(19)
(11)EP 3 109 604 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
06.05.2020 Bulletin 2020/19

(21)Application number: 16175733.1

(22)Date of filing:  22.06.2016
(51)International Patent Classification (IPC): 
G01F 23/00(2006.01)
G01F 23/292(2006.01)
G01N 27/22(2006.01)
B64D 37/00(2006.01)
B60K 15/03(2006.01)
G01F 23/26(2006.01)
G01D 21/02(2006.01)
G01N 29/024(2006.01)
G01N 33/22(2006.01)
G01N 33/28(2006.01)

(54)

INTEGRATED ACTIVE FUEL CHARACTERISTIC SENSOR

INTEGRIERTER AKTIVER BRENNSTOFFEIGENSCHAFTSSENSOR

CAPTEUR DE CARACTÉRISTIQUE DE COMBUSTIBLE ACTIF INTÉGRÉ


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 23.06.2015 US 201514746971

(43)Date of publication of application:
28.12.2016 Bulletin 2016/52

(73)Proprietor: Simmonds Precision Products, Inc.
Vergennes, VT 05491 (US)

(72)Inventors:
  • KUMAR, Lalit Al
    Shelburne, VT 05482 (US)
  • BROWN, Rollin W.
    South Burlington, VT 05403 (US)
  • WILLIAMS, Richard T.
    Pittsford, VT 05763 (US)
  • GRAS, Jr., Peter Simonds
    Charlotte, VT 05445 (US)

(74)Representative: Dehns 
St. Bride's House 10 Salisbury Square
London EC4Y 8JD
London EC4Y 8JD (GB)


(56)References cited: : 
US-A- 5 187 979
US-A- 5 880 480
US-A1- 2010 251 816
US-A- 5 265 460
US-A1- 2009 234 597
US-A1- 2015 022 376
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    BACKGROUND



    [0001] Sensors for sensing characteristics of fuel on high technology systems, such as aircraft, are becoming increasingly complex. As an example, it is known to have fuel height sensors, fuel dielectric sensors, temperature sensors, point level sensors to provide a level warning (such as low or high), and ultrasonic sensors to measure a density of fuel.

    [0002] US 2009/234597 discloses an integrated sensor for a fuel system.

    [0003] In the prior art, these sensors were all mounted individually and electrical connections (wires) had to extend between them and the interface electronics to communicate appropriate signals. US 2010/251816 A1 relates to a fuel gauging system utilizing a digital fuel gauging probe. US 5187979 A relates to a multi-sensor probe assembly for a fuel storage system.

    SUMMARY



    [0004] The present invention provides an integrated sensor assembly according to claim 1.

    [0005] These and other features may be best understood from the following drawings and specification.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0006] 

    Figure 1 is a schematic of a combined fuel characteristic sensor.

    Figure 2 shows a sub-circuit within the Figure 1 integrated sensor.

    Figure 3A is a first perspective view of the integrated sensors.

    Figure 3B is a cross-sectional view through a portion of the integrated sensors.

    Figure 3C shows another detail.

    Figure 3D shows another detail.


    DETAILED DESCRIPTION



    [0007] Figure 1 is a schematic of an integrated fuel characteristic sensor 20. A power supply 22 supplies power. A fuel height sensor 24 is included. A dielectric (K) sensor (a compensator) 26 is also included and measures fuel dielectric. The fuel height sensor 20 consists of a low voltage (e.g., 5 five volts RMS nominal), AC excitation signal generator (e.g., 5 to 20 KHz nominal range) along with a current-to-voltage converter. An excitation signal is generated under the control of a sequencer 42 and connected to the fuel sensor. The excitation signal is rectified and returned as a current signal proportional to the fuel height. A current-to-voltage converter 36 converts and scales the signal accordingly. The signal is applied to an analog-to-digital converter 38 and input into a transceiver 40. The transceiver communicates over a serial data bus with a control 41. While the connection is disclosed as hard wired, wireless communication systems may be used. The dielectric sensor may be eliminated in some embodiments.

    [0008] Control 41 may be a control for an associated gas turbine engine, or may be a standalone control. Control 41 takes in signals from one or more sensors and utilizes those signals to provide information with regard to the fuel, such as determine fuel mass or to control an associated fuel pump or an associated gas turbine engine.

    [0009] A reference signal (REF) 25 is created and driven by the same excitation signal as the fuel height sensor 24 to remove electronic errors associated with gain and offsets and other associated errors.

    [0010] The dielectric sensor 26 is designed into the electronics and its functionality is the same as the fuel height sensor 24. The dielectric sensor 26 when used, however, utilizes a fixed capacitance to determine fuel dielectric whereas the capacitance of a fuel height sensor 24 is variable, dependent on the portion immersed in fluid.

    [0011] A sampling approach ensures an assessment of the health of the individual sensors. That is, by having redundant sensors 24 and 26, the health of each sensor can be checked by comparing the determined signals. The excitation signal is sampled at the signal conditioner as a check on a source signal. An out of range signal received by the control 41 indicates a failure of one of the signals.

    [0012] The power supply 22 provides the voltages required by the circuitry and may be for example, 28 volts DC from an aircraft's power bus 23, shown schematically, or other suitable source scaled for the housing electronics. It may be current limited (e.g., 100 milliamps) via a resistive element which becomes open circuit should the current exceed a specified limit to maintain safe operation of the sensor. The power supply circuitry may utilize step-down DC/DC regulators when available, which may be off the shelf items. The power supply is protected against electromagnetic interference (radio frequency interference for example) and voltage transients (lightning for example).

    [0013] An optical point level sensor 30 is utilized as an independent fuel warning indication, low or high for example. The optical point level sensor 30 is operable to determine whether a fuel height is above or below a predetermined level. As illustrated in Figure 1, a cone 31 includes an LED 31L. The LED 31L bounces a light off a pair of mirrors 31M, and outwardly of a cone 31. As will be explained below, this light allows the sensor 30 to determine whether the fuel level is above or below a predetermined amount.

    [0014] The optical sensor operates in three modes. Two of the modes are built in test functions. Each mode is activated by sensor electronics sending a specific voltage level to the sensor. The operational mode is activated by the receipt of a signal (e.g., four volts) by the sensor and a return signal indicating a wet or dry condition. The first built-in test (BIT) function is activated by the receipt of a six volt signal which verifies the health of the optical components in an active state. Stated another way, the LED 31L is activated (illuminated) and a photo darlington detector is activated by the light received from the LED 31L. A second BIT function is activated by the receipt of a voltage signal (e.g., eight volt) from the sensor electronics which verifies the health of the optical components in an inactive state. The LED 31L is deactivated, at which point, the photodetectors should not receive any light or be activated.

    [0015] A fuel temperature sensor 28 is used to measure fuel temperature. The sensor may be a resistive element whose value changes when the fuel temperature varies. An independent DC current source (e.g., approximately 2 milliamps) provides an excitation signal to the sensor. The return signal is a voltage which is then digitized and from this information the fuel temperature is computed.

    [0016] A fuel density sensor includes an ultrasonic sensor 32 provides a measurement signal from which density can be computed. Notably, the ultrasonic sensor 32 may be eliminated in some embodiments. The determination of fuel density utilizes information from the ultrasonic sensor 32, the fuel temperature measurement sensor 28, and fuel dielectric sensor 26. The circuit 32 is shown in further detail in Figure 2. The velocity of sound must be determined when immersed in the fuel. The velocity of sound is determined by utilizing the ultrasonic density sensor 32 and a fixed target. The sensor is excited by a sinusoidal burst at some frequency (e.g., 1 MHz). A sound wave travels from the sensor surface to its target and back. The time of flight is measured under the control of sequencer 42 (See Fig. 1).

    [0017] From the determined flight time, the velocity of sound in the fuel is calculated. By measuring the velocity of sound, dielectric constant and temperature, a fuel density may be inferred.

    [0018] The ultrasonic method of measuring fuel density offers substantial cost savings when compared to alternatives.

    [0019] Notably, the operation of the sensors 24, 26, 28, 30, and 32 are all generally as known. It is the inclusion of all of these sensors into a single integrated sensor assembly which is unique to this disclosure. The incorporation of all of the sensors eliminates external wires. As will be explained below, the sensors are all connected directly into an integrated circuit board positioned within a housing. The sensors, and their interconnection, are all better protected than the separate sensors of the prior art. The integrated sensor assembly 20 is thus more resistant to environmental challenges within the field.

    [0020] Figure 3A shows the combined sensor 20. A fuel tank 46 is shown around the sensor 20. The fuel height sensor 24 is shown with circuitry box 48 and fuel dielectric sensor 26 as an assembly.

    [0021] Circuitry box 48 receives a connector 50 for receiving the power and communication data with a terminal block cover 52. A circuit board 51 is positioned within the housing 54. The temperature sensor 28 is positioned on an opposed side of the circuit board 51 from the connector 50. The fuel density sensor 32 is shown adjacent to the temperature sensor 28. The optical point level sensor 30 is shown adjacent to a forward end of the housing 54. The fuel density sensor 32 is shown schematically housing a sound wave off a surface 56, which may be a part of a fuel tank.

    [0022] Stated in one way, an integrated sensor assembly 20 for use on an aircraft fuel system has a housing 48 which receives a circuit board 51, a temperature sensor 28, and an optical point level sensor 30 and a fuel density sensor 32. A fuel height sensor 24 is positioned outwardly of the housing 48.

    [0023] The unique packaging can be best understood from Figures 3A, 3B, and 3C. As shown in Figure 3A, the fuel height sensor 24 essentially is an elongate tubular or cylindrical member. The fuel dielectric sensor 26 is attached to the tube structure of the fuel height sensor 24. The circuitry box 48 sits adjacent to the fuel dielectric sensor 26, and on an outer surface 60 of the fuel height sensor. As shown, the fuel height sensor outer surface 60 is generally cylindrical, and the circuitry box 48 has a part cylindrical portion 62, which sits on the cylindrical outer surface 60. A flat plate 63 is also formed as part of the circuitry box 48. As shown in Figure 3A, there are a number of depressions 66 in the outer surface 60. Similar depressions are obscured in this view by flat plate 63. As shown in Figure 3B, there are a number of tabs 64 facing inwardly of the flat surface 63.

    [0024] As can be appreciated from Figures 3A and 3B, a lens 72 is positioned within the circuitry housing 48. The lens 72 can be seen in Figure 3B to be positioned outwardly of the cone 31. The light from cone 31 reflects outwardly as shown schematically in Figure 1, moves through the lens 72, and, by the reflected signal, sensor 30 can determine whether that signal is sent outwardly into fuel, or whether it is above a fuel level. In this manner, whether the fuel level is above or below a predetermined level can be determined.

    [0025] As can be appreciated from Figure 3C, the tabs 64 snap into the depressions 66 in an outer surface 60 of the fuel height sensor 24 to secure the housing on the cylindrical outer surface. As shown in Figure 3C, as known, the fuel height sensor 24 has a pair of coaxially extending cylindrical or tubular portions 68 and 70.

    [0026] A bracket 47 serves to attach the integrated sensor assembly 20 to the fuel tank 46. In practice, more than one bracket 47 may be utilized.

    [0027] Fuel height sensor 24 includes a pair of coaxial tubular members 68 and 70, and an outer surface 60. The circuitry housing 48 is mounted on the outer surface 60. An outer one 70 of the tubular members defining a cylindrical outer surface. The housing 48 has a part cylindrical portion 62 received on the cylindrical outer surface.

    [0028] Figure 3D shows electronics 74 which are part of the fuel height sensors 24 and 26. A wire 76 is shown extending from electronics 74, into the circuitry housing 48, and connecting into the circuit board 51. Although shown schematically, a worker of ordinary skill in the art would understand how to communicate sensors 24 and 26 to the circuit board 51.

    [0029] It should also be understood, all of the other sensors that are positioned within the housing 48 also communicate through the single circuit board 51. Thus, another beneficial feature of the integrated sensor assembly 20 is that a single circuit board communicates and processes the signals from each of the several sensors.

    [0030] In one embodiment, the circuitry housing 48 is formed of a nylon material.

    [0031] By integrating all of the sensors within an integrated sensor 20, all of the extending wires required by the prior separate sensors are eliminated.

    [0032] Although an embodiment of this invention has been disclosed, a worker of ordinary skill in this art would recognize that certain modifications would come within the scope of this invention. For that reason, the following claims should be studied to determine the true scope and content of this invention.


    Claims

    1. An integrated sensor assembly (20) for use on an aircraft fuel system;
    the integrated sensor assembly (20) incorporating a housing (48, 54), said housing receiving a circuit board (51), a temperature sensor (28), a point level sensor (30) and a fuel density sensor (32); and
    a first fuel height sensor (24) positioned outwardly of said housing;
    wherein said first fuel height sensor (24) includes a pair of coaxial tubular members (68, 70) having an outer surface (60), with an outer one of said tubular members (70) having a cylindrical outer surface, and said housing having a part cylindrical portion (62) received on said cylindrical outer surface;
    wherein at least one wire (76) extends from said first fuel height sensor (24) into said housing; and
    wherein said at least one wire (76) from said first fuel height sensor (24) is connected into said circuit board (51); characterised by said housing also having a flat plate (63), and there being tabs (64) on one of said cylindrical outer surface and an inner surface of said flat plate (63), and there being depressions (66) in the other of said cylindrical outer surface and said inner surface with said tabs being received within said depressions to secure said housing on said cylindrical outer surface.
     
    2. The integrated sensor assembly as set forth in claim 1, wherein said first fuel height sensor (24) utilizes a variable capacitance to determine fluid height.
     
    3. The integrated sensor assembly as set forth in claim 1 or 2, wherein there is a second fuel height sensor (26), and said second fuel height sensor is configured to determine a dielectric constant of the fuel and utilize it to determine fuel height.
     
    4. The integrated sensor assembly as set forth in claim 3, wherein said second fuel height sensor (26) utilizes a fixed capacitance.
     
    5. The integrated sensor assembly as set forth in claim 3, wherein said second fuel height sensor (26) is also positioned outwardly of said housing.
     
    6. The integrated sensor assembly as set forth in claim 3, wherein said fuel density sensor (32) is configured to receive signals relative to the dielectric constant, and from the fuel temperature sensor (28); the fuel density sensor (32) includes an ultrasonic sensor that is configured to create a sound wave which travels from a sensor surface to a target and back through the fuel and measure a time of travel thereof, and from the time of travel, calculate a velocity of sound in the fuel and determine fuel density.
     
    7. The integrated sensor assembly as set forth in claim 1, wherein said temperature sensor, said point level sensor, and said fuel density sensor also communicate to said circuit board.
     
    8. The integrated sensor assembly as set forth in any preceding claim, wherein said point level sensor (30) includes a light source to determine if a fuel level is below a predetermined level.
     
    9. The integrated sensor assembly as set forth in claim 8, wherein said light source is configured to send a light signal through a lens (72) positioned within said housing to determine whether said fuel level is below said predetermined level.
     
    10. The integrated sensor assembly as set forth in claim 9, wherein point level sensor (30) has test functions to determine whether said optical point level sensor is operating properly.
     


    Ansprüche

    1. Integrierte Sensorbaugruppe (20) zur Verwendung an einem Luftfahrzeugbrennstoffsystem;
    wobei die integrierte Sensorbaugruppe (20) ein Gehäuse (48, 54) enthält, wobei das Gehäuse eine Schaltkarte (51), einen Temperatursensor (28), einen Grenzfüllstandssensor (30) und einen Brennstoffdichtesensor (32) aufnimmt; und
    einen ersten Brennstoffhöhensensor (24), der außerhalb des Gehäuses angeordnet ist;
    wobei der erste Brennstoffhöhensensor (24) ein Paar koaxialer röhrenförmiger Elemente (68, 70) beinhaltet, die eine Außenfläche (60) aufweisen, wobei ein äußeres der röhrenförmigen Elemente (70) eine zylindrische Außenfläche aufweist, und wobei das Gehäuse einen teilzylindrischen Abschnitt (62) aufweist, der an der zylindrischen Außenfläche aufgenommen wird;
    wobei mindestens ein Draht (76) von dem ersten Brennstoffhöhensensor (24) in das Gehäuse verläuft; und
    wobei der mindestens eine Draht (76) von dem ersten Brennstoffhöhensensor (24) in der Schaltkarte (51) verbunden ist; dadurch gekennzeichnet, dass das Gehäuse auch eine ebene Platte (63) aufweist und dass Laschen (64) an einer aus der zylindrischen Außenfläche und einer Innenfläche der ebenen Platte (63) vorhanden sind, und dass Vertiefungen (66) in dem anderen aus der zylindrischen Außenfläche und der Innenfläche vorhanden sind, wobei die Laschen innerhalb der Vertiefungen aufgenommen werden, um das Gehäuse an der zylindrischen Außenfläche zu fixieren.
     
    2. Integrierte Sensorbaugruppe nach Anspruch 1, wobei der erste Brennstoffhöhensensor (24) eine veränderliche Kapazität verwendet, um die Fluidhöhe festzustellen.
     
    3. Integrierte Sensorbaugruppe nach Anspruch 1 oder 2, wobei ein zweiter Brennstoffhöhensensor (26) vorhanden ist und der zweite Brennstoffhöhensensor dazu konfiguriert ist, eine Dielektrizitätskonstante des Brennstoffs zu ermitteln und sie zu verwenden, um die Brennstoffhöhe zu ermitteln.
     
    4. Integrierte Sensorbaugruppe nach Anspruch 3, wobei der zweite Brennstoffhöhensensor (26) eine feste Kapazität verwendet.
     
    5. Integrierte Sensorbaugruppe nach Anspruch 3, wobei der zweite Brennstoffhöhensensor (26) ebenfalls außerhalb des Gehäuses angeordnet ist.
     
    6. Integrierte Sensorbaugruppe nach Anspruch 3, wobei der Brennstoffdichtesensor (32) dazu konfiguriert ist, Signale in Bezug auf die Dielektrizitätskonstante und von dem Brennstofftemperatursensor (28) zu empfangen; der Brennstoffdichtesensor (32) einen Ultraschallsensor beinhaltet, der dazu konfiguriert ist, eine Schallwelle zu erzeugen, die sich von einer Sensorfläche zu einem Ziel und zurück durch den Brennstoff bewegt, und eine Wegezeit davon zu messen, und aus der Wegezeit eine Geschwindigkeit des Schalls in dem Brennstoff zu berechnen und die Brennstoffdichte zu ermitteln.
     
    7. Integrierte Sensorbaugruppe nach Anspruch 1, wobei der Temperatursensor, der Grenzfüllstandssensor und der Brennstoffdichtesensor ebenfalls mit der Schaltkarte kommunizieren.
     
    8. Integrierte Sensorbaugruppe nach einem der vorstehenden Ansprüche, wobei der Grenzfüllstandssensor (30) eine Lichtquelle beinhaltet, um festzustellen, ob ein Brennstofffüllstand unter einem vorbestimmten Füllstand liegt.
     
    9. Integrierte Sensorbaugruppe nach Anspruch 8, wobei die Lichtquelle dazu konfiguriert ist, ein Lichtsignal durch eine Linse (72), die innerhalb des Gehäuses angeordnet ist, zu senden, um festzustellen, ob der Brennstofffüllstand unter dem vorbestimmten Füllstand liegt.
     
    10. Integrierte Sensorbaugruppe nach Anspruch 9, wobei der Grenzfüllstandssensor (30) Testfunktionen aufweist, um festzustellen, ob der optische Grenzfüllstandssensor ordnungsgemäß arbeitet.
     


    Revendications

    1. Ensemble capteur intégré (20) destiné à être utilisé sur un système de combustible d'aéronef ;
    l'ensemble capteur intégré (20) incorporant un boîtier (48, 54), ledit boîtier recevant une carte de circuit (51), un capteur de température (28), un capteur de niveau (30) et un capteur de densité de combustible (32) ; et
    un premier capteur de hauteur de combustible (24) positionné à l'extérieur dudit boîtier ;
    dans lequel ledit premier capteur de hauteur de combustible (24) comporte une paire d'éléments tubulaires coaxiaux (68, 70) ayant une surface extérieure (60), un élément extérieur desdits éléments tubulaires (70) ayant une surface extérieure cylindrique, et ledit boîtier ayant une partie partiellement cylindrique (62) reçue sur ladite surface extérieure cylindrique ;
    dans lequel au moins un fil (76) s'étend dudit premier capteur de hauteur de combustible (24) dans ledit boîtier ; et
    dans lequel ledit au moins un fil (76) dudit premier capteur de hauteur de combustible (24) est relié dans ladite carte de circuit (51) ; caractérisé par ledit boîtier ayant également une plaque plate (63), et trois languettes (64) se trouvant sur l'une de ladite surface extérieure cylindrique et d'une surface intérieure de ladite plaque plate (63), et trois évidements (66) se trouvant dans l'autre de ladite surface extérieure cylindrique et de ladite surface intérieure, lesdites languettes étants reçues à l'intérieur desdits évidements pour fixer ledit boîtier sur ladite surface extérieure cylindrique.
     
    2. Ensemble capteur intégré selon la revendication 1, dans lequel ledit premier capteur de hauteur de combustible (24) utilise une capacité variable pour déterminer la hauteur de fluide.
     
    3. Ensemble capteur intégré selon la revendication 1 ou 2, dans lequel il y a un second capteur de hauteur de combustible (26), et ledit second capteur de hauteur de combustible est configuré pour déterminer une constante diélectrique du combustible et l'utiliser pour déterminer la hauteur de combustible.
     
    4. Ensemble capteur intégré selon la revendication 3, dans lequel ledit second capteur de hauteur de combustible (26) utilise une capacité fixe.
     
    5. Ensemble capteur intégré selon la revendication 3, dans lequel ledit second capteur de hauteur de combustible (26) est également positionné à l'extérieur dudit boîtier.
     
    6. Ensemble capteur intégré selon la revendication 3, dans lequel ledit capteur de densité de combustible (32) est configuré pour recevoir des signaux par rapport à la constante diélectrique, et à partir du capteur de température de combustible (28) ; le capteur de densité de combustible (32) comporte un capteur à ultrasons qui est configuré pour créer une onde sonore qui se déplace d'une surface de capteur à une cible et à nouveau à travers le combustible et mesurer un temps de déplacement de celle-ci, et à partir du temps de déplacement, calculer une vitesse de son dans le carburant et déterminer la densité de combustible.
     
    7. Ensemble capteur intégré selon la revendication 1, dans lequel ledit capteur de température, ledit capteur de niveau et ledit capteur de densité de combustible communiquent également avec la carte de circuit.
     
    8. Ensemble capteur intégré selon une quelconque revendication précédente, dans lequel ledit capteur de niveau (30) comporte une source de lumière pour déterminer si un niveau de combustible est inférieur à un niveau prédéterminé.
     
    9. Ensemble capteur intégré selon la revendication 8, dans lequel ladite source de lumière est configurée pour envoyer un signal lumineux à travers une lentille (72) positionnée à l'intérieur dudit boîtier afin de déterminer si ledit niveau de combustible est inférieur audit niveau prédéterminé.
     
    10. Ensemble capteur intégré selon la revendication 9, dans lequel le capteur de niveau (30) a des fonctions de test pour déterminer si ledit capteur de niveau optique fonctionne de manière appropriée.
     




    Drawing














    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description