selecting comprises:
    selecting (S102a) the one of the plurality capillary network gateway nodes if an additional criterion is satisfied.
     
    5. The method of claim 4, wherein in case the additional criterion is not satisfied for said one of the plurality of capillary network gateway nodes, another one of the plurality of capillary network gateway nodes having a greatest number of credentials available, and satisfying the additional criterion, is selected.
     
    6. The method of claim 5, the additional criteria comprising one or more of: quality of channel between the MTC device and the respective capillary network gateway node, required transmission power of the MTC device when transmitting to the respective capillary network gateway node, battery/energy status of the MTC device, physical location of the MTC device, distance from the MTC device to the respective capillary network gateway node, capability of the MTC device to reach the respective capillary network gateway node and capillary network technology used by the respective capillary network gateway node.
     
    7. The method of claim 1, wherein the step of obtaining an indication of availability of credentials comprises:

    receiving, at the MTC device, the indication of availability of credentials from one or more of the plurality of capillary network gateway nodes; or

    receiving, at at least one of the plurality of capillary network gateway nodes, the indication of availability of credentials.


     
    8. The method of claim 1, wherein the step of obtaining an indication of availability of credentials comprises:
    receiving the indication of availability of credentials at a network node being any one selected from a group comprising a Serving Gateway, SGW, a Packet Data Network Gateway, PGW, and an Evolved NodeB, eNodeB, in a Long Term Evolution, LTE, network, any one selected from a group comprising a Serving General Packet Radio Service Support Node, SGSN, a Gateway General Packet Radio Service Support Node, GGSN, a Radio Network Controller, RNC, and a NodeB, in a Universal Mobile Telecommunication System, UMTS, network, any one selected from a group comprising a Serving General Packet Radio Service Support Node, SGSN, a Gateway General Packet Radio Service Support Node, GGSN, a Base Station Controller, BSC, and a Base Transceiver Station, BTS, in a Global System for Mobile communications, GSM, network, a Services Capability Server, SCS, and an Operation and Maintenance node.
     
    9. A network node (11A,11B) configured to select a capillary network gateway node for connecting a Machine Type Communication, MTC, device (10A, 10B, 10C) to a radio access network, comprising a processing unit (15) and a memory (16), said memory containing instructions executable by said processing unit, whereby said network node is operative to:

    obtain an indication of a number of credentials available at each of a plurality of capillary network gateway nodes (11A,11B) being capable of connecting the MTC device to the radio access network, wherein the credentials includes MTC device identification (ID), encryption keys and shared secrets;

    compare the number of credentials available at each of the plurality of capillary network gateway nodes (11A, 11B) with a credential threshold value;

    select one of the plurality of capillary network gateway nodes via which the MTC device is to be connected to the radio access network based at least in part on the number of credentials available at each of the plurality of capillary network gateway nodes and for which the number of credentials is equal to or exceeds the credential threshold value; and

    send configuration data to one or more of the CGWs 11A, 11B to be forwarded to the MTC devices (10A, 10B, 10c).


     
    10. The network node (11A, 11B) of claim 9, wherein the credential threshold value is set to correspond to a number of credentials enough to serve two MTC devices (10A, 10B, 10C).
     
    11. The network node (11A, 11B) of any one of claims 9, further being operative to:
    select the one of the plurality of capillary network gateway nodes (11A, 11B) having the greatest number of credentials available.
     
    12. The network node (11A, 11B) of any one of claims 9, further being operative to:
    select the one of the plurality capillary network gateway nodes (11A, 11B) if an additional criterion is satisfied.
     
    13. The network node (11A, 11B) of claim 12, further being operative to, in case the additional criterion is not satisfied for said one of the plurality of capillary network gateway nodes (11A, 11B), connect the MTC device (10A, 10B, 10C) to another one of the plurality of capillary network gateway nodes having a greatest number of credentials available, and satisfying the additional criterion.
     
    14. The network node (11A, 11B) of any one of claims 9, said network node being any one selected from a group comprising a Serving Gateway, SGW, a Packet Data Network Gateway, PGW, and an Evolved NodeB, eNodeB, in a Long Term Evolution, LTE, network, any one selected from a group comprising a Serving General Packet Radio Service Support Node, SGSN, a Gateway General Packet Radio Service Support Node, GGSN, a Radio Network Controller, RNC, and a NodeB, in a Universal Mobile Telecommunication System, UMTS, network, any one selected from a group comprising a Serving General Packet Radio Service Support Node, SGSN, a Gateway General Packet Radio Service Support Node, GGSN, a Base Station Controller, BSC, and a Base Transceiver Station, BTS, in a Global System for Mobile communications, GSM, network, a Services Capability Server, SCS, and an Operation and Maintenance node.
     
    15. The network node (11A, 11B) of any one of claims 9, comprising any one or more of said plurality of capillary network gateway nodes.
     
    16. The network node (11A, 11B) of claim 15, the capillary network gateway nodes being any one selected from a group comprising a mobile phone, a personal digital assistant, PDA, a smart phone, a tablet, a laptop, a media player, a Bluetooth Access Point, an IEEE 802.15.4 based Access Point, AP, a Wi-Fi AP, and any other short range radio communication technology AP.
     
    17. A Machine Type Communication, MTC, device (10A, 10B, 10C) configured to select a capillary network gateway node for connecting to a radio access network, comprising a processing unit and a memory, said memory containing instructions executable by said processing unit, whereby said MTC device is operative to:

    obtain an indication of a number of credentials available at each of a plurality of capillary network gateway nodes (11A,11B) being capable of connecting the MTC device to the radio access network, wherein the credentials includes MTC device identification (ID), encryption keys and shared secrets;

    compare the number of credentials available at each of the plurality of capillary network gateway nodes (11A, 11B) with a credential threshold value;

    select one of the plurality of capillary network gateway nodes via which the MTC device is to be connected to the radio access network based at least in part on the number of credentials available at each of the plurality of capillary network gateway nodes and for which the number of credentials is equal to or exceeds the credential threshold value.


     
    18. A computer program (17) comprising computer-executable instructions for causing a device (11A, 11B) to perform steps recited in any one of claims 1-8 when the computer-executable instructions are executed on a processing unit (15) included in the device.
     


    Ansprüche

    1. Verfahren zum Auswählen eines kapillaren Gateway-Netzknotens zum Verbinden einer maschinenartigen Kommunikationsvorrichtung, MTC-Vorrichtung, mit einem Funkzugangsnetz, umfassend:

    Erhalten (S101) einer Angabe einer Anzahl von Berechtigungen, die an jedem einer Vielzahl von kapillaren Gateway-Netzknoten verfügbar sind, die in der Lage sind, die MTC-Vorrichtung mit dem Funkzugangsnetz zu verbinden, wobei die Berechtigungen eine MTC-Vorrichtungsidentifikation (ID), Verschlüsselungsschlüssel und geteilte Geheimnisse einschließen;

    Vergleichen (S101b) der Anzahl der an jedem der Vielzahl von kapillaren Gateway-Netzknoten verfügbaren Berechtigungen mit einem Berechtigungsschwellenwert und

    Auswählen (S102) eines aus der Vielzahl der kapillaren Gateway-Netzknoten, über die die MTC-Vorrichtung mit dem Funkzugangsnetz verbunden werden soll, zumindest teilweise basierend auf der Anzahl der an jedem der Vielzahl der kapillaren Gateway-Netzknoten verfügbaren Berechtigungen, bei denen die Anzahl der Berechtigungen gleich dem oder größer als der Berechtigungsschwellenwert ist.


     
    2. Verfahren nach Anspruch 1, wobei der Berechtigungsschwellenwert so eingestellt ist, dass er einer Anzahl von Berechtigungen entspricht, die ausreicht, um zwei MTC-Vorrichtungen zu bedienen.
     
    3. Verfahren nach einem der Ansprüche 1, wobei der Schritt des Auswählens umfasst:
    Auswählen desjenigen aus der Vielzahl der kapillaren Gateway-Netzknoten mit der größten Anzahl verfügbarer Berechtigungen.
     
    4. Verfahren nach Anspruch 1, wobei der Schritt des Auswählens umfasst:
    Auswählen (S102a) des einen aus der Vielzahl der kapillaren Gateway-Netzknoten, falls ein zusätzliches Kriterium erfüllt ist.
     
    5. Verfahren nach Anspruch 4, wobei, falls das zusätzliche Kriterium für das eine aus der Vielzahl von kapillaren Gateway-Netzknoten nicht erfüllt ist, ein anderes aus der Vielzahl von kapillaren Gateway-Netzknoten mit einer größten Anzahl verfügbarer Berechtigungen, die das zusätzliche Kriterium erfüllen, ausgewählt wird.
     
    6. Verfahren nach Anspruch 5, wobei die zusätzlichen Kriterien eines oder mehrere der Folgenden umfassen: Kanalqualität zwischen der MTC-Vorrichtung und dem jeweiligen kapillaren Gateway-Netzknoten, benötigte Übertragungsleistung der MTC-Vorrichtung beim Übertragen an den jeweiligen kapillaren Gateway-Netzknoten, Batterie/Energiezustand der MTC-Vorrichtung, physischer Standort der MTC-Vorrichtung, Entfernung von der MTC-Vorrichtung zu dem jeweiligen kapillaren Gateway-Netzknoten, Fähigkeit der MTC-Vorrichtung, den jeweiligen kapillaren Gateway-Netzknoten und die kapillare Netztechnologie zu erreichen, die von dem jeweiligen kapillaren Gateway-Netzknoten verwendet wird.
     
    7. Verfahren nach Anspruch 1, wobei der Schritt des Erhaltens einer Angabe zur Verfügbarkeit von Berechtigungen umfasst:

    Empfangen der Angabe zur Verfügbarkeit von Berechtigungen von einem oder mehreren der Vielzahl von kapillaren Gateway-Netzknoten an der MTC-Vorrichtung oder

    Empfangen der Angabe zur Verfügbarkeit von Berechtigungen an mindestens einem aus der Vielzahl der kapillaren Gateway-Netzknoten.


     
    8. Verfahren nach Anspruch 1, wobei der Schritt des Erhaltens einer Angabe zur Verfügbarkeit von Berechtigungen umfasst:
    Empfangen der Angabe zur Verfügbarkeit von Berechtigungen an einem Netzknoten, ausgewählt aus einer Gruppe, umfassend ein Serving Gateway, SGW, ein Paketdatennetz-Gateway, PGW, und einen Evolved NodeB, eNodeB, in einem Long Term Evolution-Netz, LTE-Netz, ausgewählt aus einer Gruppe, umfassend einen Serving General Packet Radio Service Support Node, SGSN, einen Gateway General Packet Radio Service Support Node, GGSN, eine Funknetzsteuereinrichtung, RNC, und einen NodeB in einem universalen mobilen Telekommunikationssystemnetz, UMTS-Netz, ausgewählt aus einer Gruppe, umfassend einen Serving General Packet Radio Service Support Node, SGSN, einen Gateway General Packet Radio Service Support Node, GGSN, eine Basisstationssteuereinrichtung, BSC, und eine Basis-Sender-Empfänger-Station, BTS, in einem globalen System für mobiles Kommunikationsnetz, GSM-Netz, einen Service Capability Server, SCS, und einen Betriebs- und Wartungsknoten.
     
    9. Netzknoten (11A, 11B), der konfiguriert ist, um einen kapillaren Gateway-Netzknoten zum Verbinden einer maschinenartigen Kommunikationsvorrichtung, MTC-Vorrichtung, (10A, 10B, 10C) mit einem Funkzugangsnetz auszuwählen, umfassend eine Verarbeitungseinheit (15) und einen Speicher (16), wobei der Speicher Anweisungen enthält, die von der Verarbeitungseinheit ausführbar sind, wodurch der Netzknoten funktionsfähig ist zum:

    Erhalten einer Angabe zu einer Anzahl von Berechtigungen, die an jedem einer Vielzahl von kapillaren Gateway-Netzknoten (11A, 11B) verfügbar sind, die in der Lage sind, die MTC-Vorrichtung mit dem Funkzugangsnetz zu verbinden, wobei die Berechtigungen eine MTC-Vorrichtungsidentifikation (ID), Verschlüsselungsschlüssel und geteilte Geheimnisse einschließen;

    Vergleichen der Anzahl der an jedem der Vielzahl von kapillaren Gateway-Netzknoten (11A, 11B) verfügbaren Berechtigungen mit einem Berechtigungsschwellenwert;

    Auswählen eines aus der Vielzahl der kapillaren Gateway-Netzknoten, über die die MTC-Vorrichtung mit dem Funkzugangsnetz verbunden werden soll, zumindest teilweise basierend auf der Anzahl der an jedem der Vielzahl der kapillaren Gateway-Netzknoten verfügbaren Berechtigungen, bei denen die Anzahl der Berechtigungen gleich dem oder größer als der Berechtigungsschwellenwert ist; und

    Senden von Konfigurationsdaten an eine oder mehrere der CGW 11A, 11B, die an die MTC-Vorrichtungen (10A, 10B, 10c) weitergeleitet werden sollen.


     
    10. Netzknoten (11A, 11B) nach Anspruch 9, wobei der Berechtigungswellenwert so eingestellt ist, dass er einer Anzahl von Berechtigungen entspricht, die ausreicht, um zwei MTC-Vorrichtungen (10A, 10B, 10C) zu bedienen.
     
    11. Netzknoten (11A, 11B) nach einem der Ansprüche 9, der ferner funktionsfähig ist zum:
    Auswählen desjenigen aus der Vielzahl der kapillaren Gateway-Netzknoten (11A, 11B) mit der größten Anzahl verfügbarer Berechtigungen.
     
    12. Netzknoten (11A, 11B) nach einem der Ansprüche 9, der ferner funktionsfähig ist zum:
    Auswählen des einen aus der Vielzahl der kapillaren Gateway-Netzknoten (11A, 11B), falls ein zusätzliches Kriterium erfüllt ist.
     
    13. Netzknoten (11A, 11B) nach Anspruch 12, der ferner funktionsfähig ist zum Verbinden der MTC-Vorrichtung (10A, 10B, 10C) mit einer anderen aus der Vielzahl von kapillaren Gateway-Netzknoten mit einer größten Anzahl verfügbarer und das zusätzliche Kriterium erfüllenden Berechtigungen, falls das zusätzliche Kriterium für das eine aus der Vielzahl von kapillaren Gateway-Netzknoten (11A, 11B) nicht erfüllt ist.
     
    14. Netzknoten (11A, 11B) nach einem der Ansprüche 9, wobei der Netzknoten aus einer Gruppe ausgewählt ist, die ein Serving Gateway, SGW, ein Paketdatennetz-Gateway, PGW, und einen Evolved NodeB, eNodeB, in einem Long Term Evolution-Netz, LTE-Netz, umfasst, aus einer Gruppe ausgewählt ist, die einen Serving General Packet Radio Service Support Node, SGSN, einen Gateway General Packet Radio Service Support Node, GGSN, eine Funknetzsteuereinrichtung, RNC, und einen NodeB in einem universalen mobilen Telekommunikationssystemnetz, UMTS-Netz, umfasst, aus einer Gruppe ausgewählt ist, die einen Serving General Packet Radio Service Support Node, SGSN, einen Gateway General Packet Radio Service Support Node, GGSN, eine Basisstationssteuereinrichtung, BSC, und eine Basissenderempfängerstation, BTS, in einem globalen System für mobiles Kommunikationsnetz, GSM-Netz, einen Service Capability Server, SCS, und einen Betriebs- und Wartungsknoten umfasst.
     
    15. Netzknoten (11A, 11B) nach einem der Ansprüche 9, umfassend einen oder mehrere aus der Vielzahl von kapillaren Gateway-Netzknoten.
     
    16. Netzknoten (11A, 11B) nach Anspruch 15, wobei es sich bei den kapillaren Gateway-Netzknoten um solche handelt, die aus einer Gruppe ausgewählt sind, umfassend ein Mobiltelefon, einen persönlichen digitalen Assistenten, PDA, ein Smartphone, ein Tablet, einen Laptop, ein Medienabspielgerät, einen Bluetooth-Zugangspunkt, einen IEEE 802.15.4-basierten Zugangspunkt, AP, einen Wi-Fi-AP und einen beliebigen anderen Kurzstrecken-Funkverbindungstechnologie-AP.
     
    17. Maschinenartige Kommunikationsvorrichtung, MTC-Vorrichtung, (10A, 10B, 10C), die konfiguriert ist, um einen kapillaren Gateway-Netzknoten zum Verbinden mit einem Funkzugangsnetz auszuwählen, umfassend eine Verarbeitungseinheit und einen Speicher, wobei der Speicher Anweisungen enthält, die von der Verarbeitungseinheit ausführbar sind, wodurch die MTC-Vorrichtung funktionsfähig ist zum:

    Erhalten einer Angabe zu einer Anzahl von Berechtigungen, die an jedem einer Vielzahl von kapillaren Gateway-Netzknoten (11A, 11B) verfügbar sind, die in der Lage sind, die MTC-Vorrichtung mit dem Funkzugangsnetz zu verbinden, wobei die Berechtigungen eine MTC-Vorrichtungsidentifikation (ID), Verschlüsselungsschlüssel und geteilte Geheimnisse einschließen;

    Vergleichen der Anzahl der an jedem der Vielzahl von kapillaren Gateway-Netzknoten (11A, 11B) verfügbaren Berechtigungen mit einem Berechtigungsschwellenwert;

    Auswählen eines aus der Vielzahl der kapillaren Gateway-Netzknoten, über die die MTC-Vorrichtung mit dem Funkzugangsnetz verbunden werden soll, zumindest teilweise basierend auf der Anzahl der an jedem der Vielzahl der kapillaren Gateway-Netzknoten verfügbaren Berechtigungen, und bei denen die Anzahl der Berechtigungen gleich dem oder größer als der Berechtigungsschwellenwert ist.


     
    18. Computerprogramm (17), umfassend computerausführbare Anweisungen, um eine Vorrichtung (11A, 11B) zu veranlassen, die in einem der Ansprüche 1 bis 8 genannten Schritte auszuführen, wenn die computerausführbaren Anweisungen auf einer in der Vorrichtung eingeschlossenen Verarbeitungseinheit (15) ausgeführt werden.
     


    Revendications

    1. Procédé de sélection d'un noeud de passerelle de réseau capillaire pour connecter un dispositif de communication de type machine, MTC à un réseau d'accès radio, comprenant :

    l'obtention (S101) d'une indication d'un nombre de justificatifs d'identité disponibles au niveau de chacun d'une pluralité de noeuds de passerelle de réseau capillaire capables de connecter le dispositif MTC au réseau d'accès radio, dans lequel les justificatifs d'identité incluent une identification de dispositif MTC (ID), des clés de chiffrement et des secrets partagés ;

    la comparaison (S101b) du nombre de justificatifs d'identité disponibles au niveau de chacun parmi la pluralité de noeuds de passerelle de réseau capillaire avec une valeur seuil de justificatifs d'identité ; et

    la sélection (S102) de l'un parmi la pluralité de noeuds de passerelle de réseau capillaire via lequel le dispositif MTC doit être connecté au réseau d'accès radio sur la base au moins en partie du nombre de justificatifs d'identité disponibles au niveau de chacun parmi la pluralité de noeuds de passerelle de réseau capillaire et pour lequel le nombre de justificatifs d'identité est égal à, ou dépasse la valeur seuil de justificatifs d'identité.


     
    2. Procédé selon la revendication 1, dans lequel la valeur seuil de justificatifs d'identité est établie pour correspondre à un nombre de justificatifs d'identité suffisant pour desservir deux dispositifs MTC.
     
    3. Procédé selon l'une quelconque des revendications 1, dans lequel l'étape de sélection comprend :
    la sélection de l'un parmi la pluralité de noeuds de passerelle de réseau capillaire ayant le plus grand nombre de justificatifs d'identité disponibles.
     
    4. Procédé selon la revendication 1, dans lequel l'étape de sélection comprend :
    la sélection (S102a) de celui parmi la pluralité noeuds de passerelle de réseau capillaire si un critère supplémentaire est satisfait.
     
    5. Procédé selon la revendication 4, dans lequel dans le cas où le critère supplémentaire n'est pas satisfait pour celui précité parmi la pluralité de noeuds de passerelle de réseau capillaire, un autre parmi la pluralité de noeuds de passerelle de réseau capillaire ayant un plus grand nombre de justificatifs d'identité disponibles, et satisfaisant au critère supplémentaire, est sélectionné.
     
    6. Procédé selon la revendication 5, le critère supplémentaire comprenant un ou plusieurs parmi : une qualité de canal entre le dispositif MTC et le noeud de passerelle de réseau capillaire respectif, une puissance de transmission requise du dispositif MTC lors de la transmission au noeud de passerelle de réseau capillaire respectif, un état de batterie/état énergétique du dispositif MTC, un emplacement physique du dispositif MTC, une distance entre le dispositif MTC et le noeud de passerelle de réseau capillaire respectif, une capacité du dispositif MTC pour atteindre le noeud de passerelle de réseau capillaire respectif et la technologie de réseau capillaire utilisée par le noeud de passerelle de réseau capillaire respectif.
     
    7. Procédé selon la revendication 1, dans lequel l'étape d'obtention d'une indication de disponibilité de justificatifs d'identité comprend :

    la réception, au niveau du dispositif MTC, de l'indication de disponibilité de justificatifs d'identité à partir d'un ou plusieurs parmi la pluralité de noeuds de passerelle de réseau capillaire ; ou

    la réception, au niveau d'au moins l'un parmi la pluralité de noeuds de passerelle de réseau capillaire, de l'indication de disponibilité de justificatifs d'identité.


     
    8. Procédé selon la revendication 1, dans lequel l'étape d'obtention d'une indication de disponibilité de justificatifs d'identité comprend :
    la réception de l'indication de disponibilité de justificatifs d'identité au niveau d'un noeud de réseau étant l'un quelconque sélectionné dans un groupe comprenant une passerelle de desserte, SGW, une passerelle de réseau de données de paquet, PGW, et un noeud B évolué, eNodeB, dans un réseau Évolution à long terme, LTE, l'un quelconque sélectionné dans un groupe comprenant un noeud de support de service général de paquets radio de desserte, SGSN, un noeud de support de service général de paquets radio de passerelle, GGSN, un contrôleur de réseau de radiocommunication, RNC, et un noeud B, dans un réseau de système de télécommunication mobile universel, UMTS, l'un quelconque sélectionné dans un groupe comprenant un noeud de support de service général de paquets radio de desserte, SGSN, un noeud de support de service général de paquets radio de passerelle, GGSN, un contrôleur de station de base, BSC, et une station d'émetteur-récepteur de base, BTS, dans un réseau de système mondial de communications mobiles, GSM, un serveur de capacité de services, SCS, et un noeud d'exploitation et de maintenance.
     
    9. Noeud de réseau (11A,11B) configuré pour sélectionner un noeud de passerelle de réseau capillaire pour connexion d'un dispositif de communication de type machine, MTC (10A, 10B, 10C) à un réseau d'accès radio, comprenant une unité de traitement (15) et une mémoire (16), ladite mémoire contenant des instructions exécutables par ladite unité de traitement, moyennant quoi ledit noeud de réseau est opérationnel pour :

    obtenir une indication d'un nombre de justificatifs d'identité disponibles au niveau de chacun d'une pluralité de noeuds de passerelle de réseau capillaire (11A,11B) étant capables de connecter le dispositif MTC au réseau d'accès radio, dans lequel les justificatifs d'identité incluent une identification de dispositif MTC (ID), des clés de chiffrement et des secrets partagés ;

    comparer le nombre de justificatifs d'identité disponibles au niveau de chacun parmi la pluralité de noeuds de passerelle de réseau capillaire (11A, 11B) à une valeur seuil de justificatifs d'identité ;

    sélectionner l'un parmi la pluralité de noeuds de passerelle de réseau capillaire via lequel le dispositif MTC doit être connecté au réseau d'accès radio sur la base au moins en partie du nombre de justificatifs d'identité disponibles au niveau de chacun parmi la pluralité de noeuds de passerelle de réseau capillaire et pour lequel le nombre de justificatifs d'identité est égal à, ou dépasse la valeur seuil de justificatifs d'identité ; et

    envoyer des données de configuration à une ou plusieurs des CGW (11A, 11B) à acheminer aux dispositifs MTC (10A, 10B, 10c).


     
    10. Noeud de réseau (11A, 11B) selon la revendication 9, dans lequel la valeur seuil de justificatifs d'identité est établie pour correspondre à un nombre de justificatifs d'identité suffisant pour desservir deux dispositifs MTC (10A, 10B, 10C).
     
    11. Noeud de réseau (11A, 11B) selon l'une quelconque des revendications 9, étant en outre opérationnel pour :
    sélectionner celui parmi la pluralité de noeuds de passerelle de réseau capillaire (11A, 11B) ayant le plus grand nombre de justificatifs d'identité disponibles.
     
    12. Noeud de réseau (11A, 11B) selon l'une quelconque des revendications 9, étant en outre opérationnel pour :
    sélectionner celui parmi la pluralité de noeuds de passerelle de réseau capillaire (11A, 11B) si un critère supplémentaire est satisfait.
     
    13. Noeud de réseau (11A, 11B) selon la revendication 12, étant en outre opérationnel pour, dans le cas où le critère supplémentaire n'est pas satisfait pour celui précité parmi la pluralité de noeuds de passerelle de réseau capillaire (11A, 11B), connecter le dispositif MTC (10A, 10B, 10C) à un autre parmi la pluralité de noeuds de passerelle de réseau capillaire ayant un plus grand nombre de justificatifs d'identité disponibles, et satisfaisant au critère supplémentaire.
     
    14. Noeud de réseau (11A, 11B) selon l'une quelconque des revendications 9, ledit noeud de réseau étant l'un quelconque sélectionné dans un groupe comprenant une passerelle de desserte, SGW, une passerelle de réseau de données de paquet, PGW, et un noeud B évolué, eNodeB, dans un réseau Évolution à long terme, LTE, l'un quelconque sélectionné dans un groupe comprenant un noeud de support de service général de paquets radio de desserte, SGSN, un noeud de support de service général de paquets radio de passerelle, GGSN, un contrôleur de réseau de radiocommunication, RNC, et un noeud B, dans un réseau de système de télécommunication mobile universel, UMTS, l'un quelconque sélectionné dans un groupe comprenant un noeud de support de service général de paquets radio de desserte, SGSN, un noeud de support de service général de paquets radio de passerelle, GGSN, un contrôleur de station de base, BSC, et une station d'émetteur-récepteur de base, BTS, dans un réseau de système mondial de communications mobiles, GSM, un serveur de capacité de services, SCS, et un noeud d'exploitation et de maintenance.
     
    15. Noeud de réseau (11A, 11B) selon l'une quelconque des revendications 9, comprenant l'un quelconque ou plusieurs quelconques parmi ladite pluralité de noeuds de passerelle de réseau capillaire.
     
    16. Noeud de réseau (11A, 11B) selon la revendication 15, les noeuds de passerelle de réseau capillaire étant l'un quelconque sélectionné dans un groupe comprenant un téléphone mobile, un assistant numérique individuel, PDA, un téléphone intelligent, une tablette, un ordinateur portable, un lecteur multimédia, un point d'accès Bluetooth, un point d'accès, AP, basé sur IEEE 802.15.4, un AP Wi-Fi, et n'importe quel autre AP de technologie de communication radio à courte portée.
     
    17. Dispositif de communication de type machine, MTC (10A, 10B, 10C) configuré pour sélectionner un noeud de passerelle de réseau capillaire pour connexion à un réseau d'accès radio, comprenant une unité de traitement et une mémoire, ladite mémoire contenant des instructions exécutables par ladite unité de traitement, moyennant quoi ledit dispositif MTC est opérationnel pour :

    obtenir une indication d'un nombre de justificatifs d'identité disponibles au niveau de chacun d'une pluralité de noeuds de passerelle de réseau capillaire (11A,11B) étant capables de connecter le dispositif MTC au réseau d'accès radio, dans lequel les justificatifs d'identité incluent une identification de dispositif MTC (ID), des clés de chiffrement et des secrets partagés ;

    comparer le nombre de justificatifs d'identité disponibles au niveau de chacun parmi la pluralité de noeuds de passerelle de réseau capillaire (11A, 11B) à une valeur seuil de justificatifs d'identité ;

    sélectionner l'un parmi la pluralité de noeuds de passerelle de réseau capillaire via lequel le dispositif MTC doit être connecté au réseau d'accès radio sur la base au moins en partie du nombre de justificatifs d'identité disponibles au niveau de chacun parmi la pluralité de noeuds de passerelle de réseau capillaire et pour lequel le nombre de justificatifs d'identité est égal à, ou dépasse la valeur seuil de justificatifs d'identité.


     
    18. Programme informatique (17) comprenant des instructions exécutables par un ordinateur pour amener un dispositif (11A, 11B) à mettre en oeuvre des étapes citées dans l'une quelconque des revendications 1 à 8 lorsque les instructions exécutables par un ordinateur sont exécutées sur une unité de traitement (15) incluse dans le dispositif.
     




    Drawing


























    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description